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Abstract e Inexpensive synchronization due to cooperative

Event-based programming has been highly touted in recent multitasking;

years as the best way to write highly concurrent applications. e Lower overhead for managing state (no stacks);
Having worked on several of these systems, we nowbelieve this , getter scheduling and localiy, based on
approach to be a mistake. Specifically, we believe that threads application-level information; and

can achieve all of the strengths of events, including support i i
for high concurrency, low overhead, and a simple concurrency ® More flexible control flow (not just call/return).

model. Moreover, we argue that threads allow a simpler and . .
more natural programming style. We have made extensive use of events in several

We examine the claimed strengths of events over thread§igh-concurrency e”VirQnmentS_a including Ninja [_13]'
and show that the weaknesses of threads are artifacts SPEDA [14], and Inktomi’s Traffic Server. In working
specific threading implementations and not inherent to thewith these systems, we realized that the properties above
threading paradigm. As evidence, we present a user-leveire not restricted to event systems; many have already
thread package that scales to 100,000 threads and achievpgen implemented with threads, and the rest are possible.
excellent performance in a web server. We also refine the yjtimately, our experience led us to conclude that
QUaIity argument of Lauer-Needham, which implies that_go‘)devent-based programming is the wrong choice for highly
implementations of thread systems and event systems will haVSOncurrent systems. We believe that (1) threads provide
similar performance. Finally, we argue that compiler support . .

a more natural abstraction for high-concurrency servers,

for thread systems is a fruitful area for future research. It is dthat (2 i i d thread
a mistake to attempt high concurrency without help from the@" that (2) small improvements to compilers and threa

compiler, and we discuss several enhancements that are enablB¢ntime systems can eliminate the historical reasons to

by relatively simple compiler changes. use events. Additionally, threads are more amenable
to compiler-based enhancements; we believe the right
1 Introduction paradigm for highly concurrent applications is a thread

_ o package with better compiler support.

Highly concurrent applications such as Internet  gection 2 compares event systems and thread systems,
servers and transaction processing databases presenb@j it offers a rebuttal of the common arguments
number of challenges to application designers. Firstygainst threads. Next, Section 3 explains why threads are
handling large numbers of concurrent tasks requires thg ticularly natural for writing high-concurrency servers.
use of scalable data structures. Second, these syster8gtion 4 explores the value of a compiler support for
typically operate near maximum capacity, which creaté§preads. In Section 5, we validate our approach with

resource contention and high sensitivity to scheduling, simple web server. Finally, Section 6 covers (some)
decisions; overload must be handled with care to aVOiq'eIated work. and Section 7 concludes.

thrashing. Finally, race conditions and subtle corner
cases are common, which makes debugging and cod§ Threads vs. Events
maintenance difficult.

Threaded servers have historically failed to meetthese The debate between threads and events is a very
challenges, leading many researchers to conclude thaid one. Lauer and Needham attempted to end the
event-based programming is the best (or even onlyHiscussion in 1978 by showing that message-passing
way to achieve high performance in highly concurrentsystems and process-based systems are duals, both in
applications. The literature gives four primary argumentsterms of program structure and performance charac-
for the supremacy of events: teristics [7]. Nonetheless, numerous papers have been
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written in recent years declaring the need for event-

driven programming for highly concurrent systems [8, 9, Figure 2: A repeat of the threaded server benchmark from
14]. the SEDA paper [14]. The threaded server uses a preallocated
. . thread pool to process requests, while the event server uses
2.1 Duality Revisited a single thread to pull items from the queue. Requests are
To understand the threads and events debate, it igternally generated to avoid network effects. Each request
useful to reexamine the duality arguments of Lauerconsists of an 8K read from a cached disk file.
and Needham. Lauer and Needham describe canon-

ical threaded and message-passing (i.e., event-basef) ;o Needham duality argument essentially says that
systems. Then, they provide a mapping between th%uals have the same graph

concepts of the two regimes (paraphrased in F.igure 1) The duality argument suggests that criticisms of
and make the case that with proper implementations, thfhread performance and usability in recent years have

performance should be equivalent. Finally, they argu8,0an motivated by problems withpecific threading

that the tdecllsflonﬂ(]: OTeS (tjownl_to t\.Nh'_Ch r:sradlgm 'Sfpackages, rather than with threads in general. We exam-
more natural for the target application; In the €ase ok, o yha most common criticisms below.

high-concurrency servers, we believe the thread-based

approach is preferable._ _ 2.2 “Problems” with Threads

The message-passing systems described by Lauer poformance. Criticism: Many attempts to use
and Needham do not correspond precisely to moderg, o s for high concurrency have not performed well.
event systgms in their full gene_zrahty. Flrst,_ Lauer andWe don't dispute this criticism; rather, we believe
Needham ignore the cooperative scheduling used by js an artifact of poor thread implementations, at

events for synchronization. Second, most event systeMS 1t with respect to high concurrency. None of the

use shared memory and global data structures, WhicQl,renty available thread packages were designed for
are described as atypical for Lauer-Needham'’s mMessad@ie combination of high concurrency and blocking

passing systems. In fact, the only event system thag_gerations, and thus it is not surprising that they perform

really matches their canonical message-passing syste orly
is SEDA [14], whose stages and queues map exactly t A major source of overhead is the presence of

Processes and message ports. . . operations that are(n) in the number of threads.

Finally, the perfor.mance equalen_ce cIa|med. bY Another common problem with thread packages is their
Lauer-N’e edhgm requires equally good Implement""t'onst;elatively high context switch overhead when compared
we don't bgheve there has been a suitable thread§y, events. This overhead is due to both preemption,
implementation for very high concurrency. We demon-, ioh requires saving registers and other state during
strate one in the next section, and we discuss furtheg, oy switches, and additional kernel crossings (in the
enhancements in Section 4. case of kernel threads).

In arguing that perfprmgpce should be equivalent, However, these shortcomings are not intrinsic prop-
Lauer and_ Needham 'F“P"C'“y use a graph that Weg jias of threads. To illustrate this fact, we repeated the
call ablocking graph This graph describes the flow of SEDA threaded server benchmark [14] with a modified
control through an application with respect to blocking, o cion of the GNU Pth user-level threading package,
or yielding points. Each node in this graph represents, ,i-h \we optimized to remove most of the(n)

1blocklnghor y|eld|ng point, and each edgﬁ reF_’resen:]%perations from the scheduler. The results are shown in
the code that is executed between two such points. Thgjg,,re » Our optimized version of Pth scales quite well

1Arguably, one of SEDA's contributions was to return event-driven UP t0100, 000 threads, easily matching the performance
systems to the “good practices” of Lauer-Needham. of the event-based server.




Control Flow. Criticism: Threads have restrictive Furthermore, event systems encourage programmers
control flow. One argument against threaded program-to minimize live state at blocking points. In a thread
ming is that it encourages the programmer to think toosystem, live state is stored on the stack when a blocking
linearly about control flow, potentially precluding the pointisreached. However, an event system would require
use of more efficient control flow patterns. However, the programmer to manage the same state by hand, which
complicated control flow patterns are rare in practice.tends to somewhat reduce the overall amount of live state
We have examined the code structure of the Flashmaintained by the program. This problem can also be
web server and of several applications in Ninja, SEDA,solved with compiler techniques that we will discuss in
and TinyOS [5, 9, 13, 14]. In all cases, the control Section 4.
flow patterns used fit three simple cases: call/return, Scheduling.Criticism: The virtual processor model
parallel calls, and pipelines. All of these patterns can beprovided by threads forces the runtime system to be too
expressed more naturally with threads. generic and prevents it from making optimal scheduling

We believe more complex patterns are not usedlecisionsEvent systems are capable of scheduling event
because they are difficult to use well. The accidental nondeliveries at application level. Hence, the application can
linearities that often occur in event systems are alreadyerform shortest remaining completion time scheduling,
hard to understand, leading to subtle races and othdavor certain request streams, or perform other optimiza-
errors. Intentionally complicated control flow is equally tions. There has also been some evidence that events
likely to be error prone. allow better code locality by running several of the same

The only patterns we considered that are less graceflfind of event in a row [6]. However, Lauer-Needham
with threads are dynamic fan-in and fan-out; suchduality indicates that we can apply the same scheduling
patterns might occur with multicast or publish/subscribetricks to cooperatively scheduled threads.
applications. In these cases, events are probably morf
natural. However, none of the high-concurrency servers™

that we studied used these patterns. ,
&t least as well as events for high concurrency, and that

In retrospect, there is reason to expect that th h bstantial litati dvant i i
common patterns should map well onto the call/returnlli‘ere are no substantial qualitative advantages to events.

3  Summary
The above arguments show that threads can perform

mechanism provided by threads. Robust systems tend t he absence of scalable user-level threads has provided
need acknowledgements both for error handling and foF e largest pL_JSh “?V_Vafd the even'F style, but we have
lifetime management; thus, they need a “return” even irlshown that this deficiency is an artifact of the available
the event model ' ' implementations rather than a fundamental property of

Synchronization. Criticism: Thread synchronization the thread abstraction.

mechanisms are too heavyweigBient systems often
claim as an advantage tK\;vt gooperati)\//e multitaskingj3 The Case for Threads

gives them synchronization “for free,” since the runtime  Up to this point, we have largely argued that threads
system does not need to provide mutexes, handle waind events are equivalent in power and that threads can in
queues, and so on [8]. However, Adgaal. [1] show  fact perform well with high concurrency. In this section,
that this advantage is really due to cooperative multitaskwe argue that threads are actually a more appropriate
ing (i.e., no preemption), not events themselves; thusabstraction for high-concurrency servers. This conclu-
cooperative thread systems can reap the same benefitgon is based on two observations about modern servers.
It is important to note that in either regime, cooperativeFirst, the concurrency in modern servers results from
multitasking only provides “free” synchronization on concurrent requests that are largely independent. Second,
uniprocessors, whereas many high-concurrency servetge code that handles each request is usually sequential.
run on multiprocessors. We discuss compiler techniquesve believe that threads provide a better programming
for supporting multiprocessors in Section 4.3. abstraction for servers with these two properties.

State ManagementCriticism: Thread stacks are an Control Flow. For these high-concurrency systems,
ineffective way to manage live stafehreaded systems event-based programming tends to obfuscate the control
typically face a tradeoff between risking stack overflow flow of the application. For instance, many event systems
and wasting virtual address space on large stacks. Sinceall” a method in another module by sending an event
event systems typically use few threads and unwind thend expect a “return” from that method via a similar
thread stack after each event handler, they avoid thigvent mechanism. In order to understand the application,
problem. To solve this problem in threaded servers, wehe programmer must mentally match these call/return
propose a mechanism that will enable dynamic staclpairs, even when they are in different parts of the code.
growth; we will discuss this solution in Section 4. Furthermore, these call/return pairs often require the

programmer to manually save and restore live state. This



process, referred to as “stack ripping” by Adsteal.[1], 4 Compiler Support for Threads
is a major burden for programmers who wish to use

event systems. Finally, this obfuscation of the program’s S‘I;g:]tser_smatre]gera;c:grr;gletwger;r;:ﬂngglrllir: ta?(;jr ;ugtt?n?s
control flow can also lead to subtle race conditions andSy ! X y poweriu P Y

logic errors due to unexpected message arrivals, design. Threaded systems can achieve improved safety

qnd performance with only minor modifications to
Thread systems allow programmers to express contral _.” . . 4 :
) xisting compilers and runtime systems. We describe
flow and encapsulate state in a much more natura .

a number of ways this synergy can be used both

manner. Syntactically, thread systems group calls witr} S2 .
L . p overcome limitations in current threads packages
returns, making it much easier to understand cause/effec

relationships, and ensuring a one-to-one relationship".clnd to improve safety, programmer productivity, and

Similarly, the run-time call stack encapsulates all live performance.
state for a task, making existing debugging tools quite4.1  Dynamic Stack Growth

effective. We are developing a mechanism that allows the size

Exception Handling and_ State Lifetime. Cleaning .of the stack to be adjusted at run time. This approach
up task state after exceptions and after normal termi-

tion is simoler in a threaded svst . the th a/voids the tradeoff between potential overflow and
nation 1s simpler in a threaded system, since the treag, o space associated with fixed-size stacks. Using
stack naturally tracks the live state for that task. In

. . compiler analysis, we can provide an upper bound
event systems, task state is typically heap aIIocateda P y b bp

. . . on the amount of stack space needed when calling
Freeing this state at the correct time can be extremel)éach function: furthermore. we can determine which

difficult because branches in the application's controlca” sites may require stack growth. Recursive functions
%nd function pointers produce additional challenges, but

deallocation steps to be missed. these problems can be addressed with further analyses.

Many event systems, such as Ninja and SEDA,
use garbage collection to solve this problem. However4.2 Live State Management

previous work has found that Java's general-purpose compilers could easily purge unnecessary state from
garbage collection mechanism is inappropriate for highyne gtack before making function calls. For example,
performance systems [11]. Inktomi's Traffic Server usedyemnorary variables could be popped before subroutines

reference counting to manage the state, but it was afrg c|ied, and the entire frame could be popped in the
ongoing battle to keep the counts correct, particularly forcaqe of 4 tail call. Variables with overlapping lifetimes

error hapdlmg? ~ could be automatically reordered or moved off the stack
Existing Systems. The preference for threads is i order to prevent live variables from unnecessarily
subtly visible even in fe)qstmg event-driven systems. Forpinning dead ones in memory. The compiler could also
example, our own Ninja system [13] ended up usingarn the programmer of cases where large amounts of
threads for the most complex parts, such as recovengiate might be held across a blocking call, allowing the

simply because it was nearly impossible to get correct.ogrammer to modify the algorithms if space is an issue.
behavior using events (which we tried first). In addition,

applications that didn't need high concurrency were4.3 Synchronization
always written with threads, just because it was simpler.  compile-time analysis can reduce the occurrence of
Similarly, the FTP server in Harvest uses threads [2].  pygs by warning the programmer about data races.
Just Fix Events? One could argue that instead of Ajthough static detection of race conditions is chal-
switching to thread systems, we should build tools|enging, there has been recent progress due to compiler
or languages that address the problems with evennprovements and tractable whole-program analyses. In
systems (i.e., reply matching, live state management, anfesC [4], a language for networked sensors based on
shared state management). However, such tools woulghe TinyOS architecture [5], there is support for atomic
effectively duplicate the syntax and run-time behaviorsections, and the compiler understands the concurrency
of threads. As a case in point, the cooperative tasknodel. TinyOS uses a mixture of events and run-to-
management technique described by Adtaal. [1]  completion threads, and the compiler uses a variation of
allows users of an event system to write thread-like codey call graph that is similar to the blocking graph. The
that gets transformed into continuations around blockingompiler ensures that atomic sections reside within one
calls. In many cases, fixing the problems with events issqge on that graph; in particular, calls within an atomic
tantamount to switching to threads. section cannot yield or block (even indirectly). Compiler
2Nearly every release battled with slow memory leaks due to thisanaIySIS can also hE|p determl.ne. which "?‘tom'c sections
kind of reference counting; such leaks are often the limiting factor for @€ safe to run concurrently. This information can then be
the MTBF of the server. given to the runtime system to allow safe execution on
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_ one that favors processing of active connections over
L et fovor s /‘\/ accepting new ones (Knot-C in the figure) and one that
mr Haboob ===~ I does the reverse (Knot-A). The first policy provides a
wor natural throttling mechanism by limiting the number
of new connections when the server is saturated with
requests. The second policy was designed to create
] higher internal concurrency, and it more closely matches
k the policy used by Haboob.
< A Figure 3 shows that Knot and Haboob have the same
0 ;" T e o e e s general performance pattern. Initially, there is a linear
increase in bandwidth as the number of simultaneous
connections increases; when the server is saturated, the
bandwidth levels out. The performance degradation for
Figure 3: Web server bandwidth versus the number of both Knot-A and Haboob is due to the poor scalability
simultaneous clients. We were unable to run the benchmark fopf poll() . Using the newesys _epoll  system call
Haboob with more than 16384 clients, as Haboob ran out ofyjth Knot avoids this problem and achieves excellent
memory. scalability. However, we have used tpell()  result
for comparison, sinceys _epoll is incompatible with
aboob’s socket library. This result shows that a well-
esigned thread package can achieve the same scaling
behavior as a well-designed event system.
5 Evaluati The steady-state bandwidth achieved by Knot-C is
valuation nearly 700 Mbit/s. At this rate, the server is apparently
To evaluate the ability of threads to support highlimited by interrupt processing overhead in the kernel.
concurrency, we designed and implemented a simpl&Ve believe the performance spike around 1024 clients is
(5000 line) user-level cooperative threading package foflue to lower interrupt overhead when fewer connections
Linux. Our thread package uses toero coroutine to the server are being created.
library [12] for minimalist context switching, and it Haboob’s maximum bandwidth of 500 Mbit/s is sig-
translates blocking 1/0 requests to asynchronous requestsficantly lower than Knot's, because Haboob becomes
internally. For asynchronous socket I/O, we use theCPU limited at 512 clients. There are several possible
UNIX poll() system call, whereas asynchronousreasons for this result. First, Haboob’s thread-pool-
disk 1/0 is provided by a thread pool that performs per-handler model requires context switches whenever
blocking I/O operations. The library also overrides events pass from one handler to another. This require-
blocking system calls and provides a simple emulationment causes Haboob to context switch 30,000 times
of pthreads, which allows applications written for our per second when fully loaded—more than 6 times as
library to compile unmodified with standard pthreads. frequently as Knot. Second, the proliferation of small
On top of this thread package, we wrote a simplemodules in Haboob and SEDA (a natural outgrowth of
700-line test web server, Knot. Knot accepts static datahe event programming model) creates a large number of
requests, allows persistent connections, and includes module crossings and queuing operations. Third, Haboob
straightforward page cache. The code is written in acreates many temporary objects and relies heavily on
clear, straightforward threaded style, and required vergarbage collection. These challenges seem deeply tied
little performance tuning. to the event model; the simpler threaded style of Knot
We compared the performance of Knot to that ofavoids these problems and allows for more efficient
SEDA's event-driven web server, Haboob, using the tesexecution.
suite used to evaluate SEDA [14]. THeev/poll
patch used for the original Haboob tests has bees Related Work
deprecated, so our tests of Haboob used standard UNIX
poll() (as does Knot). The test machine was a 2x2000 Ousterhout [8] made the case in favor of events,
MHz Xeon SMP with 1 GB of RAM running Linux but his arguments do not conflict with ours. He argued
2.4.20. The test uses a small workload, so there is littlehat programming with concurrency is fundamentally
disk activity. We ran Haboob with the 1.4 JVM from difficult; thus, he concludes, events are preferable (for
IBM, with the JIT enabled. Figure 3 presents the resultsmost purposes) because they allow programmers to avoid
concurrency whenever possible. We believe that it is
We tested two different scheduling policies for Knot, difficult to truly avoid dealing with concurrency in our
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multiprocessors, thus automating the hand-coded grap
coloring technique used in libasync [3].
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