

ETA: Experience with an Intel® XeonTM Processor as a Packet Processing Engine

Greg Regnier, Dave Minturn, Gary McAlpine, Vikram Saletore, Annie Foong
Intel Corporation

greg.j.regnier@intel.com

Abstract

The ETA project at Intel Research and Development
has developed a software prototype that uses one of the
Intel® XeonTM processors in a multi-processor server as a
packet processing engine. The prototype is used as a
vehicle for empirical measurement and analysis of a
highly programmable packet processing engine that is
closely tied to the server’s core CPU and memory
complex. The usage model for the prototype is the
acceleration of server TCP/IP networking.

The ETA prototype runs in an asymmetric
multiprocessing mode, in that the packet processing
engine does not run as a general computing resource for
the host operating system. We show an effective method of
interfacing the packet processing engine to the host
processors using efficient asynchronous queuing
mechanisms.

This paper describes the ETA software architecture,
the ETA prototype, and details the measurement and
analysis that has been performed to date. Test results
include running the packet processing engine in single-
threaded mode, as well as in multi-threaded mode using
Intel’s Hyper-Threading Technology (HT). Performance
data gathered for network throughput and host CPU
utilization show a significant improvement when
compared to the standard TCP/IP networking stack.

1. Introduction

The performance limitations of server-based
networking are well documented [1, 2]. A major goal of
the Embedded Transport Acceleration (ETA) project is to
enable high performance server communication and I/O
over standard Ethernet and TCP/IP networks. By doing
so, we hope to take advantage of the large knowledge base
and ubiquity of these standard technologies. With the
advent of 10 gigabit Ethernet, these standards promise to
provide the bandwidth required of the most demanding
server applications. In addition, by substantially
increasing the performance of server networks, we can
also enable standard high-volume servers to perform a

greater number of storage and communication-centric
applications that are commonly served by specialized
appliances.

We use the term Packet Processing Engine or PPE as a
generic term for computing and memory resources that are
used for communication-centric processing. There are
some desirable attributes for a packet processing engine
that we have tried to achieve. These include scalability,
extensibility and programmability.

A PPE must scale in terms of communication
throughput as well as in its ability to support large
numbers of sessions simultaneously. Extensibility is
desirable in order to add value to the solution over time in
terms of new features, protocols and applications.
Programmability is desirable in order for the solution to
be adaptable in the face of changing standards and in
order to modify its behavior in subtle but important ways.
These desired attributes tend to lead us to a solution where
the amount of processing and memory resources is not
artificially constrained.

Section 2 of this paper describes the base ETA
architecture, in particular the architecture of the software
that is instantiated on the prototype. Section 3 gives some
details about the prototype hardware and the testing
environment. Performance and analysis results are
presented in section 4 and 5. Section 6 outlines some
related work and section 7 summarizes and conclusions
are drawn.

2. The ETA Software Architecture

At a high level, the ETA architecture partitions the
server software between host and PPE processing
resources. The ‘host’ is where the general purpose
operating system and applications reside. The PPE is
where the communication-centric tasks, including network
protocol processing, are performed. The interface
between the host and the PPE is implemented as a set of
asynchronous queues in cache-coherent, shared host
memory. These queuing structures are used for control,
synchronization, and for receiving and transmitting data.

2.1. ETA Host Software

The ETA host software stack allows for multiple paths

between host applications and the PPE. Accelerated
networking paths are enabled for applications at both the
kernel and user levels as well as the non-accelerated path
through the operating system’s native TCP/IP and driver
stack. At both the kernel and user levels, there is a thin
layer of software, an adaptation layer that provides an
asynchronous programmatic interface to queuing
structures that form the interface between the host and the
PPE. In addition, legacy sockets applications are enabled
as well as new applications that are written directly to the
ETA specific interfaces. The high-level view of the ETA
host software stack is shown in Figure 1.

UDP TCP RAW

IP

OS Kernel Sockets Provider DTI
(User)

User
Kernel

ETA Direct User
Sockets Provider

ETA Kernel Sockets Provider

Packet Driver

Kernel Applications

ETA Kernel Adaptation Layer

ETA User Adaptation Layer

ETA Kernel Agent

OSV User Sockets Provider

Service Level Provider Switch

Kernel Sockets Provider Switch

User-level Sockets Applications & Services

ETA Packet Processing Engine

DTI
(Kernel)

Figure 1 – ETA Host Software Stack

2.2. ETA Host-Engine Interface

The interface between the host processors and the PPE
is accomplished through a set of queuing structures called
Direct Transport Interfaces or DTIs. DTIs are based on
the principles of the Virtual Interface Architecture [3] and
the InfinibandTM Architecture [7], but differ in that they
are optimized for IP networking semantics. In particular,
the DTI structures also support the TCP connection
commands in addition to data transmission and reception.
Anonymous buffer pools are provided in order to support
the buffering semantics of TCP streams. Figure 2 shows
the structure of the DTI queuing structures.

D
TI Send
Q

ueue

D
ata Buffers

D
ata Buffers

D
TI R

cv
Q

ueue Ev
en

t
Q

ue
ue

Direct Transport Interface

Parent DTI Child DTI Child DTI

Ev
en

t
Q

ue
ue

D
TI Send
Q

ueue

D
ata Buffers

D
ata Buffers

D
TI R

cv
Q

ueue

D
TI Send
Q

ueue

D
ata Buffers

D
ata Buffers

D
TI R

cv
Q

ueue

Doorbells

Doorbells

DTI Complex

D
TI Pool

Q
ueue

Figure 2 – DTI Queuing Structures

Each DTI may include a send queue, a receive queue,
an event queue, doorbells, and data buffers in an
associated buffer pool. Individual DTIs include all of
these elements. However, groups of DTIs for any given
server application can be created such that they share a
common event queue and set of doorbells and each child
DTI may include only send and receive queues and
associated data buffer pools. Parent DTIs are used to
listen on new TCP connections. When a new connection
is established and accepted, it associates a child DTI with
the new connection, thus a child DTI is associated with a
TCP session. The following describes the DTI elements:

• The send and receive queues are used to post send
and receive descriptors to the ETA packet
processing engine. The data can be transferred
directly to or from application buffers or the DTI
anonymous buffer pool.

• The event queue enables the ETA packet
processing engine to post event notices to the host
application. Each DTI can be created with a private
event queue or have its event notices directed to an
event queue shared by multiple DTIs.

• The DTI data buffers enable the ETA packet
processing engine to buffer data for the DTI, 1)
when the source or target application buffers are
not pre-conditioned, 2) when TCP segments are
received and there are no receive descriptors posted
on the receive queue, or 3) when TCP segments are
received out of order.

• The send and receive doorbell addresses are used to
write notices or signals directly to the ETA packet
processing engine and indicate a context with which
each is associated.

2.3. ETA Packet Processing Engine Software

The ETA architecture is largely independent of the
implementation of the packet processing engine. The PPE
implementation could be a fixed device, a specialized
programmable engine, or as in the case of the prototype, a
general purpose CPU. An ETA aware PPE needs to
support several specific functions.

First, the PPE must support the DTI queuing structures.
It must have the ability to be notified of new work posted
on the send and receive queues via the doorbell addresses.
In addition, the PPE must support the event queue and be
able to interrupt the host processors in the event that an
application is blocked waiting for a transaction to
complete.

The PPE also must be able to execute the actual packet
processing functions on behalf of the host, and must of
course support an interface to the network itself. In the
case of our prototype, the packet processing functions are
mainly the termination of TCP/IP connections on behalf
of server applications.

3. The ETA Prototype

The ETA prototype uses one of the Intel® XeonTM
Processors in a dual-processor server as the host processor
and one as the PPE. The main function of the PPE is the
establishment and termination of TCP/IP sessions on
behalf of applications running on the host CPU.

This configuration has several advantages. First and
foremost, there was no special hardware to develop.
Secondly, we could use standard software development
tools to develop the software for both the host side and the
PPE. We use standard gigabit Ethernet network cards
with a modified version of the Ethernet driver. Finally, we
can use shared, coherent memory in order to implement
the interfaces between the host CPU and the PPE.

3.1. Prototype Software Environment

We developed the prototype using a standard Linux
kernel version 2.4. The PPE software is a loadable Linux
module with a stripped down kernel TCP/IP stack, with
code added to support the DTI interfaces, and a modified
gigabit Ethernet driver. The PPE software module is
given affinity to one processor (CPU1) on the dual-
processor platform, and never yields the processor. This
enables CPU1 usage as a dedicated packet processing
engine.

Synchronization is a unique aspect of the PPE software
on the prototype. The interface to the network interface
controller has been modified so as not to use interrupts for
data transfer operations. Instead, the PPE can poll on NIC
descriptors in shared host memory in order to detect

completed packet transactions. Communication between
the host CPU and the PPE via the DTI structures are
accomplished through the DTI doorbells in shared host
memory as well. Thus, the PPE can poll the doorbell
addresses and NIC descriptors for synchronization without
causing memory bus traffic until the cache-lines of the
associated shared memory is modified. This allows the
PPE to run without interrupts and avoid the associated
overheads.

3.2. Prototype Hardware Platform

The prototype can run on virtually any multi-processor
platform that runs the Linux kernel. The platform used in
our testing is a dual-processor Intel® XeonTM Processor
platform. The processors run at 2.4 gigahertz on a 400
megahertz front-side bus. The Network Interface
Controllers are standard Intel Pro1000 gigabit Ethernet
controllers.

3.3. Prototype Test Environment

Our test environment consists of the server under test
(the ETA prototype server) and five client computers
connected directly by gigabit Ethernet links. The client
computers are standard off-the-shelf servers running the
Linux OS and the ttcp throughput micro-benchmark.

The tests running on the ETA prototype are kernel-
level applications that interface directly to the ETA kernel
abstraction layer. Figure 3 shows the basic test
environment.

ETA Packet
Processing Engine

Software

Gigabit NICs (5)

ETA Host Interface

Kernel
Test

Program

CPU 0
Host

CPU 1
PPE

Off-the-shelf
Linux Servers

Host
Memory Clients

Clients
ClientsClientsTest

Clients

Kernel
Abstraction Layer

Figure 3 – ETA Prototype Test Environment

4. Measurement Results

Basic throughput tests were performed on the ETA

prototype for transmit and receive for several transfer
sizes. The ETA test results are compared with a standard
Linux dual processor server running the ttcp throughput
micro-benchmark.

Figure 4 shows transmit performance along with the
amount of CPU that is idle and thus available for
application use. For transfers of 1024 bytes and less, both
CPUs of the standard Linux server were 100% utilized
executing the networking stack, thus leaving zero CPUs
left idle. For larger sized messages, 20% or less of one of
the CPUs was left idle.

For the ETA server, the host CPU was less than 20%
utilized across all transfer sizes leaving more than 80% of
one CPU idle and available. In addition, the ETA
transmit throughput considerably exceeded the standard
Linux server for all transfer sizes.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

256 512 1024 4096 65536

Transmit Size in Bytes

CP
Us

 A
va

ila
bl

e

0

0.5

1

1.5

2

2.5

3

Th
ro

ug
hp

ut
 in

 G
ig

ab
its

Linux Idle CPU ETA Idle CPU
Linux T'put ETA T'put

Figure 4 – Transmit Performance

Figure 5 shows throughput and available CPU for the
receive path. For all cases, both CPUs of the standard
Linux server were 100% utilized running the networking
stack, thus leaving zero CPUs left for other applications
(that is why the dark gray bars don’t show on the graph).
The Host CPU of the ETA prototype was less than 20%
utilized for all receive transaction sizes, leaving 80% of a
CPU idle and available. ETA receive throughput exceeds
the Linux server by a relatively small margin. This smaller
improvement is partly due to memory-to-memory copy
performance. Our ETA implementation uses a one-copy
receive path due to the fact that we use off-the-shelf
network interface controllers that place packets directly
into a pre-allocated packet buffer. These packet buffers
must then be copied to destination buffers by the PPE.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

256 512 1024 4096 65536

Receive Size in Bytes

CP
Us

 A
va

ila
bl

e

0

0.5

1

1.5

2

2.5

Th
ro

ug
hp

ut
 in

 G
ig

ab
its

Linux Idle CPU ETA Idle CPU
Linux Rate ETA Rate

Figure 5 – Receive Performance

Figure 6 compares the transmit performance of the

standard Linux server (2P SMP), the ETA prototype in
single-threaded mode (ETA ST), and the ETA prototype
with Intel’s Hyper-Threading Technology [5] enabled on
the packet processing engine (ETA HT). With HT
enabled, the PPE runs on two hardware threads and
provides a degree of parallelism, thus hiding the memory
latency which we have found to be a performance limiter
of TCP/IP processing on servers. The results show an
approximately 50% increase in transmit performance on
the ETA prototype with HT enabled, achieving over four
gigabits of throughput.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

256 512 1024 4096 65536

Transmit Size in bytes

G
ig

ab
its

/s

2P SMP ETA ST ETA HT

Figure 6 – Transmit Performance with HT

Figure 7 shows receive throughput for the standard
Linux server (2P SMP), the ETA prototype with the PPE
running in single-threaded mode (ETA ST) and the ETA
prototype with the PPE running with HT enabled (ETA
HT). In addition, we added a test path where we enabled
HT, but did not execute the data copy on the PPE (ETA
HT NoCopy). For receive, we see that enabling HT
improved the ETA performance about 20 percent. As

noted before, this relatively small improvement is partly
due to the copy performance on our prototype
implementation. When we omit the copy by the PPE into
the test application buffer, we see significant performance
increase, similar to the performance of the transmit case
(nearly four gigabits per second).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

256 512 1024 4096 65536

Receive Size in bytes

G
ig

ab
its

/s

2P SMP ETA ST ETA HT ETA HT NoCopy

Figure 7 – Receive Performance with HT

5. Analysis

To understand the differences in performance between
the SMP system and the ETA prototype, we used the
VTuneTM [11] performance analysis tool to profile their
execution. Figure 8 and 9 show a high-level execution
profile for the SMP and ETA systems respectively.

stack, 51.29

driver, 27.12

kernel, 18.26

app, 3.30

idle, 0.49

Figure 8 – Execution profile of SMP system

Each pie-chart contains the measured execution profile
for the 1KB transmit test-case. Each slice of a pie
represents the total amount of CPU that is being used for a
certain function, e.g. a value of 10 equates to 10%
utilization of 2 CPUs (or 20% usage of 1 CPU). To
explain the terms within the charts, the term ‘stack’

equates to execution attributed to TCP/IP processing;
‘driver’ equates to the driver for the Ethernet controller;
‘kernel’ equates to kernel execution other than TCP/IP;
and ‘app’ is the test application.

ETA stack,
39.5

ETA driver,
10.5host kernel,

3.0

host app, 7.5

idle, 39.3

Figure 9 – Execution profile of ETA system

The execution profiles for the two machines are quite
different. First, TCP/IP related processing on the SMP
system requires significantly more CPU utilization than on
the ETA prototype (51% vs. 39%). If we also assume that
much of the kernel slice on the SMP machine is executed
on behalf of the TCP/IP stack, the disparity is even larger.
Much of this difference can be attributed to the efficiency
of the interface between the test application and the
TCP/IP stack.

Another major difference in the comparison is the
efficiency of the drivers (27% vs. 10%). This efficiency
can largely be attributed to the fact that the ETA PPE does
not need to share resources with the OS and application,
and can poll the devices descriptor queues without
incurring an interrupt. This avoids not only costly
interrupt processing, but also reduces the number of
device register accesses required over the (relatively) slow
I/O bus. Additional and more detailed performance
analysis is required, and planned.

6. Related Work

Recent commercial efforts to increase server network

performance have centered on specialized TOE (TCP/IP
Offload Engine) devices [4, 8]. TOE devices generally
offload varying amounts of the TCP/IP protocol stack on a
device that attaches to the I/O subsystem of a server. TOE
devices generally utilize separate, specialized processing
and memory resources. The ETA prototype described in
this paper differs from these devices in that it utilizes
processing and memory resources of the server itself,
making the packet processing engine a first class citizen of
the core CPU and memory complex. The software is
partitioned in a manner that is much more efficient than in
standard symmetric multiprocessing systems.

Other related research efforts include the QPIP [9]
work at Berkeley that showed the effectiveness of
interfacing IP protocols implemented on an intelligent
network adapter using the Queue Pair model of the
InfinibandTM Architecture. The TCP Servers project [10]
at Rutgers University showed a framework where the
network processing could be partitioned onto a dedicated
node, processor or an intelligent adapter and interface to
the host applications through lightweight communication
mechanisms.

7. Conclusions

We can see from the results that software partitioning

can significantly increase the overall communication
performance of a standard multi-processor server.
Specifically, partitioning the packet processing onto a
dedicated set of compute resources allows for
optimizations that are otherwise not possible when time-
sharing the same compute resources with the OS and
applications. For example, our prototype PPE does not
need to incur the overhead of interrupts and system calls
because it can poll shared memory for new work. Polling
can be done without placing load on the memory
subsystem or front-side bus of the platform because we
can rely on the cache coherence protocols to allow the
PPE to poll internally in cache. Memory load is only
incurred when the associated memory location is updated
by either a network device or one of the host processors.
Cache interference is also largely avoided because we are
not sharing caches with the OS and applications except
through the ETA host interface. Other optimizations are
possible, such as strategic pre-fetching of control and
packet header information.

We have seen that threading, Intel’s Hyper-Threading
Technology in particular for our prototype, is an important
factor in achieving greater performance. Multi-threading
allows parallelism that is useful for hiding memory
latency. Networking workloads tend to have poor locality
and thus poor cache behavior. For example, when a
device receives a new packet, it never lands in the cache
so that when it is referenced by the PPE, significant
memory latency is incurred. Given the growing disparity
between processor speeds and memory latency, multi-
threading becomes more important over time.

This paper has shown the capabilities of a general
purpose Intel® XeonTM Processor for server-based packet
processing. Specialized packet processors with support for
specific networking functions have the potential for
providing even greater absolute performance [6]. The type
of processing and memory resources that are used for
packet processing involve a set of trade-offs that include
absolute performance, flexibility, extensibility and cost.

The ETA host-PPE interface allows for low-overhead,
asynchronous interaction between the host processors and
the packet processing engine. The DTI queuing structures
presented in this paper are built on proven concepts [3, 7],
and extend those concepts for an optimized solution for
IP-based networks.

We have plans for additional ETA development and
analysis along multiple vectors. We currently are
performing analysis on the capabilities of our PPE to
accelerate TCP connection establishment. This capability
is important for web servers that have to deal with a great
number of short-lived connections. We also are in process
of developing and analyzing an iSCSI storage stack over
ETA and are investigating techniques to minimize data
copies through the use of the DDP and RDMA protocols
that are currently under definition. Additionally, we are
working to enable legacy user-level sockets applications
on ETA that once complete will allow us to run and
analyze a large number of network applications.

8. References

[1] J. Kay and J. Pasquale, “The Importance of Non-Data
Touching Processing Overheads in TCP/IP”, In
Proceedings of ACM SIGCOMM, 1993.

[2] Annie Foong, Thomas Huff, Jaidev Patwardhan, and
Greg Regnier, “TCP Performance Re-Visited”, 2003
IEEE International Symposium on Performance Analysis
of Systems and Software, Austin, Texas, March 2003.

[3] Don Cameron and Greg Regnier, The Virtual Interface
Architecture, Intel Press, 2002.

[4] L. Gwennap, “Count on TCP offload engines”,
EETimes article at: http://www.eetimes.com/semi
/c/ip/OEG20010917S0051.

[5] W. Magro, P. Peterson, and S. Shah, “Hyper-
Threading Technology: Impact on Compute-Intensive
Workloads”, Intel Technology Journal, Feb 2002.

[6] Y. Hoskote, V. Erraguntla, D. Finan, J. Howard, D.
Vangal, V. Veeramachaneni, H. Wilson, J. Xu, N. Borkar,
“A 10GHz TCP offload accelerator for 10Gbps Ethernet
in 90nm dual-VT CMOS”, IEEE International Solid-State
Circuits Conference, 2003.

[7] InfinibandTM Trade Association,
http://www.infinibandta.org.

[8] Prasenjit Sarkar, Sandeep Uttamchandani and
Kaladhar Voruganti, “Storage over IP: When Does

http://www.eetimes.com/semi /c/ip/OEG20010917S0051
http://www.eetimes.com/semi /c/ip/OEG20010917S0051
http://www.infinibandta.org/

Hardware Support Help?”, 2nd USENIX Conference on
File and Storage Technologies, March 2003.

[9] P. Buonadonna, D. Culler, “Queue-Pair IP: A Hybrid
Architecture for System Area Networks”, Proceedings of
ISCA 2002, Anchorage, AK, May, 2002.

[10] M. Rangarajan, A. Bohra, K. Banerjee, E. Carrera, R.
Bianchini, L. Iftode and W. Zwaenepoel, “TCP Servers:
Offloading TCP Processing in Internet Servers”, Rutgers
University Technical Report, DCS-TR-481, March 2002.

[11] VTuneTM Performance Analyzer,
http://www.intel.com/software/products/vtune/vpa/index.h
tm.

Disclaimer

INFORMATION IN THIS DOCUMENT IS
PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

