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In this paper, we describe the design, implementation and evaluation of a new framework for the trace- 

based evaluation of 802.11n networks, which we call T-SIMn. In order to accurately estimate the fate 

of frames that could have been sent at any rate, traces collected for use in trace-based simulators, like 

T-SIMn, require a sufficiently large number of samples to be collected using each different rate in a rel- 

atively short period of time. In this paper, we devise two novel techniques for collecting and processing 

traces for 802.11n networks that incorporate Frame Aggregation (FA). The first technique, called direct 

measurement, samples all rates while aggregating the maximum number of possible frames for each 

sample. This approach is attractive because frame error rates (FERs) may vary with the position of the 

frame within the aggregated frame and this techniques directly captures the fate of each subframe. How- 

ever, the length of the aggregated frames limits this approach to smaller numbers of rates, making it 

unusable for devices with 3 antennas (e.g., 96 rates). As a result, we also devise second technique that 

collects traces with frame aggregation turned off, permitting a larger number of rates to be sampled 

within the same period of time. This approach, called inferred measurement, infers the FER of each sub- 

frame using models derived from calibration traces combined with a new measure of changing channel 

conditions we call the channel dynamic indicator (CDI). Using the direct measurement methodology, we 

evaluate the T-SIMn framework by collecting traces using an iPhone, which is representative of a wide 

variety of one antenna devices. We show that our framework can be used to accurately simulate sev- 

eral scenarios and demonstrate the fidelity of SIMn by uncovering problems with our initial evaluation 

methodology. We then demonstrate that our inferred measurement technique permits us to collect traces 

that sample all 96 rates in a 3x3:3 802.11n MIMO systems. These traces are then used to accurately sim- 

ulate transmissions in environments with highly variable channel conditions that include mobility and 

multiple sources of interference. 

We expect that the T-SIMn framework will be suitable for easily and fairly comparing algorithms that 

must be optimized for different and varying 802.11n channel conditions, which are challenging to evalu- 

ate experimentally. These include rate adaptation, frame aggregation and channel bandwidth adaptation 

algorithms. 

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved. 
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1. Introduction 

With billions of WiFi devices now in use, combined with the

rising popularity of high-bandwidth applications such as stream-

ing video, demands on WiFi networks continue to rise. The 802.11n

standard introduced several new physical layer features including

MIMO, 40 MHz channels, denser modulations, and a shorter guard

interval, to increase throughput. We refer to the combination of

features as a rate configuration . Combinations of these features re-
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ults in up to 128 different rate configurations. In order to opti-

ize throughput in an 802.11n network, we must choose the rate

onfiguration that results in the best trade-off between physical

ayer transmission rates and error rates, which is highly depen-

ent on environmental conditions. Because the radio spectrums

re shared by WiFi devices included in computers, cell phones

nd tablets; as well as Bluetooth devices, wireless keyboards/mice,

ordless phones, and microwave ovens, it is challenging to experi-

entally evaluate and compare the performance of WiFi networks.

herefore, we need new techniques for understanding and evalu-

ting how to best use 802.11n features. 

Previously, we proposed a solution [1] that uses traces to cap-

ure environmental conditions, rather than models, to simulate
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Fig. 1. FA: Maximum theoretical throughput. 
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Fig. 2. Rate notation. 
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02.11g networks with high fidelity. We expected that extend-

ng this solution to 802.11n networks would be relatively simple.

owever, it turned out that this is actually a very interesting and

hallenging problem, due to MAC layer frame aggregation (FA) in

02.11n. The complications introduced by frame aggregation re-

uired a complete redesign of major components of our trace-

ased simulator. While the faster transmission rates are an im-

ortant factor in the throughput gains afforded by 802.11n, it is

nly when they are used in combination with frame aggregation

hat 802.11n networks achieve significant increases in throughput

hen compared with 802.11g. Frame Aggregation (FA) allows mul-

iple MAC layer frames to be combined into a large physical layer

rame so that they can be transmitted and acknowledged as one

ggregated frame, which results in the channel being used more

fficiently. 

To demonstrate the importance of FA, Fig. 1 shows the max-

mum theoretical throughput obtained using the highest physical

ayer transmission rate in 802.11n for one, two and three spa-

ial streams, respectively. Without frame aggregation throughput is

imited to about 50 Mbps. However, when aggregating 32 frames,

hroughput increases to 350 Mbps. 

Because performance is so heavily dependent on FA, accurate

imulation of FA is crucial for T-SIMn to be useful in the study of a

ange of active research topics. This includes the evaluation of: link

daptation algorithms [2] (which studies physical layer configura-

ions such as rate adaptation [3,4] and channel bandwidth adapta-

ion [5,6] ) and frame aggregation algorithms [7,8] . We refer to link

daptation and frame aggregation algorithms collectively as opti-

ization algorithms . 

The contributions of this paper are: 

• We design, implement and evaluate a trace-based simulation

framework (T-SIMn) for realistic and repeatable performance

evaluations of 802.11n networks. 

• We design and evaluate a trace collection methodology (called

direct measurement ), which is simple and easy to use but suit-

able only for devices with a smaller number of transmission

rates (e.g., the vast majority of cellphones and tablets that have

only one antenna). Using an iPhone as the receiving device we

show that collecting traces using direct measurement combined

with our prototype implementation of T-SIMn produce highly

accurate simulation results. 

• We design and evaluate a trace collection methodology (called

indirect measurement ), which is more complex to use but is

suitable for devices with many more transmission rates (e.g.,

some desktop systems with three antennas supporting 96

rates). We demonstrate that indirect measurement can be com-

bined with T-SIMn to obtain highly accurate simulations of a

device with 96 rates. 

• While designing the indirect measurement methodology we de-

veloped a new technique for estimating the frame error rate of

subframes within an aggregated frame that takes into account

channel dynamics. We first show that changes in the Received
Signal Strength Indicator (RSSI) of ACKs can be used to infer the

channel dynamics which in conjunction with the delivery ratio

of the first MAC Protocol DATA Unit (MPDU) can be used to ac-

curately estimate the fate of other subframes in an aggregated

MPDU (A-MPDU). We then develop a model that can be used

with the T-SIMn simulator and demonstrate that the model is

accurate. 

The paper begins by providing some necessary background and

escribing related work in Section 2 . We then present an overview

f the T-SIMn framework in Section 3 , followed by a description

f the test bed used in this study (in Section 4 ). In Section 5 , we

escribe the components of the T-SIMn framework and evaluate

he accuracy of these components. We then evaluate the frame-

ork as a whole in Section 6 , by utilizing traces collected using an

Phone and the direct measurement methodology. In Section 7 , we

nvestigate the limitations of the direct measurement methodol-

gy when used with devices that support many transmission rates.

n Section 8 , we propose and evaluate the inferred measurement

ethodology which is designed to be used in situations where the

irect trace collection technique is unable to sample enough rates

ithin the required period of time. Finally, conclusions are pre-

ented in Section 9 . 

. Background and related work 

.1. Rate configurations 

In 802.11g, a transmission rate can be uniquely identified by

he index of the Modulation and Coding Scheme (MCS). This in-

ex alone is no longer sufficient to uniquely identify an 802.11n

ate, as the transmission rate is now also dependent on the num-

er of Spatial Streams (SSs), the Guard Interval (GI) and the Chan-

el Bandwidth (CB). We refer to this set of parameters as a rate

onfiguration. In the interest of brevity, Fig. 2 introduces notation

sed for describing a rate configuration (sometimes simply referred

o as a rate). 

The first two characters represent the number of spatial

treams (in the example 2S stands for two spatial streams). The

ext two characters represent the MCS index (I6 means index 6).

his is followed by information about whether a Long Guard In-

erval (LGI) or Short Guard Interval (SGI) are being used (in the

xample LG means and LGI is used). The next three characters de-

cribe whether the channel bandwidth is 20 or 40 MHz (20 MHz

n the example). Finally the number after the equal sign indicates

he resulting physical rate (104 Mbps in the example). 

.2. 802.11N frame aggregation 

Frame aggregation (FA) is a new MAC layer feature in 802.11n

hat allows multiple frames to be combined to form a larger frame.

he 802.11n standard defines two types of frame aggregation: Ag-

regated MAC Protocol DATA Unit (A-MPDU) and Aggregated MAC

ervice DATA Unit (A-MSDU) . These two types of frame aggregation

iffer by where in the protocol stack aggregation is done. In this

aper, we use A-MPDU frame aggregation as it is more widely sup-

orted by WiFi devices, including the Atheros devices used in this

aper. 



118 A. Abedi et al. / Computer Communications 117 (2018) 116–132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

p

 

A  

R  

c  

n  

u  

t  

i  

w  

t  

a  

f

3

 

a  

a  

t  

8  

a  

i  

a  

s  

t  

l

 

c  

a  

t  

r  

8  

t  

c  

s  

d  

c  

d  

r  

t  

(  

A  

t

 

t  

c  

p  

f  

t

3

 

c  

c  

f  

u  

c  

c  

w  

i  
By sending multiple MPDUs 1 as an A-MPDU, the sender only

performs channel sensing, backoff, Distributed Inter-Frame Space

(DIFS), Short Inter-Frame Space (SIFS) and wait for an ACK once

for the entire set of MPDUs. This results in a greater proportion

of time being spent transmitting data, increasing the air time ef-

ficiency. The receiver sends back a Block ACK which acknowledges

all MPDUs at once. In this work, we use MPDU and subframe in-

terchangeably. 

2.3. Related work 

Conducting experiments is a common technique for evaluating

the performance of WiFi networks. The advantage of this approach

is that real-world wireless channel conditions are captured. How-

ever, it is challenging to conduct repeatable experiments [9] be-

cause channel conditions can vary significantly between trials due

to many factors, including mobility, changes in the environment

(including the movement of people who are nearby), and the pres-

ence of WiFi and non-WiFi interferers [10] . 

Simulation is a common technique for evaluating the perfor-

mance of 802.11 networks. Since both the physical and MAC layers

are simulated in this approach, comparisons are repeatable. Popu-

lar 802.11 network simulators include ns-3 [11] , OMNeT ++ [12] ,

OPNET Modeler [13] (renamed, Riverbed Modeler) and Qual-

Net [14] . Unfortunately, these simulators may not reflect real-world

performance due to the challenging nature of simulating wire-

less signals in the physical environment. WiFi signals are impacted

by many factors, including the distance between devices, material

types of surrounding objects and walls, wavelength, mobility and

many more [15] . These simulators utilize models for signal prop-

agation, error rates and interference and each model must trade-

off computational complexity and accuracy [15] . Additionally, the

complexity and time varying nature of all of the factors that can

affect a frame’s fate makes it incredibly challenging to obtain accu-

rate results, especially since models of one environment (e.g., one

home) may not necessarily work in another environment (e.g., an

office or even a different home). In the case of environments with

mobility, this model may change over time. As a result existing

simulators suffer from practical limitations For instance, OMNeT ++
does not support multi-path signal propagation [16] , which is an

important prerequisite for simulating MIMO transmissions. There

is also no support for MIMO in ns-3. Rather than simulating the

physical layer, we collect traces to capture the impact of the phys-

ical layer on frame fates, allowing us to handle more complex sce-

narios than can be accurately modeled by traditional simulators. 

Emulation is another alternative for evaluating and studying

802.11 networks. The most common approach is to use real WiFi

devices connected by wire to a Field- Programmable Gate Array

(FPGA) that simulates signal propagation [17] . An emulation test

bed by Judd and Steenkiste [18] is one of the most prominent ex-

amples of this type of system. As real devices are used, the MAC

and parts of the physical layer are not simulated. However, signal

propagation is simulated using the FPGA to alter the signals being

transmitted between devices. The major disadvantage of this ap-

proach is that realism is again limited by the models used to sim-

ulate the physical layer. 

To increase the realism of emulators, hybrid approaches using

traces to simulate the physical layer and emulation for the MAC

layer have also been proposed [18,19] , however these have been

limited to 802.11b networks and rely on measurements of Signal-

to-Noise Ratio (SNR) to simulate the physical layer. However, the

SNR can not be used to accurately predict frame fates [20] . Instead,

we rely on traces to directly capture the impact of the physical
1 MAC header + MAC payload (IP packet). 

n

 

t  
ayer on frame fates and simulate the well-defined MAC layer. This

rovides an excellent combination of repeatability and fidelity. 

T-RATE [1] is our trace-driven framework for evaluating Rate

daptation Algorithms (RAAs) designed for 802.11g networks. T-

ATE eschews the modeling and emulation of wireless channel

onditions in favor of traces that capture channel access and chan-

el error rate information. These traces are used to simulate RAAs

sing channel conditions limited only by the environment in which

races are collected. Despite the high fidelity of T-RATE, it is lim-

ted to the evaluation of RAAs in 802.11g networks. In this paper,

e design and evaluate T-SIMn, a more general framework for the

race-based evaluation of 802.11n networks. The most prominent

nd challenging contribution in T-SIMn is the accurate handling of

rame aggregation. 

. The T-SIMn framework 

The main goal of T-SIMn is to achieve repeatability and re-

lism when evaluating the performance of 802.11n networks. To

chieve this goal, T-SIMn records all channel conditions that affect

hroughput in a trace and then uses this trace to simulate different

02.11n optimization algorithms such as link adaptation and frame

ggregation. As a result, T-SIM can be used to achieve repeatabil-

ty by using an identical trace to evaluate different algorithms. In

ddition, it achieves realism since T-SIMn relies on traces that are

ubject to and include information related to actual channel condi-

ions rather than using wireless channel models , which are known to

ack realism [21,22] . 

To simulate 802.11n networks with high fidelity, we need to ac-

urately compute the transmission time of a frame and consider

ll factors that can affect throughput. Computing the transmission

ime for a frame is a relatively easy task and is done very accu-

ately in our simulator by using timing information available in the

02.11n standard ( Section 5.2 provides more details). Environmen-

al factors may affect 802.11 channel access (i.e., CSMA/CA) and

hannel error rate. If a WiFi or non-WiFi device operating at the

ame frequency is active during channel sensing, it forces a sender

evice to back off and therefore limits the number of frames that

an be sent. If WiFi or non-WiFi devices interfere with the receiver

evice, the channel error rate may increase. In T-SIMn, to accu-

ately simulate the time required for frame transmission we need

o determine: the delay (overhead) imposed by channel sensing

i.e., CSMA/CA), how long it takes to transmit a frame (including

CK reception and DCF mandatory wait times), and whether or not

he transmitted frame is received correctly. 

T-SIMn uses two phases to simulate 802.11n. The first phase is

race collection, where a log containing the data necessary for ac-

urately simulating an 802.11n experiment is collected. The second

hase is simulation, where the trace is used to determine frame

ates, transmission delays and throughput. We now explain these

wo phases. 

.1. Trace collection 

The purpose of trace collection is to capture channel access and

hannel error rate information (i.e., a trace), for each 802.11n rate

onfiguration. To enable the simulation of any link adaptation and

rame aggregation algorithm at time t , T-SIMn must be able to sim-

late the transmission of an A-MPDU of any length sent with any

hosen rate configuration. This requirement makes trace collection

hallenging, since at time t , only one particular rate configuration

ith a specific A-MPDU length can be transmitted. Therefore, no

nformation is available at that time concerning the other combi-

ations of rate configuration and frame lengths. 

To address this problem we have designed two trace collec-

ion techniques that sample all rate configurations in a round
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obin fashion. The direct measurement methodology is suitable

or studies using devices that support a limited number of trans-

ission rates such as one antenna devices (e.g., many cellphones

nd tablets). We believe that the direct measurement will be used

hen possible due to its simplicity. However, for 802.11n devices

ith a larger number of transmission rates, we design a method-

logy called inferred measurement. We now explain the common

haracteristics of both methods and the details of the direct mea-

urement methodology. A detailed description of the inferred mea-

urement methodology is presented in Section 8 . 

With both trace collection techniques, we modify the device

river so that the rate adaptation algorithm, instead of trying to

hoose the best rate, cycles through all of the rates supported by

he device in a round-robin fashion for the duration of the trace

ollection. After a frame is transmitted, the sender switches to the

ext rate; wrapping back around after all rates have been sampled.

f we sample all rate configurations within the time a channel is

onsidered stationary (i.e., the channel coherence time), all config-

rations experience the same channel conditions. During simula-

ion, to obtain the error rate of a rate configuration at time t , we

ompute an average error rate for that configuration over a time

indow centered at t . 

If the error rates of the MPDUs within an aggregated frame are

dentical, we could disable frame aggregation during trace collec-

ion and simulate aggregated frames of any size, by simply apply-

ng the error rate of (non-aggregated) collected frames to all MP-

Us in an A-MPDU. However, a recent study [7] shows that the

rame error rate of the MPDUs within an A-MPDU are not identi-

al . More specifically, they show that the frame error rate of early

PDUs (i.e., closer to the physical header) are lower than MPDUs

hat appear latter in the A-MPDU. Although we confirm that in-

ividual MPDUs have different error rates, we find patterns other

han the increasing error rate pattern (observed in [7] ). We discuss

hese findings in greater detail in Section 5.4.1 . Note that this prob-

em was not an issue in our 802.11g framework since 802.11g does

ot support frame aggregation. One might imagine that a solution

ould be, during trace collection, to attempt to sample all com-

inations of A-MPDUs from length 1 (i.e., no frame aggregation)

o the maximum number of MPDUs allowed in an A-MPDU. Since

his procedure would be required for all rate configurations, it be-

omes impossible to sample all combinations in a sufficiently short

eriod of time (i.e., within the channel coherence window). As a re-

ult, the direct measurement methodology infers the fate of MPDUs in

n A-MPDU from a longer A-MPDU. Therefore, during trace collection,

e only need to sample the longest possible A-MPDU for each rate

onfiguration and infer the FERs of any shorter A-MPDU for that rate

rom the longer A-MPDU. 

In both methodologies, in order to record the delay imposed

y channel access (CSMA/CA), we use Cycle Counter Information

CCI) reported by a modified ath9k driver as explained in detail

n Section 5.3 . These counters help us infer the delay caused by

iFi and non-WiFi devices when performing channel sensing. We

odify the ath9k driver to print a log entry after each aggregated

rame (A-MPDU) transmission has completed, which includes the

ate of each MPDU and the CCI. It may be possible to use other

iFi devices for trace collection. However, we chose the Atheros

R9380 chipset because of the availability of the source code and

ts support for CCI. Our trace collection requires the modification of

he rate adaptation algorithm and, as will be required in Section 7 ,

he frame aggregation algorithm. 

.2. Simulation 

The trace processing phase uses a trace to simulate different

ptimization algorithms. The simulator component of our frame-

ork (called SIMn) performs a time based simulation using a trace,
here the sender saturates the link to the receiver by sending as

any aggregated frames as possible. 

Figs. 3 illustrates the work flow of SIMn. Solid lines represent

he execution flow of the simulator, with the direction being indi-

ated by a closed (i.e., filled) arrow. Dashed lines indicate the flow

f data, with the recipient of the data being indicated with an open

rrow. As depicted in Fig. 3 , a simulation in SIMn proceeds using

n event loop, starting at time t = 0 , that performs the following

teps: 

1. Check the collected trace for unprocessed WiFi delays that oc-

curred before time t . If WiFi delays exist, t is incremented by

the duration of the delay. This is repeated until all WiFi delays

that have occurred before t have been processed. 

2. Determine any non-WiFi delays that occur at time t and incre-

ment t by the duration of the delay. 

3. If there are fewer than two aggregate frames (one in transmis-

sion and one queued), create an aggregate frame and add it to

the queue. 

4. Compute the time to transmit the A-MPDU. 

5. Determine the fate of each subframe i in the aggregate frame

using the Subframe Index Error Rate (SFIER) at time t , rate r and

index i . SFIERs are discussed in detail in Section 5.4.1 . Failed

subframes are rescheduled for retransmission if the retry limit

has not been exceeded. 

This process repeats until the simulation time is equal to the

uration of the collected trace. To create an aggregated frame we

rst compute the maximum allowed size of the aggregated frame

detailed in Section 5.2.2 ). Then MPDUs are added to an A-MPDU

n a loop until the maximum size is reached. The MPDUs are either

ew frames arriving from an application or failed MPDUs that are

aiting for retransmission. Rescheduled frames are given priority

hen forming aggregate frames. 

To determine the fate of a subframe with index i that needs

o be sent at simulated time t with rate configuration r , T-SIMn

onsiders all samples for the rate r and subframe index i in the

veraging window (t − window_size/2) ms to (t + window_size/2)

s, from the collected trace. The averaging window should be less

han the channel coherence time for the environment so that chan-

el conditions are relatively constant with respect to the frames

eing used to determine the fate of frames at time t . Channel co-

erence time depends on many factors (e.g., the speed of move-

ent and channel frequency). In indoor environments at walking

peeds channel coherence time is reported to be approximately

00 ms for the 2.4 GHz band [23] and 100 ms for the 5 GHz

and [24] . Because all experiments in this paper use the 5 GHz

and, we use an averaging window of 200 ms (i.e., t − 100 ms to

 + 100 ms), which corresponds to a 100 ms coherence time. Our

valuation in Section 6 shows that an averaging window of 200 ms

roduces accurate results in our mobile environment at walking

peeds, when performing round-robin trace collection with 1 an-

enna. However, this parameter can be easily tailored to the envi-

onment. 

.3. Frame aggregation notation 

To concisely describe limits on the length of an aggregated

rame (i.e., the number of subframes) for a particular rate configu-

ation, we introduce the notation: 

FA 
(SIM | COL) 

= maximum number of aggregated subframes 

For example, FA SIM = 16 means that the simulator is allowed to

ggregate a maximum of 16 subframes (we omit rate configura-

ion information; it is not needed for our purposes). The number

f subframes in a specific aggregated frame may be further limited

y the Block-Ack window discussed in detail in Section 5.2.2 . Sim-

larly, FA COL = 32 means that the driver was limited to aggregat-
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Fig. 3. T-SIMn simulation flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Floor plan of the test bed environment. 
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ing a maximum of 32 subframes during trace collection . We use the

notation FA SIM = MAX and FA COL = MAX to mean that we impose no

restrictions, beyond those in the 802.11n standard and the ath9k

driver (i.e., 32 MPDUs), on the aggregated frame length during

simulation and trace collection, respectively. Lastly, FA SIM = FA COL 
means the limits on the aggregated frame are the same during

simulation and trace collection. 

4. Test bed 

Our test bed is located in cubicles in a large room, as well as

some separate offices on a university campus. Fig. 4 shows the

floor plan for the cubicles and offices. Four cubicles are located

in the area near the labels (AP) and (C) and four are located be-

tween the two grey bars (which indicate paneled dividers between

the two sets of cubicles). The five smaller rooms are two person

offices and the larger room at the top right is a meeting room.

Our WiFidevices include two desktop computers housing identical

TP-Link TL-WDN4800 PCIe cards, an Apple MacBook Pro-(Retina,

15-inch, Mid 2012), an Apple iPhone 6, and a laptop configured
o use a TP-Link TL-WDN4200 dual-band wireless N USB adapter.

he TP-Link cards use an Atheros AR9380 chipset, while the Mac-

ook and iPhone use Broadcom BCM4331 and BCM4339, respec-

ively. The USB adapter contains an Ralink RT3573 chipset and uses

he rt2800usb (Ralink) device driver. Although all devices are dual-

and (2.4 and 5 GHz), several experiments are conducted using the
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Fig. 5. Fidelity of PHY layer features simulation. 
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 GHz band because the Apple devices used in these experiments

o not support 40 MHz channel bandwidths in the 2.4 GHz spec-

rum. Except for the iPhone 6, which contains only one antenna

i.e., 32 transmission rates), all devices contain three antennas sup-

orting three spatial streams in a 3x3:3 MIMO configuration with

6 transmission rates. 

We create an 802.11n Access Point (AP), shown as (AP) in Fig. 4 ,

sing hostapd and collect traces while that system sends frames

sing our modified ath9k driver. Although the AP could be used

s the sender or the receiver , we use the computer designated as

he AP as the sender in all experiments. The major advantage of

his approach is that there are fewer requirements imposed on

he receiver , which does not need to be capable of creating an AP.

n addition, the receiver does not need to use a modified ath9k

river and, as a result, can be any 802.11n-capable device that runs

perf3; this includes a wide variety of devices, even an iPhone. We

reate a network between the AP ( sender ) and a client, which acts

s a receiver. To collect a trace the sender saturates the link by

ending as many 1,470 byte UDP frames as possible using Iperf3.

nless otherwise noted, we aggregate the maximum number of

ubframes (i.e., FA COL = MAX ). 
We use the second desktop as a receiver , shown as © in Fig. 4 ,

n the stationary experiments. It is located less than 1 meter from

he AP with line of sight so we can collect error-free traces needed

or some experiments. The MacBook, iPhone, and the USB adapter

re used for mobile experiments. When it is necessary to minimize

he amount of uncontrolled WiFi interference, we use channels in

he 5 GHz band that are unused by other APs in the vicinity. We

onitor all channels for interference using an AirMagnet Spectrum

T spectrum analyzer. For generating controlled non-WiFi interfer-

nce we use an RF Explorer Handheld Signal Generator (RFE6GEN)

hat we control programmatically using a USB connection. 

. T-SIMn Details and evaluation 

.1. Experimental methodologies 

To evaluate the simulator component of the T-SIMn we use

 technique that minimizes our reliance on the trace collection

ethodology. We conduct an experiment using a constant rate

onfiguration, which produces a constant rate configuration trace

i.e., the trace collection is also an experiment). We then use SIMn

o simulate a constant rate configuration experiment (for the same

ate configuration) using the collected trace. Because the simu-

ated experiment uses the same rate configuration as the con-

ucted experiment, simulated throughput should match through-

ut obtained during the conducted experiment if the simulator is

ccurate. There are two major advantages to this methodology: (1)

t does not require experiments to be repeatable since the experi-

ent produces a trace that is used by SIMn to simulate an exper-

ment with exactly the same conditions and environment as the

onducted experiment (i.e., the conducted experiment is trace col-

ection). (2) Constant rate traces provide many samples in each av-

raging window, which allows us to study the accuracy of SIMn

ithout being limited by the collected trace. 

Together these properties allow us to expect, and check for,

lose matches between experimental and simulated throughput

hen evaluating SIMn. Recall that the simulation is not simply a

race playback as discussed in Section 3.2 . Our plots include 95%

onfidence intervals and we consider a match to be obtained if we

ave overlapping confidence intervals for experimental and sim-

lated throughput over each window of time. Note that in some

lots the confidence intervals are so tight that they may not be

isible. In this section, all experiments are conducted on channels

ree of any uncontrolled inference. 
.2. Computing transmission duration 

Determining the time spent transmitting a frame depends on

he combination of physical layer features being used (i.e., the

ate configuration) and, at the MAC layer, the number of frames

nd method used for frame aggregation. We now describe relevant

imulator details and evaluate the fidelity of the simulator with re-

pect to these 802.11n features. 

.2.1. Physical layer features 

The 802.11n protocol introduces many new physical layer fea-

ures, namely Multiple Spatial Streams (SSs), Short Guard Intervals

SGIs), Channel Bonding and Dual-Band support. Despite being nu-

erous, these features are relatively simple to simulate because

ow they influence the transmission time is either specified in or

an be easily determined from the 802.11n standard. We now eval-

ate SIMn’s ability to accurately replicate the timings, and conse-

uently the throughput, of these 802.11n physical layer features. 

Experiment Setup and Description: We create a net-

ork between the Access Point (AP) ( sender ) and the desk-

op client ( receiver ). We use the stationary client because it

an reliably obtain error-free traces due to its close proxim-

ty and line of sight. We collect 100 second traces for the

ate configurations 1S-I4-LG-20M = 39 , 1S-I4-SG-40M = 90 ,
S-I4-SG-40M = 180 and 3S-I4-SG-40M = 270 . We choose

hese rate configurations because they cover both long and short

uard Intervals (GIs); 20 and 40 MHz Channel Bandwidths (CBs);

s well as one, two and three spatial streams. A Modulation and

oding Scheme Index (MCS index) of 4 is chosen because it is the

ighest index with which we could reliably obtain error-free traces.

e use highest rates possible because discrepancies between ex-

erimental and simulated throughput are more likely to be seen

t high rates than low rates. In this experiment, we aggregate as

any MPDUs as possible during trace collection and simulation. 

Experiment Results: In Fig. 5 , we plot pairs of throughput mea-

urements, simulated and experimental, for each of the collected

ate configurations. For all four rates, the simulated throughput

ightly matches the experimental throughput. This suggests that

IMn accurately handles rate configurations using different phys-

cal layer transmission features. In other words, SIMn accurately

alculates the transmission time of a frame (including ACK and DCF

iming) for the combinations of the physical layer features shown.

ote that we have tested other combinations (not included here)

o confirm that the simulator matches the expected experimental

hroughput. 

.2.2. MAC Layer features 

To understand how to simulate frame aggregation, we first de-

cribe the factors that affect the length of an A-MPDU: 

a) There is an air time limit of 4 ms in the 5 GHz ISM band

that prevents a single device from monopolizing the channel.

This limit means that when using slower rate configurations
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Fig. 6. Simulatingshorter aggregated frames. 
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(i.e., lower Physical Layer Data Rates (PLDRs)), aggregated frame

length is limited to the number of frames that can be transmit-

ted in 4 ms. The ath9k driver applies the same restriction for

the 2.4 GHz band. 

b) The Block-Ack Window (BAW) also plays a major role in the

length of aggregated frames, as the sequence numbers of sub-

frames can be offset by at most 64 from the starting sequence

number in the BAW. 

c) There is a 64 KB limit on the size of the 802.11 PLCP. For exam-

ple, if using 1,500 byte frames, a maximum of 43 frames may

be aggregated. 

d) Implementation specific requirements may also limit the length

of aggregated frames. For instance, although this is not dictated

by the 802.11n standard, the ath9k driver used in this paper

imposes a limit of 32 subframes in an aggregate frame. This

is done so that another aggregated frame can be constructed

and queued while the previous frame is being transmitted. A

limit of 32 MPDUs in each A-MPDU means that two aggregated

frames can be created within the 64-bit BAW, one in transmis-

sion and one queued. 

e) Management frames must be transmitted as individual frames.

When a time sensitive management frame, such as a bea-

con frame, is queued the ath9k driver will stop aggregating

subsequent frames. This allows the management frame to be-

gin transmission sooner than if a long aggregated frame were

ahead of it in the transmission queue. 

Determining the time spent transmitting the frame will depend

on the number of frames that have been aggregated and the time

required to transmit those subframes, which can be determined

from the 802.11n specification. As mentioned previously, trace col-

lection is performed by aggregating as many subframes as possible

(i.e., FA COL = MAX , which is FA COL = 32 in ath9k). We do not col-

lect FA COL = 1 , FA COL = 2 , ..., FA COL = MAX -1. However, the simulator

will need to accurately simulate cases where FA SIM ≤ FA COL = MAX
due to the reasons listed above, in addition to permitting differ-

ent frame aggregation algorithms to be implemented in the sim-

ulator (recall that a goal of this work is to enable the fair com-

parison of different frame aggregation algorithms). Being able to

accurately simulate A-MPDUs of any length using frames collected

using only A-MPDUs of maximum length is they key insight and crit-

ical requirement to enable trace-based simulation of 802.11n net-

works. Therefore, we now evaluate SIMn’s accuracy when simu-

lating the throughput of frames aggregated with fewer subframes

during simulation than were obtained during trace collection. 

Experiment Setup and Description: We create a network be-

tween the AP ( sender ) and desktop computer ( receiver ), which

is located less than 1 meter away in order to reliably obtain

error-free traces (we consider errors in Section 5.4 ). For all ex-

periments, the sender is set to a constant rate configuration

of 2S-I4-SG-40M = 180 . We collect a 100 s econd trace with

FA COL = MAX , as this is the aggregation limit that we will typi-

cally use for trace collection. We then conduct 100 s econd ex-

periments with Frame Aggregation (FA) limited to 32, 16, 2 and

1 aggregated frames, which we use as the ground truth. We

then simulate constant rate scenarios for the rate configuration

2S-I4-SG-40M = 180 with FA SIM = MAX , FA SIM = 16 , FA SIM = 2
and FA SIM = 1 , using the FA COL = MAX trace as input to the simula-

tor. We expect simulated throughput for FA SIM = MAX , FA SIM = 16 ,
FA SIM = 2 and FA SIM = 1 to match the throughput obtained directly

from the experiments run with FA limited to 32, 16, 2 and 1 ag-

gregated frames, respectively. 

Experiment Results: In Fig. 6 , we plot pairs of simulated and

experimental throughput measurements for each of the frame ag-

gregation configurations. For all pairs of simulated and experimen-

tal throughput we see a close match, which suggests that SIMn
an accurately simulate shorter aggregated frames from traces with

A COL = MAX , in an error-free environment. In Section 6 we demon-

trate that SIMn is also accurate in environments that are not free

rom errors (e.g., including uncontrolled environments). As a re-

ult, we are able to collect traces with FA COL = MAX but to simulate

ases where frames of shorter lengths are used. 

.3. Determining channel access 

Since the 802.11 standard implements CSMA/CA, channel access

s a crucial factor in determining throughput for an experiment.

hen a WiFi device performs channel sensing and a WiFi or non-

iFi signal is detected the transmission has to be postponed, re-

ulting in reduced throughput. It is critical that T-SIMn measures

his delay while conducting trace collection and accurately simulates

t in order to produce realistic throughputs. Such delays can be

aused by changing channel conditions and it is the ability to cap-

ure these delays that makes trace-based simulation so attractive.

hannel conditions are captured in traces, rather than simulated us-

ng computationally intensive and inaccurate models. In T-SIMn, we

ompute both WiFi and non-WiFi delay using Cycle Counter Infor-

ation (CCI) available on the Atheros device. 

We use four counters available on the Atheros chipset which

re: tx_cycles , which counts the number of cycles that the chip

pends performing transmissions (out bound); rx_cycles , which

ounts clock cycles spent receiving (in bound); busy_cycles , which

easures the number of cycles that the channel was busy per-

orming transmission, receiving WiFi frames or due to non-WiFi

oise; and total_cycles , which counts the total number of cycles for

ransmission, including those spent busy (i.e., waiting). We modify

he driver to include cycle counts for each aggregated frame in the

ollected trace and compute delay as follows: 

elay = act ual durat ion − expected duration (1)

he expected duration is determined from the 802.11n standard and

ncludes time for transmission and the Distributed Coordination

unction (we use an average backoff of 7.5 μs ). The actual duration

s the time spent transmitting the aggregated frame, as determined

sing the cycle counters. More details can be found in [1,25] . 

T-SIMn needs to determine if the source of delay was due to

iFi or non-WiFi interference in order to accurately simulate chan-

el access because they impact delay in different ways. With non-

iFi interference each time the sender attempts to transmit a

rame it may experience delay. As a result, the more frequently A-

PDUs are sent the more delay the sender may incur. Since the

ender is transmitting a constant stream of frames, the frequency

f A-MPDU transmission is affected by the rate configuration and

he length of A-MPDUs. The situation is different for WiFi interfer-

nce because all parties implement the 802.11n standard and co-

perate when accessing the channel. As a result, the sender’s de-

ay before transmitting an A-MPDU does not depend on the rate

onfiguration or the length of the A-MPDU. It only depends on

he amount of time the currently transmitting device occupies the

hannel being used. 
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Table 1 

Simulation error (% Difference). 

FA COL → FA SIM With heuristic Without heuristic 

32 → 2 −0.9% 5.6% 

32 → 1 1.6% 10.0% 
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We have developed a simple heuristic to distinguish WiFi from

on-WiFi interference. We consider delay to be due to WiFi inter-

erence if one or both of the following are true: 

1. The time spent transmitting the frame is significantly longer

than expected: 

act ual t x durat ion − expected t x durat ion > threshold 

tx _ cycles 

clock _ speed 
− data tx time > threshold 

This handles the case where the frame is delayed due to out

bound traffic on the Access Point (AP), such as transmitting a

beacon frame or responding to a probe request. Our current

heuristic uses a threshold of 60 μs as it is small enough to

catch beacon frames, which are the shortest WiFi frames that

we observed. 

2. The time spent receiving the ACK for the frame is significantly

longer than expected: 

act ual rx durat ion − expected rx duration > threshold 

rx _ cycles 

clock _ speed 
− ack rx time > threshold 

This handles the case where a frame is delayed due to in bound

WiFi traffic. Our heuristic uses a threshold of 10 μs because

there is little variation in the actual rx durations in the absence

of WiFi interference. 

Although these values provide accurate results in the following

valuation, in future work thresholds may be tuned to improve the

ccuracy of the heuristic. 

If the delay is due to WiFi interference, we simply increment

he simulation time by the duration of delay as explained in

ection 3.2 . To simulate the delay caused by non-WiFi interference,

e find the delay incurred when sending each frame (from the

race) and compute the average delay experienced by each frame

ver the 200 ms time window centered at the current simulation

ime (i.e., the averaging window used to compute the error rate

escribed in Section 3.2 ). This average is the expected delay and

s then added to the transmission time of the next frame in the

imulator. Note that channel sensing does not depend on the rate

onfiguration of the frame to be transmitted, so this computation

s independent of the rate configuration. 

We now evaluate the accuracy of T-SIMn in presence of WiFi in-

erference, when the simulator must use shorter aggregated frames

han those that have been collected (i.e., FA SIM < FA COL ) due to

he size of an A-MPDU being limited by one of the factors ex-

lained in Section 5.2.2 . 

Experiment Setup and Description: We create a network be-

ween the AP ( sender ) and a desktop computer client ( receiver ).

e collect a trace for the rate configuration 2S-I4-SG-40M = 180
ith FA COL = MAX . We then conduct experiments with Frame

ggregation (FA) limited to 2 and 1 aggregated frames. Using

he trace collected with FA COL = MAX , we simulate constant rate

cenarios for the rate configuration 2S-I4-SG-40M = 180 with

A SIM = 2 and FA SIM = 1 . This is done to evaluate SIMn’s ac-

uracy in simulating shorter frames from traces collected with

A COL = MAX , in the presence of WiFi interference. We then repeat

hese simulations but disable the heuristic (i.e., WiFi and non-WiFi

elays are not differentiated) to demonstrate how distinguishing

he two types of interference improves the accuracy of our simu-

ator. 

Experiment Results: Table 1 shows the differences between the

hroughput obtained with and without the heuristic for FA SIM = 2
nd FA SIM = 1 . In this experiment, the only WiFi interference is
rom beacon frames generated by the AP. We find that simulation

rror (i.e., the difference between simulated throughput, with and

ithout the heuristic, and the experimental throughput), is lower

hen using the heuristic. With the heuristic, simulation error is

ess than 1% when simulating FA SIM = 2 from FA COL = MAX , and less

han 2% when simulating FA SIM = 1 from FA COL = MAX . Without the

euristic, simulation error is roughly 6% and 10% for FA SIM = 2 and

A SIM = 1 , respectively. These are significant differences, especially

hen considering that the only WiFi interference is beacon frames

which are relatively short in duration compared to data frames).

e expect these differences to be even larger if a third-party WiFi

lient is added. 

.4. Determining frame error rates 

Along with the physical layer transmission rate and channel ac-

ess (delay), the channel frame error rate (FER) is one of the ma-

or factors in determining the throughput for an 802.11n network.

rrors can be introduced when multiple WiFi or non-WiFidevices

ransmit at the same time, resulting in a packet collision. Further-

ore, errors may be caused by path loss when signal strength

s low due to the distance between a sender and receiver or be-

ause of obstacles like walls or furniture that obscure the path

etween the two devices. We begin by describing the need to

onsider the subframe index (i.e., the location of the subframe

ithin the A-MPDU) when computing the fate of a subframe in

ection 5.4.1 . Then, using path loss as an example, we demonstrate

hat the techniques we have devised provide accurate results (in

ection 5.4.2 ). 

.4.1. Subframe index error rates 

In our initial implementation of SIMn, we treated the successes

nd failures of individual MPDUs (subframes) as samples in the

omputation of the FER over the specified time window for a par-

icular rate configuration. For example, if we sent 5 aggregated

rames, each containing 30 subframes, 15 successful and 15 failing,

he FER determined to be 50% because 75 subframes were success-

ully transmitted and 75 failed. However, we found that simulated

hroughput did not always closely match experimental throughput,

ven though the error rates obtained in the simulator were simi-

ar to those observed in the experiments. Upon closer inspection,

e found that there were significant differences between the av-

rage length of aggregated frames in the simulation and in the

xperiments. In our experiments the error rate of each subframe

ithin multiple A-MPDUs varied with the index of the subframe

i.e., the error rate changed with the location of the subframe

ithin the A-MPDU). Byeon et al. report that subframes transmit-

ed more than 2 ms after the beginning of the transmission of

n aggregated frame have a lower probability of being success-

ully received [7] (i.e., the pattern is that subframes with higher

ndices have a higher probability of failure). While some of the A-

PDUs we inspected exhibited similar behaviour, we found that

he pattern of subframe error rates can differ significantly across

ifferent scenarios. As a result, we develop a technique that will

ork with any pattern, including environments where the pattern

hanges over time. SIMn now computes individual error rates for

ach subframe index rather than using an average FER across the

ntire aggregated frame. We refer to this as a Subframe Index Error
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Fig. 7. Impact of per-subframe error calculation. 
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Fig. 8. Mobile scenario experiencing path loss. 
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Rate (SFIER). We now illustrate the importance of using the SFIERs

in obtaining accurate throughput in SIMn. 

Experiment Setup and Description: We take advantage of an-

other feature of our trace-based simulator, namely the ability to

generate and process synthetic traces to better understand 802.11n

networks. We create two synthetic traces with equal A-MPDU frame

error rates of 41%, but using two different SFIER patterns. The equal

FERs are useful in reasoning about the expected outcome. Syn-

thetic traces are used due to the difficulty in experimentally ob-

taining traces with the same overall FER with different SFIER pat-

terns. The first trace has a linearly increasing SFIER from 0.025

at index 0 to 0.8 at index 31. The second trace uses the oppo-

site pattern, with the SFIERs decreasing linearly from 0.8 at index

0 to 0.025 at index 31. We use SIMn to simulate the transmis-

sion of frames using these two patterns and a rate configuration of

3S-I7-SG-40M = 450 . We first treat all subframe indices equally,

as in our initial implementation of SIMn. We then repeat the sim-

ulations using our current implementation of SIMn that considers

each SFIER individually and compare the throughput obtained us-

ing these two different approaches. 

Experiment Results: Fig. 7 plots the throughput obtained for

the two synthetic traces. The bars on the left show the results

obtained using the current implementation with per-SFIERs and

those on the right show results obtained using the initial imple-

mentation per-SFIERs are not considered (labelled “Original”). As

expected, when using the Original implementation the throughput

of the Increasing and Decreasing patterns are equal (because they

have the same 41% FER. However, when using per-SFIERs, an in-

creasing SFIER pattern results in higher throughput than a decreas-

ing pattern, even though they have the same overall average error

rate. The decreasing SFIER pattern results in lower throughput, be-

cause failures at the start of an aggregate frame prevent the Block-

ck Window (BAW) from advancing and thus reduces the average

length of aggregated frames. These experiments illustrate the im-

pact of considering individual SFIERs and their importance in ob-

taining accurate simulation results. This is critical because our goal

is to use the simulator to evaluate link adaptation and frame ag-

gregation algorithms, which require the correct simulation of phe-

nomenon captured during trace collection. 

5.4.2. Path loss 

To evaluate SIMn’s ability to handle channel error rate, we use a

challenging mobile scenario where channel error rates vary widely

due to path loss. 

Experiment Setup and Description: We create a network be-

tween the Access Point (AP) ( sender ) and a Mac-Book Pro (MBP).

The sender transmits for 100 seconds using constant rate config-

uration of 2S-I4-SG-40M = 180 with FA COL = MAX . We choose

this rate configuration because in this mobile scenario, its error

rates vary widely. In this experiment, the MBP is carried at walk-

ing speed in an office environment where cubicle walls obscure

line of sight. We simulate throughput for the rate configuration

2S-I4-SG-40M = 180 , using the collected trace as input to the
imulator. Note that during the simulation SFIERs must be com-

uted and frames of length shorter than the maximum will be

sed. This tests SIMn’s ability to accurately simulate throughput

ith fluctuating error rates, different error rates across different

ubframe indices, and A-MPDUs of different length. 

Experiment Results: In Fig. 8 , we plot pairs of throughput

easurements, simulated and experimental, for this scenario. De-

pite the significant fluctuations during this experiment, there is

 close match between simulated and experimental throughput.

his suggests that the simulator can accurately determine error

ates (including SFIERs) and simulate aggregated frames of differ-

nt lengths. 

. Evaluating our framework 

In the previous sections, we use constant rate traces to focus

ur tests on the T-SIMn simulator, SIMn. Although not representa-

ive of how trace collection would be done in T-SIMn, that tech-

ique is used to ensure the accuracy of SIMn on its own. In this

ection, we evaluate T-SIMn as a whole, using round-robin trace

ollection in conditions that are representative of those in which

iFi is used. For the experiments in this section, we collect traces

sing the direct measurement methodology and use an iPhone, which

upports 32 transmission rates. We show that this approach can be

sed with devices that support 32 transmission rates for easy and ac-

urate trace collection. In Section 8 , we propose and evaluate a more

ophisticated methodology that handles devices that support more

ransmission rates. 

In order to evaluate the T-SIMn framework, we use an eval-

ation methodology similar to that used to evaluate T-RATE [1] .

hat is, we conduct an experiment (which produces a trace) us-

ng a round-robin ordering of rate configurations and then in SIMn

e conduct a simulation using a round-robin ordering that differs

rom the experiment. This experiment is designed as a means for

valuating the accuracy of the T-SIMn framework. The intuition be-

ind this methodology is that in both the experiments and the

imulation each rate will be used to send the same number of

rames using each rate. Therefore, the average throughput obtained

ver an interval in time from the experiment should be matched

y the average throughput obtained from the simulator. This will

nly be true if, despite not having sent a frame with rate con-

guration R at time t , the simulator can accurately determine the

robability that the frame would be successfully sent by comput-

ng the average SFIER over the channel coherence window. Addi-

ionally, different orderings means it is extremely unlikely that the

umber of frames aggregated in the simulator at time t will match

he number of aggregated frames collected in the trace at time t .

n contrast to T-RATE, we cannot cycle through all of the available

02.11n rates (96 rates for our 3 antenna devices would take about

00 ms) because the time required to perform enough rounds to

ccurately compute average error rates would exceed the channel

oherence time. 
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Fig. 9. Simulating reverse MCS ordering. 
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Fig. 10. Simulating reverse group ordering. 
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We instead limit our evaluation to one antenna (1-Spatial

tream (SS)) devices, which includes most cell phones, tablets and

ther small devices. Using Long Guard Interval (LGI), Short Guard

nterval (SGI), 20 and 40 MHz Channel Bandwidth (CB) results in

 total of 32 rate configurations. 

During trace collection, rates are grouped by a combination of

he Guard Interval (GI) and the CB. Therefore, rates are sampled in

he following group order LGI-20MHz , SGI-20MHz , LGI-40MHz ,
GI-40MHz . Within each group, rates are sampled in order from

he lowest Modulation and Coding Scheme Index (MCS index) to

he highest (i.e., MCS index 0 , 1 , . . . , 6 , 7 ). We simulate round-

obin in the reverse group order (i.e., SGI-40MHz , LGI-40MHz ,
GI-20MHz , LGI-20MHz ) and from the highest MCS index to the

owest (i.e., MCS index 7 , 6 , . . . , 1 , 0 ). 

Experiment Setup and Description: We create a network be-

ween the AP ( sender ) and an iPhone 6 ( receiver ). The sender is

onfigured to sample all 32 1-SS 802.11n rate configuration, which

s the entire set of rates supported by the iPhone 6. The experi-

ent is conducted by using a mix of carrying the iPhone at walk-

ng speed and standing still in an office environment as described

n Section 4 . 

Experiment Results: In Fig. 9 , we plot simulated and experi-

ental throughput. The experiment starts with the handheld mo-

ile device near the access point. The decrease in throughput from

round the 40 s econd mark to 60 s econds is due to movement

way from the access point, while the increase in throughput from

0 s econds until around 80 s econds is due to movement back to-

ard the access point. We find that simulated throughput matches

xperimental throughput except for the points at times t = 20 ,

 = 60 and t = 100 . The largest difference is observed at t = 60 ,

here average simulated throughput is roughly 11% higher than

verage experimental throughput. Initially, we thought that this

as due to inaccuracy in SIMn. However, upon closer investiga-

ion, we realized that the simulator is in fact accurate and that the

roblem was with the methodology used to evaluate the accuracy

f the framework. Our assumption that simulating round-robin in

 different order would result in each rate configuration being used

or the same proportion of time is not guaranteed in 802.11n net-

orks, unlike a similar evaluation we conducted for 802.11g net-

orks [1] . In the next section, we investigate and explain why the

rder in which rates are used in a round-robin fashion impacts

hroughput. 

.1. Effect of rate configuration ordering 

In 802.11n networks, the fate of one frame can impact the num-

er of frames that can be aggregated in the next frame due to the

lock-Ack Window (BAW). Failed aggregated frames or subframes

imit how far forward the BAW can be advanced. Recall from

ig. 1 that the number of subframes being aggregated has a signif-

cant impact on throughput, with longer aggregated frames leading

o higher potential throughput. Recall that in the previous section,
ates were sampled in the group order LGI-20MHz , SGI-20MHz ,
GI-40MHz , SGI-40MHz . Additionally, rates are sampled in order

rom the lowest Modulation and Coding Scheme Index (MCS index)

o the highest (i.e., MCS index 0 , 1 , . . . , 6 , 7 ). This means that the

ost robust rates in each group are sampled first and the least ro-

ust rates are sampled last. We have examined the data shown in

ig. 9 in detail and found that at times t = 50 to 70, the reverse

rdering performed during simulation leads to longer aggregated

rames on average (a mean of 15.2 subframes in each aggregated

rame during simulation compared to 14.6 in the experiment). This

esults in slightly higher simulated throughput during this period.

lthough there is a match in simulated and experimental through-

ut during some portions of this time interval (i.e., overlapping

Is), the simulated throughputs are visibly lower for most times t .

imulating longer frames than those that were collected may also

ead to some inaccuracies because of insufficient samples in the

ollected trace for frames of the length being simulated. 

As a result, we have had to revise our understanding and

ow expect different round-robin orderings to result in differ-

nt throughput, unless the behavior of the Block-Ack Window

BAW) advancement and consequently Frame Aggregation (FA) is

he same during trace collection and simulation. To test this hy-

othesis, we construct a new ordering to use in the simulation

hat preserves the property that the most robust rates in each

roup are used first and the least robust rates are used last. The

imulation still uses rate groups in the reverse order from the or-

er used when the trace is collected (i.e., simulating SGI-40MHz ,
GI-40MHz , SGI-20MHz and LGI-20MHz . However, within each

roup, we now use rates in order from the lowest Modulation and

oding Scheme Index (MCS index) to the highest (i.e., the same

rder used during trace collection). We simulate a round-robin or-

ering with this new reverse group order and show simulated and

xperimental throughput in Fig. 10 . As the graph shows, the sim-

lated throughput now closely matches that obtained experimen-

ally (all pairs of confidence intervals overlap). Note that this prop-

rty does not limit SIMn to simulating only certain orderings of

ate configurations. It is only required for this evaluation of the

ccuracy of T-SIMn because we are trying to devise a methodol-

gy where the throughput of the simulator should match that of

he experiment. Now that we are aware of this property, we will

se the reverse group ordering in the following section, where we

valuate T-SIMn in an uncontrolled environment. 

.2. Uncontrolled environment 

Up to this point, all experiments are performed with no neigh-

oring Access Points (APs). We now move to a different 5 GHz

hannel that is in use by the university’s WiFi network to evalu-

te T-SIMn in conditions that are typical for a shared university

iFi network. This includes interference from many third-party

iFi clients and APs. 
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Fig. 11. Uncontrolled, mobile scenario. 
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Experiment Setup and Description: Similarly to the previous

section, we create a network between the AP ( sender ) and an

iPhone 6 ( receiver ). However, unlike previous experiments, we now

configure the AP to use a channel occupied by one of the univer-

sity’s APs with the highest signal strength. As mentioned previ-

ously, we use a 5 GHz network because the iPhone does not sup-

port 40 MHz Channel Bandwidths (CBs) in the 2.4 GHz spectrum.

Note that if we had used the 2.4 GHz band, thus limiting trace

collection to 20 MHz rate configurations, we would have obtained

twice as many samples in each averaging window, which should

only improve accuracy. As in previous experiments, we sample all

1-Spatial Stream (SS) rate configurations. We collect a 100 s econd

trace with FA COL = MAX to test T-SIMn in an uncontrolled environ-

ment. This scenario is comprised of a mix of carrying the iPhone

at walking speed and standing still in an office and hallway envi-

ronment as explained in Section 4 . 

Experiment Results: In Fig. 11 , we plot pairs of throughput

measurements, simulated and experimental, for the uncontrolled

experiment. We find that while the receiver is stationary from

 = 60 to 100 there is significantly more fluctuation in throughput

when compared to Fig. 9 from t = 10 to 40 in Fig. 10 . This is due to

the third-party traffic on the shared channels. The close matches in

throughput suggest that T-SIMn is accurately capturing and simu-

lating third-party traffic and that it can handle conditions that are

representative of those in which WiFi devices are used. 

7. Trace collection with many transmission rates 

In Section 3.1 , we explain that the error rate of the MPDUs

within an aggregated frame are not identical. As a result, the di-

rect measurement technique measures the per MPDU error rate

by sending the longest possible A-MPDU for each transmission

rate. All transmission rates are sampled using a round-robin or-

dering. As explained in Section 3.1 , if we sample all transmission

rates within the channel coherence window, all rates experience

the same channel conditions. Since the number of transmission

rates affects the time required to complete a round of sampling

for all, this determines the number of samples that can be col-

lected within the channel coherence window. For 802.11n devices

that support many transmission rates, the number of samples col-

lected by the direct measurement technique might be too low to

accurately measure the error rate. We refer to this as the lack of

samples problem for trace collection. 

In Section 6 , we show that the direct measurement technique

can be used for devices that support 32 transmission rates. How-

ever, this technique may not be accurate for devices that support

more transmission rates. For instance, for a device that supports

up to 3 spatial streams (i.e., 96 rates), our measurements have

determined that each round of sampling takes about 300 ms to

complete when using the direct measurement technique. Recall

that the channel coherence time in the 5 GHz spectrum is about

100 ms, as a result, the coherence window is 200 ms (i.e., 100 ms
efore and after a particular point in time). As a result, each trans-

ission rate only has at most one (per sub-index) sample in a co-

erence window, which may not be enough to capture fast chang-

ng channel conditions. While we have shown the direct measure-

ent methodology is accurate for 32 rates, the maximum num-

er of rates that this methodology can support depends on the re-

uired accuracy for a particular study and is a topic of future work.

However, in the rest of this section, we study the lack of sam-

les problem with the goal of alleviating the shortcomings of the

irect measurement technique. We show that a relatively intuitive

pproach that one might expect to work can not be used and argue

hat more sophisticated techniques are required. In Section 8 , we

ropose a novel methodology that can be used to obtain a suffi-

ient number of samples with devices supporting a larger number

f rates (i.e., three antennas with 96 rates). 

.1. Dynamic transmission rate elimination 

One approach to increasing the number of samples within

he coherence window is to dynamically eliminate “trivially pre-

ictable” transmission rates when collecting a trace using a round

obin ordering. The intuition is that if a particular transmission

ate fails to successfully transmit a frame, faster transmission rates

which use less redundancy) will not be able to transmit the frame

ither (i.e., the FER will be 1). Similarly, if a particular transmission

ate is successful, sampling slower transmission rates is not neces-

ary as they are even more robust and will be successful (i.e., the

ER will be 0). Therefore, sampling these transmission rates with

nown expected FER is wasteful and sampling all rates might be

onsidered unnecessary and “oversampling” some rates. As a re-

ult, the round robin trace collection mechanism might be able to

kip many rates and collect a larger number of more useful sam-

les by dynamically eliminating some rates. 

This heuristic could solve the lack of samples problem if a large

nough portion of the rates experience an error rate sufficiently

lose to 0 or 1. These rates that are trivially predictable over some

hort periods of time (i.e., trivial rates ) can be temporarily and

ynamically excluded or included by the heuristic. Note that the

et of trivial rates might change over time as the channel con-

itions change. To evaluate the potential of such a heuristic, we

nitially designed an experiment to examine the number of non-

rivial rates , with FER � = 0 or FER � = 1, over a one second window.

owever, we soften those requirements to reduce the number of

on-trivial rates by considering only rates with an FER between

.05 and 0.95 as non-trivial. If the intuition behind the heuristic

s correct, a small portion of rates will be non-trivial and the rest

f them will be trivial and can therefore be eliminated from sam-

ling. 

In this experiment, a laptop (i.e., receiver) equipped with the

ireless N USB adapter, which supports 96 transmission rates, is

arried at walking speeds for 15 minutes in the office environment

s described in Section 4 . There exists no line-of-sight between

he AP and client for most of the experiment, because the signal

s blocked by obstacles such as metal cabinets, cubicle partitions

nd walls. We use a 2.4 GHz channel, which is exposed to WiFi

nd non-WiFi interference. The distance between the AP and client

anges from 1 meter to about 20 meters. In this experiment, all

6 transmission rates are sampled using a round robin ordering

ithout frame aggregation. Frame aggregation is not used in this

xperiment to increase the number of samples collected for each

ransmission rate. 

Fig. 12 shows the number of non-trivial rates that cannot be

liminated by the heuristic over the 15 minute experiment. The

gure indicates that there are several times when the number of

on-trivial rates is more than 70. Therefore, at those times the

euristic can eliminate less than 26 of the 96 transmission rates.
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Fig. 12. Mobile 2.4 GHz. 

Fig. 13. Mobile 5 GHz. 
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Fig. 14. Impact of speed on MPDU delivery ratio. 
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ampling 70 transmission rates using frame aggregation takes over

00 ms to complete. As a result, each rate has at most one sam-

le over the coherence windows (i.e., 200 ms) and this heuristic,

ased on dynamic rate elimination, will also suffer from a lack of

amples. Therefore, we dismiss this as a potential trace collection

ethodology. We believe that the reason for these counterintuitive

esults is WiFi and non-WiFi interference. We believe that interfer-

nce might be strong enough to change the FER of most transmis-

ion rates regardless of the amount of redundancy encoded in the

rames. 

To support this claim, we repeat the experiment in the 5 GHz

pectrum on a channel with no WiFi or non-WiFi interference and

resent the results in Fig. 13 . Note that except the spectrum band,

verything else in this experiment is unchanged. Fig. 13 indicates

hat when the interference is eliminated from the experiment, the

umber of non-trivial rates decreases significantly. 

In summary, the rate elimination heuristic might be able to skip

any transmission rates when there is no interference. However,

ur goal is to collect traces under a variety of channel conditions

ncluding those that are affect by different sources of interference.

s a result, this heuristic cannot be used for our purpose. In the

ext section, we characterize the MPDU delivery ratio patterns in

n A-MPDU and then use the characterization to design a method-

logy for collecting traces with many transmission rates. 

. Inferred measurement technique 

The Frame Error Rate (FER) is not identical for the MPDUs

n an aggregated frame. For this reason, the direct measurement

ethodology, transmits the largest possible A-MPDU, during trace

ollection, to measure the FER of all MPDU indexes. However, us-

ng frame aggregation during trace collection leads to the lack

f samples problem in 802.11n networks with many transmission

ates as explained in Section 7 . We now describe our new in-

erred measurement methodology, which avoids frame aggregation

or trace collection to increase the number of samples collected

ver the channel coherence window. Note that when frame aggre-

ation is disabled, only the error rate of the first MPDU can be

easured. Since during simulation an A-MPDU with any arbitrary

ength might be transmitted, the inferred measurement method-

logy needs to accurately estimate the error rate of the missing
PDUs. To explain the design of this methodology, we need to un-

erstand the characteristics of the MPDU delivery ratio (MDR) in

n aggregated frame. Therefore, we first study the effect of carrier

requency and the speed of movement on the changes to the MDR

n an A-MPDU, then, we describe the design of the inferred mea-

urement technique. 

.1. Changes of MDR in an A-MPDU 

Byeon et al. [7] report that if channel conditions change rapidly

for instance when the sender or receiver is moving), subframes at

he end of an A-MPDU experience higher error rates than those

loser to the header of the frame. In addition, they show that

igher speeds of movement intensify this phenomenon. In order

o accurately estimate the MDR of subframes in an A-MPDU, we

eed to characterize and understand how the MDR of different

ubframes change within an A-MPDU. In this section, the MDR of

ubframe i is denoted by MDR i . 

We design a mobile experiment where a laptop with the wire-

ess N USB adapter is carried at different speeds from a very slow

o a fast walking speed in the office environment described in

ection 4 . We divide the experiment into three parts, namely, slow,

ormal, and fast walking speeds. 

Fig. 14 shows the relative MPDU delivery ratio (relative MDR)

or the physical rate of 117 Mbps for the three walking speeds. We

resent the relative MDR for an easier comparison of the 2.4 and

 GHz experiments. The relative MDR is computed by dividing the

DR of each index by the MDR of the first MPDU. For instance,

he relative MDR of subframe i is MDRi / MDR 1 . We can observe

hat in both spectrums as the speed increases the delivery ratio

rops more sharply due to more rapid changes in the channel con-

itions, this is because the initial calibrations done on the pream-

le are less representative of the channel state as the time since

he preamble increases. The results show that the speed has a sig-

ificant role in the decrease of the MDR and it is more prominent

n the 5 GHz spectrum. For instance, let’s consider MPDUs with

ndex 16, which are in the middle of the aggregated frames. In the

.4 GHz spectrum, the relative MDR at the slow and fast speeds

re 0.84 and 0.48, respectively. The relative MDR had dropped by
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Fig. 15. Channel dynamics indicator. 
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2 The ath9k driver limits the transmission time to 4 ms to comply with the chan- 

nel occupancy restriction at the 5 GHz ISM spectrum. 
43%, while in the 5 GHz band, the relative MDR is 0.64 and 0.02,

which is a 97% drop. Byeon et al. [7] also observed that the speed

of movement intensifies the MDR decline phenomenon. However,

their measurements are conducted in the 5 GHz spectrum only.

Our results show that the 2.4 and 5 GHz frequency bands impact

this phenomenon differently. 

One reason for the faster decrease of the MPDU delivery ratio

in the 5 GHz spectrum is explained by the Doppler shift. The fol-

lowing formula shows how the Doppler shift is directly related to

the transmission frequency ( f 0 ): 

� f = 

(
�v 
c 

)
f 0 (2)

where �f is the frequency shift, �v is the relative speed of the

sender and receiver, and c is the speed of light. As Eq. (2) indi-

cates, for a given relative speed �v , the frequency shift in the 5

GHz spectrum is almost twice that of the 2.4 GHz spectrum. The

frequency shift due to the Doppler effect causes inter-subcarrier

interference in OFDM communication systems, which consequently

increases the bit error rate leading to a higher FER. As a result, in

the 5 GHz spectrum, the later MPDUs in an aggregated frame are

more likely to observe a change in the channel conditions (i.e., fre-

quency shift) due to a stronger Doppler effect. 

We observe that the MDR decline patterns are related to the speed

of movement. If we can quantify the channel dynamics caused by the

movement of the sender, receiver, or nearby objects, we might be able

to estimate the MDR of all other MPDUs from the MDR of the first

MPDU and the channel dynamics metric. 

The inferred measurement methodology (explained later in this

section) utilizes this idea by turning off frame aggregation dur-

ing trace collection (i.e., measuring the MDR of the first MPDU

only) and estimating the MDR of missing MPDUs. By not using

frame aggregation, the inferred measurement methodology can

collect more samples during the same time interval than the di-

rect measurement technique. We show that the inferred measure-

ment methodology is able to support 802.11n networks with many

transmission rates (in this case up to 96). We next describe a novel

technique for quantifying the channel dynamics, then we present

the design of the inferred measurement methodology. 

8.2. Channel dynamics indicator (CDI) 

We have shown that the decline of the MPDU delivery ratio in

an aggregated frame depends on the speed of movement. We now

propose measuring the channel dynamics (which changes with the

speed of movement) by using changes in the RSSI of ACKs. Note

that we do not use RSSI to estimate the frame error rate, instead,

we infer the channel dynamics from the changes in the measured

RSSI. 

We require a statistical measure that reflects the channel dy-

namics. In other words, this metric should change with the speed

or amount of movement of the sender, receiver, and the sur-

rounding objects. We will use this measure to estimate how the

MDR declines as the subframe index increases (i.e., how later

frames within the A-MPDU have higher error rates). We found that

the variance of the difference between consecutive RSSI measure-

ments, which we call Channel Dynamics Indicator (CDI) , is a suitable

measure. Studying other statistical measures will be the subject of

future work. 

Fig. 15 shows the channel dynamics indicator for the experi-

ment we described in Section 8.1 . In this experiment, the speed

of movement increases gradually during the experiment, therefore,

we expect that the channel dynamics indicator to change in con-

junction with the speed of movement. The graph shows that our

metric correctly increases with the movement speed. At the begin-

ning of the experiment, when the movement speed is very low, the
DI is fairly close to zero. As the speed increases, the CDI also in-

reases to reflect the more variable channel conditions. In the next

ection, we show how this metric can be utilized to accurately es-

imate the MPDU delivery ratios. 

.3. Inferred measurement methodology 

We observed that the channel dynamics indicator (CDI) can

otentially be a good estimator for the fluctuations in the chan-

el conditions caused by mobility. We have also shown that the

PDU delivery ratio decline in an A-MPDU depends on the speed

f movement. As a result, we hypothesize that if the delivery ratio

f the first MPDU of a given A-MPDU and the CDI can be deter-

ined, the delivery ratio of other MPDUs in that A-MPDU could

e estimated. If this hypothesis turns out to be true, then we can

ollect traces without frame aggregation and infer the delivery ra-

io of missing MPDUs from non-aggregated frames (which corre-

pond to the first MPDU in an A-MPDU) and CDI. In other words,

e can increase the number of samples by not using frame aggre-

ation, but still estimate the delivery ratio of all MPDUs, emulating

he case where traces are collected using frame aggregation. 

We now show that for the traces studied, the channel dynamics

ndicator and the delivery ratio of the first MPDU (MDR 1 ) can ac-

urately estimate the delivery ratio of other MPDUs (MDR i ), where

 is the MPDU index. In general, we observe that for each transmis-

ion rate, there exists a function f i that maps the CDI and MDR 1 to

DR i : 

 i ∈ { 1 , 2 , . . . , M AX } ∃ f i : (M DR 1 , CDI) → M DR i (3)

here MAX is the maximum number of MPDUs that can be trans-

itted in 4 ms 2 . Note that the ath9k driver further limits the

umber of MPDUs to 32. 

Fig. 16 illustrates how the channel dynamics indicator (CDI) and

he MDR of the first MPDU (MDR 1 ) is related to MDR 16 (bottom)

nd MDR 32 (top), for the experiment described in Section 8.1 . In

his experiment, a laptop is carried at various speeds for 15 min-

tes in the office environment. 

The results for the physical layer transmission rate of 117 Mbps

s presented in the graph. Similar results were observed for other

ransmission rates. As depicted in the figure, when the channel dy-

amics indicator increases (i.e., corresponding to faster movement)

he MPDU delivery ratios of MPDUs 16 and 32 decrease for any

iven MDR 1 . This is in line with our findings in Section 8.1 where

e observed that the MDR drops more rapidly as the speed in-

reases. MDR 16 and MDR 32 are relatively high when the receiver

oves very slowly (i.e., CDI < 1) and MDR 1 is high (e.g., due

o good channel conditions for the given modulation and coding

cheme). As expected, MDR 16 is generally higher than MDR 32 as

PDUs closer to the frame header have a higher delivery ratio. 
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Fig. 16. Channel dynamics indicator. 

Fig. 17. Inferred measurement methodology. 
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.3.1. Methodology overview 

In order to enable trace collection using devices that support

any transmission rates we have designed and implemented the

nferred measurement methodology. The overview of our method-

logy (illustrated in Fig. 17 ) is as follows: 

1. A calibration trace is collected using frame aggregation, using

the direct measurement technique explained in Section 3.1 . 

This trace is used to find the relationships between the CDI and

MDRs. To compute the MDRs, we use 10-second windows to

obtain enough samples to accurately measure the MDRs (i.e., up

to 30 samples inside the averaging window). Note that the goal

is not to measure the MDRs at a particular time but rather to
compute the relationships between the CDI and MDRs. There-

fore, in this case, the averaging window does not need to be

smaller than or equal to the channel coherence time. 

2. A main trace is collected without using frame aggregation (i.e.,

FA COL = 1 ). 
This trace is called the main trace because it is a trace of the

experiment and environment that will be later used in the sim-

ulation (i.e., it is the experiment that will be simulated). The

MDR 1 and CDI information from this trace along with the map-

ping functions (obtained from the calibration trace) are used in

the next step to find the fate of missing MPDUs. 

3. For each transmission rate and subframe index i , the calibration

trace gives us a set of 3-tuples, MDR 1 , MDR i , and CDI, which

creates a 3D surface (i.e., mapping function ) as previously shown

in Fig. 16 . We use multi-variable regression, where MDR 1 and

CDI are the estimator variables and MDR i is the estimated vari-

able, to determine this mapping function (details are presented

later in this section). This procedure is repeated for all trans-

mission rates and subframe indexes. 

4. In order to estimate the fate of missing MPDUs in the main

trace, we use the following procedure: for a given frame in

the main trace at time t and transmission rate R , we consider

a time window centered at time t and compute the average

MDR of MPDU 1 (i.e., MDR 1 ) from the frames with rate R in

this window. The time window we use in this study is 200 ms

to roughly approximate the channel coherence time. Similarly,

we compute the CDI from the RSSI of all ACKs, regardless of

the transmission rate, in this window. Note that the RSSI is a

property of an electromagnetic signal not the transmission rate.

Then, we use the computed MDR 1 and CDI as input into the

mapping functions to estimate the expected fate of the MPDUs

missing from the main trace. This procedure is repeated for all

frames in the main trace and the results are stored in the gen-

erated trace . The generated trace is similar to the output of the

direct measurement methodology, except that in this case the

MPDU fates are estimated (or inferred by applying the models

obtained from the calibration trace to the frames obtained in

the main trace). This generated trace is used by T-SIMn to con-

duct performance evaluations. 

Note that both calibration and main traces include the RSSI of

CKs needed to compute the CDI. In the inferred measurement

echnique, the calibration trace is only used to find the mapping

unctions. These mapping functions are used to estimate the fate

f missing MPDUs in the main trace and can be used with dif-

erent main traces in that environment, therefore, they do not

eed to be recalculated for each new main trace. Then, the main

race is actually used for performance evaluation. The advantage

f this methodology is that the main trace contains many more

rames per unit of time than can be collected using the direct mea-

urement methodology. For example, in the inferred measurement

ethodology, if all 96 transmission rates (in a 3x3 MIMO system)

re sampled using a round robin sampling technique, we obtain

ne sample every 43 ms for each transmission rate (i.e., about 5

amples over a 200 ms coherence window). This is a large gain

n terms of the number of samples collected when compared with

race collection using frame aggregation (i.e., direct measurement)

here we sample each rate every 300 ms (i.e., less than one sam-

le over a 200 ms coherence window). As a result, for devices that

upport 3 spatial streams (i.e., 96 transmission rates),the inferred

easurement methodology increases the number of collected sam-

les to 5 samples over the 200 ms coherence window, compared

ith only 0.7 samples that would be obtained if we were to use

he direct measurement methodology. While 5 samples may seem

ow, we show that the inferred measurement methodology can ac-

urately estimate the fate of missing MPDUs. 
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Fig. 18. Inferred measurement methodology evaluation procedure. 
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Eq. (4) shows the regression model used in this study to ob-

tain the mapping functions from the calibration trace. The model

that we use contains two predictor terms MDR 1 and CDI . In addi-

tion, it has quadratic and interaction terms. We now explain why

we include these terms in the model. Fig. 16 shows that the re-

lation between the predictor terms (i.e., MDR 1 and CDI ) is curvi-

linear with MDR i . As a result, we add the quadratic terms to the

regression model. For the traces used in this study, we did not

find higher order terms necessary in the regression model. In ad-

dition, as can be seen in Fig. 16 , there are interactions between

the predictor terms. For example, when CDI = 4 , the relation be-

tween MDR 1 and MDR 32 is almost constant (i.e., MDR 32 ≈ 0). On

the other hand, when CDI = 0 , MDR 32 is a curvilinear function of

MDR 1 . This observation confirms the existence of interactions be-

tween the predictors. As a result, we add the MDR 1 
∗CDI term to

Eq. (4) to model the interactions between MDR 1 and CDI . We will

show that the regression model in Eq. (4) works well for the pur-

pose of this study, however, we plan to examine other possible

models in future work. 

MDR i = β0 + β1 MDR 1 + β2 CDI 

+ β3 MDR 1 
2 + β4 CDI 2 

+ β5 (MDR 1 ∗ CDI) 

(4)

8.4. Methodology evaluation 

To evaluate the efficacy of the inferred measurement method-

ology one can compare the outcome of this technique with that

of an actual experiment (i.e., the ground truth). However, it re-

quires repeatability between the trace collection and the ground

truth experiment and achieving repeatability is very difficult, es-

pecially in environments that involve mobility and interference. As

noted previously, our goal is to be able to simulate environments

with mobility and interference. Therefore, we design a novel tech-

nique, illustrated in Fig. 18 , to study the accuracy of the inferred

measurement methodology. Instead of using the main trace, which

contains samples for all rates, we collect a trace (called a test trace)

for a given transmission rate by alternatively sending frames with

and without frame aggregation. The frames without frame aggre-

gation serve as the input to inferred measurement methodology,

while the aggregated frames are used to determine ground truth.

The frames without frame aggregation are down-sampled before

being fed to the inferred measurement methodology to match the
umber of samples obtained normally when sampling all transmis-

ion rates (i.e., matching the number of usable frames that would

e available in the main trace). With this approach, we run an ex-

eriment in a way that it gives us the ground truth data and the

nput to the inferred measurement methodology simultaneously.

he inferred measurement methodology should be able to use only

hose non-aggregated frames to accurately estimate the fate of

ach MPDU in aggregated frames. Remember that with the inferred

easurement methodology, in order to collect the main trace, we

isable frame aggregation to increase the number of samples ob-

ained per unit time. Then, we infer the fate of aggregated frames

sing the mapping functions (obtained from the calibration trace)

nd the main trace (which contains non-aggregated frames only).

e now explain the procedure for evaluating the inferred mea-

urement methodology step by step as illustrated in Fig. 18 . Note

hat some steps are identical to what is done in the inferred mea-

urement methodology (marked as [IDENTICAL]). 

1. Collect a calibration trace as explained before (i.e., round robin

all transmission rates with FA COL = MAX ). [IDENTICAL] 

2. Collect a test trace for a given transmission rate R. Frame aggre-

gation is turned on and off alternatively (i.e., FA COL = MAX and

FA COL = 1 ) for each physical frame. Aggregated frames are ex-

tracted from the test trace and are stored in the ground truth

trace , while non-aggregated frames are stored in the single-rate

main trace . As opposed to the main trace, which is normally

collected when using the inferred measurement methodology

(containing the fate of all rates), this single-rate main trace con-

tains the fate of rate R only. Note that for the purpose of eval-

uating the inferred measurement methodology, instead of sam-

pling all rates, we sample only one rate so that we can also

collect the ground truth data (i.e., aggregated frames) simulta-

neously. 

3. For each transmission rate, mapping functions f i are computed

using the regression model in Eq. (4) based on the calibration

trace MDRs and CDI data [IDENTICAL]. 

4. To estimate the MDR of missing MPDUs, the MDR 1 and CDI

from the single-rate main trace are used as input into the map-

ping functions, which are used to produce the single-rate gener-

ated trace . 

5. The single-rate generated trace and ground truth traces are fed

separately to T-SIMn. T-SIMn is configured to saturate the link

with a UDP stream using the constant physical layer rate R.
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Fig. 19. Inference measurement methodology evaluation. 
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We compare the throughput obtained from the generated and

ground truth traces. If the inferred measurement technique is

able to accurately estimate the MDR for A-MPDUs, then the ob-

tained throughputs should match. 

To evaluate the inferred measurement methodology using this

rocedure, we use a laptop with the wireless N USB adapter

which supports 96 transmission rates) as the mobile receiver in

he office environment as described in Section 4 . The laptop (i.e.,

eceiver) is carried from a very slow to a very fast walking speed

or 10 minutes to collect the calibration trace and once more to

ollect the test trace. The traces are collected at the sender, which

s the stationary access point. In this experiment, there is a 2 week

ap between the collection of the calibration and test traces to test

he robustness of the calibration trace. 

Fig. 19 shows the throughput obtained from T-SIMn for the gen-

rated trace, produced by the inferred measurement methodology

nd the ground truth trace for experiments conducted using 2.4

nd 5 GHz spectrums. Every point on the plots shows the average

hroughput computed over a 5 second window. The figures show

hat despite the highly dynamic environments, the throughput ob-

ained from the inference methodology closely matches the ground

ruth data. 

Software retransmission is disabled in T-SIMn in this experi-

ent so that the block ACK window advancement does not limit

he length of the transmitted A-MPDUs. As a result, the simulator

lways transmits full-length A-MPDUs to ensure that the estimated

ates of all 32 MPDUs are used in the evaluation. Despite the 2

eek time gap between the collection of the calibration and test

races and possible environmental changes, the inferred measure-

ent methodology produces accurate results. We speculate that if

he calibration and main traces are collected more closely in time,

ore accurate results may be possible. We recommend that cali-

ration traces include the same or bigger range of speeds of move-

ent as the main trace so that a better fit can be achieved when

erforming the regression to compute the mapping functions. In

uture work, we intend to study if calibration is required for differ-

nt environments. 
Note that a particular transmission rate (i.e., 117 Mbps) is used

n the evaluation of the inferred measurement methodology . This rate

as chosen because we believe it would be a challenging choice.

o see if this is in fact a challenging choice, we consider the num-

er of non-trivial rates (as introduced in Section 7.1 ). If a rate is

rivial (i.e., the FER is almost 0 or 1) for most of the time during

n experiment estimating missing MPDUs for this rate is a fairly

asy task as the FER of missing MPDUs is also most likely 0 or

. On the other hand, estimating the fate of missing MPDUs for a

on-trivial rate is much more challenging. 

We define Non-trivial FER ratio as the ratio of the FER measure-

ents for a transmission rate with the FER between 0.05 and 0.95

o the total number of FER measurements for that rate during an ex-

eriment. We consider a rate to be non-trivial at a given time, if

he FER of this rate is between 0.05 and 0.95 over a one second

indow centered at that time. To quantify how challenging trans-

ission rates are for the purpose of evaluating our new method-

logy, we compute the ratio of time each rate is non-trivial. For

nstance, if the FER of a rate is between 0.05 and 0.95, for 40% of

he measurements, the non-trivial FER ratio for this rate is 0.4 in

hat particular experiment. We compute the non-trivial FER ratio

or all 96 rates in the calibration traces used in the 2.4 and 5 GHz

xperiments. In the 2.4 GHz trace, the rate we used in the eval-

ation (i.e., 117 Mbps) has the highest non-trivial FER ratio (i.e.,

.72). In the 5 GHz trace, this rate has a ratio of 0.81 and is the

ighth highest non-trivial FER ratio (the highest ratio is 0.89). The

igh non-trivial FER ratios for the 117 Mbps rate make this rate

 good candidate for the evaluation of our methodology, because

stimating the missing MPDUs is challenging for this rate. 

When collecting the test traces, we continuously monitor the

ER to keep it in the non-trivial range. For instance, when the FER

pproaches 0.95, we start moving back towards the access point

o lower the FER. As a result, the non-trivial FER ratio of the 117

bps rate in the 2.4 and 5 GHz test traces are 0.997 and 0.998,

espectively. We believe that the rate used in this evaluation is a

uitable choice for the purpose of this study due to the high non-

rivial FER ratios and attempts made to keep the FER in the chal-

enging non-trivial range. 

Traces for the direct measurement methodology are easy to

ollect and when applicable this methodology is the preferred

ethod, however, it is applicable only to 802.11 networks with

 smaller number of transmission rates. We show that the direct

easurement methodology can be used to collect traces with an

Phone that supports 32 transmission rates. To support networks

ith many more transmission rates such as MIMO 3x3:3 systems,

e have designed the inferred measurement methodology. This

echnique utilizes the relationship between the MDR of MPDUs

ithin an A-MPDU and the channel dynamics indicator to enable

s to collect traces with fame aggregation disabled (thus increas-

ng the number of samples collected per unit of time), and to infer

he MDR for MPDUs that would have been sent with frame aggre-

ation. Finally, we have utilized T-SIMn to evaluate the accuracy

f the inferred measurement methodology. Our trace collection

ethodologies enable the T-SIMn framework to accurately mea-

ure the channel conditions in a variety of environments includ-

ng those with WiFi and non-WiFi interference and mobility. When

omparing the performance of two or more systems or algorithms

sing T-SIMn, utilizing traces guarantees that the competing alter-

atives are exposed to exactly the same channel conditions. There-

ore, any differences observed in the performance are solely due to

ifferences in those algorithms or systems and not due to differ-

nces in channel conditions. To evaluate the ability of traces to ac-

urately capture fast changing channel conditions, we demonstrate

hat the inferred measurement methodologies achieve a high de-

ree of accuracy. It is worth noting that less accurate traces could
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still be used to evaluate competing alternatives as they would be

compared using the same trace. 

9. Conclusions 

In this paper, we design a trace-based simulation framework for

802.11n networks, called T-SIMn. We find that carefully consider-

ing all factors that affect throughput such as 802.11n transmission

features, channel access, and channel error rate are necessary to

accurately simulate this standard. More specifically, we show that

accurate handling of 802.11n frame aggregation is a key in obtain-

ing realistic and high fidelity results. We demonstrate that SIMn

accurately simulates these factors by comparing the simulator re-

sults with empirical measurements. 

We design and evaluate two trace collection methodologies,

namely, direct measurement and inferred measurement tech-

niques. Using the direct measurement methodology, we demon-

strate that the T-SIMn framework can be used with 1 antenna de-

vices (which includes most smart phones and tablets). Finally, we

show that the inferred measurement technique enables the frame-

work to work with devices that support many transmission rates

such as MIMO 3x3:3 systems. 

We have implemented the frame aggregation and Minstrel HT

rate adaptation algorithms from the ath9k driver in our simulator.

In addition, we have implemented the MoFA frame aggregation al-

gorithm [7] , are currently working on the STRALE rate adaptation

and frame aggregation algorithms [26] and plan to add more algo-

rithms. We plan to use T-SIMn to conduct a comprehensive evalu-

ation of existing link adaptation and frame aggregation algorithms

using a wide variety of environments. Additionally, as part of our

future work, we plan to compare the accuracy of T-SIMn with that

of simulators like ns-3and OMNeT ++ . We believe that T-SIMn is a

valuable tool for the realistic and repeatable performance evalua-

tion of 802.11n networks. To that end, we have made some traces

available [27] and intend to add more traces and T-SIMn to this

repository. 
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