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Abstract
Several previous studies have examined techniques for

improving Internet server performance by investigating and
improving operating system support for event-dispatching
mechanisms. These studies have been largely motivated by
the commonly held belief that the overhead incurred in ob-
taining network I/O events was the main factor limiting In-
ternet server performance. In this paper we evaluate the im-
pact that the application’s design and implementation can
have on the server’s ability to dispatch network I/O events.

Our experiments show that relatively minor and seem-
ingly sensible modifications to the server’s implementation
can dramatically decrease both the peak throughput and the
throughput obtained under overload conditions. We find
that while it is important for a server to be capable of ac-
cepting connections at a high rate, it is perhaps just as im-
portant to ensure that the server is able to balance accept-
ing new connections with making forward progress on ex-
isting connections. Consequently, we believe that compar-
isons between Internet servers aimed at evaluating I/O mul-
tiplexing mechanisms must consider the servers’ workload-
management architecture.

Our observations are used to implement a simple
select-based micro web-server that dispatches events at
surprisingly high rates. Under workloads designed to stress
the performance of event dispatch mechanisms, our user-
level select-based server’s throughput exceeds that of
the fastest event dispatching server reported in existing re-
search literature [8] and is equal to or better than the Linux
in-kernel TUX server [23]. Finally, we demonstrate that
the insights from this paper can applied to other servers
and event dispatch mechanisms by using them to improve
the performance of TUX.

1 Introduction

Internet-based (or network-centric) applications have expe-
rienced incredible growth in recent years and all indications
are that such applications will continue to grow in number
and in importance. How operating systems support such

applications is the subject of much activity in the research
community, where it is commonly believed that existing
implementations and interfaces are ill-suited to network-
centric applications [5],[26], [21].

In many systems, once client demand exceeds the
server’s capacity and continues to increase the throughput
of the server approaches zero. This is reflected in long and
unpredictable wait times, or a complete lack of response for
many clients. In other words, existing servers are not well-
conditioned to load. It is precisely during these periods of
high demand when being able to service customers may
be most important to those who are relying on the server.
Examples of such periods occur during sharp changes in
the stock market, breaking news events, and the Christmas
shopping season. Unfortunately, it is not practical or cost
effective to provision all servers to handle peak demands
because peaks demand can be several to hundreds of times
higher than the average [2] [25].

Because modern Internet servers multiplex between
large numbers of simultaneous connections, much research
has investigated modifying operating system mechanisms
and interfaces to efficiently obtain and process network I/O
events [4] [5] [20] [21] [8]. In this paper we use a simple
select-based Internet server to examine the impact that
the application’s design and implementation can have on
the server’s ability to dispatch events under conditions of
heavy load.

We intentionally use select because its inefficiencies
have been well documented [4] [20]. While we are not try-
ing to argue that inefficiencies in select could not and
should not be improved upon, we believe that too much
emphasis has been placed on improving operating system
implementations and interfaces rather than examining how
applications can better interact with existing systems. Our
goal is not to implement another high-performance web
server but instead to concentrate on the interaction between
the server and the operating system and on the application’s
ability to efficiently obtain and process network I/O events.
Our experiments show that:

� Seemingly minor and sensible changes to the server
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implementation can significantly impact its through-
put.

� In addition to ensuring that new connections can be
accepted at as high a rate as possible, it is equally im-
portant to ensure that the server spends time servicing
existing connections.

� Contrary to popular belief, it is possible to implement
a select-based server that is capable of dispatching
events quite rapidly.

� Under workloads that stress event dispatching perfor-
mance, our portable, user-level, select-based server
obtains throughputs equal to or better than the TUX
in-kernel Linux server.

� The insights obtained through our experiments can be
applied to other servers; this is demonstrated by im-
proving the performance of the TUX server.

This paper demonstrates that some of the cause of poor
performance of select-based servers (and other event
driven servers) is due not so much to inefficiencies in the
implementation of and interfaces to select (and other
event notification mechanisms) as to what could be viewed
as an improper and unbalanced implementation of the
server. As a result, comparisons between I/O multiplex-
ing mechanisms need to ensure that the server or servers
in which the mechanisms are being evaluated use the same
approach to managing the server workload.

2 Background and Related Work

Current approaches to implementing high-performance In-
ternet servers require special techniques for dealing with
high levels of concurrency. This point is illustrated by first
considering the logical steps taken by a web server to han-
dle a single client request, as shown in Figure 1. Note
that almost all Internet servers and services follow similar
steps. To simplify our illustration, the example below does
not handle persistent or pipelined connections (although all
servers used in our experiments handle persistent connec-
tions).

1. Wait for and accept an incoming network connection.
2. Read the incoming request from the network.
3. Parse the request.
4. For static requests, check the cache and possibly open

and read the file.
5. For dynamic requests, compute the result.
6. Send the reply to the requesting client.
7. Close the network connection.

Figure 1: Logical steps required to process a client request.

Several of these steps can block because they require
interaction with a remote host, the network, a database
or some other subsystem, and potentially a disk. Con-
sequently, in order to provide high levels of performance
the server must be able to simultaneously service partially

completed connections and to quickly and easily multi-
plex those connections that are ready to be serviced (i.e.,
those for which the application would not have to block
and wait). This may result in the need to be able to han-
dle several thousands or tens of thousands of simultaneous
connections [5] and to dispatch network I/O events at high
rates.

The server implementation must also consider the strain
that it will be placing on the underlying operating system
and the efficiency with which it and the operating sys-
tem are able to work in concert. Initial web server imple-
mentations handled concurrency issues by creating sepa-
rate threads of control for each new connection and relying
on the operating system to automatically block and unblock
threads appropriately. Unfortunately, threads consume sig-
nificant amounts of resources and server architects found
that it was necessary to restrict the number of executing
threads [12] [5].

More recent approaches to high-performance server de-
sign treat each connection as a finite state machine (FSM)
with events triggering transitions between states. Connec-
tions are managed by multiplexing between different con-
nections (FSMs). The server works on the connection on
which forward progress can be made without invoking an
operating system call that would block. This is done by
tracking the file and socket descriptors of interest and pe-
riodically querying the operating system for information
about the state of these descriptors (using a system call like
select or poll). These calls indicate which operations
can be performed on each descriptor without causing the
application to block.

Significant research has been conducted into improving
web server performance by improving both operating sys-
tem mechanisms and interfaces for obtaining information
about the state of socket and file descriptors [4] [19] [3]
[5] [20] [21] [8]. These studies have been motivated by
the belief that under high loads the overhead incurred by
select (or similar calls) is prohibitive to implementing
high-performance Internet servers. As a result they have
mainly developed improvements to select, poll and
sigwaitinfo by reducing the amount of data that needs
to be copied between user space and kernel space or by
reducing the amount of work required by the kernel (e.g.,
by only delivering one signal per descriptor in the case of
sigwaitinfo).

Recent work by Chandra and Mosberger [8] introduced
operating system modifications designed to improve web
server performance. However, they found that a simple
modification to a select-based web-server (with a stock
operating system) outperformed the approach using their
improved operating system and the improvements studied
in prior research [20]. They refer to this server as a “multi-
accept” server because upon learning of a request for a new
incoming connection, rather than accepting a single con-
nection, it attempts to accept as many incoming connec-
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tions as possible. Calls to accept are repeated until there
are no more outstanding connection requests or the limit
on the maximum number of open connections is reached
(limited by the number of open file descriptors permit-
ted). The results of Chandra and Mosberger’s experiments
were contrary to conventional wisdom which believed that
select-based servers perform poorly under high loads.

Our work in this paper is partially motivated by the work
of Chandra and Mosberger [8]. Their work shows that even
simple server designs exhibit a wide range of variation in
performance that is not well understood. We believe that
not enough emphasis has been placed on understanding ba-
sic Internet server design. Therefore, in this paper we con-
sider a number of design options, study how the implemen-
tations interact with the operating system, and use these re-
sults to gain insight into some of the issues affecting server
performance.

This paper differs from previous work in that we concen-
trate exclusively on the software architecture of the server.
Specifically, we are interested in determining which aspects
of a server’s design contribute to, or help to prevent, server
meltdown during periods of high load. The focus of much
of this paper is on the interplay between how the server ac-
cepts new connections, obtains event information from the
operating system, and uses that information to process ex-
isting connections. This approach provides us with new
insights into techniques that can be deployed within the
application to significantly improve performance. We be-
lieve that it is extremely important to understand these in-
sights when designing, modifying or evaluating operating
systems event mechanisms and interfaces.

3 Methodology

We examine a widely used and highly studied example of
an Internet server, namely a web-server. We use the core
of the Chandra and Mosberger [8] “multi-accept” server to
create a new, highly parameterized micro-server. This per-
mits us to easily explore a wide variety of implementation
options and to study how the resulting implementations in-
teract with the operating system and impact event dispatch
performance. We use the multi-accept server as a core for
our server because it provides the highest performance of
all of the servers and event dispatching mechanisms con-
sidered in the Chandra and Mosberger study. As such, it
is the fastest event dispatching server reported in existing
research literature.

Our approach is both necessary and important. It ensures
that any differences in performance are actually due to dif-
ferences in the software architecture of the server and not
due to other artifacts of the implementations being com-
pared (e.g., differences in the caching algorithms, or num-
bers of file descriptors being used).

Unfortunately, it is not feasible to compare all combi-
nations of parameters because of the exponential explo-

sion in the number of experiments that would need to be
run. Although we have not performed a completely sys-
tematic elimination of different combinations, we have ex-
plored the parameter space sufficiently to understand the
behaviour of the server and to identify those combinations
of options worthy of further consideration.

4 Server Implementation

Figure 2 shows the structure of our parameterized micro-
server and provides a context in which we describe the var-
ious options and how they modify the server’s behaviour.
The pseudo-code contains some comments which describe
how command line options affect the server implementa-
tion. It also contains annotations to show where the steps
from Figure 1 are implemented (e.g., #2-5,7 represents
steps 2 through 5 and step 7).

4.1 Server Parameters

We now provide a more complete list of options available
for controlling how the server operates and explain how
they are used to change the server’s behaviour. Several of
these options were included and implemented in order to
faithfully recreate and then to further understand the perfor-
mance of the Chandra and Mosberger [8] server. By default
all options are disabled unless explicitly stated otherwise.

� [--caching-on] is used to turn caching on. Note
that the real purpose of this option is to be able to elim-
inate the effects of file system accesses and to focus on
the remaining system calls.

� [--max-conns num] sets the maximum number
of simultaneous connections permitted. The default
value used in all of our experiments is 15000 and all
servers enforce this maximum. While this option is
used to avoid running out of available file descriptors
(i.e., no new connections can be accepted unless there
are file descriptors available) this does not specify the
number of permitted open file descriptors. Note that
when caching is not used num may need to be less than
one half of the maximum number of available file de-
scriptors (since potentially each request could require
two descriptors, one for the open socket and one for an
open file). We have set the maximum number of open
file descriptors to 32768 which easily accommodates
our maximum of 15000 simultaneous connections.

� [--accept-count num] permits the server to
consecutively accept up to num connections at a time.
This is done by repeatedly calling accept until it
either fails because there are no outstanding connec-
tion requests (setting errno to EWOULDBLOCK), un-
til num new connections have been accepted, or until
the maximum number of open connections has been
reached. The default value for num is one. Zero in-
dicates that there is no upper bound. The Chandra
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server_event_loop() {
while(1) {
rdfds = readfds; wrfds = writefds;
// find out which fds won’t block
n = select(...rdfds, wrfds...);

while (fd = iterate_over_fds(n)) {
if (ISSET(fd, rdfds)) {

if (fd == accept_fd) {
// connection requested
// option [--accept-count]
new_conns(accept_count);

} else {
// read, parse, process req.
// when client done, read
// returns EOF, close socket
if ([--full-read] {

// loop until failure
while read_sock(fd); #2-5,7

} else {
read_sock(fd); #2-5,7

}
}

}
if (ISSET(fd, wrfds)) {

// send result to client
write_sock(fd); #6

}
}

}
} // server_event_loop

new_conns(int max)
{

int fd, count = 0;
while (count < max &&

conns < max_conns) {
// establish new connection
fd = accept(listen_fd); #1
if (fd < 0) {

break;
} else {

new_fd_init(fd);
count++; conns++;

}
}

}
Figure 2: The basic structure of the main server loop.

and Mosberger [8] server uses no upper bound (i.e.,
[--accept-count 0].

� [--eager-read] try to eagerly read from new
connections. Call read sock to read the request
as soon as the new connection is accepted (i.e., from
within new conns). The server optimistically as-

sumes that data will be available for reading when a
connection is made on a new socket. If the assump-
tion is incorrect, the read call simply returns with
the error EWOULDBLOCK. Later select will indi-
cate when the socket is readable.

� [--eager-write] try to eagerly perform writes to
new connections when the response is available. Call
write sock to write the reply to the client’s socket
from within read sock. Both [--eager-read]
and [--eager-write] try to take advantage of
any potential locality effects by working on the most
recently used file descriptor and socket.

� [--accept-on-close] try to accept new con-
nections after closing an existing connection. The mo-
tivation for this option is that if the server has reached
the maximum number of simultaneous connections
permitted and a connection is closed, then at least two
file descriptors will be available and a new connection
could be accepted. Recall that the number of permit-
ted open files is more than twice the maximum number
of simultaneous connections.

� [--full-read] specifies that the server should
loop when calling read sock until the call fails.
This is included in order to completely recreate the
behaviour of the Chandra and Mosberger [8] multi-
accept server. They did this in order to consume all
of the data in the socket and to take advantage of
any locality affects. This approach is really designed
for larger requests than those generated by httperf
[15]. 1

� [--listenq num] is used to set the server’s listen
queue length. The default is 128.

We provide this list of options to identify the range of
parameters we have explored. For brevity and because they
didn’t significantly alter the results some options are not in-
cluded here but are described in a technical report [7]. The
caching option is only used when comparing performance
with the TUX server in Section 7. This is because the Chan-
dra and Mosberger server does not implement caching and
because we found that although the system calls are exer-
cised differently with the [--caching-on] option, the
results obtained were not qualitatively different from those
obtained without the option.

5 Environment

All experiments are conducted using a dedicated 100 Mbps
Fast Ethernet switch that connects client hosts to our micro-
server. The server executes on an HP NetServer LPr system
running a Redhat 7.1 distribution with the Linux 2.4.2-2

1As we’ll see the Chandra and Mosberger server does not do well un-
der high loads. To be fair their server was originally designed to be used
with RT-signals so the interaction with RT-signals and the need to avoid
dead-lock is what motivated a number of their design decisions.
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kernel. The processor is a 500 MHz Pentium-III with 16
KB L1 instruction and data caches and a 512 KB L2 cache.
The system contains 320 MB of memory. The client load
is generated using httperf [16] and ten B180 PA-RISC
machines running HP-UX 11.0. The maximum number of
open files was increased to 60000 for each of the clients.

For each data point in the graphs shown in this paper we
start a new copy of the server. This is done because the
server collects statistics of interest that we use in analyzing
its behaviour under the specific load and because it permits
us to collect gprof [10] statistics from each run. In ex-
periments comparing the results obtained with and without
gprof we found that using gprof did not qualitatively
alter the results of our experiments. The largest difference
we observed was a gap of about 4%. Although gprof
is unable to apply accurate accounting techniques during
interrupts (it simply adds the time spent handling the inter-
rupt to the function currently being executed) we found the
output of gprof quite instructive when viewed at a fairly
coarse grain.

Each experiment is conducted by having the clients at-
tempt to provide the desired load for a duration of 2 min-
utes using a time-out period of 3 seconds for each connec-
tion. The 2 minutes is sufficiently long to stress any of the
system and application resources that must be limited, but
short enough to permit us to conduct a reasonable num-
ber of experiments. Note that we have conducted several
tests using significantly longer test durations to verify that 2
minutes is long enough to ensure that the servers and server
queues have reached a steady state and that the test duration
does not alter the results.

Any request that the server is unable to respond to is
recorded by the client as an error. These errors may oc-
cur either because the server is unable to accept the con-
nection or because it isn’t able to provide a response before
the client time-out period is exceeded. The client time-out
of 3 seconds is also small enough to prevent retries if a
connection can’t be established.

Unless otherwise noted, all client requests are for the
same one-byte file. This is done in order to place as much
stress as possible on the web-server and the underlying op-
erating system. This type of workload, one in which a sin-
gle small file is repeatedly requested, is one which is com-
monly used in order to evaluate event dispatch mechanisms
[20] [21] [8] [17]. While other workloads are of interest to
us and will be considered in future work, they are not ca-
pable of placing the desired strain on the operating system
and server. Note that we do include results for 2 KB files
when comparing the performance of our server with TUX
(in Section 7). In this case the file size is limited to 2 KB
to prevent the 100 Mbps network from becoming a bottle-
neck. No warm-up period is used and the entire workload
clearly fits in memory.

We have modified the default maximum number of open
files permitted on the server to 32768. This is done us-

ing /proc/sys/fs/file-max. To accommodate the
increased number of possible open files we have also in-
creased the size of an fd set by modifying the definition
of FD SETSIZE to 32768.

6 Server Variations and Experiments

In this section we conduct a number of experiments to eval-
uate the performance obtained using our web-server with
several different options. This approach permits us to ex-
plore a variety of web-server implementations, how they in-
teract with the operating system, and to compare their per-
formance. Table 1 lists the servers discussed in the upcom-
ing sections, provides a quick reference for options used in
each case, and describes how the combination of options
modifies the behaviour of the server.

6.1 Basic Configuration Alternatives

We begin by contrasting the implementation of a relatively
simple server with that of the multi-accept server used in
the Chandra and Mosberger study [8]. We then compare
the throughput obtained using these servers under condi-
tions of heavy load with that of a new proposed server im-
plementation.

The first server we examine might be considered a sim-
ple or classic select-based server since it is a design that
is typical of what most people might implement. It makes
no attempt to be clever about how to process requests, rely-
ing on select to obtain all information about what state
each of the file descriptors of interest is in and then taking
the appropriate actions. It is also a design that has been
used in previous research [4] [5] and as a result select
has been dismissed as being too inefficient to use in high-
performance servers. We refer to this server as the Accept1
server because each time select indicates that the listen-
ing socket is readable (meaning that a new connection has
been requested) accept is called once to accept a new
connection. This server is implemented using all of the de-
fault options of our parameterized server, the most relevant
of which is the [--accept-count 1] option. Recall
that all servers use a default of [--max-conns 15000]
to permit a maximum of 15000 simultaneous connections.

We compare the Accept1 server with the server used by
Chandra and Mosberger [8] (referred to as OrigCM, for
original Chandra and Mosberger). This server is used as
a basis for comparison as it is the best performing server
reported in previous research. We compare this server with
our server configured to implement the same behaviour as
the Chandra and Mosberger server (this version is called
CM for Chandra and Mosberger). We include these two
versions of the same server to demonstrate that our server
faithfully implements the original Chandra and Mosberger
server.
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Name Options Server Behaviour

Accept1 --accept-count 1 A simple server that uses all of the default options. It is representa-
tive of what most people would likely implement and of the type of
server that has been used in previous research [4] [5]. This server
is named Accept1 because one of its most important characteris-
tics is that it accepts only one new connection each time select
indicates that the listening file descriptor to readable.

AcceptInf --accept-count 0 This server repeatedly attempts to accept new connections when
select indicates that the listening socket is ready (readable) with
no limit on how many new connections it will accept. It only
exits the accept loop if either there are no more incoming con-
nection requests (the accept call fails and sets the errno to
EWOULDBLOCK) or the maximum number of simultaneous con-
nections have been opened.

Accept25 --accept-count 25 Accept a maximum of 25 new connections when select indi-
cates that the listening socket is ready (readable).

Eager --accept-count 0
--eager-read
--eager-write

This is the AcceptInf server with eager reads and writes. This
server eagerly tries to make as much forward progress as possible
on each new connection by immediately trying to read from and
write to the new connection.

Eager+full --accept-count 0
--eager-read
--eager-write
--full-read

This is the Eager server with the addition of trying to fully read
from a new connection. That is, immediately after the initial read
from the new socket is performed subsequent reads are performed
until the read call fails.

Eager+close --accept-count 0
--eager-read
--eager-write
--accept-on-close

This is the Eager server with the addition of trying to accept one or
more new connections whenever an existing connection has been
closed.

CM
(Eager+full+close)

--accept-count 0
--eager-read
--eager-write
--full-read
--accept-on-close

This is the set of options required to implement the behaviour of
the original server used by Chandra and Mosberger [8]. It is the
Eager server with both options to fully read from new connec-
tions and to accept new connections when an existing connection
is closed. Note that using our naming scheme this server could
also be called Eager+full+close.

OrigCM This is the original version of the Chandra and Mosberger server.
Table 1: List of servers tested, options used to create them, and how the options affect their behaviour.

The options required to implement CM reveal the key
features of the Chandra and Mosberger server. The
[--accept-count 0] option means that it aggres-
sively accepts as many connections as possible when
select indicates that the listening socket is readable.
New connections are accepted until either there are no more
outstanding connections to accept or the maximum num-
ber of open connections is reached. It attempts to make
as much forward progress as possible on each new con-
nection by eagerly trying to read from the socket immedi-
ately after a connection is accepted ([--eager-read])
and then immediately writing the reply to that socket
([--eager-write]). The [--eager-read] option
optimizes for the case when there is data waiting on the
socket by the time the server accepts the new connection
and the [--eager-write] option continues working
on the most recent connection in a hope to complete the re-

quest and capitalize on potential locality effects (by work-
ing on the most recently used file descriptor and socket).
These options avoid checking with select to determine
the state of the socket associated with the new connection.
The [--accept-on-close] option is used to ensure
that if the server enters a mode where the maximum num-
ber of open connections is reached, new connections will
be accepted when the server finishes processing existing
connections. The [--full-read] option is used to try
to consume all of the data available on the socket and to
take advantage of any locality effects. This is really de-
signed for use with larger requests than those generated
by httperf (e.g., if the socket buffer contains more data
than is being read by a single call to read). The design of
the Chandra and Mosberger server was heavily influenced
by its original use of RT-signals and a number of the design
choices were made to avoid dead-lock [15].
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Although portions of this experiment look similar to one
of the experiments conducted in the Chandra and Mos-
berger paper there are two important differences. First,
our Accept1 server differs from their implementation of the
select server because their version uses eager reads and
writes where our version does not. Second, we consider
loads that are significantly higher than the 5000 requests
per second used in their paper.

Figure 3 shows the throughput obtained using the Ac-
cept1, OrigCM, CM, and AcceptInf servers as a function
of the request rate. We used these server versions as a base
for our comparisons and examine refinements later in the
paper. Since we are particularly interested in the behaviour
of these servers under overload conditions, we consider
request rates of more than double the server’s saturation
point.
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Figure 3: Comparing the Accept1, CM, OrigCM and Ac-
ceptInf servers.

We first point out that the throughput of the CM server
quite closely matches that of the OrigCM server over the
full range of loads used in our experiments. This indicates
that the parameterized version of the server does faithfully
implement the original Chandra and Mosberger server and
that the overhead incurred by collecting statistics is negli-
gible. For the remainder of the paper we use the CM server,
since our server collects a number of statistics that can be
used to obtain insights into the server’s behaviour.

While the CM server provides better throughput than the
Accept1 server for request rates between 3100 and 6000
requests per second, its throughput drops significantly and
is quite poor for higher request rates. At a load of 6000
requests per second 5% of the calls to read data from a
socket fail because there is no data. The read call returns
with an errno of EWOULDBLOCK. With 7000 requests per
second this jumps to 26% which we believe is the main
cause of the drop in throughput. Under this load the read
system call accounts for 21 seconds of the total 120 seconds
of execution time. While some of these calls are to obtain
cached file data, significant effort is wasted on ineffective
system calls attempting to read from sockets that do not
contain any data. We conduct an additional sequence of
experiments in Section 6.2 to provide other insights into

the performance of the CM server.
More interestingly, the AcceptInf server provides sig-

nificantly better throughput than the other servers. It ob-
tains a peak throughput of 4200 replies per second com-
pared with 3600 for the CM server, an improvement of 17%
(14% when compared with OrigCM). Additionally, under
a load of 7000 requests per second or higher, the AcceptInf
server’s throughput is nearly 4 times that of the CM server
and almost twice that of the Accept1 server.

Figures 4 and 5 show gprof output for the Accept1 and
AcceptInf servers, respectively. These graphs show how
the time spent in various routines changes over time. All
of the routines that contribute to the major portion of the
execution time are shown. Note that those routines that
individually account for a very small percentage of the ex-
ecution time are not included (typically 2 or 3 % each). Cu-
mulatively they account for the missing percentage of the
times (i.e., this is why the values in the graphs don’t sum to
100).
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Figure 4: Changes in where the Accept1 server spends its
time as the load increases.
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Figure 5: Changes in where the AcceptInf server spends its
time as the load increases.

Most notable in Figure 4 is the percentage of execution
time the Accept1 server spends in the select call after
the server reaches its saturation point. It goes from 13%
when the request rate is 3000, to 8–9% when the request
rate is 3100 and 3200, to 26% at 3300 and over 40% at
10000 requests per second. Figure 4 shows that over this

7



range of request rates, the changes in the time spent mak-
ing forward progress on existing connections (i.e., perform-
ing read, write, open, and close system calls) re-
flects almost the opposite of the changes in the time spent
in select. This server is spending too much of its time
in the select system call relative to the other work that
it could and should be doing. A similar observation was
also made by Banga and Mogul when using their unmod-
ified kernel [4]. Rather than improving the kernel imple-
mentation as Banga and Mogul have done, we work with
the existing operating system implementation by exploring
techniques for improving performance while only modi-
fying the application. Figure 5 shows how our AcceptInf
server spends a significantly lower percentage of its time in
select even under very high loads. As a result, it is able
to spend more time making progress on existing connec-
tions (i.e., doing read, write, open, and close calls)
and performs significantly better than the Accept1 server.

These results demonstrate that, as also pointed out by
Chandra and Mosberger, considerable improvements in
server throughput can be obtained by accepting multi-
ple connections. This greatly reduces the time spent in
select and permits the server to spend more time han-
dling requests. However, we have demonstrate that the
CM server’s performance seriously degrades as the load in-
creases and that our AcceptInf server provides significantly
higher throughput.

6.2 The Impact of Eager Reads and Writes

In the next set of experiments our goal is to determine
what aspects of the AcceptInf server help it to obtain its
high peak throughput, and to help us better understand the
characteristics that are required of a server capable of dis-
patching events at high rates. In this section we describe
and compare the Eager, Eager+full, Eager+close, and CM
servers.

The operation of the Eager server is identical to the Ac-
ceptInf server except that Eager attempts to eagerly read
from and write to new connections ([--eager-read]
and [--eager-write]). The Eager+full server be-
haves the same as the Eager server with the addi-
tion that all read attempts are repeated until they fail
([--full-read]). The Eager+close server differs from
the Eager server only in that it attempts to accept new
connections each time an existing connection is closed
([--accept-on-close]). Note that the CM server
could also be thought of as an eager server that does full
reads and attempts to accept new connections when com-
pleted connections are closed. Using our naming scheme it
could also be called Eager+full+close.

Figure 6 shows that the throughput of the Eager+close
server is significantly worse than the AcceptInf, Eager, and
Eager+full servers. This indicates that it is the attempts to
accept new connections whenever an existing connection
is closed that limits the Eager+close server’s throughput.

The problem is that this server is extremely aggressive in
attempting to accept new connections, doing so both when
select indicates that there is an incoming connection re-
quest and whenever an existing connection is closed. Note
that this is also the main reason the CM server’s through-
put is limited under high loads. Figure 7 shows how the
gprof output for the Eager+close server changes as the
load is increased. Note that under heavy loads the Ea-
ger+close server spends much of its time either accept-
ing new connections or calling read, write, open, and
close. This means that it is making decisions about what
work to do with very little reference to information from
select.
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Figure 7: Output from gprof for the Eager+close server.

When comparing Figure 7 with gprof output for the
AcceptInf server in Figure 5, we see that the Eager+close
server spends 15–20% of its execution time accepting new
connections while the AcceptInf server spends only about
5–10% of its time in the accept call. The AcceptInf
server accepts considerably more connections using a sig-
nificantly smaller portion of the server’s execution time.

When the imposed load is 4000 requests per second,
93% of the calls to accept in the Eager+close server suc-
cessfully accept a new connection. The average number
of iterations of the loop within new conns is less than
one. This is because the check against the maximum num-
ber of open connections is contained in new conns. Un-
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der the same load, the AcceptInf server successfully estab-
lishes a new connection with a client in 88% of the calls
to accept. In this case an average of 7 connections are
accepted per call to new conns. The AcceptInf server is
doing a better job of ensuring that new connection requests
are being satisfied thus permitting it to obtain higher peak
throughput.

Figure 6 also shows that the Eager and Eager+full
servers exhibit nearly identical performance. This indi-
cates that for the Eager+full configuration of the server
the [--full-read] option doesn’t significantly im-
pact performance. However, the [--full-read] op-
tion does appear to have a fairly significant impact on
the server’s performance if used in combination with the
[--accept-on-close] option (as is the case for the
CM server). When comparing the performance of the
CM server (recall that this could also be called the Ea-
ger+full+close server) with that of the Eager+close server,
we see that the CM server provides higher throughput in
the 5000 – 6000 request per second range while the Ea-
ger+close server outperforms the CM server when the load
is in the 7000 – 10000 range. These results are an excellent
example of how seemingly sensible and minor modifica-
tions to a server can significantly impact its performance.

Figure 6 also shows that although the AcceptInf server
has higher-peak throughput than the Eager server, the Ea-
ger server does obtain higher throughput for loads in the
range of 4300 – 5250 requests per second. To better under-
stand the reasons for this we show the gprof output for the
Eager server in Figure 8. By comparing this graph with the
graph showing the gprof output for the AcceptInf server
(Figure 5), we see that the AcceptInf server’s peak through-
put is obtained by spending more time in read, write,
open, and close and less time in accept than the Ea-
ger server. However, in the range of 4300 – 5250 requests
per second the Eager server obtains better throughput. We
believe this is because under these loads the Eager server
is doing a better job than the AcceptInf server at making
forward progress on existing connections (experiments in
Section 6.3 will support this claim). In other words, the
AcceptInf server is placing too much emphasis on accept-
ing new connections and not enough on making forward
progress on existing connections. For example, at a load
of 4800 requests per second the Eager server spends about
55% of its time working on existing connections (i.e, in
read, write, open, and close) compared with Ac-
ceptInf under the same load, which spends only about 50%
of its time working on existing connections. In the next
section we employ a technique that provides us with the
best of both of these servers.

6.3 Limiting New Connections

Neither the AcceptInf server nor the Eager server discussed
in the previous section is very satisfying. The Eager server
suffers from a comparatively lower peak throughput in
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Figure 8: Output from gprof for the Eager server.

favour of a much smaller drop in performance once the sat-
uration point is reached. On the other hand, the AcceptInf
server suffers from a significant drop in throughput once its
saturation point is reached but benefits from a much higher
saturation point. In this section we examine a technique for
trying to ameliorate the severity of this drop in throughput
while still maintaining high peak throughput. In a sense,
we attempt to devise a server that is a compromise between
these two approaches.

Our approach is to use the AcceptInf server in such a
way that we limit the number of consecutive connections
that are accepted thus placing less emphasis on accepting
new connections and more on making forward progress
on existing connections. For a first approximation of a
limit we observe, from server statistics, that when the
throughput peaks at 4200 requests per second the maxi-
mum number of consecutive connections accepted by the
server was 104. We then conducted a series of experi-
ments with limits on the number of consecutive accepts
of 10, 25, 50, 75, 100, and 125. We explored limits that
are mainly lower than the maximum to increase the likeli-
hood of obtaining preferred average behaviour as opposed
to trying to operate at the maximum level. We found that
a server that limited the number of consecutive accepts
to 25 ([--accept-count 25]) resulted in good peak
throughput and did a better job of avoiding the drop in
throughput that limits of 10, 50, 75, 100, and 125 expe-
rienced after the saturation point was exceeded. The peak
throughput obtained using the server with a limit of 10 was
lower than that obtained with servers using the other lim-
its because it is not aggressive enough in accepting new
connections. Therefore, we continue our experiments and
discussion with a server that uses a limit of 25. We re-
fer to this server as the Accept25 server since it repeatedly
calls accept when select indicates that the listening
socket is readable but stops when either 25 new connections
have been consecutively accepted, the maximum number of
open connections is reached, or there are no more outstand-
ing connection requests.

The graph in Figure 9 compares the throughput of the
Accept25 server, with the throughput obtained using the
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AcceptInf, Eager and CM servers. The results of these
experiments show that the Accept25 server is able to ob-
tain peak performance equal to that of the AcceptInf server.
More interestingly, the drawbacks resulting from the exces-
sive emphasis that the AcceptInf server places on obtaining
new connections are ameliorated by limiting the number of
new connections. As a result, throughput improves signifi-
cantly when the request rate is just slightly higher than the
saturation point. Not only is throughput significantly better
than with the AcceptInf server under loads of 4300 – 5500
requests per second but it is also significantly better than
that obtained using the Eager server. This shows how im-
portant it is for the server to carefully balance the work it
expends accepting new connections (which is necessary in
order to obtain high peak throughput) and making forward
progress on existing connections (which is also necessary
to obtain high peak throughput, but appears to be more im-
portant for avoiding dramatic decreases in throughput un-
der overload conditions).
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Figure 9: Limiting the number of consecutive connections
the server permits and the influence on server throughput.

To more clearly understand how the different servers end
up working with different numbers of conections Figure
10 shows how the average number of open connections
(shown using a log scale) varies by server and changes with
load. The average number of open connections is computed
by sampling the number of open connections each time a
new connection is accepted. Note that we have ensured
that the servers have all executed for long enough that a
steady state behaviour has been reached (i.e., significantly
longer executions result in statistically similar numbers of
open connections and throughputs).

The Accept1, Accept25, and AcceptInf servers can be
compared directly since they behave in identical fashions,
except for the number of connections they accept when
select indicates that there is an outstanding connection
request. As would be expected from examining their per-
formance under heavy loads, the Accept1 server maintains
the fewest number of open connections (too few for good
throughput) and the AcceptInf server maintains the largest
number of open connections (too many for good through-
put). In contrast, the Accept25 server is able to operate
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Figure 10: The average number of open connections as the
load increases.

with a number of open connections that is part way be-
tween these two servers and as a result is able to achieve
higher throughput.

This graph also shows more clearly that under high re-
quest rates the CM server attempts to work with far too
many connections simultaneously (the result of an over-
aggressive approach to accepting new connection). As a
result it reaches the maximum number of permitted con-
nections (15000), in which case the server is only able
to accept new connections when existing connections are
closed. The Eager server also operates with a larger num-
ber of open connections than the Accept1, Accept25 and
AcceptInf servers. This is most noticeable in roughly the
4000 to 6000 requests per second range. This is because the
Eager server oscillates between a phase of working aggres-
sively to make forward progress on existing connections
and a phase of accepting large numbers of connections that
have queued in the meantime. When the incoming request
rate exceeds about 5250, the time between accept phases
becomes too large to be able continue to accept connec-
tions at the rate being generated and the number of open
connections is reduced.

An ideal server would sustain throughput equal to its
peak throughput while the load continues to increases past
the server’s saturation point. One of the reasons that these
servers (in particular the Accept25 server) are not able to
sustain their peak response rates is because of the time the
kernel spends handling TCP SYN packets that end up be-
ing discarded because the TCP SYN queue is full. A TCP
SYN packet is the first packet received from a client that
is initiating the three-way handshake required to establish
a TCP connection.

Figure 11 shows both the response rate and the rate
at which the kernel drops incoming TCP SYN packets
(QDrops/s) when running the AcceptInf and Accept25
servers. 2 As mentioned previously, the size of the queue
used in all of our experiments is 1024.

2Martin Arlitt [1] recently discovered that the version of the Linux ker-
nel used in these experiments over counts the number TCP SYN packets
dropped. This results in counts (rates in the graph) that are roughly double
the actual values.
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Figure 12 shows the mean response times observed using
the servers discussed in this section as a function of the re-
quest rate. Note that the mean recorded response times are
only accurate to one millisecond and are shown using a log
scale. This graph is shown to demonstrate that the increases
in throughput are obtained without significant sacrifices in
mean response times.
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Figure 12: Comparing the mean response times for differ-
ent server options while increasing the load.

7 Improving the Performance of TUX

Out of curiosity we decided to compare the performance
of our best performing server configuration with the per-
formance of the Linux kernel-level TUX server [23] [13].
We were interested in finding out how much better through-
put TUX would obtain since events are dispatched within
the kernel as they arrive and no system calls or context
switches are required. Additionally, several optimizations
are implemented in TUX, some of which eliminate signifi-
cant amounts of data copying [23] [13].

We have tried to ensure that the two servers execute with
comparable configurations in terms of resources. Both use
a listenq of 128, support a maximum of 15000 con-
nections, disable the Nagle algorithm, and use a single
thread. Because caching is enabled in the TUX server
we’ve also enabled caching in our Accept25 server. This
server is referred to as the Accept25+$ server ($ represents

cache). Figure 13 shows the throughput obtained using the
Accept25+$ server, the TUX server, and a server labeled
TUX25 (described shortly).

Interestingly, the TUX server did not dispatch events at
the rate we had expected. The Accept25+$ server obtains
throughputs as high or higher than the TUX server across
the full range of server loads for both 1 byte and 2 KB re-
quests (labeled 1B and labeled 2K respectively). Perhaps
more interesting is the significant drop in throughput the
TUX server experiences under the 1 byte workload, when
the request rate exceeds the server’s saturation point. This
drop occurs because, as we’ll demonstrate shortly, the TUX
server is trying too hard to accept new incoming connec-
tions and is not spending enough time processing existing
connections. We expect that the reason the TUX server’s
performance is able to improve as the request rate increases
is because eventually the maximum number of connections
is reached (15000). Once this limit is reached it is able to
concentrate on satisfying existing requests.

Note that these graphs should not be viewed as demon-
strating that the Accept25+$ server outperforms the TUX
server. We believe that what they do demonstrate is how
important it is for the server to balance (or schedule) the
work that it is performing. In order to further demonstrate
this point we show how our insights can be applied to im-
prove the throughput of the TUX server for these work-
loads. We have made a minor modification to the TUX
server to attempt to constrain the number of consecutive
connections accepted to 25 (we call this version TUX25).
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Figure 13: Comparing the throughput obtained with our
best server configuration Accept25+$, the TUX server, and
our improved version of TUX (TUX25).

Figure 13 shows that this version of the server offers
significant improvements over the original TUX server for
both 1 byte and 2 KB workloads.3 The improved TUX
server has 40% higher throughput at 6000 requests per sec-
ond for 1 byte files and 25% higher throughput at 4700
requests per second for 2 KB files. While a limit of 25
may not be the optimal value (we haven’t tried other values

3We don’t know why the performance of the TUX25 server dips in
the 1 byte request case at around 5500 requests per second but the results
were repeatable.

11



yet) we believe that it clearly demonstrates the importance
of ensuring that the server provides a reasonable balance
between accepting new connections and making forward
progress on existing connections. It also demonstrates that
this balance is important even when using a different server
and a radically different approach to dispatching events.

Our experiments in this section also highlight the impor-
tance of ensuring that the application servers being used to
compare event dispatch mechanisms behave similarly with
respect to their approach to workload management. Al-
though the Accept25+$ server was able to obtain higher
throughput than the TUX server, this was due to its abil-
ity to better balance its work not because it can more ef-
ficiently dispatch events. Comparisons between different
event dispatch mechanisms must ensure that differences in
performance are due to differences in the mechanisms and
not to differences in the application’s approach to manag-
ing its workload.

8 Discussion

There is a similarity between the observations we make in
this paper and observations made in work related to “re-
ceive livelock” [22] [14]. Receive livelock [22] refers to a
condition where no useful progress is being made in a sys-
tem because a required resource is entirely consumed by
the processing of receiver interrupts. A fundamental differ-
ence between receive livelock and the problems we observe
with not making enough forward progress on existing con-
nections is that receive livelock is a result of the kernel im-
plementation (i.e., it is caused by the kernel) while the lack
of progress we observe is caused by the application itself.
Therefore, the techniques used to improve performance in
each case must be different.

More recently, Provos et al. [21] observed that although
they reduced the overhead incurred in obtaining event in-
formation from the kernel, this improvement did not trans-
late into increased server throughput. They were able
to improve performance by modifying the application to
observe the number of signals obtained on each call to
sigtimedwait4. When the weighted average of the
number of signals returned exceeded a threshold, they re-
set incoming connections instead of processing the request.
While they were able to improve performance they seem
less than satisfied with possible explanations for why their
original improvement didn’t work. From the techniques
they used to improve throughput and the observations made
in this paper it is likely that their original server was unable
to put enough emphasis on processing existing connections
under higher loads. By closing down new connections un-
der higher loads their server was able to spend more time
processing existing connections and throughput improved
significantly.

Other studies [6] [24] have also reset incoming connec-
tions in order to devote more time to processing existing

connections. These and other studies centered around pro-
viding differentiated or improved quality of service provide
better service to some connections to the detriment of oth-
ers. We consider the performance of all clients.

Welsh et al. [27] propose a staged event-driven architec-
ture (SEDA) designed to simplify the implementation of
well-conditioned, Internet services. Stages are connected
by explicit event queues and are associated with event han-
dlers and a thread pool. Dynamic resource controllers are
deployed to automatically tune thread pool sizes, batching,
and load shedding, thus controlling the resources required
and applied at each stage. In our view their work is focused
more on policies used to process events while our work
concentrates more on understanding how Internet servers
can best work in concert with existing operating system in-
terfaces. While SEDA may be able to automatically pro-
vide the balance required to implement a high-performance
server our insights can be easily applied to existing servers
(two lines were added to improve the TUX server). Ad-
ditionally, we believe that our work provides key insights
that are essential for future comparisons of efficient event
notification mechanisms.

Others researchers have looked at different aspects of
what could be considered work scheduling in Internet
servers. Some studies have shown [9] [11] that process-
ing requests that require the shortest remaining processing
time first can significantly improve mean response times
seen by the clients. Our view is that an Internet server must
continually make decisions about which work to perform
next. This involves deciding not only whether to accepting
one or more incoming connections or to work on any one
of the large number of existing connections, but also the
order in which each of these bits of work is performed. In
the future we plan to expand our micro server and to use it
to further investigate issues related to making these types
of scheduling decisions, to study the relationships between
the different types of decisions that need to be made, and
to investigate operating system support that will enable the
application to make better informed decisions.

Our results demonstrate that considerable care must be
taken when designing and implementing high-performance
web servers. In order to obtain high throughput the server
must employ mechanisms that permit it to accept new con-
nections at a sufficiently high rate. Our Accept1 server, our
eager family of servers, and the CM server do not place
enough emphasis on accepting new connections. As a re-
sult, their peak throughput is significantly lower than that
of the AcceptInf server. However, once new connections
can be accepted at a high rate the server must also ensure
that a sufficient portion of time is spent making forward
progress on existing connections. The AcceptInf places too
much emphasis on accepting new connections. As a result,
while able to obtain good peak throughput, its performance
significantly degrades once the load increases past its sat-
uration point. The AcceptInf server falls into a trap where
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it accepts too many connections to work on, then it spends
too much time working on too many connections before
getting back to accepting new connections and by that time
some of the outstanding client requests have timed out.

The Accept25 server solves this problem by limiting the
number of consecutive new connections accepted. This
limitation reduces the amount of work the server has to do
on existing connections because there is now only a rela-
tively small number of connections to work on. This per-
mits the server to get back to accepting new connections
quickly (before clients time-out), which is necessary for
high sustained throughput.

9 Conclusions

In this paper we investigate application level Internet server
design. In particular, we focus on the server’s ability to dis-
patch network I/O events. This is done in the context of
a highly parameterized micro web-server specifically im-
plemented to permit us to study software architectures de-
signed to avoid server meltdown during periods that require
high event dispatch rates.

Our experiments show that relatively minor and seem-
ingly sensible modifications to the server’s implementa-
tion can dramatically impact the peak throughput and the
throughput obtained under overload conditions. They also
demonstrate that Internet server designs must carefully bal-
ance between making forward progress on existing connec-
tions and accepting new connections.

We apply these insights to another server which uses a
radically different approach to dispatching events. Our ex-
periments show that, under the workloads examined, the
Linux in-kernel TUX server can be significantly improved
by striking a better balance between accepting new connec-
tions and processing existing connections.

We believe that these results provide strong evidence that
irrespective of the kernel event-dispatch method used, a
balance must be maintained between accepting new con-
nections, obtaining event information, and using that infor-
mation to make forward progress on existing connections.
When this balance is not maintained server throughput can
degrade and in some cases this degradation can be substan-
tial.

We also point out that when comparing operating sys-
tem mechanisms for dispatching events, care must be taken
to ensure that the servers being used are scheduling work
in similar fashions. Otherwise a danger exists that conclu-
sions will be drawn based on different event dispatching
mechanisms when in fact the differences could be due to
the server’s approach to managing its work.

In the future we hope to integrate other event notifica-
tion mechanisms into our micro-server, evaluate them, and
make our server available for others to use. We plan to ex-
amine more representative workloads, techniques for mul-
tiprocessor systems, approaches to automatically and dy-

namically controlling event scheduling (ala SEDA [27]),
and other techniques for providing kernel mechanisms that
better support Internet-based server applications [18].
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