Methodologies for Generating HTTP Streaming Video Workloads to Evaluate Web Server Performance

Jim Summers, Tim Brecht, Derek Eager, and Bernard Wong
HTTP Streaming Video

[Logos of various streaming services and technology companies]
HTTP Ecosystem

Servers

Caches/CDNs

Phones

Tablets

TVs
HTTP Ecosystem

Servers

Caches/CDNs

Phones

Tablets

TVs
Buffering …
Video and Client Characteristics

- Video is buffered
 - Start at full speed
 - Remainder at rate of consumption
- Clients usually do not watch until the end
- Change quality of video
- Pause, skip forward or back
- Long-tail distribution of content
Storage and Request Options

One Large File

Range Requests

Smaller File Chunks

Larger File Chunks

Different Quality
Methodology Goals

- Flexible
 - Many types of videos and users
- Representative
 - Based on workload measurements and studies
 - Limited client network access
- Practical
 - Experiments repeatable
 - Reasonable execution time
 - In a lab
Related Work

- Benchmarks and Workload Generators
 - YouTube Workload generation [Abhari et al, ’10]
 - SPECweb2009
 - BenchLab [Cecchet et al, WebApps ’11]

- Measurement Studies
 - YouTube Everywhere [Finamore et al, IMC ’11]

- Client Testing
 - DASH Dataset [Lederer et al, MMSys'12]
Environment

```
File set

Switch

dummynet
httpperf
Client 1

dummynet
httpperf
Client 2

...```

Server
Overview of the Methodology

- Workload specification
- Workload constructor
- File set constructor
- File set
- Switch
- Client 1
  - httpperf
  - dummynet
- Client 2
  - httpperf
  - dummynet

Generated Trace files
httpperf input files
Running Experiments

Workload specification

Generated Trace files

httpperf input files

File set

Switch

Server

dummynet
dummynet

Client 1

Client 2
Running Experiments

- Workload specification
- httpperf modifications
  - Range requests
  - Per-request timeouts
  - Pacing delays

Generated Trace files

httpperf input files

Client 1

Client 2

Switch

File set

Server
Experiment Progress

Steady State

Response Time (s)

Chunk Requested
Experiment Progress

No Warming

With Warming
Effect of Pacing

throughput with 0.5 MB chunks
Client Network Limiting

- Lab environment not realistic
  - Different devices and different network speeds
  - Not lab network speeds (e.g. 1 Gbps)

- Preliminary tests: poor disk throughput
- Simple experiment: Service videos one at a time
  - Expected to improve disk throughput
Client Network Limiting

Single-connection throughput with 0.5 MB chunks
Client Network Limiting

Single-connection throughput with 0.5 MB chunks
Example Workload

Workload constructor

Generated Trace files

httpperf input files

File set constructor

File set

Switch

Server

dummynet

Client 1

httpperf

Client 2

httpperf
Example Workload

- Video session characteristics  [Finamore et al, IMC ’11]
  - Video popularity and duration like YouTube
  - Viewing length distribution like YouTube

- Network Characteristics
  - Bandwidth 10 Mbps, 3.5 Mbps, and 1 Mbps  [Akamai]
  - One-way delay 50 ms  [N.A. coast-to-coast]

- Server File Set Characteristics
  - Chunks size 0.5 & 2 MB  [10 & 40 second chunks]
Throughput with 2 MB chunks

The graph depicts the throughput (in MB/sec) as a function of the target chunks/sec. The lines represent different servers:

- userver (red squares)
- nginx (blue triangles)
- Apache (purple inverted triangles)

The y-axis represents throughput in MB/sec, and the x-axis represents the target chunks/sec. The graph shows how these servers perform under varying loads.
Web Server Throughput

Throughput at 35 chunks/sec with 2 MB chunks
Sequential Prefetching with userver

• Problem:
  • userver uses multiple threads to service requests
  • FreeBSD interleaves concurrent read requests (fairness)

• Ideas:
  • Sequentialize disk access (file/chunk at a time)
  • Agressive application prefetching (entire chunk)
Throughput with 2 MB chunks

![Graph showing throughput with 2 MB chunks for different target chunk rates and server configurations. The graph compares server performance across different chunk rates, indicating that throughput generally increases with higher chunk rates.]
Throughput with 2 MB chunks

Throughput (MB/sec) vs Target chunks/sec for different servers:
- userver prefetch
- userver noprefetch
- nginx
- Apache
Improved Disk and Total Throughput

Throughput at 35 chunks/sec with 2 MB chunks
Summary and Conclusions

• Workload Methodology
  • Flexible, representative, practical, useful
• Demonstrate:
  • Client pacing affects results
  • Must emulate client network speeds
• Web servers can be improved
• Study HTTP ecosystem

cs.uwaterloo.ca/~brecht/papers/systor-2012
Future Work

- To chunk or not to chunk [Our work, NOSSDAV ’12]
- Sensitivity analysis
- More server improvements
- Library to use with Apache and nginx

cs.uwaterloo.ca/~brecht/papers/systor-2012
END