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In this paper, we describe the design, implementation and evaluation of a new framework for the trace-
based evaluation of 802.11n networks, which we call T-SIMn. In order to accurately estimate the fate
of frames that could have been sent at any rate, traces collected for use in trace-based simulators, like
T-SIMn, require a sufficiently large number of samples to be collected using each different rate in a rel-
Performance evaluation atively short period of time. In this paper, we devise two novel techniques for collecting and processing
802.11 traces for 802.11n networks that incorporate Frame Aggregation (FA). The first technique, called direct
WiFi measurement, samples all rates while aggregating the maximum number of possible frames for each
Trace collection sample. This approach is attractive because frame error rates (FERs) may vary with the position of the
frame within the aggregated frame and this techniques directly captures the fate of each subframe. How-
ever, the length of the aggregated frames limits this approach to smaller numbers of rates, making it
unusable for devices with 3 antennas (e.g., 96 rates). As a result, we also devise second technique that
collects traces with frame aggregation turned off, permitting a larger number of rates to be sampled
within the same period of time. This approach, called inferred measurement, infers the FER of each sub-
frame using models derived from calibration traces combined with a new measure of changing channel
conditions we call the channel dynamic indicator (CDI). Using the direct measurement methodology, we
evaluate the T-SIMn framework by collecting traces using an iPhone, which is representative of a wide
variety of one antenna devices. We show that our framework can be used to accurately simulate sev-
eral scenarios and demonstrate the fidelity of SIMn by uncovering problems with our initial evaluation
methodology. We then demonstrate that our inferred measurement technique permits us to collect traces
that sample all 96 rates in a 3x3:3 802.11n MIMO systems. These traces are then used to accurately sim-
ulate transmissions in environments with highly variable channel conditions that include mobility and
multiple sources of interference.

We expect that the T-SIMn framework will be suitable for easily and fairly comparing algorithms that
must be optimized for different and varying 802.11n channel conditions, which are challenging to evalu-
ate experimentally. These include rate adaptation, frame aggregation and channel bandwidth adaptation
algorithms.
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1. Introduction

With billions of WiFi devices now in use, combined with the
rising popularity of high-bandwidth applications such as stream-
ing video, demands on WiFi networks continue to rise. The 802.11n
standard introduced several new physical layer features including
MIMO, 40 MHz channels, denser modulations, and a shorter guard
interval, to increase throughput. We refer to the combination of
features as a rate configuration. Combinations of these features re-
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sults in up to 128 different rate configurations. In order to opti-
mize throughput in an 802.11n network, we must choose the rate
configuration that results in the best trade-off between physical
layer transmission rates and error rates, which is highly depen-
dent on environmental conditions. Because the radio spectrums
are shared by WiFi devices included in computers, cell phones
and tablets; as well as Bluetooth devices, wireless keyboards/mice,
cordless phones, and microwave ovens, it is challenging to experi-
mentally evaluate and compare the performance of WiFi networks.
Therefore, we need new techniques for understanding and evalu-
ating how to best use 802.11n features.

Previously, we proposed a solution [1] that uses traces to cap-
ture environmental conditions, rather than models, to simulate
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Fig. 1. FA: Maximum theoretical throughput.

802.11g networks with high fidelity. We expected that extend-
ing this solution to 802.11n networks would be relatively simple.
However, it turned out that this is actually a very interesting and
challenging problem, due to MAC layer frame aggregation (FA) in
802.11n. The complications introduced by frame aggregation re-
quired a complete redesign of major components of our trace-
based simulator. While the faster transmission rates are an im-
portant factor in the throughput gains afforded by 802.11n, it is
only when they are used in combination with frame aggregation
that 802.11n networks achieve significant increases in throughput
when compared with 802.11g. Frame Aggregation (FA) allows mul-
tiple MAC layer frames to be combined into a large physical layer
frame so that they can be transmitted and acknowledged as one
aggregated frame, which results in the channel being used more
efficiently.

To demonstrate the importance of FA, Fig. 1 shows the max-
imum theoretical throughput obtained using the highest physical
layer transmission rate in 802.11n for one, two and three spa-
tial streams, respectively. Without frame aggregation throughput is
limited to about 50 Mbps. However, when aggregating 32 frames,
throughput increases to 350 Mbps.

Because performance is so heavily dependent on FA, accurate
simulation of FA is crucial for T-SIMn to be useful in the study of a
range of active research topics. This includes the evaluation of: link
adaptation algorithms [2] (which studies physical layer configura-
tions such as rate adaptation [3,4| and channel bandwidth adapta-
tion [5,6]) and frame aggregation algorithms [7,8]. We refer to link
adaptation and frame aggregation algorithms collectively as opti-
mization algorithms.

The contributions of this paper are:

« We design, implement and evaluate a trace-based simulation
framework (T-SIMn) for realistic and repeatable performance
evaluations of 802.11n networks.

We design and evaluate a trace collection methodology (called
direct measurement), which is simple and easy to use but suit-
able only for devices with a smaller number of transmission
rates (e.g., the vast majority of cellphones and tablets that have
only one antenna). Using an iPhone as the receiving device we
show that collecting traces using direct measurement combined
with our prototype implementation of T-SIMn produce highly
accurate simulation results.

We design and evaluate a trace collection methodology (called
indirect measurement), which is more complex to use but is
suitable for devices with many more transmission rates (e.g.,
some desktop systems with three antennas supporting 96
rates). We demonstrate that indirect measurement can be com-
bined with T-SIMn to obtain highly accurate simulations of a
device with 96 rates.

While designing the indirect measurement methodology we de-
veloped a new technique for estimating the frame error rate of
subframes within an aggregated frame that takes into account
channel dynamics. We first show that changes in the Received
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Fig. 2. Rate notation.

Signal Strength Indicator (RSSI) of ACKs can be used to infer the
channel dynamics which in conjunction with the delivery ratio
of the first MAC Protocol DATA Unit (MPDU) can be used to ac-
curately estimate the fate of other subframes in an aggregated
MPDU (A-MPDU). We then develop a model that can be used
with the T-SIMn simulator and demonstrate that the model is
accurate.

The paper begins by providing some necessary background and
describing related work in Section 2. We then present an overview
of the T-SIMn framework in Section 3, followed by a description
of the test bed used in this study (in Section 4). In Section 5, we
describe the components of the T-SIMn framework and evaluate
the accuracy of these components. We then evaluate the frame-
work as a whole in Section 6, by utilizing traces collected using an
iPhone and the direct measurement methodology. In Section 7, we
investigate the limitations of the direct measurement methodol-
ogy when used with devices that support many transmission rates.
In Section 8, we propose and evaluate the inferred measurement
methodology which is designed to be used in situations where the
direct trace collection technique is unable to sample enough rates
within the required period of time. Finally, conclusions are pre-
sented in Section 9.

2. Background and related work
2.1. Rate configurations

In 802.11g, a transmission rate can be uniquely identified by
the index of the Modulation and Coding Scheme (MCS). This in-
dex alone is no longer sufficient to uniquely identify an 802.11n
rate, as the transmission rate is now also dependent on the num-
ber of Spatial Streams (SSs), the Guard Interval (GI) and the Chan-
nel Bandwidth (CB). We refer to this set of parameters as a rate
configuration. In the interest of brevity, Fig. 2 introduces notation
used for describing a rate configuration (sometimes simply referred
to as a rate).

The first two characters represent the number of spatial
streams (in the example 2S stands for two spatial streams). The
next two characters represent the MCS index (I6 means index 6).
This is followed by information about whether a Long Guard In-
terval (LGI) or Short Guard Interval (SGI) are being used (in the
example LG means and LGI is used). The next three characters de-
scribe whether the channel bandwidth is 20 or 40 MHz (20 MHz
in the example). Finally the number after the equal sign indicates
the resulting physical rate (104 Mbps in the example).

2.2. 802.11N frame aggregation

Frame aggregation (FA) is a new MAC layer feature in 802.11n
that allows multiple frames to be combined to form a larger frame.
The 802.11n standard defines two types of frame aggregation: Ag-
gregated MAC Protocol DATA Unit (A-MPDU) and Aggregated MAC
Service DATA Unit (A-MSDU). These two types of frame aggregation
differ by where in the protocol stack aggregation is done. In this
paper, we use A-MPDU frame aggregation as it is more widely sup-
ported by WiFi devices, including the Atheros devices used in this
paper.
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By sending multiple MPDUs! as an A-MPDU, the sender only
performs channel sensing, backoff, Distributed Inter-Frame Space
(DIFS), Short Inter-Frame Space (SIFS) and wait for an ACK once
for the entire set of MPDUs. This results in a greater proportion
of time being spent transmitting data, increasing the air time ef-
ficiency. The receiver sends back a Block ACK which acknowledges
all MPDUs at once. In this work, we use MPDU and subframe in-
terchangeably.

2.3. Related work

Conducting experiments is a common technique for evaluating
the performance of WiFi networks. The advantage of this approach
is that real-world wireless channel conditions are captured. How-
ever, it is challenging to conduct repeatable experiments [9] be-
cause channel conditions can vary significantly between trials due
to many factors, including mobility, changes in the environment
(including the movement of people who are nearby), and the pres-
ence of WiFi and non-WiFi interferers [10].

Simulation is a common technique for evaluating the perfor-
mance of 802.11 networks. Since both the physical and MAC layers
are simulated in this approach, comparisons are repeatable. Popu-
lar 802.11 network simulators include ns-3 [11], OMNeT++ [12],
OPNET Modeler [13] (renamed, Riverbed Modeler) and Qual-
Net [14]. Unfortunately, these simulators may not reflect real-world
performance due to the challenging nature of simulating wire-
less signals in the physical environment. WiFi signals are impacted
by many factors, including the distance between devices, material
types of surrounding objects and walls, wavelength, mobility and
many more [15]. These simulators utilize models for signal prop-
agation, error rates and interference and each model must trade-
off computational complexity and accuracy [15]. Additionally, the
complexity and time varying nature of all of the factors that can
affect a frame’s fate makes it incredibly challenging to obtain accu-
rate results, especially since models of one environment (e.g., one
home) may not necessarily work in another environment (e.g., an
office or even a different home). In the case of environments with
mobility, this model may change over time. As a result existing
simulators suffer from practical limitations For instance, OMNeT+-+
does not support multi-path signal propagation [16], which is an
important prerequisite for simulating MIMO transmissions. There
is also no support for MIMO in ns-3. Rather than simulating the
physical layer, we collect traces to capture the impact of the phys-
ical layer on frame fates, allowing us to handle more complex sce-
narios than can be accurately modeled by traditional simulators.

Emulation is another alternative for evaluating and studying
802.11 networks. The most common approach is to use real WiFi
devices connected by wire to a Field- Programmable Gate Array
(FPGA) that simulates signal propagation [17]. An emulation test
bed by Judd and Steenkiste [18] is one of the most prominent ex-
amples of this type of system. As real devices are used, the MAC
and parts of the physical layer are not simulated. However, signal
propagation is simulated using the FPGA to alter the signals being
transmitted between devices. The major disadvantage of this ap-
proach is that realism is again limited by the models used to sim-
ulate the physical layer.

To increase the realism of emulators, hybrid approaches using
traces to simulate the physical layer and emulation for the MAC
layer have also been proposed [18,19], however these have been
limited to 802.11b networks and rely on measurements of Signal-
to-Noise Ratio (SNR) to simulate the physical layer. However, the
SNR can not be used to accurately predict frame fates [20]. Instead,
we rely on traces to directly capture the impact of the physical

1 MAC header + MAC payload (IP packet).

layer on frame fates and simulate the well-defined MAC layer. This
provides an excellent combination of repeatability and fidelity.

T-RATE [1] is our trace-driven framework for evaluating Rate
Adaptation Algorithms (RAAs) designed for 802.11g networks. T-
RATE eschews the modeling and emulation of wireless channel
conditions in favor of traces that capture channel access and chan-
nel error rate information. These traces are used to simulate RAAs
using channel conditions limited only by the environment in which
traces are collected. Despite the high fidelity of T-RATE, it is lim-
ited to the evaluation of RAAs in 802.11g networks. In this paper,
we design and evaluate T-SIMn, a more general framework for the
trace-based evaluation of 802.11n networks. The most prominent
and challenging contribution in T-SIMn is the accurate handling of
frame aggregation.

3. The T-SIMn framework

The main goal of T-SIMn is to achieve repeatability and re-
alism when evaluating the performance of 802.11n networks. To
achieve this goal, T-SIMn records all channel conditions that affect
throughput in a trace and then uses this trace to simulate different
802.11n optimization algorithms such as link adaptation and frame
aggregation. As a result, T-SIM can be used to achieve repeatabil-
ity by using an identical trace to evaluate different algorithms. In
addition, it achieves realism since T-SIMn relies on traces that are
subject to and include information related to actual channel condi-
tions rather than using wireless channel models, which are known to
lack realism [21,22].

To simulate 802.11n networks with high fidelity, we need to ac-
curately compute the transmission time of a frame and consider
all factors that can affect throughput. Computing the transmission
time for a frame is a relatively easy task and is done very accu-
rately in our simulator by using timing information available in the
802.11n standard (Section 5.2 provides more details). Environmen-
tal factors may affect 802.11 channel access (i.e., CSMA/CA) and
channel error rate. If a WiFi or non-WiFi device operating at the
same frequency is active during channel sensing, it forces a sender
device to back off and therefore limits the number of frames that
can be sent. If WiFi or non-WiFi devices interfere with the receiver
device, the channel error rate may increase. In T-SIMn, to accu-
rately simulate the time required for frame transmission we need
to determine: the delay (overhead) imposed by channel sensing
(i.e., CSMA/CA), how long it takes to transmit a frame (including
ACK reception and DCF mandatory wait times), and whether or not
the transmitted frame is received correctly.

T-SIMn uses two phases to simulate 802.11n. The first phase is
trace collection, where a log containing the data necessary for ac-
curately simulating an 802.11n experiment is collected. The second
phase is simulation, where the trace is used to determine frame
fates, transmission delays and throughput. We now explain these
two phases.

3.1. Trace collection

The purpose of trace collection is to capture channel access and
channel error rate information (i.e., a trace), for each 802.11n rate
configuration. To enable the simulation of any link adaptation and
frame aggregation algorithm at time t, T-SIMn must be able to sim-
ulate the transmission of an A-MPDU of any length sent with any
chosen rate configuration. This requirement makes trace collection
challenging, since at time t, only one particular rate configuration
with a specific A-MPDU length can be transmitted. Therefore, no
information is available at that time concerning the other combi-
nations of rate configuration and frame lengths.

To address this problem we have designed two trace collec-
tion techniques that sample all rate configurations in a round
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robin fashion. The direct measurement methodology is suitable
for studies using devices that support a limited number of trans-
mission rates such as one antenna devices (e.g., many cellphones
and tablets). We believe that the direct measurement will be used
when possible due to its simplicity. However, for 802.11n devices
with a larger number of transmission rates, we design a method-
ology called inferred measurement. We now explain the common
characteristics of both methods and the details of the direct mea-
surement methodology. A detailed description of the inferred mea-
surement methodology is presented in Section 8.

With both trace collection techniques, we modify the device
driver so that the rate adaptation algorithm, instead of trying to
choose the best rate, cycles through all of the rates supported by
the device in a round-robin fashion for the duration of the trace
collection. After a frame is transmitted, the sender switches to the
next rate; wrapping back around after all rates have been sampled.
If we sample all rate configurations within the time a channel is
considered stationary (i.e., the channel coherence time), all config-
urations experience the same channel conditions. During simula-
tion, to obtain the error rate of a rate configuration at time t, we
compute an average error rate for that configuration over a time
window centered at t.

If the error rates of the MPDUs within an aggregated frame are
identical, we could disable frame aggregation during trace collec-
tion and simulate aggregated frames of any size, by simply apply-
ing the error rate of (non-aggregated) collected frames to all MP-
DUs in an A-MPDU. However, a recent study [7] shows that the
frame error rate of the MPDUs within an A-MPDU are not identi-
cal. More specifically, they show that the frame error rate of early
MPDUs (i.e., closer to the physical header) are lower than MPDUs
that appear latter in the A-MPDU. Although we confirm that in-
dividual MPDUs have different error rates, we find patterns other
than the increasing error rate pattern (observed in [7]). We discuss
these findings in greater detail in Section 5.4.1. Note that this prob-
lem was not an issue in our 802.11g framework since 802.11g does
not support frame aggregation. One might imagine that a solution
would be, during trace collection, to attempt to sample all com-
binations of A-MPDUs from length 1 (i.e., no frame aggregation)
to the maximum number of MPDUs allowed in an A-MPDU. Since
this procedure would be required for all rate configurations, it be-
comes impossible to sample all combinations in a sufficiently short
period of time (i.e., within the channel coherence window). As a re-
sult, the direct measurement methodology infers the fate of MPDUs in
an A-MPDU from a longer A-MPDU. Therefore, during trace collection,
we only need to sample the longest possible A-MPDU for each rate
configuration and infer the FERs of any shorter A-MPDU for that rate
from the longer A-MPDU.

In both methodologies, in order to record the delay imposed
by channel access (CSMA/CA), we use Cycle Counter Information
(CCI) reported by a modified ath9k driver as explained in detail
in Section 5.3. These counters help us infer the delay caused by
WiFi and non-WiFi devices when performing channel sensing. We
modify the ath9k driver to print a log entry after each aggregated
frame (A-MPDU) transmission has completed, which includes the
fate of each MPDU and the CCIL. It may be possible to use other
WiFi devices for trace collection. However, we chose the Atheros
AR9380 chipset because of the availability of the source code and
its support for CCI. Our trace collection requires the modification of
the rate adaptation algorithm and, as will be required in Section 7,
the frame aggregation algorithm.

3.2. Simulation
The trace processing phase uses a trace to simulate different

optimization algorithms. The simulator component of our frame-
work (called SIMn) performs a time based simulation using a trace,

where the sender saturates the link to the receiver by sending as
many aggregated frames as possible.

Figs. 3 illustrates the work flow of SIMn. Solid lines represent
the execution flow of the simulator, with the direction being indi-
cated by a closed (i.e., filled) arrow. Dashed lines indicate the flow
of data, with the recipient of the data being indicated with an open
arrow. As depicted in Fig. 3, a simulation in SIMn proceeds using
an event loop, starting at time t = 0, that performs the following
steps:

1. Check the collected trace for unprocessed WiFi delays that oc-
curred before time t. If WiFi delays exist, t is incremented by
the duration of the delay. This is repeated until all WiFi delays
that have occurred before t have been processed.

2. Determine any non-WiFi delays that occur at time ¢ and incre-
ment ¢t by the duration of the delay.

3. If there are fewer than two aggregate frames (one in transmis-
sion and one queued), create an aggregate frame and add it to
the queue.

4. Compute the time to transmit the A-MPDU.

5. Determine the fate of each subframe i in the aggregate frame
using the Subframe Index Error Rate (SFIER) at time t, rate r and
index i. SFIERs are discussed in detail in Section 5.4.1. Failed
subframes are rescheduled for retransmission if the retry limit
has not been exceeded.

This process repeats until the simulation time is equal to the
duration of the collected trace. To create an aggregated frame we
first compute the maximum allowed size of the aggregated frame
(detailed in Section 5.2.2). Then MPDUs are added to an A-MPDU
in a loop until the maximum size is reached. The MPDUs are either
new frames arriving from an application or failed MPDUs that are
waiting for retransmission. Rescheduled frames are given priority
when forming aggregate frames.

To determine the fate of a subframe with index i that needs
to be sent at simulated time t with rate configuration r, T-SIMn
considers all samples for the rate r and subframe index i in the
averaging window (t — window_size/2) ms to (t + window_size/2)
ms, from the collected trace. The averaging window should be less
than the channel coherence time for the environment so that chan-
nel conditions are relatively constant with respect to the frames
being used to determine the fate of frames at time t. Channel co-
herence time depends on many factors (e.g., the speed of move-
ment and channel frequency). In indoor environments at walking
speeds channel coherence time is reported to be approximately
200 ms for the 2.4 GHz band [23] and 100 ms for the 5 GHz
band [24]. Because all experiments in this paper use the 5 GHz
band, we use an averaging window of 200 ms (i.e., t — 100 ms to
t + 100 ms), which corresponds to a 100 ms coherence time. Our
evaluation in Section 6 shows that an averaging window of 200 ms
produces accurate results in our mobile environment at walking
speeds, when performing round-robin trace collection with 1 an-
tenna. However, this parameter can be easily tailored to the envi-
ronment.

3.3. Frame aggregation notation

To concisely describe limits on the length of an aggregated
frame (i.e., the number of subframes) for a particular rate configu-
ration, we introduce the notation:

FA(SIM | o™ maximum number of aggregated subframes

For example, FAsy=16 means that the simulator is allowed to
aggregate a maximum of 16 subframes (we omit rate configura-
tion information; it is not needed for our purposes). The number
of subframes in a specific aggregated frame may be further limited
by the Block-Ack window discussed in detail in Section 5.2.2. Sim-
ilarly, FAcgr=32 means that the driver was limited to aggregat-
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Fig. 3. T-SIMn simulation flowchart.

ing a maximum of 32 subframes during trace collection. We use the
notation FAsyy=MAX and FA¢g,=MAX to mean that we impose no
restrictions, beyond those in the 802.11n standard and the ath9k
driver (i.e., 32 MPDUs), on the aggregated frame length during
simulation and trace collection, respectively. Lastly, FAsty=FAcqL
means the limits on the aggregated frame are the same during
simulation and trace collection.

4. Test bed

Our test bed is located in cubicles in a large room, as well as
some separate offices on a university campus. Fig. 4 shows the
floor plan for the cubicles and offices. Four cubicles are located
in the area near the labels (AP) and (C) and four are located be-
tween the two grey bars (which indicate paneled dividers between
the two sets of cubicles). The five smaller rooms are two person
offices and the larger room at the top right is a meeting room.
Our WiFidevices include two desktop computers housing identical
TP-Link TL-WDN4800 PCle cards, an Apple MacBook Pro-(Retina,
15-inch, Mid 2012), an Apple iPhone 6, and a laptop configured

't

Fig. 4. Floor plan of the test bed environment.

Hallway

to use a TP-Link TL-WDN4200 dual-band wireless N USB adapter.
The TP-Link cards use an Atheros AR9380 chipset, while the Mac-
Book and iPhone use Broadcom BCM4331 and BCM4339, respec-
tively. The USB adapter contains an Ralink RT3573 chipset and uses
the rt2800usb (Ralink) device driver. Although all devices are dual-
band (2.4 and 5 GHz), several experiments are conducted using the
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5 GHz band because the Apple devices used in these experiments
do not support 40 MHz channel bandwidths in the 2.4 GHz spec-
trum. Except for the iPhone 6, which contains only one antenna
(i.e., 32 transmission rates), all devices contain three antennas sup-
porting three spatial streams in a 3x3:3 MIMO configuration with
96 transmission rates.

We create an 802.11n Access Point (AP), shown as (AP) in Fig. 4,
using hostapd and collect traces while that system sends frames
using our modified ath9k driver. Although the AP could be used
as the sender or the receiver, we use the computer designated as
the AP as the sender in all experiments. The major advantage of
this approach is that there are fewer requirements imposed on
the receiver, which does not need to be capable of creating an AP.
In addition, the receiver does not need to use a modified ath9k
driver and, as a result, can be any 802.11n-capable device that runs
Iperf3; this includes a wide variety of devices, even an iPhone. We
create a network between the AP (sender) and a client, which acts
as a receiver. To collect a trace the sender saturates the link by
sending as many 1,470 byte UDP frames as possible using Iperf3.
Unless otherwise noted, we aggregate the maximum number of
subframes (i.e., FAcor=MAX).

We use the second desktop as a receiver, shown as © in Fig. 4,
in the stationary experiments. It is located less than 1 meter from
the AP with line of sight so we can collect error-free traces needed
for some experiments. The MacBook, iPhone, and the USB adapter
are used for mobile experiments. When it is necessary to minimize
the amount of uncontrolled WiFi interference, we use channels in
the 5 GHz band that are unused by other APs in the vicinity. We
monitor all channels for interference using an AirMagnet Spectrum
XT spectrum analyzer. For generating controlled non-WiFi interfer-
ence we use an RF Explorer Handheld Signal Generator (RFE6GEN)
that we control programmatically using a USB connection.

5. T-SIMn Details and evaluation
5.1. Experimental methodologies

To evaluate the simulator component of the T-SIMn we use
a technique that minimizes our reliance on the trace collection
methodology. We conduct an experiment using a constant rate
configuration, which produces a constant rate configuration trace
(i.e., the trace collection is also an experiment). We then use SIMn
to simulate a constant rate configuration experiment (for the same
rate configuration) using the collected trace. Because the simu-
lated experiment uses the same rate configuration as the con-
ducted experiment, simulated throughput should match through-
put obtained during the conducted experiment if the simulator is
accurate. There are two major advantages to this methodology: (1)
It does not require experiments to be repeatable since the experi-
ment produces a trace that is used by SIMn to simulate an exper-
iment with exactly the same conditions and environment as the
conducted experiment (i.e., the conducted experiment is trace col-
lection). (2) Constant rate traces provide many samples in each av-
eraging window, which allows us to study the accuracy of SIMn
without being limited by the collected trace.

Together these properties allow us to expect, and check for,
close matches between experimental and simulated throughput
when evaluating SIMn. Recall that the simulation is not simply a
trace playback as discussed in Section 3.2. Our plots include 95%
confidence intervals and we consider a match to be obtained if we
have overlapping confidence intervals for experimental and sim-
ulated throughput over each window of time. Note that in some
plots the confidence intervals are so tight that they may not be
visible. In this section, all experiments are conducted on channels
free of any uncontrolled inference.
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5.2. Computing transmission duration

Determining the time spent transmitting a frame depends on
the combination of physical layer features being used (i.e., the
rate configuration) and, at the MAC layer, the number of frames
and method used for frame aggregation. We now describe relevant
simulator details and evaluate the fidelity of the simulator with re-
spect to these 802.11n features.

5.2.1. Physical layer features

The 802.11n protocol introduces many new physical layer fea-
tures, namely Multiple Spatial Streams (SSs), Short Guard Intervals
(SGIs), Channel Bonding and Dual-Band support. Despite being nu-
merous, these features are relatively simple to simulate because
how they influence the transmission time is either specified in or
can be easily determined from the 802.11n standard. We now eval-
uate SIMn’s ability to accurately replicate the timings, and conse-
quently the throughput, of these 802.11n physical layer features.

Experiment Setup and Description: We create a net-
work between the Access Point (AP) (sender) and the desk-
top client (receiver). We use the stationary client because it
can reliably obtain error-free traces due to its close proxim-
ity and line of sight. We collect 100 second traces for the
rate configurations 1S-I4-LG-20M=39, 1S-I4-SG-40M=90,
2S-14-SG-40M=180 and 3S-I4-SG-40M=270. We choose
these rate configurations because they cover both long and short
Guard Intervals (Gls); 20 and 40 MHz Channel Bandwidths (CBs);
as well as one, two and three spatial streams. A Modulation and
Coding Scheme Index (MCS index) of 4 is chosen because it is the
highest index with which we could reliably obtain error-free traces.
We use highest rates possible because discrepancies between ex-
perimental and simulated throughput are more likely to be seen
at high rates than low rates. In this experiment, we aggregate as
many MPDUs as possible during trace collection and simulation.

Experiment Results: In Fig. 5, we plot pairs of throughput mea-
surements, simulated and experimental, for each of the collected
rate configurations. For all four rates, the simulated throughput
tightly matches the experimental throughput. This suggests that
SIMn accurately handles rate configurations using different phys-
ical layer transmission features. In other words, SIMn accurately
calculates the transmission time of a frame (including ACK and DCF
timing) for the combinations of the physical layer features shown.
Note that we have tested other combinations (not included here)
to confirm that the simulator matches the expected experimental
throughput.

5.2.2. MAC Layer features
To understand how to simulate frame aggregation, we first de-
scribe the factors that affect the length of an A-MPDU:

(a) There is an air time limit of 4 ms in the 5 GHz ISM band
that prevents a single device from monopolizing the channel.
This limit means that when using slower rate configurations
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(i.e., lower Physical Layer Data Rates (PLDRs)), aggregated frame
length is limited to the number of frames that can be transmit-
ted in 4 ms. The ath9k driver applies the same restriction for
the 2.4 GHz band.

(b) The Block-Ack Window (BAW) also plays a major role in the
length of aggregated frames, as the sequence numbers of sub-
frames can be offset by at most 64 from the starting sequence
number in the BAW.

(c) There is a 64 KB limit on the size of the 802.11 PLCP. For exam-
ple, if using 1,500 byte frames, a maximum of 43 frames may
be aggregated.

(d) Implementation specific requirements may also limit the length
of aggregated frames. For instance, although this is not dictated
by the 802.11n standard, the ath9k driver used in this paper
imposes a limit of 32 subframes in an aggregate frame. This
is done so that another aggregated frame can be constructed
and queued while the previous frame is being transmitted. A
limit of 32 MPDUs in each A-MPDU means that two aggregated
frames can be created within the 64-bit BAW, one in transmis-
sion and one queued.

(e) Management frames must be transmitted as individual frames.
When a time sensitive management frame, such as a bea-
con frame, is queued the ath9k driver will stop aggregating
subsequent frames. This allows the management frame to be-
gin transmission sooner than if a long aggregated frame were
ahead of it in the transmission queue.

Determining the time spent transmitting the frame will depend
on the number of frames that have been aggregated and the time
required to transmit those subframes, which can be determined
from the 802.11n specification. As mentioned previously, trace col-
lection is performed by aggregating as many subframes as possible
(i.e., FAcgo=MAX, which is FA¢gr=32 in ath9k). We do not col-
lect FAcgr.=1, FAcoL=2, ..., FAcg. =MAX-1. However, the simulator
will need to accurately simulate cases where FAgty < FAggr=MAX
due to the reasons listed above, in addition to permitting differ-
ent frame aggregation algorithms to be implemented in the sim-
ulator (recall that a goal of this work is to enable the fair com-
parison of different frame aggregation algorithms). Being able to
accurately simulate A-MPDUs of any length using frames collected
using only A-MPDUs of maximum length is they key insight and crit-
ical requirement to enable trace-based simulation of 802.11n net-
works. Therefore, we now evaluate SIMn’s accuracy when simu-
lating the throughput of frames aggregated with fewer subframes
during simulation than were obtained during trace collection.

Experiment Setup and Description: We create a network be-
tween the AP (sender) and desktop computer (receiver), which
is located less than 1 meter away in order to reliably obtain
error-free traces (we consider errors in Section 5.4). For all ex-
periments, the sender is set to a constant rate configuration
of 2S-I4-SG-40M=180. We collect a 100 second trace with
FAcor=MAX, as this is the aggregation limit that we will typi-
cally use for trace collection. We then conduct 100 second ex-
periments with Frame Aggregation (FA) limited to 32, 16, 2 and
1 aggregated frames, which we use as the ground truth. We
then simulate constant rate scenarios for the rate configuration
28-14-SG-40M=180 with FAgry=MAX, FAgiy=16, FAgy=2
and FAsry=1, using the FAcgr, =MAX trace as input to the simula-
tor. We expect simulated throughput for FAgry=MAX, FAgy=16,
FAsy=2 and FAgy=1 to match the throughput obtained directly
from the experiments run with FA limited to 32, 16, 2 and 1 ag-
gregated frames, respectively.

Experiment Results: In Fig. 6, we plot pairs of simulated and
experimental throughput measurements for each of the frame ag-
gregation configurations. For all pairs of simulated and experimen-
tal throughput we see a close match, which suggests that SIMn
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Fig. 6. Simulatingshorter aggregated frames.

can accurately simulate shorter aggregated frames from traces with
FAcqr.=MAX, in an error-free environment. In Section 6 we demon-
strate that SIMn is also accurate in environments that are not free
from errors (e.g., including uncontrolled environments). As a re-
sult, we are able to collect traces with FAcgr, =MAX but to simulate
cases where frames of shorter lengths are used.

5.3. Determining channel access

Since the 802.11 standard implements CSMA/CA, channel access
is a crucial factor in determining throughput for an experiment.
When a WiFi device performs channel sensing and a WiFi or non-
WiFi signal is detected the transmission has to be postponed, re-
sulting in reduced throughput. It is critical that T-SIMn measures
this delay while conducting trace collection and accurately simulates
it in order to produce realistic throughputs. Such delays can be
caused by changing channel conditions and it is the ability to cap-
ture these delays that makes trace-based simulation so attractive.
Channel conditions are captured in traces, rather than simulated us-
ing computationally intensive and inaccurate models. In T-SIMn, we
compute both WiFi and non-WiFi delay using Cycle Counter Infor-
mation (CCI) available on the Atheros device.

We use four counters available on the Atheros chipset which
are: tx_cycles, which counts the number of cycles that the chip
spends performing transmissions (out bound); rx_cycles, which
counts clock cycles spent receiving (in bound); busy_cycles, which
measures the number of cycles that the channel was busy per-
forming transmission, receiving WiFi frames or due to non-WiFi
noise; and total_cycles, which counts the total number of cycles for
transmission, including those spent busy (i.e., waiting). We modify
the driver to include cycle counts for each aggregated frame in the
collected trace and compute delay as follows:

delay = actual duration — expected duration (1)

The expected duration is determined from the 802.11n standard and
includes time for transmission and the Distributed Coordination
Function (we use an average backoff of 7.5 us). The actual duration
is the time spent transmitting the aggregated frame, as determined
using the cycle counters. More details can be found in [1,25].

T-SIMn needs to determine if the source of delay was due to
WiFi or non-WiFi interference in order to accurately simulate chan-
nel access because they impact delay in different ways. With non-
WiFi interference each time the sender attempts to transmit a
frame it may experience delay. As a result, the more frequently A-
MPDUs are sent the more delay the sender may incur. Since the
sender is transmitting a constant stream of frames, the frequency
of A-MPDU transmission is affected by the rate configuration and
the length of A-MPDUs. The situation is different for WiFi interfer-
ence because all parties implement the 802.11n standard and co-
operate when accessing the channel. As a result, the sender’s de-
lay before transmitting an A-MPDU does not depend on the rate
configuration or the length of the A-MPDU. It only depends on
the amount of time the currently transmitting device occupies the
channel being used.
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We have developed a simple heuristic to distinguish WiFi from
non-WiFi interference. We consider delay to be due to WiFi inter-
ference if one or both of the following are true:

1. The time spent transmitting the frame is significantly longer
than expected:

actual tx duration — expected tx duration > threshold

tx_cycles

———~——— _data tx time > threshold
clock_speed

This handles the case where the frame is delayed due to out
bound traffic on the Access Point (AP), such as transmitting a
beacon frame or responding to a probe request. Our current
heuristic uses a threshold of 60 ws as it is small enough to
catch beacon frames, which are the shortest WiFi frames that
we observed.

2. The time spent receiving the ACK for the frame is significantly
longer than expected:

actual rx duration — expected rx duration > threshold

rx_cycles

———=——— _ack rx time > threshold
clock_speed

This handles the case where a frame is delayed due to in bound
WiFi traffic. Our heuristic uses a threshold of 10 us because
there is little variation in the actual rx durations in the absence
of WiFi interference.

Although these values provide accurate results in the following
evaluation, in future work thresholds may be tuned to improve the
accuracy of the heuristic.

If the delay is due to WiFi interference, we simply increment
the simulation time by the duration of delay as explained in
Section 3.2. To simulate the delay caused by non-WiFi interference,
we find the delay incurred when sending each frame (from the
trace) and compute the average delay experienced by each frame
over the 200 ms time window centered at the current simulation
time (i.e., the averaging window used to compute the error rate
described in Section 3.2). This average is the expected delay and
is then added to the transmission time of the next frame in the
simulator. Note that channel sensing does not depend on the rate
configuration of the frame to be transmitted, so this computation
is independent of the rate configuration.

We now evaluate the accuracy of T-SIMn in presence of WiFi in-
terference, when the simulator must use shorter aggregated frames
than those that have been collected (i.e., FAgty < FAcgr) due to
the size of an A-MPDU being limited by one of the factors ex-
plained in Section 5.2.2.

Experiment Setup and Description: We create a network be-
tween the AP (sender) and a desktop computer client (receiver).
We collect a trace for the rate configuration 2S-14-SG-40M=180
with FAggp.=MAX. We then conduct experiments with Frame
Aggregation (FA) limited to 2 and 1 aggregated frames. Using
the trace collected with FAqgr=MAX, we simulate constant rate
scenarios for the rate configuration 2S-I4-SG-40M=180 with
FAgiy=2 and FAgiy=1. This is done to evaluate SIMn’s ac-
curacy in simulating shorter frames from traces collected with
FAcor=MAX, in the presence of WiFi interference. We then repeat
these simulations but disable the heuristic (i.e., WiFi and non-WiFi
delays are not differentiated) to demonstrate how distinguishing
the two types of interference improves the accuracy of our simu-
lator.

Experiment Results: Table 1 shows the differences between the
throughput obtained with and without the heuristic for FAgry=2
and FAgiy=1. In this experiment, the only WiFi interference is

Table 1
Simulation error (% Difference).

FAcor — FAgin With heuristic ~ Without heuristic

32 > 2 —0.9% 5.6%
32 > 1 1.6% 10.0%

from beacon frames generated by the AP. We find that simulation
error (i.e., the difference between simulated throughput, with and
without the heuristic, and the experimental throughput), is lower
when using the heuristic. With the heuristic, simulation error is
less than 1% when simulating FAs;y=2 from FAqg. =MAX, and less
than 2% when simulating FAgry=1 from FAcg, =MAX. Without the
heuristic, simulation error is roughly 6% and 10% for FAsty=2 and
FAsiy=1, respectively. These are significant differences, especially
when considering that the only WiFi interference is beacon frames
(which are relatively short in duration compared to data frames).
We expect these differences to be even larger if a third-party WiFi
client is added.

5.4. Determining frame error rates

Along with the physical layer transmission rate and channel ac-
cess (delay), the channel frame error rate (FER) is one of the ma-
jor factors in determining the throughput for an 802.11n network.
Errors can be introduced when multiple WiFi or non-WiFidevices
transmit at the same time, resulting in a packet collision. Further-
more, errors may be caused by path loss when signal strength
is low due to the distance between a sender and receiver or be-
cause of obstacles like walls or furniture that obscure the path
between the two devices. We begin by describing the need to
consider the subframe index (i.e., the location of the subframe
within the A-MPDU) when computing the fate of a subframe in
Section 5.4.1. Then, using path loss as an example, we demonstrate
that the techniques we have devised provide accurate results (in
Section 5.4.2).

5.4.1. Subframe index error rates

In our initial implementation of SIMn, we treated the successes
and failures of individual MPDUs (subframes) as samples in the
computation of the FER over the specified time window for a par-
ticular rate configuration. For example, if we sent 5 aggregated
frames, each containing 30 subframes, 15 successful and 15 failing,
the FER determined to be 50% because 75 subframes were success-
fully transmitted and 75 failed. However, we found that simulated
throughput did not always closely match experimental throughput,
even though the error rates obtained in the simulator were simi-
lar to those observed in the experiments. Upon closer inspection,
we found that there were significant differences between the av-
erage length of aggregated frames in the simulation and in the
experiments. In our experiments the error rate of each subframe
within multiple A-MPDUs varied with the index of the subframe
(i.e., the error rate changed with the location of the subframe
within the A-MPDU). Byeon et al. report that subframes transmit-
ted more than 2 ms after the beginning of the transmission of
an aggregated frame have a lower probability of being success-
fully received [7] (i.e., the pattern is that subframes with higher
indices have a higher probability of failure). While some of the A-
MPDUs we inspected exhibited similar behaviour, we found that
the pattern of subframe error rates can differ significantly across
different scenarios. As a result, we develop a technique that will
work with any pattern, including environments where the pattern
changes over time. SIMn now computes individual error rates for
each subframe index rather than using an average FER across the
entire aggregated frame. We refer to this as a Subframe Index Error
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Fig. 7. Impact of per-subframe error calculation.

Rate (SFIER). We now illustrate the importance of using the SFIERs
in obtaining accurate throughput in SIMn.

Experiment Setup and Description: We take advantage of an-
other feature of our trace-based simulator, namely the ability to
generate and process synthetic traces to better understand 802.11n
networks. We create two synthetic traces with equal A-MPDU frame
error rates of 41%, but using two different SFIER patterns. The equal
FERs are useful in reasoning about the expected outcome. Syn-
thetic traces are used due to the difficulty in experimentally ob-
taining traces with the same overall FER with different SFIER pat-
terns. The first trace has a linearly increasing SFIER from 0.025
at index 0 to 0.8 at index 31. The second trace uses the oppo-
site pattern, with the SFIERs decreasing linearly from 0.8 at index
0 to 0.025 at index 31. We use SIMn to simulate the transmis-
sion of frames using these two patterns and a rate configuration of
35-I7-SG-40M=450. We first treat all subframe indices equally,
as in our initial implementation of SIMn. We then repeat the sim-
ulations using our current implementation of SIMn that considers
each SFIER individually and compare the throughput obtained us-
ing these two different approaches.

Experiment Results: Fig. 7 plots the throughput obtained for
the two synthetic traces. The bars on the left show the results
obtained using the current implementation with per-SFIERs and
those on the right show results obtained using the initial imple-
mentation per-SFIERs are not considered (labelled “Original”). As
expected, when using the Original implementation the throughput
of the Increasing and Decreasing patterns are equal (because they
have the same 41% FER. However, when using per-SFIERs, an in-
creasing SFIER pattern results in higher throughput than a decreas-
ing pattern, even though they have the same overall average error
rate. The decreasing SFIER pattern results in lower throughput, be-
cause failures at the start of an aggregate frame prevent the Block-
Ack Window (BAW) from advancing and thus reduces the average
length of aggregated frames. These experiments illustrate the im-
pact of considering individual SFIERs and their importance in ob-
taining accurate simulation results. This is critical because our goal
is to use the simulator to evaluate link adaptation and frame ag-
gregation algorithms, which require the correct simulation of phe-
nomenon captured during trace collection.

5.4.2. Path loss

To evaluate SIMn’s ability to handle channel error rate, we use a
challenging mobile scenario where channel error rates vary widely
due to path loss.

Experiment Setup and Description: We create a network be-
tween the Access Point (AP) (sender) and a Mac-Book Pro (MBP).
The sender transmits for 100 seconds using constant rate config-
uration of 25-I14-SG-40M=180 with FAcgp=MAX. We choose
this rate configuration because in this mobile scenario, its error
rates vary widely. In this experiment, the MBP is carried at walk-
ing speed in an office environment where cubicle walls obscure
line of sight. We simulate throughput for the rate configuration
2S5-14-SG-40M=180, using the collected trace as input to the
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Fig. 8. Mobile scenario experiencing path loss.

simulator. Note that during the simulation SFIERs must be com-
puted and frames of length shorter than the maximum will be
used. This tests SIMn’s ability to accurately simulate throughput
with fluctuating error rates, different error rates across different
subframe indices, and A-MPDUs of different length.

Experiment Results: In Fig. 8, we plot pairs of throughput
measurements, simulated and experimental, for this scenario. De-
spite the significant fluctuations during this experiment, there is
a close match between simulated and experimental throughput.
This suggests that the simulator can accurately determine error
rates (including SFIERs) and simulate aggregated frames of differ-
ent lengths.

6. Evaluating our framework

In the previous sections, we use constant rate traces to focus
our tests on the T-SIMn simulator, SIMn. Although not representa-
tive of how trace collection would be done in T-SIMn, that tech-
nique is used to ensure the accuracy of SIMn on its own. In this
section, we evaluate T-SIMn as a whole, using round-robin trace
collection in conditions that are representative of those in which
WiFi is used. For the experiments in this section, we collect traces
using the direct measurement methodology and use an iPhone, which
supports 32 transmission rates. We show that this approach can be
used with devices that support 32 transmission rates for easy and ac-
curate trace collection. In Section 8, we propose and evaluate a more
sophisticated methodology that handles devices that support more
transmission rates.

In order to evaluate the T-SIMn framework, we use an eval-
uation methodology similar to that used to evaluate T-RATE [1].
That is, we conduct an experiment (which produces a trace) us-
ing a round-robin ordering of rate configurations and then in SIMn
we conduct a simulation using a round-robin ordering that differs
from the experiment. This experiment is designed as a means for
evaluating the accuracy of the T-SIMn framework. The intuition be-
hind this methodology is that in both the experiments and the
simulation each rate will be used to send the same number of
frames using each rate. Therefore, the average throughput obtained
over an interval in time from the experiment should be matched
by the average throughput obtained from the simulator. This will
only be true if, despite not having sent a frame with rate con-
figuration R at time t, the simulator can accurately determine the
probability that the frame would be successfully sent by comput-
ing the average SFIER over the channel coherence window. Addi-
tionally, different orderings means it is extremely unlikely that the
number of frames aggregated in the simulator at time t will match
the number of aggregated frames collected in the trace at time t.
In contrast to T-RATE, we cannot cycle through all of the available
802.11n rates (96 rates for our 3 antenna devices would take about
300 ms) because the time required to perform enough rounds to
accurately compute average error rates would exceed the channel
coherence time.
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Fig. 9. Simulating reverse MCS ordering.

We instead limit our evaluation to one antenna (1-Spatial
Stream (SS)) devices, which includes most cell phones, tablets and
other small devices. Using Long Guard Interval (LGI), Short Guard
Interval (SGI), 20 and 40 MHz Channel Bandwidth (CB) results in
a total of 32 rate configurations.

During trace collection, rates are grouped by a combination of
the Guard Interval (GI) and the CB. Therefore, rates are sampled in
the following group order LGI-20MHz, SGI-20MHz, LGI-40MHz,
SGI-40MHz. Within each group, rates are sampled in order from
the lowest Modulation and Coding Scheme Index (MCS index) to
the highest (i.e., MCS index 0,1,...,6,7). We simulate round-
robin in the reverse group order (i.e., SGI-40MHz, LGI-40MHz,
SGI-20MHz, LGI-20MHz) and from the highest MCS index to the
lowest (i.e., MCS index 7,6, ..., 1,0).

Experiment Setup and Description: We create a network be-
tween the AP (sender) and an iPhone 6 (receiver). The sender is
configured to sample all 32 1-SS 802.11n rate configuration, which
is the entire set of rates supported by the iPhone 6. The experi-
ment is conducted by using a mix of carrying the iPhone at walk-
ing speed and standing still in an office environment as described
in Section 4.

Experiment Results: In Fig. 9, we plot simulated and experi-
mental throughput. The experiment starts with the handheld mo-
bile device near the access point. The decrease in throughput from
around the 40 second mark to 60 seconds is due to movement
away from the access point, while the increase in throughput from
60 seconds until around 80 seconds is due to movement back to-
ward the access point. We find that simulated throughput matches
experimental throughput except for the points at times t = 20,
t =60 and t = 100. The largest difference is observed at t = 60,
where average simulated throughput is roughly 11% higher than
average experimental throughput. Initially, we thought that this
was due to inaccuracy in SIMn. However, upon closer investiga-
tion, we realized that the simulator is in fact accurate and that the
problem was with the methodology used to evaluate the accuracy
of the framework. Our assumption that simulating round-robin in
a different order would result in each rate configuration being used
for the same proportion of time is not guaranteed in 802.11n net-
works, unlike a similar evaluation we conducted for 802.11g net-
works [1]. In the next section, we investigate and explain why the
order in which rates are used in a round-robin fashion impacts
throughput.

6.1. Effect of rate configuration ordering

In 802.11n networks, the fate of one frame can impact the num-
ber of frames that can be aggregated in the next frame due to the
Block-Ack Window (BAW). Failed aggregated frames or subframes
limit how far forward the BAW can be advanced. Recall from
Fig. 1 that the number of subframes being aggregated has a signif-
icant impact on throughput, with longer aggregated frames leading
to higher potential throughput. Recall that in the previous section,
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Fig. 10. Simulating reverse group ordering.

rates were sampled in the group order LGI-20MHz, SGI-20MHz,
LGI-40MHz, SGI-40MHz. Additionally, rates are sampled in order
from the lowest Modulation and Coding Scheme Index (MCS index)
to the highest (i.e.,, MCS index 0,1, ..., 6,7). This means that the
most robust rates in each group are sampled first and the least ro-
bust rates are sampled last. We have examined the data shown in
Fig. 9 in detail and found that at times t = 50 to 70, the reverse
ordering performed during simulation leads to longer aggregated
frames on average (a mean of 15.2 subframes in each aggregated
frame during simulation compared to 14.6 in the experiment). This
results in slightly higher simulated throughput during this period.
Although there is a match in simulated and experimental through-
put during some portions of this time interval (i.e., overlapping
Cls), the simulated throughputs are visibly lower for most times t.
Simulating longer frames than those that were collected may also
lead to some inaccuracies because of insufficient samples in the
collected trace for frames of the length being simulated.

As a result, we have had to revise our understanding and
now expect different round-robin orderings to result in differ-
ent throughput, unless the behavior of the Block-Ack Window
(BAW) advancement and consequently Frame Aggregation (FA) is
the same during trace collection and simulation. To test this hy-
pothesis, we construct a new ordering to use in the simulation
that preserves the property that the most robust rates in each
group are used first and the least robust rates are used last. The
simulation still uses rate groups in the reverse order from the or-
der used when the trace is collected (i.e., simulating SGI-40MHz,
LGI-40MHz, SGI-20MHz and LGI-20MHz. However, within each
group, we now use rates in order from the lowest Modulation and
Coding Scheme Index (MCS index) to the highest (i.e., the same
order used during trace collection). We simulate a round-robin or-
dering with this new reverse group order and show simulated and
experimental throughput in Fig. 10. As the graph shows, the sim-
ulated throughput now closely matches that obtained experimen-
tally (all pairs of confidence intervals overlap). Note that this prop-
erty does not limit SIMn to simulating only certain orderings of
rate configurations. It is only required for this evaluation of the
accuracy of T-SIMn because we are trying to devise a methodol-
ogy where the throughput of the simulator should match that of
the experiment. Now that we are aware of this property, we will
use the reverse group ordering in the following section, where we
evaluate T-SIMn in an uncontrolled environment.

6.2. Uncontrolled environment

Up to this point, all experiments are performed with no neigh-
boring Access Points (APs). We now move to a different 5 GHz
channel that is in use by the university’s WiFi network to evalu-
ate T-SIMn in conditions that are typical for a shared university
WiFi network. This includes interference from many third-party
WiFi clients and APs.
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Fig. 11. Uncontrolled, mobile scenario.

Experiment Setup and Description: Similarly to the previous
section, we create a network between the AP (sender) and an
iPhone 6 (receiver). However, unlike previous experiments, we now
configure the AP to use a channel occupied by one of the univer-
sity’s APs with the highest signal strength. As mentioned previ-
ously, we use a 5 GHz network because the iPhone does not sup-
port 40 MHz Channel Bandwidths (CBs) in the 2.4 GHz spectrum.
Note that if we had used the 2.4 GHz band, thus limiting trace
collection to 20 MHz rate configurations, we would have obtained
twice as many samples in each averaging window, which should
only improve accuracy. As in previous experiments, we sample all
1-Spatial Stream (SS) rate configurations. We collect a 100 second
trace with FAcgp =MAX to test T-SIMn in an uncontrolled environ-
ment. This scenario is comprised of a mix of carrying the iPhone
at walking speed and standing still in an office and hallway envi-
ronment as explained in Section 4.

Experiment Results: In Fig. 11, we plot pairs of throughput
measurements, simulated and experimental, for the uncontrolled
experiment. We find that while the receiver is stationary from
t = 60 to 100 there is significantly more fluctuation in throughput
when compared to Fig. 9 from t = 10 to 40 in Fig. 10. This is due to
the third-party traffic on the shared channels. The close matches in
throughput suggest that T-SIMn is accurately capturing and simu-
lating third-party traffic and that it can handle conditions that are
representative of those in which WiFi devices are used.

7. Trace collection with many transmission rates

In Section 3.1, we explain that the error rate of the MPDUs
within an aggregated frame are not identical. As a result, the di-
rect measurement technique measures the per MPDU error rate
by sending the longest possible A-MPDU for each transmission
rate. All transmission rates are sampled using a round-robin or-
dering. As explained in Section 3.1, if we sample all transmission
rates within the channel coherence window, all rates experience
the same channel conditions. Since the number of transmission
rates affects the time required to complete a round of sampling
for all, this determines the number of samples that can be col-
lected within the channel coherence window. For 802.11n devices
that support many transmission rates, the number of samples col-
lected by the direct measurement technique might be too low to
accurately measure the error rate. We refer to this as the lack of
samples problem for trace collection.

In Section 6, we show that the direct measurement technique
can be used for devices that support 32 transmission rates. How-
ever, this technique may not be accurate for devices that support
more transmission rates. For instance, for a device that supports
up to 3 spatial streams (i.e., 96 rates), our measurements have
determined that each round of sampling takes about 300 ms to
complete when using the direct measurement technique. Recall
that the channel coherence time in the 5 GHz spectrum is about
100 ms, as a result, the coherence window is 200 ms (i.e., 100 ms

before and after a particular point in time). As a result, each trans-
mission rate only has at most one (per sub-index) sample in a co-
herence window, which may not be enough to capture fast chang-
ing channel conditions. While we have shown the direct measure-
ment methodology is accurate for 32 rates, the maximum num-
ber of rates that this methodology can support depends on the re-
quired accuracy for a particular study and is a topic of future work.

However, in the rest of this section, we study the lack of sam-
ples problem with the goal of alleviating the shortcomings of the
direct measurement technique. We show that a relatively intuitive
approach that one might expect to work can not be used and argue
that more sophisticated techniques are required. In Section 8, we
propose a novel methodology that can be used to obtain a suffi-
cient number of samples with devices supporting a larger number
of rates (i.e., three antennas with 96 rates).

7.1. Dynamic transmission rate elimination

One approach to increasing the number of samples within
the coherence window is to dynamically eliminate “trivially pre-
dictable” transmission rates when collecting a trace using a round
robin ordering. The intuition is that if a particular transmission
rate fails to successfully transmit a frame, faster transmission rates
(which use less redundancy) will not be able to transmit the frame
either (i.e., the FER will be 1). Similarly, if a particular transmission
rate is successful, sampling slower transmission rates is not neces-
sary as they are even more robust and will be successful (i.e., the
FER will be 0). Therefore, sampling these transmission rates with
known expected FER is wasteful and sampling all rates might be
considered unnecessary and “oversampling” some rates. As a re-
sult, the round robin trace collection mechanism might be able to
skip many rates and collect a larger number of more useful sam-
ples by dynamically eliminating some rates.

This heuristic could solve the lack of samples problem if a large
enough portion of the rates experience an error rate sufficiently
close to 0 or 1. These rates that are trivially predictable over some
short periods of time (i.e., trivial rates) can be temporarily and
dynamically excluded or included by the heuristic. Note that the
set of trivial rates might change over time as the channel con-
ditions change. To evaluate the potential of such a heuristic, we
initially designed an experiment to examine the number of non-
trivial rates, with FER#0 or FER#1, over a one second window.
However, we soften those requirements to reduce the number of
non-trivial rates by considering only rates with an FER between
0.05 and 0.95 as non-trivial. If the intuition behind the heuristic
is correct, a small portion of rates will be non-trivial and the rest
of them will be trivial and can therefore be eliminated from sam-
pling.

In this experiment, a laptop (i.e., receiver) equipped with the
wireless N USB adapter, which supports 96 transmission rates, is
carried at walking speeds for 15 minutes in the office environment
as described in Section 4. There exists no line-of-sight between
the AP and client for most of the experiment, because the signal
is blocked by obstacles such as metal cabinets, cubicle partitions
and walls. We use a 2.4 GHz channel, which is exposed to WiFi
and non-WiFi interference. The distance between the AP and client
ranges from 1 meter to about 20 meters. In this experiment, all
96 transmission rates are sampled using a round robin ordering
without frame aggregation. Frame aggregation is not used in this
experiment to increase the number of samples collected for each
transmission rate.

Fig. 12 shows the number of non-trivial rates that cannot be
eliminated by the heuristic over the 15 minute experiment. The
figure indicates that there are several times when the number of
non-trivial rates is more than 70. Therefore, at those times the
heuristic can eliminate less than 26 of the 96 transmission rates.
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Sampling 70 transmission rates using frame aggregation takes over
200 ms to complete. As a result, each rate has at most one sam-
ple over the coherence windows (i.e., 200 ms) and this heuristic,
based on dynamic rate elimination, will also suffer from a lack of
samples. Therefore, we dismiss this as a potential trace collection
methodology. We believe that the reason for these counterintuitive
results is WiFi and non-WiFi interference. We believe that interfer-
ence might be strong enough to change the FER of most transmis-
sion rates regardless of the amount of redundancy encoded in the
frames.

To support this claim, we repeat the experiment in the 5 GHz
spectrum on a channel with no WiFi or non-WiFi interference and
present the results in Fig. 13. Note that except the spectrum band,
everything else in this experiment is unchanged. Fig. 13 indicates
that when the interference is eliminated from the experiment, the
number of non-trivial rates decreases significantly.

In summary, the rate elimination heuristic might be able to skip
many transmission rates when there is no interference. However,
our goal is to collect traces under a variety of channel conditions
including those that are affect by different sources of interference.
As a result, this heuristic cannot be used for our purpose. In the
next section, we characterize the MPDU delivery ratio patterns in
an A-MPDU and then use the characterization to design a method-
ology for collecting traces with many transmission rates.

8. Inferred measurement technique

The Frame Error Rate (FER) is not identical for the MPDUs
in an aggregated frame. For this reason, the direct measurement
methodology, transmits the largest possible A-MPDU, during trace
collection, to measure the FER of all MPDU indexes. However, us-
ing frame aggregation during trace collection leads to the lack
of samples problem in 802.11n networks with many transmission
rates as explained in Section 7. We now describe our new in-
ferred measurement methodology, which avoids frame aggregation
for trace collection to increase the number of samples collected
over the channel coherence window. Note that when frame aggre-
gation is disabled, only the error rate of the first MPDU can be
measured. Since during simulation an A-MPDU with any arbitrary
length might be transmitted, the inferred measurement method-
ology needs to accurately estimate the error rate of the missing
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Fig. 14. Impact of speed on MPDU delivery ratio.

MPDUs. To explain the design of this methodology, we need to un-
derstand the characteristics of the MPDU delivery ratio (MDR) in
an aggregated frame. Therefore, we first study the effect of carrier
frequency and the speed of movement on the changes to the MDR
in an A-MPDU, then, we describe the design of the inferred mea-
surement technique.

8.1. Changes of MDR in an A-MPDU

Byeon et al. [7] report that if channel conditions change rapidly
(for instance when the sender or receiver is moving), subframes at
the end of an A-MPDU experience higher error rates than those
closer to the header of the frame. In addition, they show that
higher speeds of movement intensify this phenomenon. In order
to accurately estimate the MDR of subframes in an A-MPDU, we
need to characterize and understand how the MDR of different
subframes change within an A-MPDU. In this section, the MDR of
subframe i is denoted by MDR;.

We design a mobile experiment where a laptop with the wire-
less N USB adapter is carried at different speeds from a very slow
to a fast walking speed in the office environment described in
Section 4. We divide the experiment into three parts, namely, slow,
normal, and fast walking speeds.

Fig. 14 shows the relative MPDU delivery ratio (relative MDR)
for the physical rate of 117 Mbps for the three walking speeds. We
present the relative MDR for an easier comparison of the 2.4 and
5 GHz experiments. The relative MDR is computed by dividing the
MDR of each index by the MDR of the first MPDU. For instance,
the relative MDR of subframe i is MDRi/MDR;. We can observe
that in both spectrums as the speed increases the delivery ratio
drops more sharply due to more rapid changes in the channel con-
ditions, this is because the initial calibrations done on the pream-
ble are less representative of the channel state as the time since
the preamble increases. The results show that the speed has a sig-
nificant role in the decrease of the MDR and it is more prominent
in the 5 GHz spectrum. For instance, let’s consider MPDUs with
index 16, which are in the middle of the aggregated frames. In the
2.4 GHz spectrum, the relative MDR at the slow and fast speeds
are 0.84 and 0.48, respectively. The relative MDR had dropped by
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43%, while in the 5 GHz band, the relative MDR is 0.64 and 0.02,
which is a 97% drop. Byeon et al. [7] also observed that the speed
of movement intensifies the MDR decline phenomenon. However,
their measurements are conducted in the 5 GHz spectrum only.
Our results show that the 2.4 and 5 GHz frequency bands impact
this phenomenon differently.

One reason for the faster decrease of the MPDU delivery ratio
in the 5 GHz spectrum is explained by the Doppler shift. The fol-
lowing formula shows how the Doppler shift is directly related to
the transmission frequency (fp):

Af= (ﬁ”)fo )

where Af is the frequency shift, Av is the relative speed of the
sender and receiver, and c is the speed of light. As Eq. (2) indi-
cates, for a given relative speed Av, the frequency shift in the 5
GHz spectrum is almost twice that of the 2.4 GHz spectrum. The
frequency shift due to the Doppler effect causes inter-subcarrier
interference in OFDM communication systems, which consequently
increases the bit error rate leading to a higher FER. As a result, in
the 5 GHz spectrum, the later MPDUs in an aggregated frame are
more likely to observe a change in the channel conditions (i.e., fre-
quency shift) due to a stronger Doppler effect.

We observe that the MDR decline patterns are related to the speed
of movement. If we can quantify the channel dynamics caused by the
movement of the sender, receiver, or nearby objects, we might be able
to estimate the MDR of all other MPDUs from the MDR of the first
MPDU and the channel dynamics metric.

The inferred measurement methodology (explained later in this
section) utilizes this idea by turning off frame aggregation dur-
ing trace collection (i.e., measuring the MDR of the first MPDU
only) and estimating the MDR of missing MPDUs. By not using
frame aggregation, the inferred measurement methodology can
collect more samples during the same time interval than the di-
rect measurement technique. We show that the inferred measure-
ment methodology is able to support 802.11n networks with many
transmission rates (in this case up to 96). We next describe a novel
technique for quantifying the channel dynamics, then we present
the design of the inferred measurement methodology.

8.2. Channel dynamics indicator (CDI)

We have shown that the decline of the MPDU delivery ratio in
an aggregated frame depends on the speed of movement. We now
propose measuring the channel dynamics (which changes with the
speed of movement) by using changes in the RSSI of ACKs. Note
that we do not use RSSI to estimate the frame error rate, instead,
we infer the channel dynamics from the changes in the measured
RSSL

We require a statistical measure that reflects the channel dy-
namics. In other words, this metric should change with the speed
or amount of movement of the sender, receiver, and the sur-
rounding objects. We will use this measure to estimate how the
MDR declines as the subframe index increases (i.e., how later
frames within the A-MPDU have higher error rates). We found that
the variance of the difference between consecutive RSSI measure-
ments, which we call Channel Dynamics Indicator (CDI), is a suitable
measure. Studying other statistical measures will be the subject of
future work.

Fig. 15 shows the channel dynamics indicator for the experi-
ment we described in Section 8.1. In this experiment, the speed
of movement increases gradually during the experiment, therefore,
we expect that the channel dynamics indicator to change in con-
junction with the speed of movement. The graph shows that our
metric correctly increases with the movement speed. At the begin-
ning of the experiment, when the movement speed is very low, the
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Fig. 15. Channel dynamics indicator.

CDl is fairly close to zero. As the speed increases, the CDI also in-
creases to reflect the more variable channel conditions. In the next
section, we show how this metric can be utilized to accurately es-
timate the MPDU delivery ratios.

8.3. Inferred measurement methodology

We observed that the channel dynamics indicator (CDI) can
potentially be a good estimator for the fluctuations in the chan-
nel conditions caused by mobility. We have also shown that the
MPDU delivery ratio decline in an A-MPDU depends on the speed
of movement. As a result, we hypothesize that if the delivery ratio
of the first MPDU of a given A-MPDU and the CDI can be deter-
mined, the delivery ratio of other MPDUs in that A-MPDU could
be estimated. If this hypothesis turns out to be true, then we can
collect traces without frame aggregation and infer the delivery ra-
tio of missing MPDUs from non-aggregated frames (which corre-
spond to the first MPDU in an A-MPDU) and CDI. In other words,
we can increase the number of samples by not using frame aggre-
gation, but still estimate the delivery ratio of all MPDUs, emulating
the case where traces are collected using frame aggregation.

We now show that for the traces studied, the channel dynamics
indicator and the delivery ratio of the first MPDU (MDR;) can ac-
curately estimate the delivery ratio of other MPDUs (MDR;), where
i is the MPDU index. In general, we observe that for each transmis-
sion rate, there exists a function f; that maps the CDI and MDR; to
MDR;:

Vie{1,2,...,MAX} 3f;: (MDR;,CDI) — MDR; (3)

where MAX is the maximum number of MPDUs that can be trans-
mitted in 4 ms2. Note that the ath9k driver further limits the
number of MPDUs to 32.

Fig. 16 illustrates how the channel dynamics indicator (CDI) and
the MDR of the first MPDU (MDR;) is related to MDRg (bottom)
and MDRs, (top), for the experiment described in Section 8.1. In
this experiment, a laptop is carried at various speeds for 15 min-
utes in the office environment.

The results for the physical layer transmission rate of 117 Mbps
is presented in the graph. Similar results were observed for other
transmission rates. As depicted in the figure, when the channel dy-
namics indicator increases (i.e., corresponding to faster movement)
the MPDU delivery ratios of MPDUs 16 and 32 decrease for any
given MDR;. This is in line with our findings in Section 8.1 where
we observed that the MDR drops more rapidly as the speed in-
creases. MDRg and MDRs, are relatively high when the receiver
moves very slowly (i.e, CDI < 1) and MDR; is high (e.g., due
to good channel conditions for the given modulation and coding
scheme). As expected, MDRg is generally higher than MDRj3, as
MPDUs closer to the frame header have a higher delivery ratio.

2 The ath9k driver limits the transmission time to 4 ms to comply with the chan-
nel occupancy restriction at the 5 GHz ISM spectrum.
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8.3.1. Methodology overview

In order to enable trace collection using devices that support
many transmission rates we have designed and implemented the
inferred measurement methodology. The overview of our method-
ology (illustrated in Fig. 17) is as follows:

1. A calibration trace is collected using frame aggregation, using
the direct measurement technique explained in Section 3.1.
This trace is used to find the relationships between the CDI and
MDRs. To compute the MDRs, we use 10-second windows to
obtain enough samples to accurately measure the MDRs (i.e., up
to 30 samples inside the averaging window). Note that the goal
is not to measure the MDRs at a particular time but rather to

compute the relationships between the CDI and MDRs. There-
fore, in this case, the averaging window does not need to be
smaller than or equal to the channel coherence time.

2. A main trace is collected without using frame aggregation (i.e.,

FAcor=1).
This trace is called the main trace because it is a trace of the
experiment and environment that will be later used in the sim-
ulation (i.e., it is the experiment that will be simulated). The
MDR; and CDI information from this trace along with the map-
ping functions (obtained from the calibration trace) are used in
the next step to find the fate of missing MPDUs.

3. For each transmission rate and subframe index i, the calibration
trace gives us a set of 3-tuples, MDR;, MDR;, and CDI, which
creates a 3D surface (i.e., mapping function) as previously shown
in Fig. 16. We use multi-variable regression, where MDR; and
CDI are the estimator variables and MDR; is the estimated vari-
able, to determine this mapping function (details are presented
later in this section). This procedure is repeated for all trans-
mission rates and subframe indexes.

4. In order to estimate the fate of missing MPDUs in the main
trace, we use the following procedure: for a given frame in
the main trace at time t and transmission rate R, we consider
a time window centered at time t and compute the average
MDR of MPDU 1 (i.e., MDR;) from the frames with rate R in
this window. The time window we use in this study is 200 ms
to roughly approximate the channel coherence time. Similarly,
we compute the CDI from the RSSI of all ACKs, regardless of
the transmission rate, in this window. Note that the RSSI is a
property of an electromagnetic signal not the transmission rate.
Then, we use the computed MDR; and CDI as input into the
mapping functions to estimate the expected fate of the MPDUs
missing from the main trace. This procedure is repeated for all
frames in the main trace and the results are stored in the gen-
erated trace. The generated trace is similar to the output of the
direct measurement methodology, except that in this case the
MPDU fates are estimated (or inferred by applying the models
obtained from the calibration trace to the frames obtained in
the main trace). This generated trace is used by T-SIMn to con-
duct performance evaluations.

Note that both calibration and main traces include the RSSI of
ACKs needed to compute the CDI In the inferred measurement
technique, the calibration trace is only used to find the mapping
functions. These mapping functions are used to estimate the fate
of missing MPDUs in the main trace and can be used with dif-
ferent main traces in that environment, therefore, they do not
need to be recalculated for each new main trace. Then, the main
trace is actually used for performance evaluation. The advantage
of this methodology is that the main trace contains many more
frames per unit of time than can be collected using the direct mea-
surement methodology. For example, in the inferred measurement
methodology, if all 96 transmission rates (in a 3x3 MIMO system)
are sampled using a round robin sampling technique, we obtain
one sample every 43 ms for each transmission rate (i.e., about 5
samples over a 200 ms coherence window). This is a large gain
in terms of the number of samples collected when compared with
trace collection using frame aggregation (i.e., direct measurement)
where we sample each rate every 300 ms (i.e., less than one sam-
ple over a 200 ms coherence window). As a result, for devices that
support 3 spatial streams (i.e., 96 transmission rates),the inferred
measurement methodology increases the number of collected sam-
ples to 5 samples over the 200 ms coherence window, compared
with only 0.7 samples that would be obtained if we were to use
the direct measurement methodology. While 5 samples may seem
low, we show that the inferred measurement methodology can ac-
curately estimate the fate of missing MPDUs.
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Eq. (4) shows the regression model used in this study to ob-
tain the mapping functions from the calibration trace. The model
that we use contains two predictor terms MDR; and CDI. In addi-
tion, it has quadratic and interaction terms. We now explain why
we include these terms in the model. Fig. 16 shows that the re-
lation between the predictor terms (i.e., MDR; and CDI) is curvi-
linear with MDR;. As a result, we add the quadratic terms to the
regression model. For the traces used in this study, we did not
find higher order terms necessary in the regression model. In ad-
dition, as can be seen in Fig. 16, there are interactions between
the predictor terms. For example, when CDI = 4, the relation be-
tween MDR; and MDRs3, is almost constant (i.e., MDR3; ~0). On
the other hand, when CDI = 0, MDR3; is a curvilinear function of
MDR;. This observation confirms the existence of interactions be-
tween the predictors. As a result, we add the MDR;*CDI term to
Eq. (4) to model the interactions between MDR; and CDI. We will
show that the regression model in Eq. (4) works well for the pur-
pose of this study, however, we plan to examine other possible
models in future work.

MDR; = ,30 + }31MDR1 + ‘32CDI
+ B3MDR;? + B4CDI? (4)
+ Bs(MDR; + CDI)

8.4. Methodology evaluation

To evaluate the efficacy of the inferred measurement method-
ology one can compare the outcome of this technique with that
of an actual experiment (i.e.,, the ground truth). However, it re-
quires repeatability between the trace collection and the ground
truth experiment and achieving repeatability is very difficult, es-
pecially in environments that involve mobility and interference. As
noted previously, our goal is to be able to simulate environments
with mobility and interference. Therefore, we design a novel tech-
nique, illustrated in Fig. 18, to study the accuracy of the inferred
measurement methodology. Instead of using the main trace, which
contains samples for all rates, we collect a trace (called a test trace)
for a given transmission rate by alternatively sending frames with
and without frame aggregation. The frames without frame aggre-
gation serve as the input to inferred measurement methodology,
while the aggregated frames are used to determine ground truth.
The frames without frame aggregation are down-sampled before
being fed to the inferred measurement methodology to match the

number of samples obtained normally when sampling all transmis-
sion rates (i.e., matching the number of usable frames that would
be available in the main trace). With this approach, we run an ex-
periment in a way that it gives us the ground truth data and the
input to the inferred measurement methodology simultaneously.
The inferred measurement methodology should be able to use only
those non-aggregated frames to accurately estimate the fate of
each MPDU in aggregated frames. Remember that with the inferred
measurement methodology, in order to collect the main trace, we
disable frame aggregation to increase the number of samples ob-
tained per unit time. Then, we infer the fate of aggregated frames
using the mapping functions (obtained from the calibration trace)
and the main trace (which contains non-aggregated frames only).
We now explain the procedure for evaluating the inferred mea-
surement methodology step by step as illustrated in Fig. 18. Note
that some steps are identical to what is done in the inferred mea-
surement methodology (marked as [IDENTICAL]).

1. Collect a calibration trace as explained before (i.e., round robin
all transmission rates with FAggr =MAX). [IDENTICAL]

2. Collect a test trace for a given transmission rate R. Frame aggre-
gation is turned on and off alternatively (i.e., FAcg.=MAX and
FAcgr=1) for each physical frame. Aggregated frames are ex-
tracted from the test trace and are stored in the ground truth
trace, while non-aggregated frames are stored in the single-rate
main trace. As opposed to the main trace, which is normally
collected when using the inferred measurement methodology
(containing the fate of all rates), this single-rate main trace con-
tains the fate of rate R only. Note that for the purpose of eval-
uating the inferred measurement methodology, instead of sam-
pling all rates, we sample only one rate so that we can also
collect the ground truth data (i.e., aggregated frames) simulta-
neously.

3. For each transmission rate, mapping functions f; are computed
using the regression model in Eq. (4) based on the calibration
trace MDRs and CDI data [IDENTICAL].

4. To estimate the MDR of missing MPDUs, the MDR; and CDI
from the single-rate main trace are used as input into the map-
ping functions, which are used to produce the single-rate gener-
ated trace.

5. The single-rate generated trace and ground truth traces are fed
separately to T-SIMn. T-SIMn is configured to saturate the link
with a UDP stream using the constant physical layer rate R.
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Fig. 19. Inference measurement methodology evaluation.

We compare the throughput obtained from the generated and
ground truth traces. If the inferred measurement technique is
able to accurately estimate the MDR for A-MPDUs, then the ob-
tained throughputs should match.

To evaluate the inferred measurement methodology using this
procedure, we use a laptop with the wireless N USB adapter
(which supports 96 transmission rates) as the mobile receiver in
the office environment as described in Section 4. The laptop (i.e.,
receiver) is carried from a very slow to a very fast walking speed
for 10 minutes to collect the calibration trace and once more to
collect the test trace. The traces are collected at the sender, which
is the stationary access point. In this experiment, there is a 2 week
gap between the collection of the calibration and test traces to test
the robustness of the calibration trace.

Fig. 19 shows the throughput obtained from T-SIMn for the gen-
erated trace, produced by the inferred measurement methodology
and the ground truth trace for experiments conducted using 2.4
and 5 GHz spectrums. Every point on the plots shows the average
throughput computed over a 5 second window. The figures show
that despite the highly dynamic environments, the throughput ob-
tained from the inference methodology closely matches the ground
truth data.

Software retransmission is disabled in T-SIMn in this experi-
ment so that the block ACK window advancement does not limit
the length of the transmitted A-MPDUs. As a result, the simulator
always transmits full-length A-MPDUs to ensure that the estimated
fates of all 32 MPDUs are used in the evaluation. Despite the 2
week time gap between the collection of the calibration and test
traces and possible environmental changes, the inferred measure-
ment methodology produces accurate results. We speculate that if
the calibration and main traces are collected more closely in time,
more accurate results may be possible. We recommend that cali-
bration traces include the same or bigger range of speeds of move-
ment as the main trace so that a better fit can be achieved when
performing the regression to compute the mapping functions. In
future work, we intend to study if calibration is required for differ-
ent environments.

Note that a particular transmission rate (i.e., 117 Mbps) is used
in the evaluation of the inferred measurement methodology. This rate
was chosen because we believe it would be a challenging choice.
To see if this is in fact a challenging choice, we consider the num-
ber of non-trivial rates (as introduced in Section 7.1). If a rate is
trivial (i.e., the FER is almost O or 1) for most of the time during
an experiment estimating missing MPDUs for this rate is a fairly
easy task as the FER of missing MPDUs is also most likely 0 or
1. On the other hand, estimating the fate of missing MPDUs for a
non-trivial rate is much more challenging.

We define Non-trivial FER ratio as the ratio of the FER measure-
ments for a transmission rate with the FER between 0.05 and 0.95
to the total number of FER measurements for that rate during an ex-
periment. We consider a rate to be non-trivial at a given time, if
the FER of this rate is between 0.05 and 0.95 over a one second
window centered at that time. To quantify how challenging trans-
mission rates are for the purpose of evaluating our new method-
ology, we compute the ratio of time each rate is non-trivial. For
instance, if the FER of a rate is between 0.05 and 0.95, for 40% of
the measurements, the non-trivial FER ratio for this rate is 0.4 in
that particular experiment. We compute the non-trivial FER ratio
for all 96 rates in the calibration traces used in the 2.4 and 5 GHz
experiments. In the 2.4 GHz trace, the rate we used in the eval-
uation (i.e., 117 Mbps) has the highest non-trivial FER ratio (i.e.,
0.72). In the 5 GHz trace, this rate has a ratio of 0.81 and is the
eighth highest non-trivial FER ratio (the highest ratio is 0.89). The
high non-trivial FER ratios for the 117 Mbps rate make this rate
a good candidate for the evaluation of our methodology, because
estimating the missing MPDUs is challenging for this rate.

When collecting the test traces, we continuously monitor the
FER to keep it in the non-trivial range. For instance, when the FER
approaches 0.95, we start moving back towards the access point
to lower the FER. As a result, the non-trivial FER ratio of the 117
Mbps rate in the 2.4 and 5 GHz test traces are 0.997 and 0.998,
respectively. We believe that the rate used in this evaluation is a
suitable choice for the purpose of this study due to the high non-
trivial FER ratios and attempts made to keep the FER in the chal-
lenging non-trivial range.

Traces for the direct measurement methodology are easy to
collect and when applicable this methodology is the preferred
method, however, it is applicable only to 802.11 networks with
a smaller number of transmission rates. We show that the direct
measurement methodology can be used to collect traces with an
iPhone that supports 32 transmission rates. To support networks
with many more transmission rates such as MIMO 3x3:3 systems,
we have designed the inferred measurement methodology. This
technique utilizes the relationship between the MDR of MPDUs
within an A-MPDU and the channel dynamics indicator to enable
us to collect traces with fame aggregation disabled (thus increas-
ing the number of samples collected per unit of time), and to infer
the MDR for MPDUs that would have been sent with frame aggre-
gation. Finally, we have utilized T-SIMn to evaluate the accuracy
of the inferred measurement methodology. Our trace collection
methodologies enable the T-SIMn framework to accurately mea-
sure the channel conditions in a variety of environments includ-
ing those with WiFi and non-WiFi interference and mobility. When
comparing the performance of two or more systems or algorithms
using T-SIMn, utilizing traces guarantees that the competing alter-
natives are exposed to exactly the same channel conditions. There-
fore, any differences observed in the performance are solely due to
differences in those algorithms or systems and not due to differ-
ences in channel conditions. To evaluate the ability of traces to ac-
curately capture fast changing channel conditions, we demonstrate
that the inferred measurement methodologies achieve a high de-
gree of accuracy. It is worth noting that less accurate traces could
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still be used to evaluate competing alternatives as they would be
compared using the same trace.

9. Conclusions

In this paper, we design a trace-based simulation framework for
802.11n networks, called T-SIMn. We find that carefully consider-
ing all factors that affect throughput such as 802.11n transmission
features, channel access, and channel error rate are necessary to
accurately simulate this standard. More specifically, we show that
accurate handling of 802.11n frame aggregation is a key in obtain-
ing realistic and high fidelity results. We demonstrate that SIMn
accurately simulates these factors by comparing the simulator re-
sults with empirical measurements.

We design and evaluate two trace collection methodologies,
namely, direct measurement and inferred measurement tech-
niques. Using the direct measurement methodology, we demon-
strate that the T-SIMn framework can be used with 1 antenna de-
vices (which includes most smart phones and tablets). Finally, we
show that the inferred measurement technique enables the frame-
work to work with devices that support many transmission rates
such as MIMO 3x3:3 systems.

We have implemented the frame aggregation and Minstrel HT
rate adaptation algorithms from the ath9k driver in our simulator.
In addition, we have implemented the MoFA frame aggregation al-
gorithm [7], are currently working on the STRALE rate adaptation
and frame aggregation algorithms [26] and plan to add more algo-
rithms. We plan to use T-SIMn to conduct a comprehensive evalu-
ation of existing link adaptation and frame aggregation algorithms
using a wide variety of environments. Additionally, as part of our
future work, we plan to compare the accuracy of T-SIMn with that
of simulators like ns-3and OMNeT++. We believe that T-SIMn is a
valuable tool for the realistic and repeatable performance evalua-
tion of 802.11n networks. To that end, we have made some traces
available [27] and intend to add more traces and T-SIMn to this
repository.
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