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ABSTRACT

Latencies, operating ranges, and false positive rates for existing
indoor fire detection systems like smoke detectors and sprinkler
systems are far from ideal. This paper explores the use of wireless
radio frequency (RF) signals to detect indoor fires with low latency,
through walls and other occlusions. We build on past research fo-
cused on wireless sensing, and introduce RFire, a system which uses
millimeter wave technology and deep learning to extract instances
of fire. We perform line-of-sight (LoS) and occluded non-LoS exper-
iments with fire at different distances, and find that RFire achieves
a best-result mean latency of 24 seconds when trained and tested in
multiple environments. RFire yields at least a 4 times improvement
in mean alarm latency over today’s alarms.

CCS CONCEPTS

« Computer systems organization — Sensors and actuators; ¢
Networks — Wireless access networks; - Computing method-
ologies — Machine learning.
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1 INTRODUCTION

Each year, structural fires in the United States cause an average of
2,560 civilian deaths, 11,670 civilian injuries, and an estimated $6.5
billion in property damages [18]. Unfortunately, current fire alarms
and sprinkler systems have several limitations, including:

High alarm latency: Past studies show that existing alarms do
not allow for adequate safe egress time when located more than
6 meters (m) away from a fire [9]. This is because smoke alarms
require the smoke to reach the device to be activated.

Nuisance alarms (false positives): Although placing alarms
closer to potential fire sources reduces latency, it increases the
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Figure 1: Envisioned deployment of RFire. The device is di-
rectional and sweeps its beam in 3-dimensions (3D) to deter-
mine the distance and direction to a fire.

number of nuisance alarms from non-fire events such as cooking,
shown in an extensive study of current alarms [9].

One device per room: Due to range limitations and the potential
for closed doors, currently used alarms must be sufficiently close
within the same room as a fire. Therefore, multiple alarms must be
used for multiple rooms.

In an attempt to solve these limitations, past work has proposed
using computer vision and thermal-imaging cameras to detect
fires [25]. However, despite their latency advantage, cameras still
rely on line-of-sight (LoS) to identify fires and require one camera
per room. Moreover, these cameras are costly and raise privacy
concerns for the people within the environment [1].

In this paper, we propose using wireless signals to detect indoor
fires. Similar to cameras, using wireless signals enables low latency
fire detection while overcoming the privacy and LoS issues of cam-
eras. There have been initial studies using wireless signals to detect
fire [24], however they have several limitations and fail to address
environmental mobility which can perturb the signal similar to
fires, and hence do not work in the presence of people.

To address the challenges of past work we build RFire, a proto-
type fire detector using the millimeter wave (mmWave) wireless
spectrum which is used in 5G networks [3], modern 802.11ad WiFi
networks [2], and sensing and tracking [13, 21]. In particular, RFire
uses directional mmWave signals and a deep learning model to
identify and find the location of fires with low latency in LoS and
occluded (non-LoS) environments. Additionally, RFire differentiates
signal changes caused by fire from other changes from mobility and
other heat with a chipset that costs about $30 [12]. As mmWave
can monitor through occlusions, and therefore multiple rooms, the
cost is further mitigated as an RFire device is not limited to one per
room like cameras and fire alarm systems of today. We envision a
final deployment of RFire in Figure 1, where a single RFire device
monitors multiple rooms within a field of view (FoV) of 170° in
3-dimensions (3D). Our work makes the following contributions:

e We present RFire, the first fire detector prototype using mmWave
signals to sense fires in mobile and non-LoS environments.

o We develop a deep learning model to identify fires from changes
in wireless signals.
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e We conduct experiments and evaluate RFire for accuracy and
alarm latency in LoS and non-LoS environments up to 7 m range.

2 BACKGROUND AND RELATED WORK

Wireless Sensing Systems: Recent research has leveraged wire-
less signals to develop novel sensing applications, such as object
detection [16], human localization [22], and tracking [23]. This
work uses Frequency-Modulated Carrier Waves (FMCW) radio
technology for localization and detection, to enable the active
monitoring of movement through walls and occlusions. FMCW is
used in radar systems to measure the time it takes for a signal to
travel from a radio’s transmitting antenna to an object and back
to its receiving antenna, called time-of-flight (ToF) [17]. The range
resolution (R) of an FMCW radio is calculated by R = % where C
is speed of light and B is bandwidth [19]. At mmWave frequencies
there are multi-GHz of unlicensed spectrum available, much more
than the bandwidth allocated to lower frequencies. mmWave also
enables higher resolution when determining locations and uses
small tightly packed antennas to focus the signal in a beam which
is steered electronically to scan different directions (see Figure 1).

Fire Sensing Systems: Thermal infrared cameras use the electro-
magnetic spectrum to detect fires with low latency; however these
are limited to LoS, infringe on privacy, and can cost thousands of
dollars [1, 25]. Infrared temperature guns are moderately priced,
while lasers have also been studied for fire detection [8], but are
both limited to LoS, highly directional, and can not determine the
distance to objects.

Wireless signals have been proposed to identify fires on trains
and for wildland fires in past work [4, 6] Zhong et al. [24] show
how fire affects the channel state information of current wireless
networks. Although their model has high fire classification accuracy,
it is unable to find the location of a fire, does not handle mobility,
and only detects fire located between their two devices. They also
do not test distances larger than 4 m, define non-LoS as when the
fire is only 1 m outside the direct path between devices, and do not
test with occlusions. Kempka et al. [15] show that microwaves are
affected by fire, although they only study a range of 1 m with no
mobility and a single fuel.

3 RFIRE

RFire leverages mmWave and deep learning to identify fires using
an array of transmitting (Tx) and receiving antennas (Rx) included
in a single device. RFire parses the received signal for each direc-
tion and distance into 30-second overlapping frames of time, at
any location, and the deep learning model performs a binary fire
classification on each frame.

The mmWave device captures 10 frames per second and sweeps
its 30° beam in two dimensions to cover 170° of the azimuth plane.
When contacting an object, some signal reflects back to the sensor
and some travel through to other objects before reflecting back to
the Rx array. Using the ToF of the signal between transmission and
reception, the distance to the reflecting object is calculated with
high precision along the direction of the beam. Using a combination
of Long Short Term Memory (LSTM), convolutional neural network
(CNN), and fully connected deep learning layers, RFire determines
if the frame is a fire. The RFire algorithm raises an alarm if the
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Figure 2: The signal is affected by a person moving behind a
wall that is 5.4 m away from the mmWave sensor. We also ex-
perimented ranges of 1 to 4 m and observed similar results.

deep learning model classifies three consecutive frames as fire for
three adjacent distances within three seconds, a detection method
we arrived at empirically.

Detection Through Walls: While higher frequency wireless sig-
nals enable more accurate localization, they experience higher atten-
uation through occlusions. In order to realize our vision in Figure 1,
it is critical to test if the mmWave signal from RFire can go through
walls. We run multiple experiments where RFire is placed 1, 2, 3, 4,
and 5.4 m away from a wall. After 20 seconds, a person enters the
room behind the wall through a door perpendicular to the sensor
and closes the door to eliminate any unobstructed paths between
themselves and the sensor. The person then moves around the room
for 40 seconds before exiting the room. Figure 2 shows the power of
the reflected signal captured by RFire and the setup for the furthest
of these experiments, showing the reflected signal power fluctuates
when the person enters the other room and continues as they move
until they exit the room. This experiment shows that the mmWave
signal can sense through walls at least up to 5.4 m of range and in
§4 we show RFire has the capability of detecting fires in non-LoS.

The Impact of Fire on mmWave Signals: Transmission loss
and attenuation calculations when transmitting mmWave signals
for communication include water vapor, mist, oxygen, and other
gases [10]. Past work has found that combustion changes the
propagation medium, induces carbon scattering, and increases the
electron density in plasma by thermal excitation [7, 14, 20]. Changes
to the propagation medium affect the air’s gas composition, and
carbon scattering and electron-rich plasma directly contacts the
electromagnetic signal at the particle level.

To study these effects, we conduct experiments with a hotplate
and a fire. Figure 3a shows the reflected mmWave signal from a
hotplate when the mmWave sensor is located 1 m away. After a
one minute baseline the hotplate temperature is increased from 20°
to 400° for the duration of the experiment changing the composi-
tion of the propagation medium and we observe changes in the
signal’s amplitude. Figure 3b shows a liquid Methanol fire where
the mmWave sensor is 1 m away which causes changes to the
propagation medium, As a result, we observe a similar change
in the reflected signal but with more signal noise. Our results are
consistent with theory and past studies [5] showing the impact of
heat and fire on electromagnetic signals while other environmental
factors are unchanged.

Robustness to Mobility: Signals in highly controlled environ-
ments without human mobility are relatively consistent over short
time periods. Realistic environments with mobility may experi-
ence fluctuations from movement or ambient environment changes
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Figure 3: a): Hotplate experiment. b): Methanol fire.
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Figure 4: Experiment set-up for LoS and non-LoS fires.

within 30-second frames that appear similar to a fire, making a
simple thresholding fire detection technique unreliable. To address
these challenges, we design a deep learning model and identifica-
tion algorithm for RFire to identify signal changes due to fire from
other fluctuations. To ensure that the RFire model can train to
differentiate fire and non-fire signals which appear similar, it is
important to build the training dataset with fire signals and specif-
ically non-fire signals which appear more similar to fire signals.
Therefore, we define thresholds to remove frames which do not
have characteristics similar to those with fire. We empirically find
through observation thresholds on signal variance, Fast Fourier
Transform (FFT) variance, and the FFT slope that are consistent
with fire in our experiments, though these can also be changed if
future fires observe behaviour outside of our threshold distribution.
Additionally, by training RFire on a dataset composed by multiple
experiments, the pre-trained model becomes robust to different
room configurations and works across multiple environments.

Our deep learning model includes two modules: a 1-dimensional
(1D) CNN module and a fully connected layer module. The output of
the CNN module is passed to an LSTM layer, concatenated with the
other module’s output, and passed through fully connected layers
to a binary output. We build our model using the Keras machine
learning library with the Tensorflow backend.

4 EVALUATION

We conduct 23 different fire experiments, each about three minutes
long, and also record over two weeks of non-fire experiments to test
RFire’s accuracy. Our non-fire experiments include other heating
sources, different environments, and 16 hours which intentionally
does not have human mobility. The general LoS and non-LoS fire
experiment configurations are shown in Figure 4, where we list the
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Figure 5: a): 1 m LoS high soot. b): 1 m LoS low soot.

locations of RFire, the occlusions, and the fire. Fire experiments are
divided into 18 LoS and 5 non-LoS experiments with RFire ranges
from 1 to 7 m in three environments using different rooms (a garage
and a living room) and a state-of-the-art fire research lab which is
0°C. Figure 5 shows examples of two LoS 1 m range experiments
in the fire lab with liquid fuels containing different levels of soot
which produce carbon scattering. The 23 fire experiments are
composed of one Heptane (heavy soot), six Acetone (high soot),
six Methanol (low soot), two with lighter fluid and drywall, three
LoS wood fires, and five non-LoS wood fires. To test RFire for
false positive alarms we evaluate our model using data from non-
fire environments with and without human mobility. Using the
16 hours of data with no human mobility is consistent with past
work [24], whereas our non-fire experiments with mobility include
challenging environments such as: lounges, hallways, offices, and
kitchens which have different floor plans and as many as 20 people.

RFire is initially trained on a dataset of 30-second frames from
13 LoS fire experiments with Heptane, Methanol, and Acetone fuel
and balanced with the same number of non-fire frames, sampled
randomly from select non-fire environments. To evaluate RFire
for false alarms, we test on all non-fire experiments not included
in training, some of which have entirely different floor plans and
ambient temperatures to any experiment RFire is trained on. RFire’s
detection ability is evaluated on the remaining 10 fire experiments,
five of which are non-LoS. We employ a “leave-one-out" method-
ology to evaluate RFire on the 13 fires originally used for training,
by removing a training fire and re-training an RFire model on the
remaining 12 fires and balanced number of non-fire frames. This
creates a new RFire model for each of the 13 fires originally used
for training so that we can evaluate RFire on all 23 fire experiments.

RFire is implemented using the TI AWR1642Boost evaluation
module [11] (a mmWave radar sensor module operating at 77-81
GHz). The device includes arrays of four Rx and two Tx onboard
patched antennas thatprovides distance and angular information
that RFire uses to determine the location of fires. This device has
a range of about 13 m, a spatial resolution of 4.4 centimeters (cm),
and an azimuth FoV of roughly 170°, although we only test to a
range of 7 m due to building space limitations.

Results: We evaluate RFire for overall accuracy shown in Figure
6 and alarm latency after ignition in Table 1. Since our fire experi-
ments are about three minutes each and our non-fire experiments
are longer, we divide non-fire experiments into three minute in-
tervals to calculate accuracy. We train and evaluate two versions
of RFire. First we examine non-fire environments without human
mobility (RFire-static) and find a mean alarm latency of just 32
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Figure 6: RFire confusion matrices.

seconds (s) over all 23 fires, including a mean of 7 s for the five
non-LoS fires, showing RFire can generalize to new environments
and fuels. On 16 hours of data without human mobility, RFire-static
achieves 100% alarm accuracy with zero false alarms (see Figure 6a).
RFire-static achieves a Matthews Correlation Coefficient (MCC) of
1.0 and a mean location error of 17.6 cm.

Second, we change the hyperparameters of RFire and train
RFire-mobile to be more resistant to nuisance alarms caused by
human movement, while also increasing the difficulty of true fire
detection. Figure 6b shows that RFire-mobile detects 21 of 23 fires.
It has a mean latency of just 26 s for all fires and takes 16 s for four of
the five non-LoS fires. Evaluated with two weeks of data collected
in real-world environments RFire-mobile only false alarms once
caused by attenuation from human mobility for an MCC of 0.93
and a mean fire location error of 38.4 cm. .

We compare RFire’s latency to a study of 10 different fire alarms
used at ranges up to 7 m in LoS [9]. We do not compare for accuracy
over all experiments because their non-fire experiments are only
cooking, whereas ours include sources of heat as well as mobility
in real-world environments. With the lowest latency alarm at 7 m
being 159 s, the authors conclude that no alarms provide adequate
available safe egress time when placed 6+ meters from a fire. The
first row of Table 1 shows the average of lowest-latency alarms
for multiple experiments with current technology for ranges of
1m -3 mand 4 m - 7 m achieving an average alarm time of 109 s
and 147 s, and an overall mean of 128 s. For RFire, Table 1 shows
the mean latency for all experiments for the specified ranges in LoS
and the non-LoS scenarios. RFire-static is 2.7x and RFire-mobile is
2.1x faster than the best alarms tested at 1 m - 3 m distances, and
at distances of 4 m — 7 m, RFire-static is 5.7X and RFire-mobile is
6.7X faster.

Technology l Im-3m | 4m-7m | non-LoS “ Mean ‘
Best Alarm [9] 109 s 147 s - || 128s
RFire-static 40 s 26s 7s 24s
RFire-mobile 52s 21s 16's 29s

Table 1: Comparing the best of 10 alarms [9] with RFire la-
tency. We average the best alarms for each range from [9]
and average all experiments with RFire in each range.

5 DISCUSSION AND CONCLUSIONS

This paper presents RFire, a system for detecting fire using a deep
learning model and a mmWave radar. Our results show that RFire
is capable of sensing fires in mobile and non-LoS environments
with more than 90% accuracy. Although our current prototype ex-
periences false alarms, we believe we can improve RFire with more

training data and/or the use of user feedback in real deployments
through active or reinforcement learning. We believe RFire will
provide a new, safer way to identify indoor fires with low latency
while utilizing the hardware of 5G and 802.11ad wireless networks.
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