
Red Hat Content Accelerator 2.2

Reference Manual

Red Hat, Inc.

Red Hat Content Accelerator 2.2: Reference Manual
Copyright © 2001, 2002 by Red Hat, Inc.

Red Hat, Inc.

1801 Varsity Drive
Raleigh NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC
27709 USA

TUX(EN)-2.2-RHI (2002-05-17T17:56-0400)
Red Hat is a registered trademark and the Red Hat Shadow Man logo, RPM, the RPM logo, and Glint are trademarks of Red
Hat, Inc.
Linux is a registered trademark of Linus Torvalds.
All other trademarks and copyrights referred to are the property of their respective owners.
Copyright © 2001, 2002 by Red Hat, Inc. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation.
A copy of the license is available at http://www.gnu.org/copyleft/fdl.html.
Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright
holder.
Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited
unless prior permission is obtained from the copyright holder.

Table of Contents
1. What is Red Hat Content Accelerator? .. 5

1.1. New Red Hat Content Accelerator 2.2 Features .. 6
1.2. Summary of System Requirements.. 6

1.2.1. Current Limitations... 6
2. Installation... 7

2.1. Installation Instructions.. 7
2.1.1. Log Files ... 7

3. Configuration .. 9
3.1. Modes of Operation ... 9
3.2. Compressed Gzip Data Stream .. 9
3.3. Parameters.. 10

3.3.1. /proc/sys/net/tux Parameters ... 10
3.3.2. Init Script Parameters.. 14
3.3.3. /proc/net/tux Parameters ... 15
3.3.4. Required Parameters ... 15

3.4. Starting Red Hat Content Accelerator ... 16
3.4.1. IRQ Affinity .. 16

3.5. Stopping Red Hat Content Accelerator.. 17
3.6. Debugging Red Hat Content Accelerator .. 17
3.7. MIME Types .. 17
3.8. HTTP Cache Control ... 17
3.9. Mass Virtual Hosting ... 18

3.9.1. virtual_server .. 18
3.9.2. mass_hosting_hash.. 19
3.9.3. string_host_tail .. 19

3.10. Red Hat Content Accelerator as an FTP Server... 20
3.10.1. Security Features... 20

4. Security .. 23
5. User-space Loadable Modules ... 25
Index... 27

Chapter 1.

What is Red Hat Content Accelerator?

Red Hat Content Accelerator is a kernel-based Web server licensed under the GNU General Public
License (GPL).

It is currently limited to serving static webpages and coordinating with kernel-space modules, user-
space modules, and regular user-space Web server daemons to provide dynamic content. Regular user-
space Web servers do not need to be altered in any way for Red Hat Content Accelerator to coordinate
with them. However, user-space code has to use a new interface based on the tux(2) system call.

Although dynamic content is becoming increasingly popular, there is still a need to serve static con-
tent. For example, nearly all images are static. Red Hat Content Accelerator can serve static content
very efficiently from within the Linux kernel. A similar operation is already performed by the Network
File System (NFS) daemon that runs in the kernel.

Red Hat Content Accelerator also has the ability to cache dynamic content. Red Hat Content Accel-
erator modules (which can be build in kernel space or in user space; user space is recommended) can
create "objects" which are stored using the page cache. To respond to a request for dynamic data,
a Red Hat Content Accelerator module can send a mix of dynamically-generated data and cached
pre-generated objects, taking maximal advantage of Red Hat Content Accelerator’s zero-copy archi-
tecture.

This new architecture for serving dynamic content requires a new API. The current API’s for CGI can
not be sufficiently mapped to Red Hat Content Accelerator’s API. Thus, existing CGI applications
must be converted before Red Hat Content Accelerator will process them. If the CGI application does
not require the increased speed of Red Hat Content Accelerator, Red Hat Content Accelerator can pro-
cess it by running the CGI application normally. This is done through Red Hat Content Accelerator’s
CGI module. Red Hat Content Accelerator can also handle a complex request (CGI or otherwise) by
redirecting it to another Web server daemon such as Apache. In other words, static content, Red Hat
Content Accelerator modules, old-style CGI applications, and programs specifically written for other
webservers can be run on the same system with Red Hat Content Accelerator as the main web server.

In summary, the differences between Red Hat Content Accelerator and other webservers as well as
the benefits of using Red Hat Content Accelerator include:

• Red Hat Content Accelerator runs partly within a custom version of kernel 2.4.x or higher and
partly as a user-space daemon.

• With a capable network card, Red Hat Content Accelerator enables direct scatter-gather DMA from
the page cache directly to the network, thus avoiding data copies.

• Whenever Red Hat Content Accelerator is unsure how to process a request or receives a request it
is unable to handle, it always redirects the request to the user-space web server daemon to handle it
in an RFC-compliant manner. An example of this user-space web server daemon is Apache.

Note

Apache is used throughout this document as the user-space web server daemon for readability.

For questions or comments about Red Hat Content Accelerator or this documentation, join
the <tux-list@redhat.com> mailing list. For instructions on joining the mailing list, see
http://www.redhat.com/mailing-lists/.

Also visit the Red Hat Content Accelerator Support page available at:

6 Chapter 1. What is Red Hat Content Accelerator?

http://www.redhat.com/services/techsupport/tux/.

1.1. New Red Hat Content Accelerator 2.2 Features
The Red Hat Content Accelerator 2.2 release is an incremental upgrade to Red Hat Content Acceler-
ator 1.0 and keeps source-code level compatibility with user-space modules.

The incremental enhancements include

• True zero-copy disk reads — Whereas Red Hat Content Accelerator 1.0 copied files into a tem-
porary buffer, Red Hat Content Accelerator 2.2 is integrated with the page cache and thus uses
zero-copy block IO.

• Generic zero-copy network writes — Red Hat Content Accelerator 2.2 uses the generic zero-copy
TCP framework.

• Zero-copy parsing — Where possible, Red Hat Content Accelerator parses input packets directly.
Even in RAM-limited situations, Red Hat Content Accelerator now does full, back-to-back zero-
copy I/O.

Other changes include

• Enhanced user-space utilities and module support.

• Mass virtual hosting support — The host-based virtual server patch has been added to Red Hat
Content Accelerator. There is no limit on the number of virtual hosts supported, only RAM and
diskspace.

• CGIs can be bound to particular CPUs or can be left unbound.

• A number of bugs were fixed which caused performance problems — Red Hat Content Accelerator
2.2 is now significantly faster than Red Hat Content Accelerator 1.0!

1.2. Summary of System Requirements

• Red Hat Content Accelerator Customized 2.4.x-based version of the kernel or higher

• x86, Alpha, IA64 or PowerPC/64 platform (should work on PowerPC/32, untested on Sparc)

• Alternate Web server such as Apache running on the same server to process unknown requests

1.2.1. Current Limitations

• Red Hat Content Accelerator can only call the other Web server such as Apache on the same server.
In future revisions, it will allow the rollover of unsupported content to an alternate server.

Chapter 2.

Installation

This chapter describes how to install Red Hat Content Accelerator.

2.1. Installation Instructions

1. For optimal performance, create a separate RAID partition as the document root for Red Hat
Content Accelerator.

2. Configure and install the kernel with Red Hat Content Accelerator support built-in, if it has not
already been provided with Red Hat Content Accelerator configured.

3. Install the Red Hat Content Accelerator package with the command rpm -Uvh tux-2.1.0-
2.i386.rpm (modify as necessary for new versions...)

4. Create an index.html file in /var/www/html, the default document root directory.

5. Start Red Hat Content Accelerator with the command service tux start (or ./tux.init
start on Linux systems not running Red Hat Linux), and test the URL http://localhost/
with lynx or any Web browser.

The latest Red Hat Content Accelerator releases can be downloaded from
http://people.redhat.com/~mingo/TUX-patches/. To install a TUX patch use the following

instructions:

1. Download the latest Red Hat Content Accelerator patch and userspace utilities from
http://people.redhat.com/~mingo/TUX-patches/.

2. Apply the Red Hat Content Accelerator patch to a vanilla 2.4.2 kernel tree with the command
patch -p0 < tux2-full-2.4.2-X6 (where tux2-full-2.4.2-X6 is the Red Hat Con-
tent Accelerator kernel patch).

3. Use make oldconfig to enable Red Hat Content Accelerator in the kernel config, compile it,
and boot into the Red Hat Content Accelerator kernel.

4. Compile and install the userspace utilities, where tux-2.0.25 is the version of Red Hat Con-
tent Accelerator you want to install:
tar xzvf tux-2.0.25.tar.gz
cd tux-2.0.25
make
make install

5. Create an index.html file in /var/www/html, the default document root directory.

6. Start Red Hat Content Accelerator with the command service tux start (or ./tux.init
start on Linux systems not running Red Hat Linux), and test the URL http://localhost/
with lynx or any Web browser.

2.1.1. Log Files
For each request, Red Hat Content Accelerator logs the address of the requestor, a date and time stamp
accurate to at least one second, specification of the file requested, size of the file transferred, and the
final status of the request.

The log files for Red Hat Content Accelerator are stored in /var/log/tux in binary format. In
this binary format, the log files are approximately 50% smaller than standard ASCII text log files.

8 Chapter 2. Installation

To view log files use the command /usr/sbin/tux2w3c /var/log/tux. The tux2w3c program
converts the binary log files into into standard W3C-conforming HTTPD log files. If you want to save
the ASCII output, you can redirect the output to a file: /usr/sbin/tux2w3c /var/log/tux >
tux.log, where tux.log is the name of the output file.

Sample log file output:

195.4.12.3 - - Fri Nov 9 01:05:56 2001 "GET /test.html HTTP/1.1" - 53 200
195.4.12.3 - - Fri Nov 9 01:06:10 2001 "GET / HTTP/1.1" - 2890 200
255.255.255.255 - - Fri Nov 9 01:06:10 2001 "GET /icons/apache_pb.gif HTTP/1.1" -
0 404
195.4.12.3 - - Fri Nov 9 01:06:10 2001 "GET /poweredby.png HTTP/1.1" - 1154 200
195.4.12.3 - - Fri Nov 9 01:06:04 2001 "GET /test.html HTTP/1.1" - 53 200
195.4.12.3 - - Fri Nov 9 01:06:22 2001 "GET /manual/index.html HTTP/1.1" - 5557 200
195.4.12.3 - - Fri Nov 9 01:06:04 2001 "GET /test.html HTTP/1.1" - 53 200
195.4.12.3 - - Fri Nov 9 01:06:22 2001 "GET /manual/images/apache_header.gif HTTP/1.1" -
4084 200
195.4.12.3 - - Fri Nov 9 01:06:04 2001 "GET /test.html HTTP/1.1" - 53 200
195.4.12.3 - - Fri Nov 9 01:06:22 2001 "GET /manual/images/pixel.gif HTTP/1.1" -
61 200
195.4.12.3 - - Fri Nov 9 01:06:04 2001 "GET /test.html HTTP/1.1" - 53 200
195.4.12.3 - - Fri Nov 9 01:06:26 2001 "GET /manual/invoking.html HTTP/1.1" -
1 200
195.4.12.3 - - Fri Nov 9 01:06:04 2001 "GET /test.html HTTP/1.1" - 53 200
195.4.12.3 - - Fri Nov 9 01:06:35 2001 "GET /manual/stopping.html HTTP/1.1" -
1 200
195.4.12.3 - - Fri Nov 9 01:06:04 2001 "GET /test.html HTTP/1.1" - 53 200
195.4.12.3 - - Fri Nov 9 01:06:37 2001 "GET /manual/howto/ssi.html HTTP/1.1" -
18523 200
195.4.12.3 - - Fri Nov 9 01:06:41 2001 "GET /manual/new_features_1_3.html HTTP/1.1" -
34531 200

Chapter 3.

Configuration

This chapter describes how to configure the Red Hat Content Accelerator.

3.1. Modes of Operation
The recommended mode of operation is to have Red Hat Content Accelerator running as the main
Web server and Apache run as the assistant.

• Client Port: 8080 (or other)

• Web Server Port: 80

For the recommend mode where Red Hat Content Accelerator is the main web server, the configu-
ration for the user-space daemon must be changed to use port 8080. For Apache configuration, the
changes are made in the configuration file /etc/httpd/conf/httpd.conf by changing the line

Port 80

to

Port 8080

For security reasons, the line

BindAddress *

should be changed to

BindAddress 127.0.0.1

This will prevent outside users from accessing Apache directly. You must restart Apache for the
changes to take effect with the command /etc/rc.d/init.d/httpd restart.

The alternate mode of operation is to have the user-space daemon such as Apache as the main web
server and Red Hat Content Accelerator as the assistant.

• Client Port: 80

• Web Server Port: 8080 (or other)

3.2. Compressed Gzip Data Stream
Red Hat Content Accelerator is now able to send compressed (gzip) data. This has the potential to
decrease the amount of data the Web server sends to the client browser and decrease the browser’s
load time.

By default, this data compression is disabled. To enable it, add the following line to
/etc/sysctl.tux:

net.tux.compression=1

The Gzip file with the extension .gz must be in the same directory as the uncompressed versions of the
pages you wish to serve. All of the following conditions must be true for Red Hat Content Accelerator
to send the .gz file. Otherwise, the original file(s) are sent.

10 Chapter 3. Configuration

• The Red Hat Content Accelerator compression feature is on in /etc/sysctl.tux.

• The client has explicitly stated to support gzip encoding.

• The original file exists, is a regular file, and has the proper permissions.

• The .gz file exists, is a regular file, and has the proper permissions.

• The .gz file is newer than or has the same-date as the original file.

• The size of the .gz file is smaller than original file.

Note

A cron job can be created to generate a new gzip file from the latest uncompressed data in each
directory.

3.3. Parameters
This section describes how to configure Red Hat Content Accelerator via the available TUX parame-
ters.

Warning

Most parameters can only be set when Red Hat Content Accelerator is not active.

Note

CGI_UID and CGI_GID are no longer available. All Red Hat Content Accelerator threads are executed
with DAEMON_UID and DAEMON_GID.

3.3.1. /proc/sys/net/tux Parameters
The following parameters are set through /proc/sys/net/tux. Note this has changed from the
original location of /proc/sys/net/http and /proc/net/http.

Table 3-1. Red Hat Content Accelerator Configuration Parameters

Name Default Description

serverport 80 No longer available. To change the Red
Hat Content Accelerator HTTP server
port, use the command echo
’http://0.0.0.0:80’ >
/proc/net/tux/0/listen/0, where 80
is the port number.

clientport 8080 The port listened to by the userspace
http-daemon

Chapter 3. Configuration 11

Name Default Description

documentroot /var/www/html The directory where the web pages are
stored. If using the init script
/etc/rc.d/init.d/tux, documentroot
should be set in /etc/sysconfig/tux
as DOCROOT.

http_subdocroot No value set by default The directory, relative to the
documentroot, where the web pages are
stored. Red Hat Content Accelerator
defaults to using documentroot if
http_subdocroot has no value.

ftp_subdocroot No value set by default The directory, relative to the
documentroot, where the files to be served
by the FTP server are stored. Red Hat
Content Accelerator defaults to using the
document root defined for the HTTP
server if ftp_subdocroot has no value.

ftp_log_retr_only 0 If set to 0, Red Hat Content Accelerator
will log every other command as well. If
set to 1, Red Hat Content Accelerator will
only log RETR FTP commands to cut
down the log size.

ftp_wait_close 1 If set to 1, Red Hat Content Accelerator
will wait for data socket to close before
sending completion message to command
socket. Certain clients (for example, lynx)
get confused by Red Hat Content
Accelerator’s high level of asynchronity.
This setting slows down FTP RETR
downloads and directory listings and
increases packet count, but it works around
broken FTP clients. If set to 0, Red Hat
Content Accelerator will not wait for the
FTP client to notice the closed data socket.

ftp_login_message 0 If set to 1, the number of users that are
logged in and the bandwidth currently
served by Red Hat Content Accelerator is
shown after logging in to the FTP server. If
set to 0, this information is not shown.

404_page 404.html If Red Hat Content Accelerator does not
manage to look up a requested page then it
first tries to look up the document specified
in 404_page. If the 404 page can not be
found, the canned 404 message is sent.
The file is relative to the document root.

12 Chapter 3. Configuration

Name Default Description

threads The number or
server-threads, set at most
to 1 per CPU

The number of kernel threads (and
associated daemon threads) to be used.
Can not be greater than the number of
CPUs on the system. If using the init script
/etc/rc.d/init.d/tux, threads should
be set in /etc/sysconfig/tux as
TUXTHREADS.

mode_allowed S_IROTH Required permissions for files Red Hat
Content Accelerator will process. See
"man 2 stat" for all values.

mode_forbidden dir+sticky+execute Files with this permission-mask are
"forbidden" and will not be processed by
Red Hat Content Accelerator. See "man 2
stat" for all values.

nonagle 2 If set to 0, standard Nagle output packet
merging. If set to 1, no Nagle merging of
output packets. If set to 2,
TCP_CORK-style output packet merging.

push_all 0 If set to 0, may merge subsequent packets.
If set to 1, force a packet boundary right
after the end of the Red Hat Content
Accelerator request.

compression 0 If set to 0, it is disabled. If set to 1, sending
gzip compressed data is turned on. See
Section 3.2 for details.

cgiroot /var/www/tux/cgiroot/ The directory in which Red Hat Content
Accelerator runs CGI programs. Set by
default to $DOCROOT in the tux init
script.

cgi_cpu_mask 0xffffffff The default value allows CGI scripts to
execute on all CPUs. This value can be set
to bind newly started CGI scripts to a
single CPU or a set of CPUs. The CPUs
are represented in a 32-bit bitmask, where
bit 1 is CPU#0, bit 2 is CPU#1, etc. This
value has not effect on single-processor
systems.

cgi_inherit_cpu 0 If set to 1, all newly started CGI scripts
inherit the CPU-binding of the
CGI-starting Red Hat Content Accelerator
thread — all processes started by the CGI
script will be bound to the same CPU as
the parent CGI.

max_connect 1000 Maximum number of concurrent
connections.

max_header_len 3000 Maximum header size in bytes.

Chapter 3. Configuration 13

Name Default Description

max_output_bandwidth 0 Maximum output bandwidth (per
connection) used up by keepalive requests
in bytes/sec. The default value of 0 means
off or unlimited bandwidth. Can be as low
as 1 byte/sec. This parameter replaces
max_keepalive_bw.

max_keepalive 1000 Maximum number of open keepalive
connections. After having reached
max_keepalives connections, Red Hat
Content Accelerator zaps old connections
based on LRU.

keepalive_timeout 0 Unfinished and should not be used. A
per-client-connection timer that will time
out if a request does not arrive within a
pre-specified time. Timeout value is set in
seconds.

max_object_size 100MB Maximum file size Red Hat Content
Accelerator is willing to serve specified in
bytes.

Dprintk 0 If TUX_DEBUG is turned on, then print
out very verbose messages to syslog.
Should only be used for debugging
purposes.

ack_pingpong 1 Delay TCP ACK for incoming frames in
the hopes of a subsequent output frame.
Separate ACK will happen nevertheless, if
no output frame is generated within a
timeout.

all_userspace 0 If set to 1, every complete and valid HTTP
request will be bounced to the first
user-space module. The user-space module
"takes control" over the entire URL space.
Then, the user-space module can make a
decision to 1) serve a static reply, 2) serve
a cached dynamic reply, or 3) create a
dynamic reply. If set to 0, all_userspace is
disabled.

application_protocol 0 If set to 1, it enables the Red Hat Content
Accelerator FTP server. If set to 0, this
feature is disabled. Refer to Section 3.10
for details.

logentry_align_order N/A Currently unused.

logfile /var/log/tux The filename of the Red Hat Content
Accelerator binary logfile. Refer to
Section 2.1.1 for more information.

logging 0 If set to 1, logging is enabled. If set to 0,
logging is disabled.

14 Chapter 3. Configuration

Name Default Description

redirect_logging 1 Set to 0 to suppress redirected
connections. Can be changed at runtime
and takes effect immediately.

referer_logging 0 If set to 1, referer logging is enabled and
will be automatically printed by tux2w3c
if the referer entry is present. If set to 0,
referer logging is disabled.

max_backlog 2048 Maximum size of SYN backlog of the Red
Hat Content Accelerator listening socket.

virtual_server 0 (off) Turns on mass virtual hosting. Hosts are
headers from the browser that are directly
turned into $DOCROOT/ � Host � ’virtual
docroots.’ This way any number of hosts
can be served by a single Red Hat Content
Accelerator server without any
performance penalty at all. Refer to
Section 3.9 for details.

mass_hosting_hash 0 (off) If virtual_server is enabled, this parameter
modifies the hostname mapping to be
more effective for a large number of hosts.
Refer to Section 3.9 for details.

strip_host_tail 0 (off) If virtual_server is enabled, this parameter
strips off hostname components. Refer to
Section 3.9 for details.

zerocopy_parse 1 Use the input packet buffer as a temporary
buffer and avoids copying input data.

defer_accept 0 (disabled if
keepalive_timeout or
max_keepalives is set)

If set to 1, then Red Hat Content
Accelerator processes will not be woken
up on the initial SYN-ACK event of a new
TCP connection, but only after the first
real data packet has arrived. If set to 0, this
feature is disabled.

http_dir_indexing 0 (disabled) If set to 1, Red Hat Content Accelerator
will list files in readable directories if an
index file does not exist.

generate_cache_control 1 (enabled) If set to 1, generate HTTP-expiration
headers according to
/etc/tux.mime.types. Refer to
Section 3.8 for details.

generate_etags 1 (enabled) If set to 1, generate the Etag HTTP header.
Refer to Section 3.8 for details.

generate_last_mod 1 (enabled) If set to 1, generate the Last-Modified
HTTP header. Refer to Section 3.8 for
details.

3.3.2. Init Script Parameters

Chapter 3. Configuration 15

If the Red Hat Content Accelerator init script /etc/rc.d/init.d/tux is used, the following pa-
rameters can be set in the file /etc/sysconfig/tux (see Table 3-2). They should not be set in
/etc/sysctl.conf because the init script will override parameters set in /etc/sysctl.conf.
Using the init script is the preferred method for starting Red Hat Content Accelerator. For parameters
beyond those supported by /etc/sysconfig/tux, you can use /etc/sysctl.tux, which is read
after the Red Hat Content Accelerator module is loaded; /etc/sysctl.conf is read before the Red
Hat Content Accelerator module is loaded and so Red Hat Content Accelerator-specific settings in
/etc/sysctl.conf do not take effect.

Table 3-2. /etc/sysconfig/tux parameters

Parameter Default Description

TUXTHREADS The number of
server-threads,
set at most to
1 per CPU

The number of kernel threads (and
associated daemon threads) to be used,
cannot be greater than the number of
CPUs on the system

DOCROOT /var/www/html The document root, the directory where
the web pages are stored.

DAEMON_UID nobody UID (user) as which the daemon runs.

DAEMON_GID nobody GID (group) as which the daemon runs.

CGIROOT /var/www/html The directory where the CGI programs are
stored. CGI programs can be started in the
chroot environment by default. Set
CGIROOT=/ if you want CGI programs to
have access to the whole system.

MAX_KEEPALIVE_TIMEOUT 30 Timeout value for each HTTP connection.
Use this to prevent connection hangs.

TUXMODULES demo.tux
demo2.tux
demo3.tux
demo4.tux

list of user-space loadable Red Hat
Content Accelerator modules, see man 2
tux for more information

MODULEPATH / Path to the user-space loadable Red Hat
Content Accelerator modules

3.3.3. /proc/net/tux Parameters
After starting Red Hat Content Accelerator, the /proc/net/tux directory contains the file stat.
This file contains statistics on every allocated request structure. As this works even if TUX_DEBUG is
turned off, this should help debugging things a bit more. It can also be used to calculate file download
status. For example, TUX/FTP - the 100*f_pos/filelen gives the current progress of download.

It is possible to bind the logger thread to any particular CPU (or group of CPUs), so you can localize
IO, via /proc/net/tux/log_cpu_mask The default is to run on any CPU.

3.3.4. Required Parameters
Before starting Red Hat Content Accelerator, the following parameters must be set:

• serverport

16 Chapter 3. Configuration

• clientport

• DOCROOT

The DOCROOT for Red Hat Content Accelerator must be the same document root directory as
Apache or other user-space daemon running as the assistant web server for Red Hat Content Accel-
erator to properly redirect requests.

3.4. Starting Red Hat Content Accelerator
Red Hat Content Accelerator can be started by issuing the command:

/etc/rc.d/init.d/tux start

This script is written to start Red Hat Content Accelerator on a single-processor as well as a multi-
processor server.

If you choose to write your own script to start Red Hat Content Accelerator or start it from the
/usr/sbin/tux binary, you can use the following options:

Table 3-3. /usr/sbin/tux options

Option Description

-t, --threads=N number of tux threads

-d, --docroot=path directory path for document root

-m, --modpath=path directory path for user-space loadable Red Hat Content
Accelerator modules

-d, --daemon run in the background as a daemon

-D, --date-interval=seconds how often (in seconds) to update the date string, the default
is 1 second

-?, --help show help message

--usage display brief usage message

IRQ affinity is a small performance boost. If you are not experiencing any performance difficulties, it
is not recommended you try the following.

3.4.1. IRQ Affinity
Binding IRQ’s to a group of CPU’s is a new feature of the 2.4 kernel. While it was originally developed
as part of Red Hat Content Accelerator, it is now a generic and independent kernel feature. Every IRQ
source in Linux has an entry in /proc/irq directory. For example, the settings for IRQ 40 is stored in
/proc/irq/40. IRQ affinity, or IRQ bindings, is configured though the smp_affinity setting in that
directory. For example, the smp_affinity for IRQ 40 is in /proc/irq/40/smp_affinity. The value
of the smp_affinity setting is a bitmask of all CPU’s that are permitted as a resource for the given IRQ.
The default value for smp_affinity is the HEX value 0xffffffff. This means the processes for the
IRQ are sent to all CPU’s. You are not allowed to turn off all CPU’s for an IRQ. If the IRQ controller

Chapter 3. Configuration 17

does not support IRQ affinity, the value can not be changed from the default. If multiple CPU’s are
defined, then the IRQ source uses the least busy CPU. This is called ’lowest priority APIC routing.’
IRQ affinity is achieved by binding an IRQ to a specific CPU or group of CPU’s by echoing a HEX
value to smp_affinity for the IRQ.

Thus, Red Hat Content Accelerator thread N is bound to CPU N. If a single Red Hat Content Accel-
erator thread is used (which is recommended) and there is only one network interface card, then the
network interface card’s IRQ should be bound to CPU0.

3.5. Stopping Red Hat Content Accelerator
If Red Hat Content Accelerator was started with the /etc/rc.d/init.d/tux start script, stop
Red Hat Content Accelerator by executing the /etc/rc.d/init.d/tux stop script. This will un-
load all user-space Red Hat Content Accelerator modules automatically.

If you did not use the scripts provided, stop Red Hat Content Accelerator with the command
/usr/sbin/tux -s or /usr/sbin/tux --stop.

3.6. Debugging Red Hat Content Accelerator
To print out the state and various other information about Red Hat Content Accelerator, execute the
gettuxconfig script. You must be root to run this script.

The checkbindings shell script checks an existing Red Hat Content Accelerator SMP configuration,
whether all IRQ, interface, and listening socket bindings and affinities are set up correctly. It assumes
that the interfaces eth0, eth1, eth2, and so on are used linearly and mapped linearly. The script warns
if it finds any inefficiency.

3.7. MIME Types
Red Hat Content Accelerator supports three types of MIME types starting with version 2.0.13 and
kernel patch 2.4.2-P3. They are defined in /etc/tux.mime.types.

Table 3-4. MIME Types

MIME Type File
Extension

Description

TUX/redirect pl php All extensions listed after TUX/redirect will be redirected to
the secondary server.

TUX/CGI cgi pl All extensions listed after TUX/CGI will be handled by the
Red Hat Content Accelerator CGI engine directly.

TUX/module tux x All extensions listed after TUX/module will be handled by
Red Hat Content Accelerator userspace modules.

The TUX/redirect MIME type will redirect all requests to files ending in .pl or .php to Apache,
without having to check for file permissions.

The TUX/CGIMIME type specify scripts that should be located in the $DOCROOT/cgi-bin directory,
or the directory specified by the cgiroot parameter. Refer to Section 3.3 for details.

Refer to Chapter 5 for details about the TUX/module MIME type.

18 Chapter 3. Configuration

3.8. HTTP Cache Control
Starting with Red Hat Content Accelerator 2.2.1 and kernel patch 2.4.17-A1, Red Hat Content Accel-
erator supports the Cache-Control: max-age=x HTTP extension in addition to the basic cache-control
properties such as the ETag and Last-ModifiedHTTP headers. While the basic properties allow the
client browser to know whether the content in its cache is up-to-date while communicating with the
server, this new feature allows browsers and proxies to cache the server’s response for the specified
time without the need to reconfirm with the server every time the content in its cache is accessed,
reducing content load time for users, bandwidth and server resources usage.

Expiration time is set on a per file extension basis, in /etc/tux.mime.types discusses in previous
paragraph. While a standard entry may look like below:

text/html htm html

The following format should be used to assign expiration time to a file extension:

text/html htm|1800 html|1800

This will set the expiration time for .htm and .html files to 1800 seconds (half an hour). If no
expiration time is provided for a file extension, no Cache-Control directive will be issued while
serving the file.

You may set a different expiration time for every extension, even if they belong to the same MIME
type:

text/html htm|1800 html|3600

or

text/html htm|1800 html

Note

To disable this feature on a server-wide basis, set the generate_cache_control parameter in
/proc/sys/net/tux to 0.

3.9. Mass Virtual Hosting
Red Hat Content Accelerator supports mass virtual hosting, which enables a very high number of
virtual hosts.

There are three tunables that deal with virtual hosting:

• virtual_server — Valid values are 0, 1, 2, or 3.

• mass_hosting_hash — Valid values are 0, 1, 2, or 3.

• strip_host_tail — Value must be an integer.

These three tunables depend on each other, and the strip_host_tail tunable is only used if host
based virtual serving is enabled. Otherwise, it is ignored.

Chapter 3. Configuration 19

3.9.1. virtual_server
If the value is set to 0, virtual hosting is disabled:

http://www.example.com/a.html => $DOCROOT/a.html

If the value is set to 1, host-based virtual hosting is enabled:

http://www.some.site.com/a.html => $DOCROOT/some.site.com/a.html

Note

Red Hat Content Accelerator strips off the www. prefix variants and transforms the hostname to
lowercase.

If the value is set to 2, IP-based virtual hosting is enabled:

http://www.some.site.com/a.html => $DOCROOT/1.2.3.4/a.html

If the value is set to 3, a mixture of host-based and IP-based virtual hosting is enabled:

http://www.some.site.com/a.html => $DOCROOT/1.2.3.4/some.site.com/a.html

3.9.2. mass_hosting_hash
The mass_hosting_hash tunable modifies the hostname mapping to be more effective for a large
number of hosts.

If the value is set to 0, mass_hosting_hash is disabled.

If the value is set to 1:

http://www.some.site.com/a.html => $DOCROOT/s/some.site.com/a.html

If the value is set to 2:

http://www.some.site.com/a.html => $DOCROOT/s/so/some.site.com/a.html

If the value is set to 3:

http://www.some.site.com/a.html => $DOCROOT/s/so/som/some.site.com/a.html

3.9.3. string_host_tail
The strip_host_tail tunable strips off hostname components, starting at the end of the hostname.

If the value is set to 0, this tunable is disabled.

If the value is set to 1:

http://www.some.site.com/a.html => $DOCROOT/some.site/a.html

If the value is set to 2:

http://www.some.site.com/a.html => $DOCROOT/site/a.html

20 Chapter 3. Configuration

and so on...

3.10. Red Hat Content Accelerator as an FTP Server
Starting with version 2.0.21 of Red Hat Content Accelerator and version 2.4.2-U7 of the Red Hat
Content Accelerator patched kernel, Red Hat Content Accelerator can be configured to run as an
anonymous FTP server.

To use Red Hat Content Accelerator as an HTTP and FTP server at the same time, use the following
commands:

echo "http://0.0.0.0:80" > /proc/net/tux/0/listen/0
echo "ftp://0.0.0.0:21" > /proc/net/tux/0/listen/1

By default, the document root for the FTP server is the document root for the HTTP server set as
DOCROOT in /etc/sysconfig/tux or the value of /proc/sys/net/tux/documentroot.

To configure different document roots for the HTTP and FTP server, set the DOCROOT in
/etc/sysconfig/tux and execute the following commands:

Note

The http_subdocroot and ftp_subdocroot are relative to DOCROOT.

echo ’/www/’ > /proc/sys/net/tux/http_subdocroot
echo ’/ftproot/’ > /proc/sys/net/tux/ftp_subdocroot

Restart Red Hat Content Accelerator to apply the changes:

service tux restart

After executing these commands, the Red Hat Content Accelerator FTP server will be running on port
21.

To have it display directory listings, run the generatetuxlist script from the FTP docroot. This
script creates the files .TUX-LIST and .TUX-NLIST files that cache the directory listing. Everytime
the FTP docroot directory changes, the script must be re-run to generate an updated directory listing.

Note

The Red Hat Content Accelerator FTP server has been through numerous stresstests and FTP-client
compatibility tests. However, it is still early software. It has no known bugs or security holes at the
moment. It has not been tested with a wide number of FTP clients yet (only the most obvious ones).

3.10.1. Security Features
The following are security features of the Red Hat Content Accelerator FTP Server:

• Because Red Hat Content Accelerator does not start per-client processes, the memory allocation
overhead for each FTP client logged in is less than 10 KB. This allows thousands of parallel con-
nections.

Chapter 3. Configuration 21

• Paranoid parser and paranoid command-evaluation.

• Chroots to docroot.

• Never starts any external userspace process. All FTP functionality is done in a approximately 900
lines C module, in the kernel.

• Even in kernel mode the Red Hat Content Accelerator FTP Server drops all priviledges and switches
to uid and group nobody.

• Only the most trivial globbing (mget *) supported, and no recursion support.

22 Chapter 3. Configuration

Chapter 4.

Security

Red Hat Content Accelerator is designed to have very strict security. This is possible because the
assistant user-space daemons is used to handle the complex exceptions.

Red Hat Content Accelerator only serves a file if

1. The URL does not contain ?.

2. The URL does not start with /.

3. The URL points to a file that exists.

4. The file is world-readable. 1

5. The file is not a directory. 1

6. The file is not executable. 1

7. The file does not have the sticky-bit set. 1

8. The URL does not contain any forbidden substrings such as .. 1

1. Configurable through the sysctl parameters in /proc/sys/net/tux
1. Configurable through the sysctl parameters in /proc/sys/net/tux
1. Configurable through the sysctl parameters in /proc/sys/net/tux
1. Configurable through the sysctl parameters in /proc/sys/net/tux
1. Configurable through the sysctl parameters in /proc/sys/net/tux

24 Chapter 4. Security

Chapter 5.

User-space Loadable Modules

In addition to parts of Red Hat Content Accelerator running in kernel-space, user-loadable modules
can also be written for Red Hat Content Accelerator.

Note

The API for the user-loadable modules is currently under development. This section of the documen-
tation will be updated as the API becomes available.

User-space loadable modules are usually a single .c file and are compiled as a shared libraries as a
.so file. There can be an unlimited number of user-space HTTP modules, and they can be compiled
in a language of choice. They have full address space protection, can not crash the kernel, and are
unpriviledged.

A list of user-space loadable Red Hat Content Accelerator modules and their location must be speci-
fied with the TUXMODULES parameter in /etc/sysconfig/tux. Refer to Section 3.3 for details.

Starting with Red Hat Content Accelerator version 2.0.13 and kernel patch 2.4.2-P3, user-space load-
able modules do not require special permissions to be activated. Instead, the module is specified using
a common MIME type definition file. The user-space modules must end with the file extension .tux
or .x and specified with the TUXMODULES parameter in /etc/sysconfig/tux. The file must be
owned by root with root as the group and must be world-readable. It does not have to be executable.
For example, to use the demo.tux user-space loadable module, you might have the following file:

[root@m /]# ls -l /var/www/html/demo.tux
-rw-rw-r-- 1 root root 0 Sep 3 04:42 /var/www/html/demo.tux

If Red Hat Content Accelerator finds a URL object that has this MIME type, it searches the internal
list of modules defined as TUXMODULES in /etc/sysconfig/tux. If there is a match, Red Hat
Content Accelerator sends the request to the user-space loadable module.

For further information about writing a Red Hat Content Accelerator user-space loadable module, see
the file /usr/share/doc/tux- � version � /TUXAPI-user.txt.

26 Chapter 5. User-space Loadable Modules

Index

Symbols
/etc/rc.d/init.d/tux start, 16
/etc/rc.d/init.d/tux stop, 17
/etc/sysconfig/tux, 14
/etc/sysctl.tux, 9
/proc/sys/net/tux, 10
/var/log/tux, 7

B
Benefits, 5

C
Client Port, 9
Compressed Data, 9
compression, 9
Configuration, 9
Current Limitations, 6

D
Debugging Red Hat Content Accelerator, 17
Dynamic Content, 5

F
FTP Server, 20

Directory Listings, 20
Document Root, 20

G
gettuxconfig, 17
Gzip, 9

I
init script parameters, 14
Installation, 7
Installation Instructions, 7
IRQ Affinity, 16

L
Limitations, 6
Log Files, 7

M
MIME Types, 17
Modes, 9
Modules

User-loadable Modules, 25

P
Parameters, 10

List of Parameters, 10
Required Parameters, 15

Permissions, 23
Port, 9

R
Red Hat Content Accelerator 2.2

enhancements, 6

S
Scripts, 16
Security, 23
Server Port, 9
Starting Red Hat Content Accelerator, 16
Static Content, 5
Stopping Red Hat Content Accelerator, 17
sysctl, 23
System Requirements, 6

T
tux.mime.types, 17
tux2w3c, 7

V
virtual hosting, 18

W
What is Red Hat Content Accelerator?, 5

