
Pedagogies for Teaching CS1 with Java

Byron Weber Becker
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

bwbecker@uwaterloo.ca

This is a work in progress.

Abstract
The introduction of Java to CS1 has resulted in a prolifera-
tion of pedagogical approaches. As a more purely object-
oriented language (no methods outside of a class construct),
Java has forced educators to confront pedagogical issues
that the move to C++ did not.
In this paper I investigate the range of pedagogical options
used to teach three crucial parts of almost any CS1 course
taught with Java: the introduction of classes and objects,
the introduction of I/O (including graphical user inter-
faces), and software engineering issues. Using textbooks
as pedagogical case studies, I develop a classification sys-
tem for the introduction of classes and objects, as well as
I/O. The work on software engineering issues is still pre-
liminary and merely points towards possible future work.

1 Introduction
At last count thirty-four Java textbooks aimed at the CS1
market sit on the author’s shelf. A casual glance through
them shows that there are many, many differences in how
they approach teaching programming via the Java lan-
guage.
In [18] five general approaches to I/O are proposed and in
[17] and elsewhere advice is given regarding the ordering
of topics. Are these approaches to I/O and is this ordering
advice actually followed in all those textbooks?
A survey of about half of the thirty-four books reveals that
the five general approaches to I/O need significant revision
and that while most follow the advice in [17] to use objects
before writing classes, there is still considerable variation.
New classifications for both areas are proposed.
In the course of the survey, observations about the treat-
ment of software engineering topics were made. While this
part of the study is too preliminary to form any categoriza-
tions, it may be a pointer for some future study. It was also
inescapable that some personal opinions would form in the

course of closely examining so many books. These are
reported in the conclusions.
Choosing which textbooks to include in the study was
somewhat arbitrary. Textbooks included met one or more
of the following criteria: 1) those that made the best im-
pression when they first came, 2) were relatively recent, 3)
written by authors recognized for other books, and 4) books
thought to be widely used.
The sixteen textbooks chosen are listed in the Textbook
References section at the end of the paper. A separate sec-
tion lists other references. Also, notes developed in the
course of researching this paper are available at
www.math.uwaterloo.ca/~bwbecker/papers/ for those who
are interested.
The author deeply respects the vast time and energy in-
vested by the authors of these textbooks and does not want
to slight them in any way. Nevertheless, some textbooks
were found to be more helpful than others and those opin-
ions are noted.

2 Pedagogies for Objects
The richness and variation in textbooks is particularly evi-
dent in how authors introduce objects and classes. At first
glance, there is very little commonality between pedago-
gies used by the textbooks. However, by looking at a core
set of decisions that must be made by each author, either
explicitly or implicitly, patterns emerge. Those decisions
include 1) the ordering of objects with respect to other top-
ics, particularly control structures, 2) the order of using
objects and writing their classes, and 3) the qualities of the
first objects and classes presented.

2.1 Ordering of Topics
The order of topics (e.g.: “objects first” vs. “control struc-
tures first” vs. something else first) is a fundamental part of
a textbook’s pedagogy. To get an approximation of the
orderings, each topic covered (in broad categories) was
listed in the order presented. The list stopped when classes
had been implemented and control structures had been cov-
ered. These orderings are given in the second column of
Table 1 (which also includes data discussed in section
Error! Reference source not found.).

mailto:bwbecker@uwaterloo.ca
http://www.math.uwaterloo.ca/~bwbecker/papers/

2.1.1 Keywords and Definitions
The following keywords and definitions were used to cap-
ture the ordering of topics.
Applets: Writing applets. This is not included as object
usage or implementing classes (see below) because classes

and objects have not yet been discussed and the program-
mer has not explicitly instantiated the class.
Control: Iteration and selection control structures.
Design: Help in designing classes and their interactions.

Author(s) Topic Ordering First Class Used/First Class Written
Arnow &
Weiss

UseInstantObj, UseObj, ImplClass,
Design, Control

(PrintStream, String), File
Laugher – prints “haha” and variations.

Barnes UseObj, ImplClass, Control Ship – navigate an ocean-going ship.
SimpleNote – a Post-it® note analogy

Bell & Parr Applets, Methods, Control,
UseImpl

(Applets, Graphics), Balloon –a balloon with location and size.
Balloon

Bishop Sample, UseObj, Methods,
ImplClass, Control

Date
Labels – printing the outline of a box.

Deitel & De-
itel

Sample, Applets, Control, Meth-
ods, Arrays, UseImpl

(Applet, Graphics), Time1
Time

Horstmann Sample, UseImpl, Control BankAccount – deposit, withdraw or transfer money.
BankAccount

Koffman &
Wolz

UseImpl, Control UnitConverter – convert square meters to square yards
UnitConverter

Lambert &
Osborne

Sample, UseObj, Control, Meth-
ods, ImplClass

GUI objects such as buttons
Student – with a name, test scores, and average calculations.

Lewis &
Loftus

UseInstantObj, UseObj, Control,
ImplClass

(PrintStream, String), String, Random, DecimalFormat
Coin – simulates flipping a coin.

Morelli Sample, UseImpl, Control Rectangle, CyberPet – a pet which “eats” and “sleeps”.
CyberPet

Nino &
Hosch2

DiscussObj, SpecifyClass,
ImplClass, Control, UseObj

Counter, PlayingCard, Explorer – several examples in parallel
Nim

Savitch Sample, UseInstantObj, Control,
UseImpl

(String), Species – estimate population growth in a species
Species

Slack UseObj3, Control, UseObj,
ImplClass

TurtleGraphics, Date, DateFormat
SmartTurtle, Counter

Stein4 DiscussObj, ImplClassExt, Con-
trol, SpecifyClass, ImplClass

(String)
StringTransformer – transform strings, Rectangle

Wu DiscussObj, UseObj, ImplClass,
C t l

MainWindow, MessageBox – provided interface package.

1 Deitel & Dietel do slip in an instantiation of TextArea prior to this, but it is really just to get more space for output and is not dis-

cussed as an object.
2 Nino & Hosch is interesting in that they specify and actually implement classes long before they are used – at least in the textbook. The

publishers have assured me that students write programs and use objects in lab much earlier than is suggested by reading the textbook
alone.

3 This is a much more thorough use of UseObj than is typical. It’s really an overview of the entire language, including inheritance.
4 Stein is similar to Nino & Hosch: both specify and implement classes before putting much emphasis on using objects. In this textbook I

don’t see a complete program. The sample assignments on the web site do.

Control CurrencyConverter – convert one currency to another.

Table 1: Order of Topics and Objects Used/Classes Written

DiscussObj: An in-depth discussion of objects and classes,
but without code.
ImplClass: Implementation of classes, including instance
variables and methods (unless methods are previously cov-
ered as a separate topic).
ImplClassExt: Implementation of classes by extending
existing classes.
Methods: Writing methods, but prior to implementing
classes.
Sample: A sample program is used as an overview. The
sample must be more complex than HelloWorld to be
noted. (While [17] rightly claims that HelloWorld is com-
pletely object-oriented and can be a wonderful example, the
fact that object instantiation is hidden by using only Sys-
tem.out and String objects weakens the example sub-
stantially.)
SpecifyClass: Developing the specifications of a class,
without actually implementing it.
UseObj: Using objects in programs which are explicitly
instantiated by the programmer (excludes using class meth-
ods and objects covered by UseInstantObj).
UseInstantObj: Using objects that were not explicitly in-
stantiated by the programmer. The most common exam-
ples are the PrintStream object System.out (instanti-
ated by the runtime system), String objects (instantiated
with special language support) and Graphics contexts
(instantiated by the runtime system and passed to paint).
If these objects are simply used to get output without a real
discussion of objects, then it is classified as a Sample or
ignored.
UseImpl: Using and implementing objects are presented
together.
These keywords are admittedly somewhat loose and there
is lots of room for interpretation – both in what the key-
words mean and in which keyword best fits a particular
section of a textbook. This reflects the rich diversity in
how authors approach the topics.
There were several difficulties in constructing this table.
First, a text by Decker & Hirshfield initially included in the
study is not listed above because it was impossible to clas-
sify under this scheme. The text begins by extending app-
let and continues to emphasize applets for the remainder
of the text. I could not find a complete class anywhere in
the book which did not extend a class in java.awt and
nowhere were classes and objects thoroughly explained.
The text is excluded from the remainder of this section.
Second, a spiral approach used by Bishop made it very
difficult to determine the order of topics or even what to

count as the first object usage. Topics were introduced but
not covered thoroughly only to be revisited again but with
different examples.

2.1.2 OO vs. Control Ordering
On the surface, there is very little commonality. Only
Horstmann and Morelli show the same set of keywords in
the same order.
Deeper analyses are possible, however. One of the most
helpful categorizations is locating control structures with
respect to objects and classes as represented by the set of
keywords obj = {ImplClass, UseObj, UseImpl}. The key-
word UseInstantObj is excluded from this set because the
examples it represents don’t give a complete picture of
object-oriented programming. Most of the texts are cov-
ered by three possibilities where o∈ Obj:
1. Control precedes o (control first). Textbooks in this

category include Bell & Parr, Deitel & Deitel, and
Savitch.

2. UseObj precedes Control with ImplClass following
(control middle). Lambert & Osborne, Lewis &
Loftus, and Slack follow this approach.

3. o precedes Control (control last). This is the largest
category, containing all of the remaining textbooks ex-
cept, perhaps, Stein5.

The placement of objects with respect to control structures
results in very different learning experiences. At the mo-
ment it is difficult to say which of these pedagogies, if any,
is more correct. However, Joseph Bergin [Bergin] argues
that the most important topics should be placed first, if pos-
sible. In an object-oriented language a very reasonable
position is that using objects and writing classes are among
the most important concepts.
Moving objects and classes early echoes the migration of
procedures from the end of textbooks to the beginning of
textbooks in the Pascal era as documented in [Pattis]. Ex-
cerpts of the prefaces of these Pascal textbooks indicate
that “procedures early” was driven by a concern with pro-
gram structure. In an OO language, objects and classes
take the place of subprograms as the dominant structuring
paradigm.
The control middle and control last pedagogies present an
opportunity not available in control first: using objects to
illustrate control structures.

5 Of the three categories, Stein fits most nearly with control last.

She has an early section where classes are implemented using
extension of a provided class. This, plus an extensive discus-
sion of objects (without code) gives a firm enough foundation
to use some objects during discussions of control structures
later in the book.

There are several possibilities here. One is placing the con-
trol structures in the context of a class and making use of
the classes’ instance variables. Another is to have the con-
trol structures make active use of one or more objects, both
in the bodies of the statement and in the condition. By
these measures, Arnow & Weiss, Barnes, Horstmann, Mo-
relli, and Wu are strong. The other textbooks implement-
ing the control middle or control late pedagogies use lots of
examples with classes containing only main() or frag-
ments disembodied from their class. It seems that
opportunities are missed.

2.1.3 Procedural vs. O-O Paradigm
A variation of the control early and control middle pedago-
gies is exposed by these textbook case studies: are methods
first presented as a construct to control execution (a proce-
dural paradigm) or are methods first presented as an ob-
ject’s behavior (an object-oriented paradigm)? Four of the
textbooks (Bell & Parr, Bishop, Dietel & Dietel, and Lam-
bert & Osborne) introduce methods using the procedural
paradigm, either as helper methods within an applet or
static methods called from main().

2.2 Object Usage vs. Class Authorship
Another pedagogical decision is whether students write
programs using objects before they are asked to author their
own classes. In Table 1 this is indicated by UseObj occur-
ring before one of {ImplClass, UseImpl}.
Comparing to the Pascal era, this is analogous to writing
programs which use existing procedures before writing
your own procedures, a pedagogy named “Read/Call Be-
fore Write” or “Libraries Early” by Pattis [Pattis]. Pattis
advances the following arguments for this pedagogy:
• The experience of using subprograms helps students

understand what they are why they should be used.
• Students learn to read and use libraries, a fundamental

skill.
• Students become “documentation consumers, not

producers” which is more apt to teach the need for
quality documentation.

• Students can design and implement more sophisticated
(satisfying) programs than they could on their own.

These same arguments can be easily modified into a
“Read/Use Before Write” object-oriented pedagogy. Wu
does this in his preface, adding the arguments that using a
library “shows students how real-world programs are de-
veloped” and that it “minimizes the impact of programming
language syntax and semantics” (such as I/O). Of the 16
textbooks surveyed, 7 use this approach (Arnow & Weiss,
Barnes, Bishop, Lambert & Osborne, Lewis & Loftus,
Slack and Wu).
Several of the authors use classes from the standard Java
libraries. These include classes such as PrintStream
File, Date, String (explicitly instantiated with new),
Random, and DecimalFormat. Other authors used librar-
ies they provided. These included Ship and Turtle ob-

jects (both reminiscent of turtle graphics and Karel the Ro-
bot) and two GUI libraries, one based on an event model
and the other simply using dialog boxes instead of reads
and writes.

2.3 Object Instantiation
Already in the definition of the keywords used in Table 1
you will have noticed the distinction between using objects
which the students instantiate themselves and those which
are instantiated for them. Examples of the later are Sys-
tem.out, strings, and the Graphics context passed to the
paint method. In spite of the spirited defense of “Hel-
loWorld” as an object-oriented program in [17], programs
using pre-instantiated objects really do have a different feel
in that either there is only one instance or they do not have
a readily discernable state.
Examples which contain only single instances of a class are
problematic because students typically stumble on the idea
that there can be many instances, each with its own state
but a common set of behaviors. This isn’t evident in ex-
amples relying on System.out and the Graphics context
where students only see one instance in any one program.
In my experience students grasped this concept more easily
and quickly if the first example program has multiple in-
stances of the same class, each with its own state. Exam-
ples? A bank account class with an instance for my ac-
count and another for your account. Arnow & Weiss,
Horstmann, Lewis & Loftus, and Morelli all have strong
examples.
Many early examples use strings as their objects – and use
several instances. One problem is that Java provides spe-
cial support for creating string objects from literals, disrupt-
ing the typical object lifecycle. Another problem is that
strings are immutable. It’s hard to show that different ob-
jects have different state because you can’t change the state
of a string – all you can do is create a new one.

2.4 Interacting Objects
Still another aspect of object pedagogies was exposed in
Arnow & Weiss. They have a tollbooth program which has
a class containing main(), a second class modeling trucks
and a third class modeling tollbooths. The main() instan-
tiates a tollbooth and several trucks. It then arranges for
each truck to “go through” the tollbooth for tolls to be col-
lected.
This example struck me as somewhat unusual in textbooks
but not in real life. What are the characteristics which
caught my eye?
• Objects from two classes are interacting to accomplish a

task. This is different from main() interacting with
objects from just one class.

• The design process of both classes is shown, including
how responsibilities are distributed between them.

Distributing responsibilities between classes is an impor-
tant skill that we dare not overlook. Yet a number of the
textbooks did. [1,2,11,12,14,15] contain examples similar

to the tollbooth example. [4,7,8,9,13,16] have interacting
classes in the chapter on arrays where one class contains an
array (with a public interface to manipulate it) of objects.
A number of texts have no obvious instance of classes that
interact in this manner [3,5,6,10].

2.5 Summary of Object Pedagogies
Authors Control
Arnow & Weiss Last
Bell & Parr Middle
Barnes Last
Bishop Last
Deitel & Deitel First
Horstmann Last
Koffman & Wolz Last
Lambert & Os-
borne

Middle

Lewis & Loftus Middle
Morelli Last
Nino & Hosch Last
Savitch First
Slack Middle
Stein Last
Wu Last

3 Pedagogies for IO
3.1 Approach to I/O
In [18] a five-part classification for handling input and out-
put concerns in a textbook is presented. Briefly, the five
possibilities are (quoting)
1. Ignore GUIs entirely. Require students to write

programs with input/output constructs from libraries
such as C++ ioStream, C stdio, and Java classes
system.in and out.

2. Promote non-sequential programming models from the
onset by embracing GUI and concurrent programming;
for example introduce the Java Abstract Windows
Toolkit (AWT) and the Java Thread class immediately.

3. Have students write program fragments rather than
complete programs.

4. Include instruction in the use of GUI-design tools such
as Visual Basic.

5. Use special purpose libraries.
Reviewing the sixteen textbooks reveals remarkably little
overlap in approach and that none of them use options 1, 3
or 4. See Error! Reference source not found. for a sum-
mary of key differences. Clearly a different classification
is needed.

In examining the differences and similarities it becomes
evident that the key question is how soon event-driven in-
terfaces are introduced. Two secondary concerns are order-
ing of material and whether simplified libraries will be
used. One way of organizing these concerns is as follows:
1. Use event-driven interfaces from the beginning of the

text. Console I/O is either not covered at all or cov-
ered briefly in a chapter with other I/O streams.
a. Use a simplified GUI library early in the book, in-

troducing java.awt.* after programming foun-
dations have been laid. Lambert & Osborne fol-
low this approach.

b. Use java.awt.* from the very beginning of the
text. Bell & Parr and Decker & Hirshfield use this
approach.

2. Use console-style I/O until students are ready for
event-driven interfaces. There are three variations:
a. Use only java.io.* throughout the text. Morelli

uses this strategy.
b. Use a simplified console I/O class. Most authors

explain the class in a later chapter covering I/O
streams. Barnes, Bishop, Horstmann, Nino &
Hosch, Savitch, Slack, and Stein use this ap-
proach. Horstmann and Slack explain the pro-
vided class soon after it is first used.

c. A third approach is to use a library providing dia-
log boxes for input and output with the user. The
style of programming is like a console program
but the result looks more like a GUI. Koffman &
Wolz and Wu use this approach. Deitel & De-
itel’s variation is using JOptionPane for I/O
rather than a provided library.

3. The third approach is to present console I/O and GUIs
in parallel. These textbooks rely on console-style I/O
early in the book but include a “GUI Supplement” at
the end of most chapters. The supplement attempts to
put the chapter’s topic in a graphical or GUI context.
It generally takes about 6 chapters to build the
groundwork for simple event-driven programs. As
with the other approaches, there are two variants:
a. Use a simplified console I/O class. Lewis &

Loftus do this.
b. Use java.io.*; Arnow & Weiss.

There are several other much more minor differences in
approach. About half of the authors present graphics early
as a fun application of the other concepts being discussed.
Event-driven GUIs come later.
Another issue is how to address applets. Five of the sixteen
textbooks focus almost entirely on applets rather than
graphical applications. Five others focus on applications,
providing only a few pages on the basics of applets.

3.2 Graphical I/O Libraries
Among the provided libraries which offer a graphical inter-
face, there are clear differences. Among the three, Lambert
& Osborne’s BreezyGUI library is the only one which
simplifies event-driven I/O. Their library has the feel of
the Java 1.0 event model in which programmers override
specific methods to handle specific kinds of events. If the
same kind of event can arrive from more than one source,
the programmer must distinguish the cases with a selection
statement.

A feature o
BagLayout
phisticated-
Wu’s jav
classes wh
choices, et
provide op
class is to
stantiation
Programme
a relations
classes. Cl
provided cl
can simply
about objec
if students
I/O or whe
stance, fails

4 Pedago
In examinin
qualities re
“Software
mean anyth
process tow
cussions of
studies wh

developer or model a software development process. It
also includes discussions of testing, debugging, cou-
pling/cohesion, assertions or designing by contract, class
specification, or design tools such as UML.
Nino & Hosch are clearly the best of the sixteen in this
regard. A working title for their book hints strongly at this
bias: Introduction to Software Construction with Java.
Areas where their book stands out include:
• An early and careful discussion of abstraction.

&
 W

rn
es

 P

ho
p

&
 H

&
 D

rs
tm

an

&
 W

 O

 L

re
lli

&
 H

vi
tc

h

ck

in

Is console
Is a consol
Is the cons
When are g
When are e
Are librari
Is the focu
Do chapter
A

B
a

B
 &

B
is

D

D

H
o

K

L
&

L
&

M
o

N

Sa Sl
a

St
e

W
u

I/O used? Y Y N Y N N Y N N Y Y Y Y Y Y N

e class provided? N Y Y Y Y N Y Y Y Y

ole class explained? IO IO E IO IO IO E

raphics introduced? E L E L E E E E M E M L M L L E

vent-driven GUIs used? M L E L E M1 M M E1 M E L M L L L

es provided for GUIs? N N N N N N N Y Y N N N N N N1 Y

s on applets? Y N Y N Y N N Y N Y N N N N N N

s have GUI supplements? Y N Y N Y N N N N Y N N N N N N
f BreezyGUI is a simplified version of Grid-
 which makes it easy to create reasonably so-
looking interfaces.
abook library is a collection of instantiable
ich provide input from textboxes, lists, yes/no
c. from users via dialog boxes. Other classes
tions for output. One of the stated goals of the
give students practice in using objects, both in-
and method invocation.
rs using Koffman and Wolz’s library use the is-
hip rather than the uses relationship between
asses which need to do I/O extend SimpleIO, a
ass. One perceived advantage is that beginners
 use the I/O methods without needing to know
ts or dot notation. It becomes a liability later on
need to extend a different class and do console
n they simply realize that Employee, for in-
 the is-a test with respect to SimpleGUI.

gies for Software Engineering
g the sixteen textbooks, a number of admirable
lated to software engineering came forward.
engineering” is used rather liberally here to
ing that might guide the software development
ards a better product. This encompasses dis-
 the software development process, or case

ich illustrate the decisions made by an expert

• Detailed specification of classes before implementation.
• Two chapters on programming by contract and testing.
• A detailed case study where life cycle issues are

discussed and CRC cards used, although the life cycle
could be stronger.

• A chapter discussing software quality, both from an
external view (such as reliability) and an internal view
(such as cohesion and coupling).

• Using the Model-View-Controller pattern thoughout.
Wu stands out for his use of UML-like diagrams. He has a
number of good case studies, including a very detailed
study as the entire last chapter.
Arnow & Weiss are most noted for presenting and then
consistently using a development process in their case stud-
ies. There is also a chapter on verifying object behavior.
Lewis & Loftus have a chapter on software engineering
which covers a variety of development models including
waterfall, iterative and evolutionary. There are also brief
descriptions of how to identify classes and objects, and the
software life cycle. Unfortunately, the chapter is too late to
be reinforced in case studies.
Horstmann also has a chapter late in his book which covers
many of these issues. He also includes using nouns and
verbs for class/object/method discovery, supplemented by

CRC cards. An earlier chapter covers testing and debug-
ging.
Morelli provides an “Object-Oriented Design” section in
almost every chapter. Though short, the tips provided are
important and timely.
Stein is notable for her emphasis on specifying behavior
through interfaces.

5 Conclusions
Sixteen Java textbooks aimed at CS1 have been examined
in terms of how objects and classes are introduced, I/O is
handled, and their support for software engineering con-
cepts. For the first two topics, new classification systems
which fits the data were developed and presented.
It is obvious, given the many and varied approaches taken,
that no one book is likely to meet every need. Neverthe-
less, the author has formed some opinions from this survey
and would like to offer them in hope that they will benefit
instructors choosing textbooks and designing courses, as
well as future textbook writers.
• Two of the books were exceptionally enjoyable for their

fresh approach and the extent to which they challenged
the author personally. Nino & Hosch and Stein are
highly recommended to instructors, whether or not they
are adopted for student use.

• Of those who used GUIs from the very beginning,
Lambert & Osborne seemed to be the only one which
avoided having fundamental concepts dominated by the
AWT. This is, of course, due to their own simplified
library (which is available for anyone – even other
textbook authors – to use).

• Six of the sixteen textbooks avoid console I/O almost
completely. While most of the programs we use may
have GUIs, it is not obvious that console I/O is dead. It
is too useful for testing and prototyping. Anyone
adopting one of these six texts should seriously consider
supplementing it with console I/O.

• The most satisfying books were those which used
objects and then wrote classes – and did it early.

• Although they each have their problems, the books
most readily recommended are Arnow & Weiss, Lewis
& Loftus, Horstmann, Morelli, Slack and Wu, in
addition to Nino & Hosch and Stein6.

Textbook References
[1] Arnow, David M. and Gerald Weiss. Introduction to

Programming Using Java: An Object-Oriented Ap-
proach. Addison-Wesley, 2000.

[2] Barnes, David J.. Object-Oriented Programming with
Java: An Introduction. Prentice Hall, 2000.

6 The author has nothing to gain by anyone adopting any of these

books.

[3] Bell, Douglas and Mike Parr. Java for Students. Pren-
tice Hall, 1999.

[4] Bishop, Judy. Java Gently: Programming Principles
Explained. Addison-Wesley, 1998.

[5] Decker, Rich and Stuart Hirshfield. Program-
ming.java: An Introduction to Programming Using
Java. Brooks/Cole, 2000.

[6] Deitel, H.M., and P.J. Deitel. Java: How to Program.
Prentice Hall, 1999.

[7] Horstmann, Cay. Computing Concepts with Java 2
Essentials. John Wiley & Sons, 2000.

[8] Koffman, Elliot and Ursula Wolz. Problem Solving
with Java. Addison Wesley Longman, 1999.

[9] Lambert, Kenneth A. and Martin Osborne. Java: A
Framework for Programming and Problem Solving.
PWS Publishing, 1999.

[10] Lewis, John and William Loftus. Java Software Solu-
tions. Addison-Wesley, 2000.

[11] Morelli, Ralph. Java, Java, Java: Object-Oriented
Problem Solving. Prentice-Hall, 2000.

[12] Nino, Jaime and Frederick Hosch. Introduction to
Programming and Object-Oriented Design Using
Java. John Wiley & Sons, 20017.

[13] Savitch, Walter. Java: An Introduction to Computer
Science & Programming. Prentice Hall, 1999.

[14] Slack, James M.. Programming and Problem Solving
with Java. Brooks/Cole, 2000.

[15] Stein, Lynn Andrea. Interactive Programming in
Java. Due to be published by Morgan Kaufmann Pub-
lishers in late 2000. Currently available on-line at
http://www-cs101.ai.mit.edu/.

[16] Wu, C. Thomas. An Introduction to Object-Oriented
Programming with Java. WCB/McGraw-Hill, 1999.

Other References
[Bergin] Bergin, Joseph. Pedagogical Pattern #34 Early

Bird Pattern at the Pedagogical Patterns Project,
http://www-lifia.info.unlp.edu.ar/ppp/pp34.htm.

[17] Lewis, John. Myths about Object-Orienteation and its
Pedagogy SIGCSE Bulletin 1 (2000), p. 245-249.

[Pattis] Pattis, Richard E. “The ‘Procedures Early’ Ap-
proach in CS1: A Heresy” SIGCSE Bulletin 1 (1993),
p. 122 - 126.

[18] Wolz, Ursula and Elliot Koffman. “simpleIO: A Java
package for Novice Interactive and Graphics Pro-
gramming” SIGCSE Bulletin 3 (1999), p. 139 - 142.

7 This review is based on a draft manuscript dated March, 2000

and checked against the most recent version at
http://www.cs.uno.edu/~fred/OOJ/Utilities/.

http://www-cs101.ai.mit.edu/

6 Appendix A: A Survey of Java Textbooks
6.1 Arnow and Weiss
Reference: Arnow, David M. and Gerald Weiss. Introduc-
tion to Programming Using Java: An Object-Oriented
Approach. Addison-Wesley, 2000. 723 + 82 pages.
Objects: Chapter 1 contains a discussion of objects and
classes followed by a helloWorld program. Chapter 2 is
about using objects, but they are all objects that are created
with hidden constructors – System.out and strings. Us-
ing constructors to create an instance comes in the next
chapter. After a brief discussion of String constructors, the
entire chapter is spent on file and console I/O.
Classes are first written in chapter 4 where the first exam-
ple is a “laugher” class. It contains a single method which
prints “haha” to System.out. It quickly evolves to include a
parameter specifying the sound to make and an instance
variable to store the default laugh. This background is used
to develop an interactive I/O class.
An extended example in chapter 5 uses two cooperating
classes.
I/O: I/O streams are the big thing in the first four chapters
of the book. In addition, each chapter includes a “GUI
supplement”. Early supplements focus on graphics. Event
handling is introduced in chapter 6 to create a calculator.
Design: Design issues are introduced immediately after
the mechanics of writing a class. Much of chapter 5 is an
example where a tollbooth collects tolls from trucks. Ex-
tensive time is spent identifying the objects, defining the
interfaces, etc. The design process shown is a reasonable
introduction and they do use it often throughout the text.
Opinions: One of the strongest texts in illustrating the
design process. Other highlights include looping patterns
and a clear example distributing responsibilities among
multiple classes. I wish I/O streams would be downplayed
in the early chapters.

6.2 Barnes
Reference: Barnes, David J.. Object-Oriented Program-
ming with Java: An Introduction. Prentice Hall, 2000.
951 + 77 pages.
Objects: HelloWorld is used to introduce the syntactic
elements of a program but is quickly followed by an exten-
sive discussion of creating and using a predefined ship ob-
ject. A second example, bank accounts, already introduces
two interacting objects – one for the bank and one for ac-
counts. The next chapter discusses writing classes (a class
implementing reminder notes).
I/O: Console I/O (via a provided class) is used for most of
the text. There is substantial coverage (270 pages) of GUI
applications and applets.
Design: There is little support for design issues other than
several case studies.
Opinions: One of the more comprehensive texts.

6.3 Bell and Parr
Reference: Bell, Douglas and Mike Parr. Java for Stu-
dents. Prentice Hall, 1999. 524 + 62 pages.
Objects: Applets are used from the beginning and thus
students write and see classes from the beginning. The
concepts of object and class are not discussed, however,
until after graphics, numeric calculations, methods, events,
selection and repetition have all been discussed. At this
point a balloon class is introduced and used. There are no
examples of distributed responsibilities.
I/O: The text uses applets extensively. Event-driven pro-
gramming is introduced by page 68 to respond to scroll-
bars. Other components are added later. Console programs
are covered briefly towards the end.
Design: Design issues are left to the end of the book where
there are chapters on OO design, testing and debugging.
There is no discussion of the software lifecycle.
Opinions: I think OO programming gets lost in the midst
of all the GUIs.

6.4 Bishop
Reference: Bishop, Judy. Java Gently: Programming
Principles Explained. Addison-Wesley, 1998.
Objects: Chapter 2 provides a survey of Java, ending with
a few examples using the Date class. Chapter 3 is devoted
to methods, most of which are static and called from main.
The last two sections discuss classes and show a case study.
The next three chapters, however, are full of programs
which use little more than main().
Chapter 7 uses objects extensively and includes a case
study where responsibilities are distributed.
I/O: Console I/O is done with a provided class which is
then developed half way through the book. GUIs (both
applications and applets) are discussed in chapters 9 and
10.
Design: There are six case studies but very little on soft-
ware engineering issues.
Opinions: I dislike the overuse of main() and static
methods as well as the way objects are de-emphasized until
late in the book.

6.5 Decker and Hirshfield
Reference: Decker, Rich and Stuart Hirshfield. Pro-
gramming.java: An Introduction to Programming Using
Java. Brooks/Cole, 2000. 593 +24 pages.
Objects: The authors begin with GUIs – and emphasize
them throughout the textbook. They do not appear to de-
velop any classes that do not extend a class from
java.awt.*.
I/O: Nearly everything is done with applets. There is a
chapter on file I/O but nothing on console I/O.
Design: The authors advocate designing the user interface
first and then filling in the details to make it work. There is
a large ATM case study in chapter 7 which uses this ap-

proach. The result, however, only handles the interface for
the ATM.
Opinions: I think students would finish this text with a
very skewed idea of programming. I fear they would not
be able to handle any programming task which is not part
of a graphical user interface and would not even really un-
derstand what objects and classes are.

6.6 Deitel and Deitel
Reference: Deitel, H.M., and P.J. Deitel. Java: How to
Program. Prentice Hall, 1999. 1,228 + 116 pages.
Objects: Classes and objects do not appear to be used in
depth until chapter 8 where the first example is a time
class. However, students extend JApplet starting with
chapter 2, and use some existing classes such as JLabel
and class methods much earlier. Chapters on methods and
arrays also appear before the in-depth chapter on classes.
I/O: JOptionPane is used extensively for I/O early in the
text. GUIs are covered extensively in chapters 11-13.
Console I/O is not discussed.
Design: There are a few examples of pseudo-code, but
little else to illustrate design principles or the software life-
cycle.
Opinions: The key selling point is the comprehensiveness.
It covers threads, images, audio, the database connectivity
API, servlets, etc. On the downside, I find it very hard to
read (a combination of typography, verbosity, and organi-
zation). Classes and objects are used a long time before
they are adequately explained.

6.7 Horstmann
Reference: Horstmann, Cay. Computing Concepts with
Java 2 Essentials. John Wiley & Sons, 2000. 681 + 181
pages.
Objects: Classes are described early and used sparsely
(strings, a console reader, System.out) in chapters 1 and
2. Chapter 3 develops and uses a bank account class. A
coin class provides a second example. Distributing respon-
sibilities in several classes occurs in the array chapter (11).
I/O: A very simple console class is introduced early. This
is followed immediately with an "Advanced" section on
reading input with standard Java. The next chapter is on
writing classes and includes a section on writing the custom
class.
Chapter 4 discusses applets and graphics. Event handling
and the AWT comes much later in chapters 10 and 12.
Design: Class discovery using nouns and verbs is intro-
duced just after writing classes. It’s picked up again in
much more detail in Chapter 14. There is an entire chapter
devoted to testing and debugging (8).
Opinions: I find the writing to be very clear. One of my
favorite texts.

6.8 Koffman and Wolz
Reference: Koffman, Elliot and Ursula Wolz. Problem
Solving with Java. Addison Wesley Longman, 1999. 681
+ 143 pages.
Objects: Using and writing classes are introduced together
on page 44 with a class to convert fabric measurements
from square meters to square yards. Converting numbers
of nickels and pennies to dollars and change is a second
example. Distribution of responsibilities between two
classes occurs in Chapters 6 (a bill-paying program) and 7
(an employee database using arrays).
I/O: Programs requiring I/O extend (rather than use) a
provided GUI package. System.out is used for debug-
ging; console input is not discussed while file I/O is only
via provided classes.
GUIs are discussed in chapters 9 and 10.
Design: The waterfall model is discussed early in Chapter
2. Many later case studies reinforce the model. Chapter 8
discusses the design implications of inheritance, abstract
classes, etc..
Opinions: Many of classes are simply containers for
read(), process(), and output() (suitably renamed).
Experienced Java programmers would not create a class to
solve these problems.

6.9 Lambert & Osborne
Reference: Lambert, Kenneth A. and Martin Osborne.
Java: A Framework for Programming and Problem Solv-
ing. PWS Publishing, 1999. 494 + 39 pages.
Objects: Objects and classes are explored in chapter 8 via
a student class. Readers have seen and written many
classes prior to that, but they all follow a template which
makes use of the author’s GUI package. An example in
chapter 9 (arrays) distributes responsibilities between three
classes.
I/O: Graphical user interfaces are used throughout the text.
The authors provide a package, BreezyGUI, which makes
fairly sophisticated interfaces pretty reasonable. The feel is
much like the Java 1.0 event model where specific methods
are overridden rather than registering listeners. Chapter 17
introduces the AWT.
Console I/O is buried in chapter 13 along with file I/O.
Design: There are a large number of short case studies,
each of which is broken into specification, analysis, design
and specification. These sections don’t often have a lot of
elaboration, however. Each chapter has a short section on
design, debugging and testing hints. They are set in a
smaller font, however, making them seem less important.
Opinions: The BreezyGUI package allows the authors to
use sophisticated interfaces from the beginning without
getting sidetracked by the interfaces. I wish the students
had more opportunities to write their own classes which
don’t follow the author’s GUI cookie-cutter.

6.10 Lewis and Loftus
Reference: Lewis, John and William Loftus. Java Soft-
ware Solutions. Addison-Wesley, 2000. 515 + 265 pages.
Objects: Objects are introduced with System.out and
strings early in chapter 2. Later in the chapter instances of
Random and NumberFormat, along with static methods
from Math are used. All of the classes shown at this point
have a single method: main. A GUI supplement shows
how to draw a snowman in an applet.
Objects and classes reappear in chapter 4 (after a chapter
on control structures) where classes modeling coins, ra-
tional numbers and dice are developed. There are very
few, if any, examples where responsibilities are distributed
between classes, except for using collection classes and
inheritance.
I/O: A custom class for console I/O is introduced in chap-
ter 2. It’s explained in chapter 8 along with other I/O
streams.
Each chapter includes a “GUI Supplement”. Early supple-
ments focus on graphics. Event handling for mouse and
keyboard listeners makes up the bulk of chapter 5. Input
from text fields is covered in chapter 7. Throughout, only
applets are discussed.
Design: The waterfall model and pseudocode are briefly
described in chapter 3 in the context of developing algo-
rithms but is not reinforced in the rest of the text. Chapter
10 includes a more extensive discussion of development
process models and a partial case study.
Opinions: A very competent text. I wish the object usage
in chapters 2 and 3 was stronger.

6.11 Morelli
Reference: Morelli, Ralph. Java, Java, Java: Object-
Oriented Problem Solving. Prentice-Hall, 2000. 912 + 52
pages.
Objects: Chapter 1 walks through a program using Sys-
tem.out and a rather sophisticated animated applet. Af-
ter a brief discussion in chapter 2 of how objects can inter-
act to solve a problem, a pair of classes are written. First a
Rectangle class and then a RectangleUser class (con-
taining main). This pair then illustrates how classes are
used. A “cyberpet” is then developed. This case study is
picked up again in chapters 3-8 and 10, becoming ever
more complex.
A case study in chapter 8 shows an application which dis-
tributes responsibilities between two classes.
I/O: Each chapter has a “From the Java Library” section.
In chapter 2 this covers keyboard input using a Buffere-
dReader. In chapter 7, StringTokenizer.
Applets and simple event-based programming using but-
tons is introduced in Ch 4. There is much more on GUI
widgets and graphics in chapters 9 and 10.
Design: Chapter 2 contains a 10 page discussion on pro-
gram design – just after students have seen helloWorld.

A number of case studies throughout the text reinforce the
design methodology. In addition, many chapters contain a
section titled “Object-Oriented Design” which offer OO
design tips for concepts just introduced.
Opinions: I like this text. One small complaint is that
each chapter has a number of threads (object-oriented de-
sign, examining a class from the Java library, something to
do in the lab, etc.), making the text feel disjointed.

6.12 Nino and Hosch
Reference: Nino, Jaime and Frederick Hosch. Introduc-
tion to Programming and Object-Oriented Design Using
Java. John Wiley & Sons, 20018. 667 + 84 pages.
Objects: Classes and objects are described in depth at the
beginning of the text. The two subsequent chapters discuss
class specification and implementation. The first program
is a test driver; the first complete program is presented in
chapter 9 and involves five interacting classes. Students
write portions of programs earlier in a lab setting.
I/O: All I/O is done using the model-view-controller archi-
tecture. The majority of the text uses provided classes for
console I/O (explained in an appendix). GUIs are covered
late in the text.
Design: The authors emphasize design issues extensively.
Class specification is discussed before implementation.
Entire chapters are devoted to programming by contract,
testing, and software quality. An extensive case study and
the model-view-controller pattern are included.
Opinions: If you are concerned with design issues, this is
the text to use. It’s worth reading regardless of whether it’s
used in class.

6.13 Savitch
Reference: Savitch, Walter. Java: An Introduction to
Computer Science & Programming. Prentice Hall, 1999.
691 + 35 pages.
Objects: Writing classes and using objects are presented
together, after primitive types, strings, and control struc-
tures. The first example, revised several times, models a
species with a name, current population and growth rate. A
small example in the arrays chapter uses a pair of interact-
ing classes.
I/O: Most of the text uses console I/O via a provided class.
Chapter 7 discusses GUIs and the last chapter discusses
applets.
Design: Information hiding is discussed several times, but
little to nothing on other design topics.
Opinions: I wish there had been an explanation of why
objects are good and a few larger case studies.

8 This review is based on a draft manuscript dated March, 2000

and checked against the most recent version at
http://www.cs.uno.edu/~fred/OOJ/Utilities/.

6.14 Slack
Reference: Slack, James M.. Programming and Problem
Solving with Java. Brooks/Cole, 2000. 1007 + 130 pages.
Objects: Many object-oriented concepts are introduced in
Chapter 2 via classes implementing turtle graphics.
Method invocation, extending a class with new methods,
parameters, selection, and iteration are all covered. These
concepts are all revisited in later chapters.
Writing a new class is introduced after students have seen
many objects used in the selection and iteration chapters.
Example classes include a counter, money and bank ac-
count.
I/O: Console input is done with a custom class. Develop-
ment of the class in shown when writing classes. GUIs are
relegated to several appendices.
Design: Chapter 10 discusses design issues, including in-
heritance, abstract classes and software development meth-
odologies. These issues are not reinforced elsewhere in the
text.
Opinions: Chapter 2 is the strength and the weakness of
this text: it provides a good example of using objects be-
fore students write their own classes. But it introduces a lot
of information very quickly. I think students would be left
overwhelmed. Karel the Robot [Pattis81] is an obvious
inspiration but is not improved upon.

6.15 Stein
Reference: Stein, Lynn Andrea. Interactive Programming
in Java. Due to be published by Morgan Kaufmann Pub-
lishers in late 2000.
Objects: The text begins with an in-depth discussion of
OO programming as “coordinating a computational com-
munity”. This is illustrated describing a string transforma-
tion program and writing a number of transformers by ex-
tending a provided class. Subsequent chapters discuss
statements and flow of control using a mixture of objects
and primitive types and specifying classes via their inter-
faces before the chapter on implementation.
I/O: Most of the text uses console I/O via a provided class.
The last two chapters discuss GUIs but the emphasis is
clearly on event-driven programming paradigm.
Design: Quite a bit of attention is given to specifying and
using interfaces and how objects interact with each other.
Chapter 8 discusses OO design, including class discovery
with nouns and verbs. Case studies and examples of apply-
ing a development methodology are missing.
Opinions: This is one of the most interesting texts due to
its emphasis on threads and interacting objects. It contains
a large number of helpful analogies.

6.16 Wu
Reference: Wu, C. Thomas. An Introduction to Object-
Oriented Programming with Java. WCB/McGraw-Hill,
1999. 821 + 37 pages.

Objects: Using objects to solve problems is demonstrated
from the beginning using a custom graphical I/O package.
The first class development comes in Chapter 4 after a
chapter on numerical data. The primary examples are a
currency conversion class and a loan calculator.
Responsibilities are distributed between classes from the
beginning, but only due to I/O. The first time two classes
are written for the same problem is an address book in
Chapter 9 on arrays.
I/O: I/O in the majority of the book is handled by the cus-
tom GUI I/O package. Chapter 12 is about Java GUI inter-
faces. Console input is not discussed.
Design: The waterfall model is discussed in Chapter 1.
Each chapter includes a sample program which models the
process. A more incremental approach is demonstrated in
Chapter 14. UML-like diagrams are used.
Opinions: This text has an uncommonly large number of
illustrations and is easy to read. I like the extensive use of
objects early. A text to consider.

	A
	Introduction
	Pedagogies for Objects
	Ordering of Topics
	Keywords and Definitions
	OO vs. Control Ordering
	Procedural vs. O-O Paradigm

	Object Usage vs. Class Authorship
	Object Instantiation
	Interacting Objects
	Summary of Object Pedagogies

	Pedagogies for IO
	Graphical I/O Libraries

	Pedagogies for Software Engineering
	Conclusions
	Appendix A: A Survey of Java Textbooks
	Arnow and Weiss
	Barnes
	Bell and Parr
	Bishop
	Decker and Hirshfield
	Deitel and Deitel
	Horstmann
	Koffman and Wolz
	Lambert & Osborne
	Lewis and Loftus
	Morelli
	Nino and Hosch
	Savitch
	Slack
	Stein
	Wu

