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ABSTRACT
Live streaming video accounts for major portions of modern
Internet tra�c. Services like Twitch and YouTube Live rely on
the high-speed distribution of live streaming video content
to vast numbers of viewers. For popular content the data is
disseminated (replicated) to multiple servers in data centres
(or IXPs) for scalable, encrypted delivery to nearby viewers.

In this paper we sketch our design of RocketStreams, a
framework designed to facilitate the high-performance dis-
semination of live streaming video content. RocketStreams
removes the need for live streaming services to design com-
plicated data management and networking solutions, replac-
ing them with an easy-to-use API and backend that handles
data movement on behalf of the applications. In addition to
its support for TCP-based communication, RocketStreams
supports CPU-e�cient dissemination over RDMA, when
available. We demonstrate the utility of RocketStreams for
providing live streaming video dissemination by modifying
a web server to make use of the framework. Preliminary
results show that RocketStreams performs similarly to Redis
on dissemination nodes. On delivery nodes, RocketStreams
reduces CPU utilization by up to 54% compared to Redis, and
therefore supports up to 27% higher simultaneous viewer
throughput. When using RDMA, RocketStreams supports up
to 73% higher ingest tra�c on dissemination nodes compared
with Redis, reduces delivery node CPU utilization by up to
95%, and supports up to 55% more simultaneous viewers.
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1 INTRODUCTION
Live streaming video services, such as Twitch [32] and
YouTube Live [34], account for large amounts of Internet
tra�c [4]. Twitch’s volume is of particular note, with Twitch
being the fourth-largest consumer of peak Internet tra�c in
the United States [8, 31]. In 2016 alone, Twitch served over
292 billion minutes of video [9].

In order to meet consumer demand, live streaming video
services ingest live video streams from producers into data
centres (or equivalently IXPs). Requests from consumers are
serviced by servers containing replicas of the live streaming
video data. The scale of replication for a popular stream can
be non-trivial: Previous research has shown that with only
30,000 viewers, a Twitch live stream could be dynamically
served from up to 150 di�erent servers [5]. Without this repli-
cation (which we refer to as dissemination), services would
have di�culty achieving high scalability and low latency.
Figure 1 shows a high-level overview of a live streaming
video service in which producers (streamers) upload video to
data centres. The streams are disseminated to servers within
the same data centre and to nodes in another data centre.
The streams are then delivered on demand from servers in
either location to consumers (viewers).
Deploying software to accommodate this work�ow is a

challenging task. Services must either build their own soft-
ware, which is di�cult and time consuming, or use existing
systems that are not necessarily optimized for live streaming
workloads (for example, they often do not provide direct ac-
cess to managed bu�ers, resulting in unnecessary copying).
Both solutions require the software to be highly e�cient,
as live streaming video has strict real-time delivery con-
straints [5], and is disproportionately impacted by losses in
quality of experience as users have much higher expecta-
tions for live streaming video than video-on-demand [6]. For
example, a 1% increase in bu�ering ratio for a 90 minute
soccer game translated to viewers watching 3 fewer minutes
of the game (impacting viewer retention and revenue) [6].
We posit that services should not be forced to choose

between suboptimal performance and a di�cult implementa-
tion. As a solution, we present RocketStreams, an easy-to-use
framework for enabling e�cient and scalable live stream-
ing video dissemination. The framework, which can be used
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with new and existing software, provides TCP-based dissem-
ination for replicating video within and across data centres.
RocketStreams’ API has been designed speci�cally to facili-
tate and accommodate live streaming video data, exposing a
high-level, event-driven, bu�er abstraction that eliminates
the need for applications to worry about implementing e�-
cient dissemination data management and networking code.
The RocketStreams memory bu�er abstraction and resulting
APIs have been chosen and designed uniquely for their ease
of integration with both RDMA and TCP. This abstraction en-
sures the CPU overhead incurred due to copying is avoided
(which is sometimes required by applications using frame-
works built around a sockets abstraction). In addition to
providing good TCP performance relative to industry-grade
solutions such as Redis [24], RocketStreams also provides
RDMA-based dissemination which can dramatically reduce
CPU utilization and further improve performance and scala-
bility. The contributions of this paper are:

• A description of RocketStreams, a framework which
provides applications with easy and e�cient live
streaming video dissemination, without the need to
implement data management and networking code.

• An overview of RocketStreams’ API, a description of
our prototype implementation and an explanation of
how, with little e�ort and relatively few lines of code,
we use RocketStreams to disseminate video streams to
an open source web server, the userver.

• Preliminary experiments indicate that RocketStreams
provides similar dissemination node performance
when compared to Redis, while on delivery nodes it
reduces relative CPU utilization by up to 54%, leading
to a 27% increase in simultaneous viewer throughput.

• When using RDMA, RocketStreams can ingest 18 Gbps
while simultaneously delivering a total of 144 Gbps
of tra�c to delivery nodes. Comparatively, Redis is
capped at 10.4 Gbps of ingest tra�c and 83 Gbps tra�c
to delivery nodes. On delivery nodes, RDMA-enabled
RocketStreams reduces CPU utilization by up to 95%
versus Redis, allowing the userver to support up to
55% more viewers.

2 DESIGN
In this section we detail the RocketStreams live stream
bu�er management APIs, as well as the networking manage-
ment component, RocketNet, that synchronizes data between
bu�ers on di�erent physical nodes. The intended use-case for
RocketStreams is for live streaming video services where data
moves as follows: data enters the system by being ingested
from external producers by logical dissemination nodes (typ-
ically inside a data centre or IXP). The data is placed into
circular bu�ers, using RocketStreams, and is disseminated by

RocketNet (using framework-managed threads) from the dis-
semination nodes to logical delivery nodes. Delivery nodes
access the data through RocketStreams, and transmit it to
consumers on request. We refer to this design pattern as
produce-ingest-disseminate-deliver-consume (PIDDC). Fig-
ure 1 depicts this design pattern. Our current live stream-
ing video implementation supports streamers generating
content as producers, and viewers requesting video data as
consumers. In the future we plan to allow dissemination
nodes to also produce data to other dissemination nodes,
thus facilitating the geo-replication of data.
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Figure 1: Live streaming video using PIDDC.

2.1 RocketStreams
RocketStreams is provided as a user-space library. Its APIs
are event-driven and can be used to implement dissemination
and delivery logic, such as the samples shown through pseu-
docode in Listing 1 and Listing 2. Applications initialize Rock-
etStreams by providing it with a con�guration �le containing
setup details (for example, networking addresses for nodes,
the roles and IDs of nodes, and network protocol settings),
seen on line 1 of Listing 1 and line 1 of Listing 2. Once initial-
ized, RocketStreams manages live streaming video bu�ers on
behalf of applications. Ingested data is placed into circular
bu�ers on the dissemination node, one per live stream, in
variable-sized chunks. Data is disseminated by RocketNet
using framework-managed threads created during initializa-
tion. If dissemination and delivery nodes reside on the same
server, network communication is avoided.

Listing 1: Sample dissemination node code.
1rs::RsManager rs("con�g_�le.cfg");
2rs::RsId id = rs.create_stream("mystream");
3rs.set_outbound(delivery_node_endpoint, id);
4while (true) {
5producer_await_stream(id); // Wait for ingest data.
6rs::RsChunk chunk = rs.allocate_chunk(id, SIZE);
7producer_receive_data(id, chunk); // Ingest data.
8rs.disseminate_chunk(chunk, SIZE, nullptr);
9}
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Applications call rs_create_stream on dissemination
nodes, which allocates a dissemination bu�er for a live
stream and returns a unique ID (across all nodes) for that
stream. This is depicted on line 2 of Listing 1. The application
can choose which delivery nodes (of those speci�ed in the
con�guration �le) receive disseminated chunks from a live
stream. This allows live streams to be associated with a �ex-
ible number of delivery nodes, per application requirements.
This process can be initiated from dissemination nodes or
delivery nodes, and in a more complex system would typ-
ically be done in consultation with or at the direction of a
control plane performing service-wide load balancing. In our
simple example, the dissemination node pushes to a single
delivery node. This is set up on line 3 of Listing 1 using
rs_set_outbound.

Listing 2: Sample delivery node code.
1rs::RsManager rs("con�g_�le.cfg");
2rs.inboud_callback(on_data_cb);
3webserver_run(); // Wait for incoming requests.
4
5void on_data_cb(rs::RsId id, void∗ data, size_t size) {
6webserver_new_data(id, data, size);
7size_t oldest = webserver_get_oldest(id);
8rs.data_consumed(id, oldest); // Return oldest data.
9}

Applications perform dissemination using a two-phase
work�ow. In the �rst phase, memory is requested from a
live stream’s bu�er using rs_allocate_chunk, as in line 6
of Listing 1. The application provides a requested size and re-
ceives a one-shot chunk of memory suitable for writing data
to The chunk is owned by the application, and is returned
to the framework during dissemination. Data entering the
system through ingestion may be placed there directly by
the application in whatever manner it chooses, as is done
on line 7 of Listing 1. When the application is ready for the
data placed in the chunk to be disseminated, it passes the
chunk to rs_disseminate_chunk, providing the size of the
data to disseminate and an optional application-speci�ed
callback context. This is done on line 8 of Listing 1. At this
point, the application no longer owns the chunk (it is be-
ing managed by the framework and will be disseminated by
RocketNet). rs_disseminate_chunk is non-blocking, queu-
ing the chunk for dissemination by RocketNet. Once dis-
semination is complete, a callback is generated, which is
provided with the application’s context. The callback func-
tion to invoke can be registered by the application using
a call to rs_outbound_callback. For simplicity, Listing 1
omits the callback function and registration.
On delivery nodes, applications register a callback func-

tion to be noti�ed of incoming disseminated chunks using
rs_inbound_callback. This callback is provided with the

ID of the live stream receiving that data, as well as a reference
to the data itself. Line 2 of Listing 2 shows this registration,
with the callback function itself beginning on line 5. The
application assumes ownership of data provided to this call-
back, and can use the associated bu�ers in whatever manner
is needed, such as on line 6 of Listing 2, which indicates to
the web server that the speci�ed data is ready for delivery.
This allows the video data to be sent to clients directly from
the framework bu�ers, avoiding potential copying. When
the oldest data in the circular bu�er is no longer needed,
the application returns that memory to the framework by
calling rs_data_consumed with a size parameter to notify
the framework of how much data is being returned. This is
seen on line 8 of Listing 2.

2.2 RocketNet
RocketNet is responsible for sending and receiving data
between bu�ers on di�erent hosts. It uses framework-
managed worker threads and an event-driven model to asyn-
chronously disseminate data between bu�ers as seen in Fig-
ure 2.Where required, these threads initiate application-layer
callbacks. RocketNet currently supports communication us-
ing TCP and RDMA.
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Figure 2: Bu�er management with RocketStreams.

An important consideration for RocketNet is how to make
bu�er space available for use and re-use for disseminated
data. For live streaming video, data is short-lived, and hav-
ing it available for long periods is not useful (data past a
certain age is considered stale and would not be suitable
for live video delivery). Thus, RocketNet overwrites the old-
est disseminated data in a bu�er as new disseminated data
arrives. This design avoids overheads due to synchroniza-
tion, however it makes it possible for data to be overwrit-
ten asynchronously on delivery nodes as applications ac-
cess it (particularly for RDMA). The framework wraps dis-
seminated chunks with consistency markers, which may be
checked by applications to see if data has been modi�ed
during the course of serving viewers. This behaviour occurs
when the system has been underprovisioned or overloaded,
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upon which viewers are noti�ed of the error (described in
our experiments in Section 3.2). In a real-world scenario, this
would be an indicator to perform load balancing by moving
either streams or viewers to other nodes.
RocketNet provides RDMA support to achieve a higher

level of performance than is achievable with TCP when
RDMANICs are available.Worker threads perform zero-copy
RDMA write-with-immediate verbs directly from dissemina-
tion bu�ers into delivery node bu�ers, bypassing both nodes’
operating systems and CPUs. The immediate data is used
to trigger the callbacks used by RocketStreams, notifying
applications of incoming data (as otherwise, RDMA verbs are
invisible to the CPU). By avoiding polling mechanisms, CPU
resources are conserved for application-related purposes. To
reduce RDMA resource contention on the NIC, the bu�ers
used by RocketStreams and RocketNet are allocated from
within larger framework-managed RDMA-registered regions
of memory, instead of being RDMA-registered individually.

2.3 Implementation
Our RocketStreams implementation is coded in C++. We
provide a native interface which can be used directly by C
and C++ applications (and applications written in other lan-
guages with native support). In addition, we provide an inter-
face for socket-based communication with a self-contained
version of the framework that exposes delivery bu�ers
through shared memory. This allows language-independent
access to the delivery aspect of the framework. Currently
RocketStreams supports unicast dissemination, but plans for
the future include support for other strategies like tree-based
dissemination, and multicast dissemination.

For our evaluation we have implemented a sample dissem-
ination process that performs ingest, and integrated Rocket-
Streams into an open source web server, the userver, which
has been shown to performwell [2, 21, 28]. As a point of com-
parison, we also modi�ed the userver to subscribe to and re-
ceive data from a Redis [24] broker using the hiredis client
library [23]. The userver modi�cations amount to 248 and
229 lines of code for RocketStreams and Redis, respectively.
Our evaluation in the Section 3.2 shows that the userver
using RocketStreams is able to achieve similar to or better
performance than when using Redis.
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Figure 3: RocketStreams integration with the userver.

3 EVALUATION
In order to demonstrate the utility and e�ciency of our
framework, we perform a series of experiments comparing
the ingest, dissemination and delivery performance of hosts
that use RocketStreams and Redis [24]. Redis is an open
source, in-memory data store that has performed well when
used to disseminate data for live streaming [26].
In our experiments, a single host acts as a dissemination

node that ingests live streaming video data from multiple
simulated producers (running on a separate host). Data is
ingested at a bitrate of 2Mbps in chunks, each containing
2 seconds worth of video data. This is consistent with aver-
ages found in literature that examines Twitch-style work-
loads [22]. Ingested data is pushed to the delivery nodes,
which consist of web servers processes described in Sec-
tion 2.3. Figure 3 depicts this setup for RocketStreams, in
addition to the viewers used to request data from the web
server for our benchmarks in Section 3.2. For experiments
with Redis, multiple instances of Redis brokers (one per CPU
core) act as the dissemination node and corresponding web
servers as delivery nodes.
In our dissemination node experiments, the producers

use TLS encryption when communicating with the dissem-
ination node. This is done to ensure that the CPU on the
dissemination node incurs the overhead required for decryp-
tion.When conducting delivery node experiments we disable
TLS on the producers to allow higher throughput through
the dissemination host and since this does not impact the
delivery nodes. For web server experiments TLS is enabled
for all viewers.

Our Redis-based dissemination node uses Redis’ publish/-
subscribe feature to disseminate data to the delivery nodes.
Connections between producers and the dissemination node
are secured using Stunnel (per Redis’ recommendation [25]).
We use multiple Redis processes to fully utilize available
CPUs (Redis processes are single-threaded).
For all experiments, our dissemination node runs on a

host containing a 2.6GHz Intel Xeon E5-2660v3 CPU with
10 cores and 512GB of RAM and all delivery nodes run on
separate hosts containing a single 2.0GHz Intel Xeon D-1540
CPUs with 8 cores and 64GB of RAM. All hosts use bidirec-
tional Mellanox ConnectX-3 40Gbps NICs, with both the
switch and NICs con�gured to support bandwidths of up to
56 Gbps [16]. The dissemination host contains four NICs to
permit high throughput dissemination to multiple delivery
hosts which each contain one NIC. All hosts run Ubuntu
14.04.5 with Linux kernel 4.4.0. We evaluate RocketStreams
using both its TCP (Rs-TCP) and RDMA (Rs-RDMA) modes
and compare their performance against Redis. Each experi-
ment consists of a 60 second warmup period, followed by a
120 second measurement period.
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3.1 Microbenchmarks
We �rst perform a series of microbenchmarks to determine
the maximum number of ingested streams (expressed in
terms of throughput) that the system can handle as we vary
the number of delivery hosts receiving disseminated data.
We also observe the impact of handling this incoming data on
the CPUs of the delivery hosts. For these microbenchmarks
viewers are not issuing requests. This permits us to isolate
the impact of disseminated data on the delivery hosts.

Dissemination host throughput: Figure 4 shows the max-
imum achievable ingest throughput of the dissemination
node while disseminating to di�erent numbers of delivery
nodes. To �nd these throughput values, we increase the num-
ber of producers in the system until dissemination fails to
keep pace with the rate at which the system ingests data. In
these experiments, this corresponds to the point when the
dissemination node’s CPU is close to 100 % utilization (due to
overhead from ingesting encrypted data and disseminating
with Redis or RocketStreams).

In all cases, Rs-TCP achieves ingest throughput which is
largely comparable to that of Redis (although slightly better).
As the number of delivery nodes increases (and therefore
the amount of CPU required for dissemination), both Rs-
TCP and Redis are unable to keep pace with ingested data at
roughly the same rate. Enabling RDMA for RocketStreams
yields a signi�cant boost in maximum ingest throughput
versus Redis, which remains consistent even as the number
of delivery nodes increases (since RDMA requires little CPU
regardless of the amount of disseminated data, allowing it
to be utilized to ingest data). With 8 delivery nodes, Rs-
TCP achieves over 11Gbps of ingest throughput, with Redis
achieving 10.4Gbps. Rs-RDMA achieves 18Gbps of ingest
throughput, while simultaneously supporting 144 Gbps of
throughput to delivery nodes representing an increase of
73 % versus Redis.
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Delivery host CPU utilization: Figure 5 shows the aver-
age percentage of CPU utilization on a delivery server as
the amount of disseminated data it receives increases. The
microbenchmark results show that RocketStreams requires

signi�cantly less CPU on delivery hosts when compared
with Redis. For example at 32Gbps, CPU utilization of Redis
is 50%, whereas for Rs-TCP it is 23%, a relative reduction of
54%. By pro�ling the Redis-based delivery server we found
that 35% of the CPU time is spent in memcpy, used both by
hiredis internally, and required by the server to get data
out of hiredis. This is required because hiredis frees data
immediately after a received data event is handled. This is
not required when using RocketStreams because, by design,
it provides direct access to receive bu�ers to avoid copying.
For Rs-RDMA, CPU utilization is negligible regardless of
the amount of data being received by the delivery node. At
32Gbps CPU utilization is capped at 3% (a reduction of 95%
versus Redis). In Section 3.2, we show how these CPU savings
allow the system to support signi�cantly more simultaneous
viewers.
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3.2 Live Streaming Video Benchmarks
We next run a set of benchmarks to determine how dissemi-
nation with Redis and RocketStreams impact the system’s
overall capacity to deliver live streaming video to consumers
(viewers). For these experiments, we use httperf [18] to
mimic large numbers of viewers using TLS connections gen-
erating load on the delivery nodes’ web servers. Each viewer
connection requests video content at the rate it is produced
(2Mbps). A su�cient number load generating hosts are used
to ensure they and the network are not bottlenecks. Viewers
also check received video data for timeliness and validity.
When the number of viewers exceeds the capacity of a

delivery node (the web server is not able to meet the live-
ness constraints of viewer requests), viewers exhaust their
playout bu�ers or request expired video segments. These
occurrences are recorded as errors. For varying numbers of
produced streams (measured in terms of their total through-
put), we conduct a sequence of experiments to determine the
maximum throughput a delivery node can support without
any viewers reporting errors. In our experiments, we found
that this threshold is reached when the delivery server’s
CPU is saturated servicing incoming dissemination data, and
outgoing delivery requests.
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Figure 6 shows the results of these experiments. As noted
in Section 3.1, Rs-TCP uses less CPU than Redis for handling
incoming disseminated data by avoiding copying, and this dif-
ference grows as the amount of disseminated data increases.
As a result, for 20Gbps of incoming disseminated data, while
the web server using Redis is only able to serve 13.5Gbps
of video to viewers, the userver using Rs-TCP achieves over
17Gbps, a relative increase of 27%. The userver using Rs-
RDMA achieves delivery throughput of 21Gbps (55% higher
than Redis), regardless of dissemination throughput.
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4 RELATEDWORK
The WILSP platform [26] provides an open-source frame-
work for disseminating and delivering interactive video. As
such, they have focused on low-latency and small numbers
of users. Their delivery web servers are benchmarked serv-
ing a maximum of 50 users, representing about 230Mbps of
delivery throughput. In contrast, RocketStreams is designed
for e�cient and highly-scalable live streaming video.

The Remote Regions abstraction [1] provides a �le-based
interface meant to simplify the process of interacting with
remote memory. Our framework’s focus is on providing tools
to allow for the easy dissemination of live streaming video.
RocketStreams’ interfaces are tailored to be convenient for
this use-case, and it provides networking and data manage-
ment on behalf of applications. Unlike Remote Regions, Rock-
etStreams works in environments without access to RDMA.

libfabric [10] provides an e�cient, platform-independent
networking API intended to simplify application use of net-
working hardware. As such, it provides functionality at a
lower level of abstraction than we do through RocketStreams.
libfabric could be used to implement some portions of Rock-
etStreams’ networking component, RocketNet, however for
the purposes of this paper we use some infrastructure from
our previous work, Nessie [3, 29], as it should provide similar
performance and we are familiar with the code base.

Some other frameworks have been created for data dissem-
ination in other use cases. For example, work by Pallickara et
al. [20] describe a framework for the secure delivery of pub/-
sub messages, albeit with a focus on security. Li et al. [15],

present a framework for providing Reliable Data Center Mul-
ticast (RDCM) using IP multicast, techniques for which could
be used to improve dissemination to multiple delivery nodes.
Other research has examined high performance RDMA

techniques under a variety of workloads [7, 11, 13, 14, 17, 19,
27, 30, 33]. This is important given that di�erences in RDMA-
based designs can dramatically impact performance [12].
These systems, however, typically do not provide an API
convenient for the type of �exible video dissemination that
RocketStreams supports (e.g., their abstractions are not easily
mapped to live streaming). In several cases, existing systems
are not designed with reliable connections or large data in
mind, and most do not seamlessly integrate with non-RDMA
networking protocols. RocketStreams currently uses RDMA
techniques from our work with Nessie [3, 29], but we could
integrate techniques from other systems such as FaRM [7]
and HERD [11] to enable a wider variety of options for more
�exible dissemination.

5 CONCLUSIONS
In this paper we introduce RocketStreams, a framework for
e�ciently handling live streaming video dissemination. We
highlight RocketStreams’ easy-to-use design, and how it
eliminates the need for applications to implement their own
conceptually and technically di�cult data management and
networking code. By providing direct access to framework-
managed bu�ers that eliminate the need to copy data Rock-
etStreams provides performance similar to or better than
an industry-grade solution, Redis. We modify a web server,
the userver, to access disseminated live streaming video data
through RocketStreams, and use load generators to evaluate
its ingest and delivery capacities relative to those of Redis.
Our benchmarks show that RocketStreams provides similar
dissemination performance to Redis, and on delivery nodes
it reduces CPU utilization by up to 54%, thereby increasing
viewer throughput by up to 27%. RocketStreams also pro-
vides support for RDMA, which allows RocketStreams to
service up to 73% more ingest tra�c on dissemination nodes.
Likewise, on delivery nodes, RDMA-enabled RocketStreams
reduces CPU utilization by 95% compared with Redis, and
increases simultaneous viewer throughput by 55%.
In the future we hope to support multicast (to reduce

dissemination bandwidth when sending to multiple deliv-
ery nodes) and to extend RocketStreams and RocketNet to
support features for other targeted workloads such as pub-
lish/subscribe and message queuing systems.
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