Connection Conditioning:
Architecture-Independent Support for Simple, Robust Seners

KyoungSoo Park and Vivek S. Pai
Department of Computer Science
Princeton University

Abstract may want higher performance per machine, but even the

For many network server applications, extracting the maient-driven Zeus Web server, often the best performer in
imum performance or scalability from the hardware m&}gnchmarks, garners less than 2% of the market [17]
no longer be much of a concern, given today’s pricing Given these observations and future hardware trends,
— a $300 system can easily handle 100 Mbps of Wi§ believe designers are better served by improving server
server traffic, which would cost nearly $30,000 per mongimplicity and security. Deployed servers are still simple
in most areas. Freed from worrying about absolute pée-attack in many ways, and while some server security
formance, we re-examine the design space for simplici§search [6, 21] has addressed these problems, it implic-
and security, and show that a design approach inspiredillyassumes the use of event-driven programming styles,
Unix pipes, Connection Conditioning (CC), can provid@aking its adoption by existing systems much harder.
architecture-neutral support for these goals. Even when the research can be generalized, it often re-
By moving security and connection management inélires modifying the code of each application to be se-
separate filters outside the server program, CC supp@&t&ed, which can be time-consuming and error-prone.
multi-process, multi-threaded, and event-driven sefversTo address these problems, we revisit the lessons of
with no changes to programming style. These filters ddaix pipes to decompose server processing in a Sys-
customizable and reusable, making it easy to add secutétgn called Connection Conditioning (CC). Requests are
to any Web-based service. We show that CC-aided serveusdled with their sockets and passed through a series
can support a range of security policies, and that offloawf-general-purpose user-level filters that provide connec-
ing connection management allows even simple serversitm management and security benefits without invasive
perform comparably to much more complicated systemghanges to the main server. These filters allow common
. security and connection management policies to be shared
1 Introduction across servers, resulting in simpler design for server writ

Web server performance has greatly improved due &6 and_mo.re tested ar_wd stable code fqr filter writers.
a number of factors, including raw hardware perf0}[h|s d(_35|gn is also archltecture—neutral_— it can be used
mance, operating systems improvements (zero copy, tiymulti-process, threaded, and event-driven servers.

ing wheels [29], hashed PCBs), and parallel scale-outVe demonstrate Connection Conditioning in two ways:
via load balancers [9, 11] and content distribution ndty demonstrating its design and security benefits for new
works [2, 14]. Coupled with the slower improvements igervers, and by providing security benefits to existing
network price/performance, extracting the maximum pe&ervers. We build an extremely simple CC-aware Web
formance from hardware may not be a high priority fgierver that handles only one request at a time by mov-
most Web sites. Hardware costs can be dwarfed by baig all connection management to filters. This approach
width costs — a $300 system can easily handle 100 Mbgows this simple design to efficiently serve thousands
of Web traffic, which would cost $30,000 per month fo@f simultaneous connections, without explicitly worrying
wide-area bandwidth in the USA. For most sites, the p&bout unpredictable/unboundeddelays and blocking. This
formance and scalability of the server software itself m&grver is ideal for environments that require some robust-
not be major issues — if the site can afford bandwidth,1ess, such as sensors, and is so small and simple that it
can likely afford the required hardware. can be understood within a few minutes.

These factors may partly explain why the Apache Web Despite its size, this server handles a broad range of
server's market share has increased to 69% [17] despitarkloads while resisting DoS attacks that affect other
a decade of server architecture research [8, 12, 13, 4&yvers, both commercial and experimental. Its perfor-
30, 32] that has often produced much faster serversnance is sufficient for many sites — it generally outper-
with all of the other advances, Apache’s simple proce&sms Apache as well as some research Web servers. Us-
pool performs well enough for most sites. The benefitsy the filters developed for this server, we can improve
of cost, flexibility, and community support compensatée security of the Apache Web server as well as a re-
for any loss in maximum performance. Some Web sitesarch server, Flash, with a tolerable performance impact.

2 Background «—)
+“—>

All server software architectures ultimately address hdlients Tcp Filter <:@:<> Filter @%) Filter @Sewe
to handle multiple connections that can block in several ¥ 1] 2 N
places, sometimes for arbitrarily long periods. Using
some form of multiplexing (in the OS, the thread library,

or at application level), these schemes try to keep the CPU

utilized even when requests block or clients downlodddure 1:Typical Connection Conditioning usage — the server

data at different speeds. Blocking stems from two sourcBeocess invokes a series of filters connected to each otaéhan

network and disk, with disk being the more predictab erve.rV|a Unlx-domaln.sockets. The flrstfllltercreat.esmaai
. . .) CP listen socket that is exposed to the clients. Clientaeon
source. Since the client is not under the server’s cql

. A nJ'ns are accepted at this filter, and are passed via fileripesc
trol, any communication with it can cause network bloclﬁ-

;) ;) assing through the other filters and finally to the servecess.
ing. Typical delays include gaps between connecting to

the server and sending its request, reading data from the

server’s response, or sending subsequent requests in aglerasks, but their combination yields power and flexibil-
sistent connection. Disk-related blocking occurs when lity. In this section, we describe the design of Connection
cating files on disk, or when reading file data before ser@enditioning and discuss its impact on applications.

ing it to the client. Of the two, network blocking is more%_l General Overview

problematic, because client may delay indefinitely, whi) s
modern disk access typically takes less than 10ms. Connection Conditioning replaces the server’s code that

The multi-process servers are conceptually the sifgcepts new c_onnections,_ anq interposes one or more fil-
plest, and are the oldest architectures for Web servdfsS: This design, shown in Figure 1, connects the filters
One process opens the socket used to accept inconfii{ the Server process using Unix-domain sockets. The
requests, and then creates multiple copies of itself usihg" listen socket, used to accept new connections from
thef or k() system call. The earliest servers would forklients, is moved from the server to the first filter. If we re-
a new process that exited after each request, but this alﬁl_ce_d the c_hents with standard input, this diagram would
proach quickly changed to a pool of pre-forked procesd88K like a piped set of processes spawned by a shell.
that serve multiple requests before exiting. On Unix-like While modeled on Unix pipes, Connection Condi-

systems, this model is the only option for Apache veiioning differs in several domain-specific respects. The
sion 1. and the default for version 2. most important difference is that rather than passing byte

Multi-threaded and event-driven servers use a sincGi€ams, the interface between filters as well as between

address space to improve performance and scalability, | filter and SErVer process IS passing an atomic, delim-
also increase programming complexity. Sharing data'Fﬁd bl_mdle consisting of_ the flle_z descnptor (socket) and
one address space simplifies bookkeeping, cross-req@gspciated request. Using Unix-domain sockets allows
policy implementations, and application-level cachin pen f'l,e descriptors to be passed from One process to an-
The trade-off is programmer effort — multi-threaded pr ther via these”d”sg() system call.’ Wh|Ie_ reqqests)
grams require proper synchronization, and event-drivaie passed bgtween filters, the server’s reply is written di-
programs require breaking code into non-blocking pdiCtly 1o the client socket.

tions. Both activities require more programmer effort and P2ssing the client's TCP connection, rather than proxy-
skill than simply forking processes. ing the data, provides several benefits. First, the standard

n%etworking calls behave as expected since any calls that

While these architectures differ in memory consum s i . .
tion, scalability, and performance, well-written syste anipulate socket behavior or query socket information

using any of these architectures can handle large volunqggliate gn theda<|:tual C"?”t lsocl|<et msthead of a Ioogbacl;
of traffic, enough for the vast majority of sites. A site’§0|C _et. econ d’ atency 1S also (éwer(; andahpm);y- asef
choice of web server likely depends on factors other thgy'ution, since data copying Is reduced and the chance o

raw capacity, such as specific features, flexibility, opergtnyg'lterl.blocm{_‘ﬁ.d does n?t affect da_ta slenn;rom Fhe sgrvg:r
ing system support, administrator familiarity, etc. tq the client. Ird, pertormance IS aiso 1ess impaired,
since no extra context switches or system calls are needed

3 Design for the response path, which transfer more data than the

request path. Finally, the effort for using CC with exist-
Using a pipe-like mechanism and a simple API, Conneiag server software is minimized, since all of the places
tion Conditioning performs application-level interpésit where the server writes data back to the client are unaf-
on connection-related system calls, with all policy dediected. Also unmodified are systems like external CGI ap-
sions made in user-level processes called filters. Applyiplications, to which the server can freely pass the client’s
the pipe design philosophy, these filters each perform sisocket, just as it would without CC.

This approach allows filters to be much simpler thaemaining blocking in the server may be entirely bounded
servers, and to be written in different styles — all and predictable. Inthese cases, the server can even handle
the parsing and concurrency management normally asst a single request at a time, without any parallelism. All
sociated with accepting requests can be isolated int@fghe normal sources of unpredictable blocking (waiting
single protocol-specific filter that is usable across maow the request, sending the reply) are handled either by
servers. Removing this complexity allows each filter ar@C filters or by the kernel. This situation may be very
the server to use whatever architecture is appropriate. Rrommon in sensor-style servers with small replies.
grammers can use threads, processes, or events as th@yg handle other models of connection operation, like
see fit, both in the server and in the filters. For simpfersistent connections, the semantics of filters can be ex-
servers and filters, it is even plausible to not even haemded in protocol-specific ways. Since persistent connec-
any concurrency and handle only one request at a timetiaas allow multiple requests and responses over a single
we demonstrate later in the paper. This approach is feasinnection, simply passing the initial request to the gerve
ble with Connection Conditioning because all connectialwes not prevent all future blocking. After the first re-
management can be moved into the filters. guest is handled, the server may have to wait for further

Note that the filters are tied to the number of featurggquests. Even if the server is designed to tolerate block-
not the number of requests, so a server will have a snial, it may cause resources, such as processes or threads,
number of filters even if it has many simultaneous cote be devoted to the connection. In this case, the server
nections. In practice, we expect that most servers wiin indicate to the filter that it wants the file descriptor
use 4 filters. Filter 1 will manage connections and tal@ssed to it again on future requests. Since the filter also
steps to reduce the possibility of denial-of-service &sachas the file descriptor open, the server can safely close it
based on exhausting the number of connections. Filtewhout disconnecting the client. In this manner, the dlien
will separate multiple requests on a single connection, a$ges the benefits of persistent connections, but the server
present them as multiple separate connections, in ordegs not have to waste resources managing the connection
to eliminate idle connections from using server resourcéstring the times between requests.

Filter 3 will perform protocol-specific checks to stop mal3 2 Connection Conditioning Library

formed requests, buffer overflows, and other security at-

tacks. Filter 4 can perform whatever request prioritizr:aticg0 implement Connection Conditioning, we provide a i-

policy the server desires rary, shown in Figure 2. One function replaces the three
. . %ystem calls needed to create a standard TCP listen socket,

Filters are generally tied to the protocol, not th)
and the rest are one-to-one analogues of standard Unix

application, allowing filters to be used across servers . ;
bp 9 gstem calls. The parameters for most calls are identical

and encouraging “best practices” filters that consolideft their standard counterparts, and the remaining param-

protocol-related handling so that many servers bene{t : .
from historical information. For example, the “beck’e ers are instantly recognizable to server developers. We
; ' believe that modifying existing servers to use Connection

denial-of-service attack [26] exploits a quadratic alg(Efonditioning is straightforward, and that using them for

rithm in URL parsing, and was discovered and fixed on S
) C new servers is simple. Any of these calls can be used

Apache in 1998. The exact same attack is still effectwg rocess-based. threaded. or event-driven svstems. so

against the thttpd server [1], despite being demons’[ra?t%u[J ' ’ y '

in a thttpd-derived server in 2002 [21]. The beck atta 'S library is portable across programming styles. This
orary also depends on only standard Unix system calls,

is worse for thttpd than Apache, since thttpd is eve e .

. X . and does not use any kernel modifications, so is portable
driven, and the attack will delay all simultaneous connec- . . :
. . . . across many operating systems. The library contains 244

tions, instead of just one process. Thttpd is used at a nym- ' : i
; R : ; ines of code and 89 semicolons. Its functions are:

ber of high-profile sites, including Kmart, Napster, MTV,
Drudge Report, and Paypal. Using CC, a single securitycc_createlsock — instantiates all of the Connection
filter could be used to protect a range of servers from &@onditioning filters used by this server. Each filter in
tacks, giving server developers more time to respond. the NULL-terminated arrayi | t er s[] is spawned as

CC filters are best suited to environments that consisteparate process, using any arguments provided by the
of request/response pairs, where no hidden state is maerver. Each filter shares a Unix-domain socket with its
tained across requests, and where each transaction m@nt. The list of remaining filters to spawn is passed
single request and response. In this scenario, all requéstthe newly-created filter. The final filter in the list cre-
related blocking is isolated in the first (client-facingddii, ates the listen socket that accepts connections and re-
which only passes it once the full request has arrived. kquests from the client. The server specifies all of the
termediate filters see only complete requests, and do filbkérs, as well as the parameters (address, port num-
have to be designed to handle blocking. If the server’s teer, backlog) for the listen socket, in the_ceatelsock

sponses can fit into the outbound socket buffer, then azall. The server process no longer needs to call the

int cc_createl sock(struct in_addr sin_addr,
in_port_t sin_port,
i nt backl og,
char *filters[]);
int cc_accept(int s, struct sockaddr *addr,
sockl en_t *addrlen);
ssize_t cc_read(int fd, void *buf,
size_t count);

cc_close- since the same client socket is passed to all
of the filters and the actual server, some mechanism is
needed to determine when the socket is no longer use-
ful. Some filters may want to keep the connection open
longer than the server, while other filters may not care
about the connection after passing it on. Thehkase call
provides for this behavior — the server indicates whether
only it is done with the connection or whether it and all

int cc_close(int fd, int closeAllFilters); fiters should abandon the connection. The former case

int cc_select (; St ni Id—.sft ; ;r eadf ds, is useful for presenting multiple requests on a persistent

fd_zgt *\g:(Icezth:s connection as multiple separate connections. The latter

struct timeval *timeout): case handles all ot.her scenarios, as well as error colnd|—

int cc_poll(struct pollfd fds[], tions where a persistent connection needs to be forcibly
nfds_t nfds, int timeout); closed by the server.

int cc_dup(int oldfd);
int cc_dup2(int oldfd,
pid_t cc_fork(void);

cc_select, ccpoll — these functions are needed by
event-driven servers, and stem from transferring the re-
quest during caccept. Since the request is read and
buffered by the CC library, the actual client socket will
have no data waiting to be read. Some event-driven
servers optimistically read from the socket after accept,
but others usgol | /sel ect to determine when the re-
socket /bi nd/l i st en system calls itself. The returnquest is ready. In this case, the standard system calls
value of cccreatelsock is a socket, suitable for use Witlji|l not know about the buffered request. So, we provide
cc.accept. Ourfilt_er instgntiation diffgrs from Unix p?pescc_select and coll that check the CC library’s buffers
since the server instantiates them, instead of having 48 and return immediately if buffered requests exist.

shell perform the setup. This approach requires much leserwise, they simply call the appropriate system calls.
modification for existing servers, and it also avoids con-

flicts with stdin/stdout.

int newfd);

Figure 2:Connection Conditioning Library API

cc.dup, cc.dup2, ccfork — These functions replace the
Unix system calldup, dup2, andf or k. All of these
cc_accept- this call replaces thaccept system call, functions affect file descriptors, some of which may have
and behaves similarly. However, instead of receiving theen created via caccept. As such, the library needs to
file descriptor from the networking layer, it is receiveinow when multiple copies of these descriptors exist, in
from the filter closest to the server. The file descriprder to adjust reference counts and close them only when
tor still connects to the client and is passed using tke descriptor is closed by all readers.
sendnsg() system call, which also allows passing the . . : .
request itself. The request is read and buffered, but n?wg'le the CC Library functions are easily ’T‘apped .to
presented yet. stan ard syste_m calls, transparently f:onvgrtlljg applica-
tions by replacing dynamically-linked libraries is not en-
cc_read — when ccread is first called on a socket frontirely straightforward. The ccreatelsock call replaces
cc_accept, it returns the buffered request, and behavesasket , bi nd, andl i st en, but these calls are also
a standard ead system call on subsequent calls. Thesed in other contexts. Determining future intent at the
reason for this behavior is because the socket is actudilige of thesocket call may be difficult in general.
terminated at the client. If any filter were to write dat :
into the socket, it would be sent to the client. So, th% Evaluation
filters send the (possibly updated) requestsgadnsg Our evaluation of Connection Conditioning explores three
when the client socket is being passed. issues: writing servers, CC performance, and CC security.
In multi-process servers, with many processes sharMig also examine filter writing, but this issue is secondary
the same listen socket, the atomicity éndnmsg and to developers if the filters are reusable and easily extensi-
recvnsg ensures that the same process gets both tile. We first present a simple server designed with Con-
file descriptor and the request. If requests will be largeection Conditioning in mind, and then discuss the effort
than the Unix-domain atomicity limit, each process hasvolved in writing filters. We compare its performance to
its own Unix-domain socket to the upstream filter, ammther servers, and then compare the performance effects
calling ccaccept sends a sentinel byte upstream. The wb-other filters. Finally, we examine various security sce-
stream filter sends ready requests to any willing downarios, and show that Connection Conditioning can im-
stream filter on its own socket. prove server security.

4.1 A Simple Server char *filters[] = {"flt_prior", "flt_persist",
"flt_request”, NULL};

To demonstrate the simplicity of writing a Web server ulﬁ-zfr Sr eg_“eSt [MAXREQUEST] ;
ing Connection Conditioning, we build an extremely sim-~ "
ple Web server, called CCServer. Using this server, we= cc_creat el sock(| NADDR _ANY, SERV_PORT,
test whether the performance of such a simple system BACKLOG filters);
would pe sufficient for most sites. T_he pseuo_lo-c_ode f\% le ((c = cc_accept (s, NULL, NULL)) >= 0) {
the main loop, almost half the server, is shown in Figure 3.p001 is_child = false, send_body = true;
This listing, only marginally simplified from the actual off_t offset = 0;
source code, demonstrates how simple it can be to buildi!einfo file;
servers using C_:onnect_lon Condmc_mmg. The total_sourcecc_r ead(c, request, sizeof(request)):
for this server is 236 lines, of which 80 are semicolon-fiie = parse_and_openfil e(request):
containing lines. In comparison, Flash’s static contentsend_header (c, file.size);
handling and Haboob (not including NBIO) require over _
2500 semicolon-lines and Apache’s core alone (no mod- ¢! —sendbufsi ze(c, SENDBUFSIZE);

, p 03¢ (file.size > SENDBUFSI ZE) {
ules) contains over 6000. Note that we are not advocating /* |et a child process send the body */
replacing other servers with CCServer, since we believeit if (cc_fork() != 0) send_body = fal se;
makes sense to simply modify servers to use CC. else is_child = true;

CCserver’s design sacrifices some performance for
simplicity, and achieves fairly good performance without i f (send_body) /* send the body */
much effort. Its simplicity stems from using CC filters, ~ Sendfile(c, file.fd, &offset, file.size);
and avoiding performance techniques like application-¢; ¢ ose(c):
level caching. CCServer radically departs from currentc| ose(file.fd);
server architectures by handling only one request at a
time. The only exception is when the response exceeds! (!s_child) return 0;
the size of the socket buffer, in which case CCSer\jer
forks a copy of itself to handle that request. Within lim- Figure 3:Pseudo code of the really simple CCServer
its, the socket buffer size can be increased if very popular
files are larger than the default, in which case one time
cache miss in the main process is also justified — with tAEthese techniques can be handled similar to how they
use of the zero-copy sendfile call, multiple requests feould be handled in other servers. We could set process
a file consume very little additional memory beyond thénits in the shell before launching the server, in order to
file’s data in the filesystem cache. Parallelism is implcitensure that too many processes are not created. To handle
achieved inside the network layer, which handles sendifig “slow reading” attack, we could split the sendfile into
the buffered responses to all clients. many small pieces, and exit if any piece is received too
CCServer ignores disk blocking for two reasons: dél_owly_. With CC filters, we could use a filter that places
creasing memory costs means that even a cheap Sy§@/Mprlor|ty on heavy requestors, which would reduce the

can cache a reasonably large working set, and consurRé&irity of any attacker.

grade disk drives now have sub-10ms access times, shll of the other concerns that one would expect, such as
even a disk-bound workload with small files can still gefloW long to wait between a connection establishment and
erate a fair amount of throughput. To really exceed tif2€ request arrival, how long to keep persistent connec-
size of main memory, the clients must request fairly largl@ns open, etc., are handled by filters outside the server.
files, which can be read from disk with high bandwidth. fiormally, all of these issues would cause a server that
is possible to build degenerate workloads with thousarf@ndled only one request at a time to block for unbounded
of small-file accesses, but using a filter that gives low pAinounts of time, and would necessitate some parallelism

ority to heavy requestors (described in Section 4.2) wil the server’s architecture, even for simple/short retpues
limit the performance degradation that other clients see4.2 Filters

The only obvious denial-of-service attack we can s&®e have developed filters that implement different con-
in this approach is that an attacker could request mamgction management and security policies. We find filter
large files, causing a large number of processes to exityelopment relatively straightforward, and that the dasi
and could make the situation worse by reading the ffdter framework is easy to modify for different purposes.
sponse data very slowly. This situation is not unique @ommon idioms also emerge in this approach, leading us
CCServer — any server, particularly threaded or processbelieve that filter development will be manageable for
oriented servers, are vulnerable to these attacks. #ie programmers who need to write their own.

Total (Semicolons out of sockets, incomplete connections are terminated by
Packaging 687 (248) network address. This filter maintains a 16-ary tree orga-
Persistence +76 (+26) nized by network address, where each node has a count
Priority 531 (211) of all open connections in its children. The filter follows
Slow Read 587 (212) the path with the heaviest weights, ensuring that the con-

nection it terminates is coming from the range of network

Table 1: Line counts for filters — the persistence filter iddresses with the most incomplete connections.
conditionally-compiled support in the packaging filter, it®

counts are shown as the extra code for this feature. The othePersistent connection management while persistent
filter line counts include the basic framework, which is 4ih@$ connections help clients, they present connection manage-
of source, and 152 semicolons. ment problems for servers, so this filter takes multiple re-
guests from a persistent connection and separates them
into individual requests. When the server is done with
We have found two common behavioral styles for fithe current request, it closes the connection, and this filte
ters, and these shape their design. Those that implem@déends the next request as a new connection. Since the
some action on individual requests, such as stripping pafifters keeps a socket open, the server closing a persistent
name components or checking for various errors, can®shnection is only a local operation, and is not visible to

designed as a simple loop that accepts one request, pg-client. We expect that this filter would be the second
cesses it, and passes it to the next filter. Those that mgl¢gr after the request packaging filter.

policy decisions across multiple requests are conceptuall R o
small servers themselves. Recency-based prioritization— this filter acts as a

teﬂ?lding area after the full request has arrived. It provides

These filters are an important aspect of the sys etault policy th kes hiah ks | tracti
since they are key to preserving programming style whife?© aultpo '_Cyt atmakes high-rate attac_: Slesse€ e;_:tlv
thout requiring any feedback or throttling information

enhancing security. In traditional multi-process serve\fg

without Connection Conditioning, making a policy de—m”f] the server. AZ,; side-effect, %Eh"’,llso prlc&vtl)dei S'Im'
cision across all active requests is difficult enough, airness among ditferent users. This would be the last

it is virtually impossible to consider those requests th er before the server. This filter basically accepts all re

are still waiting in the accept queue. Since the numb&yests coming from the previous filter, and then picks the

of those requests may exceed the number of processe[?ﬂ%_eSt'priqrity request when the SEerver asks .for one. The
the server, certain security-related policy decisionsiare etails of this approach are described in Section 4.2.1.

available to these servers. Slow read prevention— this filter limits the damage

The filters, in contrast, can use a different programmiegused by “slow read” clients, who request a large file and
style, like event-driven programming, so that each requéstn keep the connection open by reading the data slowly.
consumes only a file descriptor instead of an entire pio-a DoS scenario, if a client could keep the connections
cess. In this manner, the filters can examine many magen arbitrarily long, the prioritization filter alone wall
requests, and can more cheaply make policy decisionst prevent it from having too many connections. This
We use a very simple event-driven framework for the pdilter explicitly checks how many concurrent connections
icy filters, since we are particularly interested in tryingach client has, and delays or rejects requests from any
to implement policies that can effectively handle varioudient range that is too high. We currently set the defaults
DoS attacks. To gain cross-platform portability and efe allowing no more than 25% of all connections from a /8
ficiency, we use the libevent library [19], which supportsetwork range, 15% from a /16, and 10% from a /24. This
platform-specific event-delivery approaches (kqueueg [18pbproach limits slow-read DoS, but can not fully protect
epoll, /dev/poll) in addition to standardel ect and against DDoS. Still, any security improvementis a benefit
pol | . Our filters include: for a wide range of servers.

Request packaging- this filter is often the first filterin e have also developed other more specialized filters,
any server. It accepts connections, reads the requests, & s ones thatlook for oddly-formatted requests, detect
hands complete requests to the next filter. By making tABA Strip the beck attack, etc. Line count information for
filter event-driven, it can handle attacks that try to star@e filters described above are presented in Table 1.
the server by opening thousands of connections withdu2.1 The Recency Algorithm
sending requests. The filter is only limited by the numb&o handle rate-based attacks coming from sets of ad-
of file descriptors available to it, and we implement sontresses, we use an algorithm that aggregates traffic statis-
simple policies to prevent starvation. Any connection thits automatically at multiple granularities, but does not
is incomplete (has not sent a full request) before a cdose preciseness. We break the network address into 8
figurable timeout is terminated, and if the filter is runningieces of 4 bits each. We use an 8 deep 16-ary tree, with

600

10000 T
Flash

0000 [T, CC-Flash
CCserver

8000 /ipache

000 ’ Haboob

500

m
2 CC-Apache S 400
#6000 e =
122}) =
2 5000 e £ 2 300
=
S 4000 ! =]
o = 200 Flash
., =
3000 " = CCsServer =
2000 @ @@ g Ed 3 CC-Flash =
M,’ 100 Apache
1000 gV CC-Apache
o i o) Haboob
0.1 1 10 100 1000 (0] 20 40 60 80 100 120 140 160 180 200
Single File Size(KB) Single File Size(KB)
Figure 4:Single File Requests/sec Figure 5:Single File Throughput

an LRU list maintained across the 16 elements of eaghilt-in 100 Mbps Ethernet card. We add 1 GB of mem-
parent. Each node also contains a count to indicate howy and an Intel Pro/1000 MT Server Gigabit Ethernet
many requests are stored in its subtrees. The tree is lamijwork adapter, bringing the total cost to $396. Using
allocated — any levels are allocated only when distinct aalGigabit adapter allows us to break the 100 Mbps barrier,
dresses exist in the subtree. When a new request arriyest, for the sake of measurement. The dual-core server is
it is stored in the tree, creating any nodes that are needmtdHP DL320 with a 2.8 GHz Intel Pentium D 820, 2 GB
and updating all counts of requests. When it is time to prof memory, and a 160GB IDE hard drive. This machine is
vide the next request to be serviced, we descend each Istdllmodestly priced, with a list price of less than $3000.
of the tree, using the LRU child with a honzero requeBbth machines run the Linux 2.6.9 kernel using the Fe-
count at each level. The request chosen by this procesdasa Core 3 installation. Our test harness consists of four
removed, all counts are updated, and all children along th®& GHz Sempron machines, connected to the server via a
path are moved to the ends of their respective LRU listdetgear Gigabit Ethernet switch.
Subtrees without requests can be pruned if needed. In various places in the evaluation, we compare differ-
If an attacker owns an entire range of network aént servers, so we briefly describe them here. We run
dresses, a low-frequency client from another addrehe Apache server [3] version 1.3.31, tuned for perfor-
range will always take priority in having its requests semance. Where specified, we run it with either the default
viced or its incomplete connections kept alive. Even if theumber of processes or with higher values, up to both
low-frequency client is more active than any individuahe “soft limit,” which does not require recompiling the
compromised machine, this algorithm will still give it priserver, and above the soft limit. The Flash server [18] is
ority due to the traffic aggregation behavior. At the sana@ event-driven research server that usglectto multi-
time, the aggregation does not lose precision — if everplex client connections. We use the standard version of it,
single machine in the attacker’s range remains uncomprather than the more recent version [23] that uses sendfile
mised, when it does send requests, they will receive priand epoll. The Haboob server [32] uses a combination of
ity over the rest of the machines in that range. events and threads with the SEDA framework in Java. We

4.3 Performance Evaluation tune it for higher performance by increasing the filesys-

Though performance is not a goal of Connection Condf™ cache size from 200MB to 400MB. CCServer is our
tioning, we evaluate it so that designers and implementSH&PI€ Single-request server using Connection Condition-
have some idea of what to expect. While we believe it {&3: CC-Apache and CC-Flash are the Apache and Flash

true that performance is generally not a significant factgfTvers modified to use Connection Conditioning. In all

in these decisions, it would become worrying if the pef!f the servers using Connection Conditioning, we employ

formance impact caused any significant number of sitesat&ingle filter unless otherwise specified. Since the CC
reject such an approach. As we show in this section, 2rary currently only supports C and C++, we do not

believe that the performance impact of Connection Cofidify Haboob. All servers have logging disabled since
ditioning is acceptable. their logging overheads vary significantly.

4.3.1 Testbed and Servers 4.3.2 Single-File Tests

Our testbed servers consist of a low-end, single proc@fie simplest test we can perform is a file transfer mi-
sor desktop machine, as well as an entry-level dual-car@benchmark, where all of the clients request the same
server machine. Most of our tests are run on a $200 Mile repeatedly in a tight loop. This test is designed to give
crotel PC from Wal-Mart, which comes with a 1.5 GHan upper bound on performance for each file size, rather
AMD Sempron processor, 40 GB IDE hard drive, andthan being representative of standard traffic. The restilts o

400 =

Flash === Flash ——™

350 CC-Flash 900 - CC-Flash
CCsServer = 7 CCServer

- — 800 | Apache s

300 700 CC-Apache
Haboob —

Haboob

250 600

500
400
300
200
100

200

150

Throughput(Mbps)
Throughput(Mbps)

100

50

500MB 1500MB 3000MB 500MB 1000MB 2500MB 4000MB

Workload Data Set Size Workload Data Set Size

Figure 6:SpecWeb99-like workloads on the Microtel machine Figure 7:SpecWeb99-like workloads on the HP server

i1oo0mMB

this test on the Microtel machine are shown in Figures 4The results of these capacity tests, shown in Figures 6
and 5 for request rate and throughput, respectively. Téed 7, show some expected trends, as well as some sub-
relative positions of Flash, Apache, and Haboob are rtlgr results. The most obvious trend is that once the data
surprising given other published studies on their perfaet size exceeds the physical memory of the machine, the
mance. Performance on the HP server is higher, but qualerall performance drops due to disk accesses. For most
itatively similar, and is omitted for space. servers, the performance prior to this pointis roughly sim-

The performance of CCServer is encouraging, sinitar across different working set sizes, indicating vety li
this would mean that it should have acceptable perfdle additional work is generated for handling more files, as
mance for any site using Apache. Any performance lolsgg as the files fitin memory. CCServer performs almost
due to forking overhead once the response size excetfuee times as well on the HP server as the Microtel box,
the socket buffer size is not particularly visible. Thigdemonstrating good scalability with faster hardware.
server is clearly not functionally comparable to Apache, The performance drop at 3 or 4 GB instead of 1.5/2.5
but given the use of multiple processes in request h&B can be understood by taking into account SpecWeb’s
dling, we are pleased with the results. Zipf behavior. Even though a 1.5 and 2.5 GB data sets

Using Connection Conditioning filters with otheexceed the physical memories of the machines, the Zipf-
servers also seems promising, as seen in the resultsdistributed file access causes the more heavily-used por-
CC-Apache and CC-Flash. Both show performance Id#sn to fit in main memory, so this size has a mix of in-
when compared to their native counterparts, but the lossrismory and disk-bound requests. At 3GB, more requests
more than likely tolerable for most sites. We investigatege disk-bound, causing the drop in performance across
this further on a more realistic workload mix next. all servers. The HP machine, with a larger gap between
4.3.3 More Realistic Workloads CPU speed and disk speed, shows relatively faster degra-

. .) . dation with the 4GB data set. Though CCServer makes

While the single-file tests show relative request Process- o mot to avoid disk blocking. its performance is still
ing costs, they do not have the variety of files, with dif- b 9.1sp

ferent sizes and frequency distributions, that might be &QOd on this workload.
pected in normal Web traffic. For this, we also evaluateIn general, the results for the CC-enabled servers are

. . . quite positive, since their absolute performance is quite
these servers using a more realistic workload. In particu

lar, we use a distribution modeled on the static file porti 0od, and they show less overhead than the single file mi-

of SpecWeb99 [28], which has also been used by otherfé??ﬁigcizrr:ﬁ;fsﬂ\:ve O%?c?gg:ni%%:rsgihszearrs/il:] rgatsi_on
searchers [23, 30, 32]. The SpecWeb99 benchmark scaje ¥y op

data set size with throughput, and reports a single mrry_stlc view of server performance, so any additional over-

: . : eads appear to be much larger. On real workloads, the
ric, the number of simultaneous connections supporte o
g) . additional data makes the overall workload less amenable
a specified quality of service.

. . . to caching in the processor, so the overheads of Connec-
We instead use fixed data set sizes and report the max- gnthep :

: . ; : ion Conditioning are less noticeable.

imum throughput achieved, which provides a broader))
range of results for each server. We maintain the geneted-4 Chained CC Filters

access patterns — a data set contains a specified numbértef-process communication using sockets has tradition-
files per directory, with a specified access frequency falty been viewed as heavyweight, which may raise con-
files within each directory. The access frequency of titerns about the practicality of using smaller, single-

directories follows a Zipf distribution, so the first direcpurpose filters chained together to compose behavior.

tory is accessed N times more than th& Nirectory. To test the latency effects, we vary the number of filters

1200

800

‘ ‘Microte] —— | A T e, ‘ "Microtel =———
HP Single-core == Wasnn / 700 ., y HP Single-core - 4
1000 HP Dual-core /4 """" ... HP Dual-core *
600 T,
800 e 2 o, ...
. / D B0 iy
= / T — 4
3 600 _~ B 400 fr T i
£ / _— = e S — .,
— 400 — B T g BOO s o s i R <
— R L F 500 —_
200 { ------- = ——
- 100
0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
of filters in the chain # of filters in the chain
Figure 8:Latency versus Number of Filters Figure 9:Throughput versus Number of Filters

used in CCServer, and have a single client issue onevige to a large fraction of Web sites, and they do not re-
guest at a time for a single 100-byte file. All of the filterguire any significant skill. Each attacking script requires
except the first are dummy filters, simply passing alogss than 200 lines of code and only a cursory knowledge
the request to the next filter. These results, shown in Faf-network programming and HTTP protocol mechanics.
ure 8, show that latency is nearly linear in the number 8bme of these attacks would also be hard to detect from
filters, and that each filter only adds g4econds (HP) or a traffic viewpoint — they either require very little band-
94 useconds (Microtel) of overhead. Compared to wide#dth, or their request behavior can be made to look like
area delays of 100ms or more, the overhead of chaimemrmal traffic. We focus on the Apache server both be-
filters should not be significant for most sites. cause its popularity makes it an attractive target, and be-

The performance effects of chained filters are showndause its architecture would normally make some security
Figure 9, where an in-memory SpecWeb-like workload glicies harder to implement. All results are shown for
used to drive the test. Given the near-linear effect of muanly the Microtel box because these tests focus primarily
tiple filters on latency, the shape of the throughput curveds qualitative behavior.

not surprising. For small numbers of filters, the decreage, 1 siarvation Test — Incomplete Connections

is close to linear, but the degradation slows down as mare . .
ﬁrg measure the effect of incomplete connections on the

filters are added. Even with what we would consider to . . .

. . various servers, we have one client machine send a stream
far more filters than most sites would use, the throughp . . .
o . of requests for small files, while others open connections
is still well above what most sites need.

CCsServer performs better on the HP server than t éthout sending requests. We measure the traffic that can
. € generated by the regular client in the presence of var-
Microtel box on both tests, presumably due to the faster . X
o ious numbers of incomplete connections. These results

processor coupled with its 1MB L3 cache. The dual-core N . .
are shown in Figure 10, and show various behavior for the

throughputs scale well versus the single-core, indicaﬂaﬁferent servers. For the process-based Apache server

the ability of the various filters in the CC chain to take ; -
. : ch connection consumes one process for its life. We
advantage of the parallel resources. While enabling bg : .
. e . .See that a default Apache configuration takes only 150
cores improves the throughput in this test, it does not im:- . . .
connections, at which point performance drops. Apache
prove the latency benchmark, because only one requést . . .
. employs a policy of waiting 300 seconds before termi-
progresses through the system at a time. The sawtoot : U
) . nating a connection, so at this limit, throughput drops to
pattern stems from several factors: some exploitable par-
. ; .5 requests/second. Though Flash and Haboob are event-
allelism between the clean-up actions of one stage and fven, neither have support for detecting or handling this
start-up actions of the next, SMP kernel overhead, apd on: P 9 9

X) . . . condition. Flash’s performance slowly degrades with the
dirty cache lines ping-ponging between the two indepen- . .
. . number of incomplete connections, and becomes unus-
dent caches as filters run on different cores. . : ,
)] able at 32K connections, while Haboob’s performance
4.4 Security Evaluation sharply drops after 100 incomplete connections. Flash's
Here we evaluate the security effects of Connection Cquerformance degradation stems from the overheads of the
ditioning, particularly the policy filters we described irsel ect system call [4].
Section 4.2. Note that some of these tests have been usallith the CC Filters, all of these servers remain oper-
in previous research [21] — our contribution is the mechational under this load, even with 32K incomplete con-
nism of defending against them, rather than the attacksections. Since the filter terminates the oldest incom-
Our primary reason for selecting these tests is that thggte connection when new traffic arrives, it can still han-
are simple but effective — they could disrupt or deny satle workloads of 1800 requests/sec for CC-Apache, and

8000

2500

@
4 CCserver - % CC-Apache ——
7000 | & CC—E:ggE 3 Apache ----x----
CC-Apache - S 2000 r
6000 r : Haboob v &
o Apache =—e— = ,
8 5000 : € 1500 |
I g ol
17} [,,
3 4000 £
o “u— -
& 3000 s 1000 y
[<5] -
£ K
2000 =
@ 500
[%2]
1000 S)
. «
0 4 S o] = T
(0] 5000 10000 15000 20000 25000 30000 (0] 50 100 150 200 250 300

Number of Incomplete Requests # of Clients

Figure 10:Number of Incomplete Connections Handled Figure 11:Latency versus Number of Other Clients

3700 requests/sec for CCServer and CC-Flash. This t€shnection Conditioning, the filter’s policy can view all
demonstrates the architecture-neutral security enhamnmatstanding requests, and make decisions before the re-
ment that Connection Conditioning can provide — botfuests reach the server.

a multi-process server and an event-driven server hangllg 3 persistence Test

this attack better with Connection Conditioning than th

. . X “Bersistent connections present another avenue for
own implementation provides. . . - .
connection-based starvation, similar to the incomplete
4.4.2 Prioritization Test connection attack. In this scenario, an attacker requests
Though the request packaging filter closes connectionsiersistent connection, requests a small file, and keeps
a fair manner, the previous test does not demonstrate féhie connection open. To avoid complete starvation, any
ness for valid requests, so we devise another test to mesonable production-class server will have some mech-
sure this effect. The test consists of a number of clients emism to shut down such connections either after some
questing large files from a default Apache, which can haimeout or under file descriptor pressure.
dle 150 simultaneous requests. The remaining requestinplementing a self-managing solution is tied to server
are queued for delivery, so an infrequent client may oftanchitecture, complicating matters. While detecting file
find itself waiting behind 150 or more requests. The imlescriptor pressure is cheap in event-driven servers, they
frequent client in our tests requests a small file, to obsew® also less vulnerable, since they can utilize tens ofthou
the impact on latency. sands of file descriptors. In contrast, multi-process serve
The results of this test, in Figure 11, show the effeate designed to handle far fewer simultaneous connec-
on latency of the infrequently-accessing client. The lé@ens, and determining that persistent connection pressur
tency of the small file fetch is shown as a function of thexists requires more synchronization and inter-process
number of clients requesting large files. Without the pritcommunication, reducing performance. The simplest op-
oritization filter, Apache treats the request in roughhtfirstion in these circumstances is to provide administrator-
come, first-served order. When the total number of clierdsntrolled configuration options regarding persistentcon
is less than the number of processes, the infrequent clirattion behavior as Apache does. However, the trade-off
can still get service reasonably quickly. However, onggthat if these timeouts are too short, they make persis-
the number of clients exceeds the number of server pteat connections less useful, while if they are too long, the
cesses, the latency for the infrequent client also inceeapessibility of running out of server processes increases.
as more clients request files. Figure 12 shows the effect of an attacker trying to starve
With CC-Apache and the prioritization filter, thoughthe server via persistent connections. We use Apache’s
the behavior is quite different. The increase in the nurdefault persistent connection timeouts of 15 seconds and
ber of large-file clients leads to a slight increase in lagen&50 server processes. An attacker opens multiple connec-
once all of the processes are busy. After that point, tliens, requests small files, and holds the connection open
latency levels again. This small step is caused by the imtil the server closes it. For any closed connection, the
frequent client being blocked behind the next requestdttacker opens a new connection and repeats the process.
finish. Once any request finishes, it gets to run, so tde vary the number of connections used by the attacker.
latency stays low. We also have 16 clients on one machine requesting the
Performing this kind of prioritization in a multiple- SpecWeb99-like workload with a 500 MB data set size.
process server would be difficult, since each connectidfe show the throughput received by the regular clients as
would be tied to a process. As aresult, it would be hard farfunction of the number of slow persistent connections.
the server to determine what request to handle next. Wilim Apache, the throughput drops beyond 150 persistent

180 frgmm o ‘ ‘ 5.2 Rich Web Server APIs
160?‘__'\./"-3‘\‘.__]

140

Several servers provide rich APIs that can be used to in-
spect and modify requests and responses — Apache has its
module format, Microsoft developed ISAPI, Netscape de-
veloped NSAPI, and Network Appliance developed ICAP.
Any of these could be used to protect their host server
from attacks like the beck attack mentioned earlier. How-
ever, we believe Connection Conditioning can provide
i protection from a separate class of attacks not amenable to
0 50 100 150 200 250 300 protection via server APIs. These attacks, such as the “in-
Number of ldle Persistent Connections complete connection” starvation attack, waste server re-
Figure 12:Throughput under Persistent Connection Limits sources as soon as the connection has been accepted, and
these connections are accepted within the framework of
) _ the server. Particularly for process-based servers, the re
connections, but CC-Apache shows virtually no perfogyrces consumed just by accepting the connection can be
mance loss. Its maximum performance is lower than stafinificant. By moving all of the inspection and modifica-
dard Apache due to the CC filters, but it supports mogigy gytside the server, Connection Conditioning provides
open connections. Apache’s server processes never §@faction against this class of attack. Even event-driven

the waiting periods between requests. This support 0lyryers can expend more state than Connection Condition-

required modifying 8 lines in Apache. ing — in our request prioritization example, we may want
) . to select from tens of thousands of possible connections,
5 Discussion particularly when we are under attack. The richness of the
)))) server’s internal APl does no good in this kind of exam-
In this section, we discuss some alternatives to Connsfe-, since the server may not even be able to accept all of

tion Conditioning, some of the objections that may Be connections without succumbing to the attack.
raised to our claims, and possible deploymentquestlons.Some of CC's other benefits, such as relieving the

. - server of the work of maintaining persistent connections,
5.1 Novelty and Simplicity cannot be done inside all servers without architectural
Our contribution in Connection Conditioning is the obseghanges. The persistent connection attack we have shown
vation that Unix pipes can be applied to servers, providiRgparticularly effective, since regular servers wouldéav
all of the benefits associated with text processing (simplie have global knowledge of the state of all requests in
ity, composability, and separation of concerns) whild stirder to detect it. With CC, no server re-architecting is

providing adequate performance. In retrospect, this ma@guired, since this work can be done easily in the filters.
seem obvious, but we believe that Connection Condition-

ing’s design and focus on adoptability are directly respoR-3 ~ Security

sible for its other benefits. Our approach allows vastye have seen that CC protects servers against several
simpler servers with performance that approaches or ey attacks, and that it enables other types of protocol-
exceeds the designs introduced in the past few years. Bpecific security filters. Given how little bandwidth some
ticularly for small servers, such as sensors, our approatlthese attacks require, and given Apache’s wide deploy-
provides easy development with a broad range of protegent, we feel that CC can provide an immediate practical
tion, something not available in other approaches. Wecurity benefit. From a design standpoint, using CC with
make no apologies for building on the idea of Unix pipesfitters can also provide other benefits — privileged opera-
given the option to build on a great idea, we see no reasghs, such as communicating with authentication servers
to develop new approaches purely for the sake of novelly. databases, can be restricted to specific policy filters,

CC also provides the ability to incorporate best pramoving sensitive code out of the larger code base of the
tices into existing servers, without having to start fromraain server. These filters, if designed for re-use, can also
clean slate. Given the state of today’s hardware, sonbe- implemented using best practices, and can be more
one designing a server from scratch may develop a deeroughly tested since wider deployment and use with
sign similar to Connection Conditioning. However, evemultiple servers is more likely to expose security holes.
many research servers, with no compatibility constraintde admit that some of these benefits will be hard to quan-
have become increasingly complicated over time, rathiy, but we also feel that some of them are self-evident —
than simpler. We consider the ability to support existingoving code out of a large, monolithic server code base
servers like Apache while still allowing new designs likand executing it in a separate address space is likely to
CCServer to be a contribution of this work. restrict the scope of any security problem.

120 ~
100
80

Throughput(Mbps)

60
40

20 cc-Apache ——
o Apgche e

5.4 Scope environments, CC may not be the best choice, but many

While our evaluation of Connection Conditioning has fdSPs still use the low-performance Squid proxy, so CC’s
cused mostly on Web servers, we believe CC has a faiflyerhead may be quite tolerable in these environments.
broad scope — it is suitable to many request/reply environ-The method of filters we present is very general and
ments that tend to have relatively short-duration “activelllows customizable behavior. The closest approach we
periods of their transactions. Our focus on Web serverdigve found in any other system is the “accept filter” in
mostly due to pragmatism — Web servers are widely dereeBSD, which provides an in-kernel filter with a hard-
ployed, and they provide ample opportunities for compaeded policy for determining when HTTP requests are
isons, so our evaluation of CC can be independently asmplete. However, it must be specifically compiled into
sessed. In addition to the server protection offered by Qt¢ kernel or loaded by a superuser. This approach re-
we also hope to use it in developing lightweight, DoSsulted in opening the possibility of denial-of-service at-
resistant sensors for PlanetLab. We run several sensor¢aeks on the filter's request parsing policy [10], which
PlanetLab for providing status information — CoMon prowould have prevented the application from processing any
vides node-level information, such as CPU load and digkquests. It would also be unable to handle some of the
activity, while CoTop provides account-level (slice-Igveother starvation attacks we have covered in this paper.
information, such as number of processes and mem&iynilarly, IS has an in-kernel component, the Software
consumption. While these tools all use HTTP as a traldeb Cache, to handle static content in the kernel itself.
port protocol, they are not traditional Web servers. B¥/hile this approach can use kernel interfaces to improve
using CC for these tools, we can make them much maeglability, its desirability may depend on whether the de-
robust while eliminating most of their redundant code. veloper is willing to accept the associated risks of putting
CC is not suitable for all environments, and any servaifull server into the kernel. For some of the cases we have
with very long-lived transactions may not gain simplicitgliscussed, such as developing simple, custom sensors that
benefits from it. Video server match this profile, whergse HTTP as a transport protocol, in-kernel servers may
a large number of clients may be continuously strearprovide little benefit if the infrastructure cannot be lever
ing data over long-lived connections for an hour or moraged outside of its associated tasks.
In this case, CC is no better than other architectures aBome of our security policies are shaped by work on
providing connection management. In all likelihood, thismiaking event-driven servers more responsive under ma-
case will require some form of event-driven multiplexinticious workloads [21]. We have attempted, as much as
at the server level, whether it is exposed to the prograpessible, to broaden these benefits to all servers, with as
mer or not. CC can still provide some filtering of requeslittle server modification as possible. We believe that our
and admission control, but may not be a significant advaeeency-based algorithm is an elegant generalization of
tage in these scenarios. This example is distinct from ttie approach presented in the earlier work.
persistent connection example we provided earlier — thewhile many of our evaluations have used Apache, both
difference is that with persistent connections, the longecause of its popularity and because of the difficulty of
lived connections may be handling a number of shogerforming certain security-related operations in a multi
lived transfers. In that case, CC can reduce the numbescess server, we believe our approach is fairly gen-
of connections actually being handled by the server corgral. We have shown that it can be applied to Flash, an
event-driven Web server. We believe that it is broadly
6 Related Work amenable to other designs, including hybrid thread/event
While this paper has argued that performance-related gésigns such as Knot [30]. While we tried to demon-
vances in server design are of marginal benefit to ms#tate this feasibility, we were unable to get the stan-
Web sites, some classes of servers do see benefit fidand Knot package working in the 2.6 or 2.4 Linux ker-
many advances. Banga and Mogul improvedsakect() nel. We believe Connection Conditioning would benefit a
system call's performance by reducing the delay of findlystem like Knot most by preventing starvation-based at-
ing ready sockets [5]. They subsequently proposed a mtaeks. The higher-performance version of Knot, Knot-C,
scalable alternative system call [7], which appears to hawges a smaller number of threads to handle a large num-
motivatedkqueue()on BSD [15] andepoll() on Linux. ber of connections, possibly leaving it open to this kind
Caching Web proxy servers have directly benefited fropfiattack. In conjunction with CC Filters, only active con-
this work, since they are often in the path of every réections would require threads in Knot.
guest from a company or ISP to the rest of the Internet.Some work has been done on more complicated con-
Any mechanism that reduces server latency is desiratst@lers for overload control [25, 31], which moves request
in these settings. Examining the results from the mastanagement policy inside the server. If such an approach
recent Proxy Cache-off [22] suggests that vendors arewere desired in Connection Conditioning, it could be done
fact interested in more aggressive server designs. In theseexplicit communication between the filter and servers,

using shared memory or other IPC mechanisms. Hothe kernel. We also believe that by moving only the mech-
ever, implementing such schemes as filters has the berafisms into the kernel, Connection Conditioning can be
of leaving the design style of the filter up to the developersed without requiring root privilege.
instead of having to conform to the server’s architecture.The general idea is to allow the server to create its lis-
Having the filter operate in advance of the server’s aen socket, and then have a minimal kernel mechanism
cepting connections has the possibility of reducing wastétht allows another process from the same user to “steal”
work. Servers would still be free to enforce whatever irny traffic to this socket. The first filter would then per-
ternal mechanisms they desired. form connection passing to other filters using the stan-
Similarly, resource containers [6] have been used dard mechanisms. However, when the final filter wants
provide priority to classes of clients in event-driven artd pass the connection to the server, it uses another kernel
process-based servers. This mechanism can be useghéchanism to re-inject the connection (file descriptor and
provide a specified level of traffic to friendly clients evenequest) where it would have gone to the server. In ef-
when malicious clients are generating heavy traffic. THisct, the entire filter chain is interposed between the lower
approach depends on early demultiplexing in the kernkglf of the kernel and the delivery to the server’s listen
and forcing policy decisions into the kernel to support thicket. Such a scheme would be transparent to the server,
behavior. We believe that resource containers can be uaad could operate without any server modification if the
in conjunction with Connection Conditioning, such thability to split persistent connections into multiple con-
livelock-related policies are moved into the kernel withections is not needed. Otherwise, all of the other CC
resource containers, and that the CC Filters handle theliferary functions could be eliminated, with only otose
maining behavior at application-level. exposed via the API. Some extra-server process would
Finally, a large body of work exists on some form of inhave to launch all of the filters, and indicate which socket
terposition, often used for implementing flexible security steal, but this infrastructure is also minimal.
policies. Some examples of this approach include Sys+or closed-source servers where even minimal modifi-
trace [20], which can add policies to existing systemsations are not possible, this approach may be the only
Kernel Hypervisors [16], which can generalize the supiechanism to use Connection Conditioning. However,
port for customizable, in-kernel system call monitoringince our current focus is on experimentation, the library-
and Flask [27], an architecture designed to natively prioased approach provides three important benefits: it is
vide fine-grained control for a microkernel system. Whilgortable across operating systems and kernel versions, it
some of CC's mechanisms could be implemented usiregjuires less trust from a developer wanting to experiment
system call interposition, the fundamental concerns of @@Gth it, and it is easier to change if we discover new idioms
differ from these projects since filters in CC are trustede want to support. At some point in the future, after we
and are logically extending the server, rather than viegain more experience with Connection Conditioning, we
ing the server in an adversarial context. In this vein, Q@ay revisit an in-kernel mechanism specifically to support
is more similar to approaches like TESLA [24], that arelosed-source servers.
designed to extend/offload the functionality of existin .
systems. Combining CC with TESLA, which provideg Conclusions

session-layer services, would be a logical pairing, singile server software design continues to be an active
their focus areas are complementary. The reason for B, of research, we feel it is worthwhile to assess its
using some form of system call interposition in the CUghances for meaningful impact given the current state
rent CC is that some decisions are simpler when made gk+ardware and networking. We believe that perfor-
plicitly — for example, a purely interposition-based systemance of most servers is good enough for most sites, and
may have a difficult time detecting all uses of the comm@R,¢ advances in simplifying server software development
networking idiom ofsocket / | i st en/ accept , espe- ang providing better security outweigh additional perfor-
cially if other operations, such &r k() ordup(),aré mance gains. We have shown that a design inspired by
inter_leaved. Making CC calls explicit greatly simplifieg)p;x pipes, called Connection Conditioning, can provide
the library. benefits in both areas, and can even be used with exist-
7 Euture Work ing server software of varigus designs. While this ap-
proach has a performance impact, we have demonstrated
The next step for Connection Conditioning would b#hat even on laughably cheap hardware, this system can
to add kernel support for the interposition mechanisngndle far more bandwidth than most sites can afford.
while still keeping the server and filters in user space. WeConnection Conditioning provides these benefits in a
intentionally keep the filters in user space because we benple, composable fashion without dictating program-
lieve that the flexibility of having them easily customizming style. We have demonstrated a new server that is
able outweighs any performance gains of putting themradically simpler than most modern Web servers, and have

shown that fairly simple, general-purpose filters can be over high-speed networks. Rroceedings of the IEEE GLOBE-
used with this server and others to provide good perfor- COM '97, November 1997.

mance and security. The current implementation runs &l
tirely in user space, which gives it more flexibility and
safety compared to a kernel-based approach. However, a nical ConferenceJune 2001.

kernel-space implementation of the mechanisms is post#! D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, $1.

ble,

allowing for improved performance while retaining

the flexibility of user-space policies.

Overall, we believe that Connection Conditioning hold$5]
promise for simplifying server design and improving se-
curity, and should be applicable to a wide range ﬂ_fe]
network-based services in the future. We have demon-
strated it in conjunction with multi-process servers ad wel

as event-driven servers, and have shown that it can
defend these servers against a range of attacks. We

LY

ehttp://news.netcraft.com/archives/webrvetsurvey.html.

P. Joubert, R. King, R. Neves, M. Russinovich, and Jcéya
High-performance memory-based web servers: Kernel and use
space performance. Rroceedings of the USENIX Annual Tech-

Levine, and D. Lewin. Consistent hashing and random treés: D
tributed caching protocols for relieving hot spots on theldmide
web. INACM Symposium on Theory of Computidg97.

J. Lemon. Kqueue: A generic and scalable event nofifinafa-
cility. In FREENIX Track: USENIX Annual Technical Confergnce
Boston, MA, June 2001.

T. Mitchem, R. Lu, and R. O’Brien. Using kernel hypemis to
secure applications. IRroceedings of the 13th Annual Computer
Security Applications Conference (ACSAC '93an Diego, CA,
1997.

Netcraft Ltd. Web server survey archives.

investigating its use for DNS servers, which tend to prgs] V.S. Pai, P. Druschel, and W. Zwaenepoel. Flash: Aniefitcand
fer UDP over TCP in order to reduce connection-related portable web server. IRWSENIX Annual Technical Conference

overheads, and for sensors on PlanetLab, which use[lgﬁ'l N. Provos. libevent.

HTTP framework for simple information services. We
expect that both environments will also prove amenaki?e]
to Connection Conditioning.

Acknowledgments

[21]

We would like to thank our shepherd, David Andersen,
and the anonymous reviewers for their useful feedbackag
the paper. This work was supported in part by NSF Grant
CNS-0519829.

[23]
References
[1] ACME Laboratories. thttpd. http://www.acme.com/giut (24]
[2] Akamai Technologies Inc. http://www.akamai.com/.
[3] Apache Software Foundation. Apache HTTP Server Project
http://httpd. apache. org/. [25]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

G. Banga, P. Druschel, and J. C. Mogul. Better operatiysiesn
features for faster network servers Hroceedings of the Workshop
on Internet Server Performancéune 1998.

G. Banga and J. C. Mogul. Scalable kernel performancénfer-
net servers under realistic loads. Pmoceedings of the USENIX
Annual Technical Conferencéune 1998.

G. Banga, J. C. Mogul, and P. Druschel. Resource conink®
new facility for resource management in server systems?rdn
ceedings of the 3rd Symposium on Operating Systems Design
Implementation (OSDJ)}ebruary 1999.

G. Banga, J. C. Mogul, and P. Druschel. A scalable andiakpl
event delivery mechanism for unix. Rroceedings of the USENIX
Annual Technical Conferenchlonterey, CA, 1999.

A. Chankhunthod, P. B. Danzig, C. Neerdaeles, M. F. Sctayva
and K. Worrell. A hierarchical Internet object cache.Rroceed-
ings of the USENIX Annual Technical Conferentznuary 1996.
0. P. Damani, P. E. Chung, Y. Huang, C. Kintala, and Y.-Man\yy.
ONE-IP: Techniques for hosting a service on a cluster of nmash
In Sixth International World Wide Web Conferenégril 1997.
FreeBSD Project. Remote denial-of-service when usiogept (31]
filters.

http://ww. securityfocus. conf advi sori es/ 4159.
German Goldszmidt and Guerney Hunt. NetDispatchelTGP
Connection Router. Technical report, IBM Research, Hamibo
New York, July 1997. RC 20853.

J. Hu, I. Pyarali, and D. C. Schmidt. Measuring the intpdevent
dispatching and concurrency models on web server perfarenan

[26]

[27]

2

[29]

[30]

[32]

June 1999.

http://ww. nonkey. org/ provos/|libevent/.

N. Provos. Improving host security with system callipiess. In
Proceedings of the 12th USENIX Security Symposhiashing-
ton, DC, 2003.

X. Qie, R. Pang, and L. Peterson. Defensive Programniitsing

an Annotation Toolkit to Build DoS-Resistant Software. Rro-
ceedings of the 5th Symposium on Operating Systems Dedgdgn an
ImplementationBoston, MA USA, December 2002.

A. Rousskov, M. Weaver, and D. Wessels. The fourth caxthe
Raw data and independent analysis.

http://ww. neasurenent -factory. confresults/.

Y. Ruan and V. Pai. Making the “Box” transparent: Systeatl
performance as a first-class result. USENIX Annual Technical
ConferenceBoston, MA, June 2004.

J. Salz, A. C. Snoeren, and H. Balakrishnan. TESLA: Aspar-
ent, extensible session-layer architecture for end-tb+eetwork
services. IrProceedings of the 4th USENIX Symposium on Inter-
net Technologies and Systems(USITS,'@>tle, WA, 2003.

B. Schroeder and M. Harchol-Balter. Web servers under-o
load: How scheduling can help. Bth International Teletraffic
Congress (ITC 2003August 2003.

M. Slemko. Possible security issues with Apache in scordig-
urations. http://www.cert.org/venddaulletins/VB-98.02.apache.

R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Aséer and

J. Lepreau. The Flask security architecture: System stifirati-
verse security policies. IRroceedings of the 8th USENIX Security
SymposiumWashington, DC, 1999.

Standard Performance Evaluation Corporation. SPEG Bémch-
marks.ht t p: / / www. spec. or g/ web99/ .

G. Varghese and A. Lauck. Hashed and hierarchical imiheels:
Data structures for the efficient implementation of a tinaeility.

In Proceedings of the 11th Symposium on Operating System Prin-
ciples (SOSP-11Austin, TX, 1987.

R. von Behren, J. Condit, F. Zhou, G. C. Necula, and Ewere
Capriccio: Scalable threads for Internet servicesPloceedings

of the 19th Symposium on Operating System Principles (SO§P-
Lake George, New York, October 2003.

M. Welsh and D. Culler. Adaptive overload control fordyunter-
net servers. lrith USENIX Conference on Internet Technologies
and Systems (USITS'Q3)larch 2003.

M. Welsh, D. Culler, and E. Brewer. SEDA: An archite@ufor
well-conditioned, scalable Internet services. Rroceedings of
the 18th Symposium on Operating System Principles(SOEP-18
Chateau Lake Louise, Banff, Canada, Oct. 2001.

