
Specification and Implementation of Dynamic Web Site Benchmarks

Cristiana Amza, Anupam Chanda, Alan L. Cox,
Sameh Elnikety, Romer Gil, Karthick Rajamani∗

and Willy Zwaenepoel
CS Department – Rice University

*IBM Austin Research Lab
{amza, anupamc, alc, sameh, rgil, willy} @rice.edu,

karthick@us.ibm.com

Emmanuel Cecchet and Julie Marguerite

CS Department – Rice University/
INRIA Rhône-Alpes

emmanuel.cecchet@inrialpes.fr
julie.marguerite@inrialpes.fr

Abstract

The absence of benchmarks for Web sites with
dynamic content has been a major impediment to research
in this area. We describe three benchmarks for evaluating
the performance of Web sites with dynamic content. The
benchmarks model three common types of dynamic
content Web sites with widely varying application
characteristics: an online bookstore, an auction site, and a
bulletin board. For the online bookstore, we use the TPC-
W specification. For the auction site and the bulletin
board, we provide our own specification, modeled after
ebay.com and slahdot.org, respectively. For each
benchmark we describe the design of the database and the
interactions provided by the Web server.

We have implemented these three benchmarks with a
variety of methods for building dynamic-content
applications, including PHP, Java servlets and EJB
(Enterprise Java Beans). In all cases, we use commonly
used open-source software. We also provide a client
emulator that allows a dynamic content Web server to be
driven with various workloads. Our implementations are
available freely from our Web site for other researchers to
use.

These benchmarks can be used for research in dynamic
Web and application server design. In this paper, we
provide one example of such possible use, namely
discovering the bottlenecks for applications in a particular
server configuration. Other possible uses include studies
of clustering and caching for dynamic content,
comparison of different application implementation
methods, and studying the effect of different workload
characteristics on the performance of servers. With these
benchmarks we hope to provide a common reference point
for studies in these areas.

1. Introduction

Web content is increasingly generated dynamically, a
departure from the early days of the Web when virtually
all content consisted of static HTML or image files.
Dynamic Web content is typically generated by a
combination of a front-end Web server, an application

server and a back-end database (see figure 1). The
(dynamic) content of the site is stored in the database. The
application server provides methods that implement the
business logic of the application. As part of that, the
application typically accesses the database. The three
servers (Web, application and database server) may all
execute on a single machine, or each one of them may
execute on a separate machine or on a cluster of machines,
or various combinations thereof.

Web server Database server
Client

Internet HTTPHTTP

Application Server

SQL

Figure 1. Typical Configuration of a Dynamic Content

Web Site

To study the architecture and the performance of
dynamic Web sites, benchmarks are needed that are
representative of some of the common applications for
such Web sites, yet simple enough to be understood and
manipulated with ease. TPC-W [24] provides a
specification for benchmarking e-commerce applications.
It models an online bookstore, such as amazon.com. This
paper proposes new specifications for two different types
of dynamic content sites: auction sites and bulletin boards.
Our benchmark for auction sites is modeled after eBay
[7]. For bulletin boards, our benchmark is modeled after
the Slashcode [20], which is used in many bulletin board
sites including its originator site Slashdot [21].

We have implemented all three applications using a
variety of methods. In particular, we have
implementations using the PHP Web-scripting language
[18], Java servlets [9], and different ways of using EJB
(Enterprise Java Beans) [8]. The implementations use
open-source software platforms such as the Apache Web
server, the Tomcat servlet server, the JOnAS and JBoss
EJB servers, and the MySQL relational database [1, 2, 10,
12, 15]. The source code for all of these implementations
is available on our web site
http://www.cs.rice.edu/CS/Systems/DynaServer. The choi-
ce of an open-source platform allows easy use of our
benchmarks by other researchers. In addition to the server

applications, we have also developed a client emulator to
drive a dynamic content Web server with various
workloads.

These benchmarks can be used for a variety of
different studies on dynamic Web content generation. We
have already used the auction site to compare various
application implementation methods, container designs
and communication optimizations for EJB applications
[6]. We have also used all three applications in a
comparison of PHP, Java servlets and EJB [5]. Currently,
we are using the benchmarks in studies on clustering and
caching for dynamic content.

As one example of the type of work that can be
performed with these benchmarks, we present a bottleneck
analysis of the PHP versions of the applications using PC
server hardware. In all our experiments, the Web server
and the database run on a separate machine. In particular,
we use a 1.33GHz AMD Athlon with 768MB memory
and a 60GB disk for each machine. The two machines are
connected to each other and to a set of machines running
client emulation software by a switched 100Mbps
Ethernet. For the online bookstore the CPU on the
database server is the bottleneck. In contrast, for the
auction site and the bulletin board the Web server CPU is
the bottleneck. In none of the experiments we found the
memory, the disk or the network to be a bottleneck. We
also comment on the effect of enforcing various degrees
of (transactional) consistency in the benchmarks.

The rest of this paper is structured as follows. Sections
2 to 4 describe the benchmark specifications. Section 5
describes the client emulator tool. Section 6 outlines the
example use of our benchmarks discussed in this paper.
Section 7 describes our experimental environment, both in
terms of software, hardware, workloads and application
sizing. Sections 8 to 10 analyze the results for the three
benchmarks. We cover related work in section 11, and
conclude in section 12.

2. Online Bookstore Benchmark

The TPC-W benchmark from the Transaction
Processing Council [24] is a transactional Web benchmark
specifically designed for evaluating e-commerce systems.
Our online bookstore benchmark is modeled after TPC-
W. It implements all the functionality specified in TPC-W
that has an impact on performance, including transactional
consistency and support for secure transactions. It does
not implement some functionality specified in TPC-W that
has an impact only on price and not on performance, such
as the requirement to provide enough storage for 180 days
of operation.

All persistent data, with the exception of the images
used with each book, is stored in the database. The
database contains eight tables: customers, addresses,
orders, order_line, credit_info, items, authors, and

countries. The order_line, orders and credit_info tables
store information about orders that have been placed, in
particular: the book ordered, the quantity and discount
(table order_line), the customer identifier, date of order,
information about the amount paid, shipping address and
status (table orders), and credit card information such as
type, number and expiration date (table credit_info). The
items and authors tables contain information about the
books and their authors. Customer information, including
real name and user name, contact information (email,
address), and password, is obtained via a customer
registration form and maintained in the customers and
addresses tables.

Each item in the database has two corresponding
images: a full size image and a thumbnail image. The
images are stored on the Web server. We implemented the
14 different interactions specified in the TPC-W
benchmark specification. Of the 14 scripts, 6 are read-
only, while 8 cause the database to be updated. The read-
only interactions include access to the home page, listing
of new products and best sellers, requests for product
detail, and two interactions involving searches. Read-write
interactions include user registration, updates to the
shopping cart, two interactions involving purchases, two
involving order inquiry and display, and two involving
administrative tasks. We use the same distribution of
script execution as specified in TPC-W. An interaction
may also involve requests for multiple embedded images,
each image corresponding to an item in the inventory.
With one exception, all interactions query the database
server.

We implement a Payment Gateway Emulator (PGE),
which represents an external system that authorizes
payment of funds during purchasing interactions [24,
clause 6.4]. The Web server contacts the PGE using an
SSL session to send the credit card information. The PGE
replies with a message containing the authorization
number. The PGE is not a part of the benchmarked
system.

3. Auction Site Benchmark

Our auction site benchmark implements the core
functionality of an auction site: selling, browsing and
bidding. We do not implement complementary services
like instant messaging or newsgroups. We distinguish
between three kinds of user sessions: visitor, buyer and
seller. For a visitor session, users need not register but are
only allowed to browse. Buyer and seller sessions require
registration. In addition to the functionality provided
during visitor sessions, during a buyer session users can
bid on items and consult a summary of their current bids,
their rating and comments left by other users. Seller
sessions require a fee before a user is allowed to put up an
item for sale. An auction starts immediately and lasts

typically for no more than a week. The seller can specify a
reserve (minimum) price for an item.

The database contains seven tables: users, items, bids,
buy_now, comments, categories and regions. The users
table records contain the user’s name, nickname,
password, region, rating and balance. Besides the category
and the seller’s nickname, the items table contains the
name that briefly describes the item and a more extensive
description, usually an HTML file. Every bid is stored in
the bids table, which includes the seller, the bid, and a
max_bid value used by the proxy bidder (a tool that bids
automatically on behalf of a user). Items that are directly
bought without any auction are stored in the buy_now
table. The comments table records comments from one
user about another. As an optimization, the number of
bids and the amount of the current maximum bid are
stored with each item to prevent many expensive lookups
of the bids table. This redundant information is necessary
to keep an acceptable response time for browsing
requests. As users only browse and bid on items that are
currently for sale, we split the item table in a new and an
old item table. The very vast majority of the requests
access the new items table, thus considerably reducing the
database’s working set.

Our auction site defines 26 interactions. Among the
most important ones are browsing items by category or
region, bidding, buying or selling items, leaving
comments on other users and consulting one’s own user
page (known as myEbay on eBay [7]). Browsing items
also includes consulting the bid history and the seller’s
information.

4. Bulletin Board Benchmark

Our bulletin board benchmark is modeled after an
online news forum like Slashdot [21]. We originally
considered using the Perl-based Slashcode [20], which is
freely available, but we concluded that the code was too
complex to serve as a benchmark. Instead, we implement
the essential bulletin board features of the Slashdot site. In
particular, as in Slashcode, we support discussion threads.
A discussion thread is a logical tree, containing a story at
its root and a number of comments for that story, which
may be nested. Users have two different levels of
authorized access: regular user and moderator. Regular
users browse and submit stories and comments.
Moderators, in addition, review stories and rate
comments.

The main tables in the database are the users, stories,
comments, and submissions tables. The users table
contains each user’s real name and nickname, contact
information (email), password, level of authorized access,
and rating. The stories table contains each story’s title and
body, the nickname of the story’s author, the date the
story was posted, the number of comments at the

outermost nesting level, and the category the story fits
under. The categories table contains the same categories
as the Slashdot site. The comments table contains the
comment’s subject and body, the nickname of the
comment’s author, the date the comment was posted, the
identifier of the story or the parent comment it belongs to,
and a comment rating. Each submitted story is initially
placed in the submissions table, unless submitted by a
moderator. We maintain a moderator_log table, which
stores the moderator ratings for comments. Regular user
ratings are computed based on the ratings for the
comments they have posted.

For efficiency reasons, we split both the stories and
comments tables into separate new and old tables. In the
new stories table we keep the most recent stories with a
cut-off of one month. We keep old stories for a period of
two years. The new and old comments tables correspond
to the new and old stories respectively. The majority of
the browsing requests are expected to access the new
stories and comments tables, which are much smaller and
therefore much more efficiently accessible. A daemon is
activated periodically to move stories and comments from
the new to the old tables as appropriate.

We have defined 24 Web interactions. The main ones
are: generate the stories of the day, browse new stories,
older stories, or stories by category, show a particular
story with different options on filtering comments, search
for keywords in story titles, comments and user names,
submit a story, add a comment, review submitted stories
and rate comments at the moderator level. Full text search
is currently not supported. Without additional support, it
requires a prohibitive processing time in a general-
purpose relational database. Typically, an external search
engine would be used to perform this task.

5. The Client Emulator: a Workload
Generation Tool

In addition to the benchmarks described in Sections 2
to 4, we have also developed a client emulator that
implements a methodology for generating workloads for
dynamic content sites. The tool is reasonably general and
can be extended to other benchmarks of the same nature.
The prototype tool that we have implemented requires
some code to be written specific to the application under
test, although much of that could be automated.

Following the TPC-W specifications, the workload
generated by the client emulator consists of a number of
concurrent clients and their interactions with the system
under test (SUT). The number of clients emulated by the
tool can be varied to vary the load on the SUT.

Each emulated client opens a session with the SUT.
The session remains alive for a period of time, called
session time, at the end of which the connection is closed.
Each session is a persistent HTTP connection with the

SUT. Using this connection, the client repeatedly makes a
request, parses the server’s response to the request, and
follows a (hyper-)link embedded in the response. The
server’s response is a Web page consisting of an answer to
the query in the last request and the links to the set of
pages that the client can transition to from this response.
For example, after viewing the home page of TPC-W, the
client may decide to view the best-selling books of some
particular subject, and hence the response to the home
page request contains a link for the best-sellers, in
addition to other links. A Markov model determines which
subsequent link from the response to follow. The Markov
model uses a transition probability matrix with
probabilities attached to transitions from one state to
another. A state in the transition matrix corresponds to a
particular interaction of the SUT and its web page, e.g.,
home page, best-sellers page, product information page,
etc. A transition corresponds to clicking on a link in the
page. The client emulator waits for an amount of time,
called the think time, before initiating the next interaction.
This emulates the “thinking” period of a real client who
takes a period of time before clicking on the next request.

The tool takes as its input a number of clients and a
transition matrix. A particular column of the transaction
matrix specifies the probabilities to transition from a given
page to all other pages/states. The tool provides certain
consistency checks on the values in the table, guaranteeing
that probabilities in any column add up to 1.

The tool collects system utilization statistics (CPU,
memory, network bandwidth, etc.) on the machines of the
SUT specified in a configuration file. At the end of the
execution, the tool displays detailed statistics about the
execution, including, in particular, overall throughput and
response time statistics, and CPU, memory, network and
disk utilization graphs for the length of the run (as shown
in later sections).

6. Example Use of the Benchmarks

In the rest of this paper, we demonstrate the use of
these benchmarks by performing a bottleneck analysis of
the applications. We vary the load on the system and
monitor the resulting throughput. We focus on measuring
the throughput against system load and the utilization of
various resources, rather than on other performance
metrics such as response time.

We use the PHP version of the benchmarks, with the
Web server (including the PHP module) executing on one
machine and the database executing on another machine.
We use Apache as the Web server and MySQL as the
database server. This setup is quite common for smaller
web sites. The most recent Netcraft survey [16] showed
that 60% of all Web sites are running Apache. About 40%
of these sites had the PHP module compiled in.

Bottleneck analysis allows the site maintainer to
predict which parts of the overall system need to be
upgraded to deal with increased load, for instance, by
using a faster machine, an SMP machine or a cluster.

7. Hardware and Software Environment

7.1. Software Environment

We use Apache v.1.3.22 as the Web server, configured
with the PHP v.4.0.6 module, mod_ssl version 2.8.5 and
openSSL 0.9.5a. We increase the maximum number of
Apache processes to 512. We observe that with that value,
the number of Apache processes is never a limit on
performance. We use MySQL v.3.23.43-max as our
database server. We use MyISAM and BDB tables as
non-transactional and transactional database tables,
respectively. All machines run the 2.4.12 Linux kernel.

In MySQL, as soon as overload occurs, performance
degrades. In particular, performance degrades faster when
the number of update queries in the workload becomes
larger. Transactions are a new and relatively less stable
addition to MySQL. Transactions exacerbate the
performance degradation under heavy load. The effects of
these limitations in MySQL will be seen in several
experiments reported in sections 8 to 10.

7.2. Transactional Semantics

We study two levels of transactional consistency.
The first level provides transactional isolation, but does

not provide for transactional durability and atomicity. For
all interactions (PHP scripts) that contain update queries,
we insert database lock operations that obtain all locks
necessary for all queries in a script (for both read and
write operations) before the first query. Locks are held
until the end of the script’s execution. Scripts that contain
only read-only queries do not obtain locks. Unless
mentioned otherwise, this level of consistency is the
default used in our experiments.

The second level provides full ACID transaction
guarantees. For all interactions (PHP scripts) we insert a
begin_transaction before the first database query is issued
and an end_transaction after the last query is issued. If a
script fails, an abort can be issued to release any database
locks that are held and to undo all modifications to the
database. We refer to this second level of consistency as
“with transactions” in the experiments in sections 8 to 10.

7.3. Hardware Platform

The Web server and the database server run on an
AMD Athlon 1.33GHz CPU with 768MB SDRAM, and a
Maxtor 60GB 5,400rpm disk drive. A number of 800MHz
AMD Athlon machines run the client emulation software.
We use enough client emulation machines to make sure
that the clients do not become a bottleneck in any of our

experiments. All machines are connected through a
switched 100Mbps Ethernet LAN.

7.4. Measurement Methodology

Each experiment is composed of 3 phases. A warm-up
phase initializes the system until it reaches a steady-state
throughput level. We then switch to the steady-state phase
during which clients machines perform all measurements.
Finally, a cool-down phase allows for small time
differences experienced by different client machines to be
smoothed out and slows down the incoming request flow
until the end of the experiment. For all experiments with a
particular application we use the same length of time for
each phase, but the duration of each phase is different for
different applications. The online bookstore uses 1
minute, 10 minutes and 30 seconds for the warm-up, the
steady-state and the cool-down phase, respectively. The
auction site uses 5, 30 and 5 minutes, and the bulletin
board 2.5, 15 and 2.5 minutes. These values are chosen
based on observation of the length of time before the
experiment reaches a steady state, and the length of time
necessary to obtain reproducible results.

To measure the load on each machine, the client
emulator invokes the sysstat utility [23] that every second
collects CPU, memory, network and disk usage from the
Linux kernel.

7.5. Workloads and Application Sizing

TPC-W specifies three different workload mixes,
differing in the ratio of read-only to read-write scripts.
The browsing mix contains 95% read-only scripts, the
shopping mix 80%, and the ordering mix 50%. The
database contains 10,000 items and the corresponding 183
MB of data for the item images are stored on the Web
server. We use two database sizes by controlling the
number of customers: a large database (3.5GB) and a
small database (350MB) that fits entirely in memory on
our experimental platform. These sizes include the
necessary database indices.

For the auction site, we use two workload mixes: a
browsing mix made up of only read-only interactions and
a bidding mix that includes 15% read-write interactions.
We size our system according to some observations found
on the eBay Web site. We always have about 33,000
items for sale, distributed among eBay’s 40 categories and
62 regions. We keep a history of 500,000 auctions in the
old-items table. There is an average of 10 bids per item, or
330,000 entries in the bids table. The buy_now table is
small, because less than 10% of the items are sold without
auction. The users table has 1 million entries. We assume
that users give feedback (comments) for 95% of the
buying transactions. The new and old comments tables
therefore contain about 31,500 and 475,000 comments,

respectively. The total size of the database, including
indices, is 1.4GB.

For the bulletin board, we use two workload mixes: a
browsing mix and a submission mix. The browsing mix is
a read-only workload that does not allow users to post
stories or comments. The submission mix contains 85%
read-only interactions, with the remaining 15% being
story and comment submissions and moderation
interactions. The two mixes correspond to what we
observed as the two extremes in workload characteristics
for real bulletin board sites. The browsing mix
corresponds to Slashdot’s workload, a site with a large
user base in which 99.5% of accesses are reads [22]. The
submission load corresponds to that of a bulletin board
with a relatively small user base that posts more
frequently [25]. On this bulletin board about 10 to 15% of
all accesses are writes. We generate the story and
comment bodies with words from a given dictionary and
lengths between 1KB and 8KB. Short stories and
comments are much more common, so we use a Zipf-like
distribution for story length [3]. The database contains 2
years of stories and comments. We use an average of 15 to
25 stories per day and between 20 and 50 comments per
story, as we observed on Slashdot. We emulate 500,000
total users, out of which 10% have moderator access
privilege. With these parameters, the database size is
439MB. We also created a larger database of 1.4GB
containing more old stories and comments. The results are
very similar as the majority of the requests access the new
stories and comments.

For all benchmarks, we use the think time and the
session time specified by TPC-W, 7 seconds and 15
minutes, respectively

Figure 2. Online bookstore throughput in interactions

per minute as a function of number of clients.

8. Bottleneck Analysis for Online Bookstore
Benchmark

Figure 2 shows the throughput, in interactions per
minute, as the number of clients increases, for each of the
three workload mixes and for the small database. The
peak throughputs are 356, 515, and 654 interactions per
minute, for the browsing, shopping, and ordering mix,
respectively. Figure 3 to figure 5 show, for the different
mixes, the average CPU utilization on the Web server and
the database server as the number of clients increases.

Figure 3. Online bookstore percentage CPU utilization
as a function of number of clients for the browsing mix.

Figure 4. Online bookstore percentage CPU utilization
as a function of number of clients for the shopping mix.

From these figures we conclude that for all workload
mixes, the CPU on the database machine is the bottleneck
resource at the peak throughput. The complex nature of
many of the database queries makes the database the
bottleneck. In comparison, the cost of handling and
executing the PHP scripts for these interactions on the

Web server is small. The read-only queries are, on
average, more complex than the read-write queries.
Hence, for workload mixes with a larger number of read-
only queries, overall throughput is lower and the database
is more of a bottleneck.

Figure 5. Online bookstore percentage CPU utilization
as a function of number of clients for the ordering mix.

We monitor the memory usage and disk access on the
Web server and the database throughout all our
experiments. None of these resources is the bottleneck.

Figure 6. Online bookstore memory usage in KB as a

function of time at the peak throughput for the
ordering mix.

Figure 6 and figure 7 show the utilization of memory
and disk for the ordering mix at its peak throughput,
which is also the highest throughput for any of the three
mixes. During a short initial transient period, the database
reads information from the disk to warm up its cache.
After this period, the working set fits in memory and
hence disk access is low. Memory utilization in steady

state is approximately 200MB on the Web server and
390MB on the database.

Figure 7. Online bookstore disk usage in number of
blocks per seconds as a function of time at the peak

throughput for the ordering mix.

Figure 8 shows the network usage between the
database and the Web server, and between the Web server
and the clients. The latter is on average 3.2Mb/s, while the
former is always lower than 1.6Mb/s. Clearly, neither of
these forms a bottleneck.

Figure 8. Online bookstore network usage in bytes/s as

a function of time at the peak throughput for the
ordering mix.

As expected, when we add full transaction semantics,
the throughput for all mixes is lower. In particular, the
peak throughputs are 240, 395 and 191 interactions per
minute for the browsing, shopping and ordering mix,
respectively. The database CPU remains the bottleneck.
When we use the larger database, the disk utilization on
the database server becomes higher, but the database CPU

remains the bottleneck. We obtain peak throughputs of 56,
120, and 494 interactions per minute, for the browsing,
shopping, and ordering mix, respectively. Compared to
the small database, the performance for the larger
database drops much more significantly for the workloads
that have a higher read-only component. Reads become a
lot more expensive, because they go to disk much more
often, while the cost of writes remains roughly the same.
Due to the limitations of MySQL with BDB transactional
tables, we could not get reproducible results for the large
database with full transaction semantics.

9. Bottleneck Analysis of Auction Site

Figure 9 shows the number of interactions per minute
for each workload as a function of the number of clients.
The peak throughput for the browsing mix is 8,520
interactions per minute with 800 clients, while the bidding
mix achieves a peak of 9,780 interactions per minute with
1,100 clients. Figure 9 also shows the throughput using
transactions on the database server. The browsing mix
shows throughput comparable to the throughput obtained
without transactions up to 600 clients, and then peaks at
the slightly lower value of 7,740 interactions per minute
with 800 clients. Due to transaction scaling limitations of
MySQL in the presence of high update rates, we are not
able to present results for the case of the bidding mix with
transactions.

Figure 9. Auction site throughput in interactions per

minute as a function of number of clients.

Figure 10 and figure 11 show the CPU utilization for
the browsing and bidding mix, respectively. CPU
utilization increases linearly with the number of clients on
both the Web server and the database server, but it
increases much more rapidly on the Web server. CPU
utilization on the Web server at the peak throughput point
is 100% for both workload mixes. On the database server,

CPU utilization at the peak throughput is 58% for the
bidding mix and 29% for the browsing mix.

Figure 10. Auction site percentage CPU utilization as a

function of number of clients for the browsing mix.

Figure 11. Auction site percentage CPU utilization as a

function of number of clients for the bidding mix.

Memory and disk usage on the Web server and the
database server are reported in figure 12 and figure 13,
respectively. On the Web server machine, at the beginning
of the experiment, a lot of Web server processes are
created and the scripts are read from the disk. This
explains the initial disk activity and the sharp rise in
memory use. After this startup phase, there is little disk
activity and memory usage remains constant at a modest
70 MB. A similar phenomenon occurs on the database
server. When the first requests start arriving at the
database, there is a lot of disk activity and memory use
increases rapidly, until the point in time at which most of
the working set (indices and frequently used tables) is in
memory. After that, disk usage falls off and memory usage
remains stable at around 250MB, a relatively small value

and certainly within reasonable bounds for a server
machine. Although the database itself is relatively large,
the temporal locality of the information in the database
causes the working set to be relatively small.

Figure 12. Auction site memory usage in KB as a
function of time at the peak throughput for the

browsing mix.

Figure 13. Auction site disk usage in number of blocks
per second as a function of time (x-axis is log-scale) at

the peak throughput for the browsing mix.

Figure 14 shows the network utilization at the peak
throughput point between the clients and the Web server,
and between the Web server and the database server, as a
function of time. During steady state, the bandwidth
between the clients and the Web server is about 55Mb/s,
while the bandwidth between the Web server and the
database server is about 2Mb/s. Therefore, network
bandwidth is never the bottleneck for this application.

Figure 14. Auction site network usage in bytes/s as a

function of time at the peak throughput for the
browsing mix.

In summary, the Web server CPU is the bottleneck
resource for the auction site. With transactions, however,
both servers are saturated at the peak throughput for the
browsing mix. We would expect that using a more
complex business logic or adding features like user
preferences to customize the look-and-feel of the pages
sent to clients would further increase Web server CPU
load. Possible solutions to this bottleneck include using an
SMP or a cluster as the Web server. We have
experimented with a dual-processor node for the Web
server, which was sufficient to make the database CPU the
bottleneck for the bidding mix.

10. Bottleneck Analysis of Bulletin Board

Figure 15 presents the throughput in number of
interactions per minute for the browsing and submission
mixes as a function of the number of clients. The
browsing mix peaks at 8,160 interactions per minute with
900 clients, the submission mix at 8,580 interactions per
minute with 1,000 clients. Transactions are rarely used in
connection with bulletin board sites, so we do not report
results with full transactional semantics for this
application.

Figure 16 and figure 17 show that for both the
browsing and the submission mix, the Web server CPU is
the bottleneck resource at the peak throughput point. For
the submission mix, the situation reverses, however, just
after the peak point. The database CPU utilization jumps
from 52% for 900 clients to 100% with 1,100 clients. The
comment table is the main bottleneck. This large table is
involved in most of the browsing and update requests.

Figure 15. Bulletin board throughput in interactions

per minute as a function of number of clients.

Figure 16. Bulletin board percentage CPU utilization

as a function of number of clients at the peak
throughput for the browsing mix.

Figure 17. Bulletin board percentage CPU utilization

as a function of number of clients at the peak
throughput for the submission mix.

Figure 18 and figure 19 report on memory and disk
usage. As with the auction site, we observe a burst of
reads at startup. With the auction site, clients only access
new items, and therefore the working set is limited to the
new items and fits in memory. With the bulletin board
site, however, clients also continue to access old stories
and comments. The disk reads after the initial startup are
largely due to accesses to old stories. The memory
utilization increases correspondingly. Due to the larger
amount of data manipulated, the database server requires
an average of 350MB, while Web server memory usage
remains modest at 70MB.

Figure 18. Bulletin board memory usage in KB as a

function of time at the peak throughput for the
browsing mix.

Figure 19. Bulletin board disk usage in number of
blocks per second as a function of time at the peak

throughput for the browsing mix.

Figure 20 shows that the network traffic between the
database and the Web server is much higher than for the
other sites (9Mb/s on average). The network traffic

between the clients and the Web server is 20Mb/s. In any
case, the network bandwidth is not a bottleneck.

Figure 20. Bulletin board network usage in bytes/s as a

function of time at the peak throughput for the
browsing mix.

To summarize, the Web server CPU is the bottleneck
resource at the peak point for the bulletin board, for both
workload mixes. The database CPU approaches saturation
as well at peak throughput and becomes the bottleneck if
even more clients are added. A possible approach to
offloading the database is to generate static pages for the
stories of the day or the most recent stories. We
experimented with this technique, and found that it made
the Web server the bottleneck under all circumstances.

11. Related Work

For static Web content, the presence of a number of
agreed upon benchmarks, such as, e.g., the NLANR traces
[17] and the Polygraph benchmark [26], have greatly
fostered research in systems support for static Web
content servers, including OS support, caching, and
clustering. Similar studies for dynamic content Web sites
have been far fewer, and their results much more difficult
to compare, in our opinion, in part because of the lack of
benchmarks. Specweb99 [28] is a first-generation
dynamic content benchmark. The set of benchmarks
introduced in this paper is more representative of the
diversity of current dynamic content. Zhang et al. [27]
study load balancing among machines in a dynamic
content Web server cluster, but their study uses a read-
only workload, avoiding any issues of consistency
maintenance in the presence of writes. Ji et al. [11] use
simulation of a white pages server and an auction site to
study caching of database results. Our benchmarks allow
measurement of system overheads on real systems rather
than simulation. The Neptune project [19] studies

scalability of clusters for dynamic content, but does not
include benchmark specifications, or a bottleneck analysis
like the one presented in this paper.

Menascé et al. model client workloads for dynamic
content sites [13]. Starting from access logs of an actual e-
business site (an auction site that sells domain names),
they have developed detailed models of customer
behavior, and resource management methods to optimize
site revenue [14]. For the online bookstore, we adopt the
workload from the one specified by TPC-W. For the other
applications, we adopt similar workload models. One
possible avenue of further work is to investigate the effect
of these more sophisticated workload models on the
performance of the applications.

Cain et al. [4] present a detailed architectural
evaluation of TPC-W implemented using Java servlets.
They investigate the impact of Java servlets on the
memory system, the branch predictor, and the
effectiveness of coarse-grain multithreading. Our study is
focused instead on understanding bottlenecks at the node
level.

12. Conclusions

We have presented three benchmarks for dynamic
content sites with very different characteristics: an online
bookstore, an auction site, and a bulletin board. For the
online bookstore, we follow the specification provided by
TPC-W. For the auction site and the bulletin board, we
provide our own specifications.

We have implemented the three dynamic content
benchmarks and a workload generator tool that allows us
to vary the workload driving the dynamic content server.
We have used our implementations to carry out a
bottleneck characterization of the benchmarks. Different
benchmarks show different bottlenecks: the database CPU
for the online bookstore, and the Web server CPU for the
auction site and the bulletin board. Complex queries cause
the database CPU to be the bottleneck for the online
bookstore. In contrast, the queries for the other
applications are simpler.

We are making the source code of our implementations
freely available on our Web site. We hope other
researchers will use them, making performance results of
dynamic content Web sites more reproducible and easier
to compare.

13. References

[1] The Apache HTTP Server Project - http://httpd.apache.org/.
[2] Apache Tomcat - http://jakarta.apache.org/tomcat/.
[3] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker - Web
Caching and Zipf-like Distributions: Evidence and Implications
– Proceedings of the IEEE Infocom Conference, 1999.

[4] Harold W. Cain, Ravi Rajwar, Morris Marden and Mikko H.
Lipasti – An Architectural Evaluation of Java TPC-W –
Proceedings of the Seventh International Symposium on High-
Performance Computer Architecture, 2001.
[5] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie
Marguerite and Willy Zwaenepoel – A Comparison of Software
Architectures for E-business Applications – Rice University
Technical Report TR02-389, 2002.
[6] Emmanuel Cecchet, Julie Marguerite and Willy Zwaenepoel
– Performance and scalability of EJB applications – 17th Annual
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2002.
[7] eBay – http://www.ebay.com/.
[8] Enterprise JavaBeans Technology –
http://java.sun.com/products/ejb/.
[9] Java Servlet Technology –
http://java.sun.com/products/servlet/index.html/.
[10] JBoss - http://www.jboss.org/.
[11] Minwen Ji, Edward W. Felten, Jaswinder Pal Singh and
Mao Chen – Query Affinity in Internet Applications – Computer
Science Technical Report, Princeton University, 2001
[12] JOnAS - http://www.objectweb.org/jonas/.
[13] Daniel Menascé, Flavia Ribeiro, Virgilio Almeida, Rodrigo
Fonseca, Rudolf Riedi and Wagner Meira Jr – In Search of
Invariants for E-Business Workloads – Proceedings of EC’00,
2000.
[14] Daniel Menascé, Rodrigo Fonseca, Virgilio Almeida and
Marco Mendess – Resource Management Policies for E-
commerce Servers – Second Workshop on Internet Server
Performance WISP’99, 1999.
[15] MySQL – http://www.mysql.com/.
[16] Netcraft Web Server Survey, September 2002 –
http://www.netcraft.com/survey/.
[17] NLANR – http://pma.nlanr.net/Traces/.
[18] PHP Hypertext Preprocessor – http://www.php.net/.
[19] Kai Shen, Tao Yang, Lingkun Chu, JoAnne L. Holliday,
Doug Kuschner, Huican Zhu – Neptune: Scalable Replica
Management and Programming Support for Cluster-based
Network Services – 3rd USENIX Symposium on Internet
Technologies and Systems (USITS), 2001.
[20] Slashcode – http://www.slashcode.org/.
[21] Slashdot – http://www.slashdot.org/.
[22] Handling the Loads - Slashdot –
http://slashdot.org/article.pl?sid=01/09/13/154222&mode=
thread&tid=124.
[23] Sysstat package – http://freshmeat.net/projects/sysstat/.
[24] Transaction Processing Performance Council –
http://www.tpc.org/.
[25] TV Show Message Board –
http://mcbeal.hypermart.net/stats/
[26] Web Polygraph – http://www.web-polygraph.org.
[27] Xiaolan Zhang, Michael Barrientos, J. Bradley Chen and
Margo Seltzer – HACC: An Architecture for Cluster-Based Web
Servers – Proceedings of the 2000 Annual Usenix Technical
Conference, 2000.
[28] SPECweb99 Benchmark – Proceedings of the 2nd
Workshop on Workload Characterization, 1999.

