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Background

Two critical decisions before transmitting each frame
1) Which physical (PHY) rate to use

2) How many subframes (MPDUs) to aggregate in a frame (A-MPDU length)

Same Physical Rate

Frame | Frame Frame —_
1 2 32
>

Both can have a big impact on throughput



Main Contributions

NeuRA: uses a neural network to improve rate adaptation and throughput

Offline Statistically Optimal: rate adaptation and frame aggregation algorithm
Upper bound on throughput

Can finally better determine how well algorithms are performing
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Rate Adaptation
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Challenge:
Channel is constantly changing!

Practical algorithms sample
(i.e., test/probe potential rates)
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Rate Adaptation
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NeuRA:
Reduce sampling overhead
- sample smaller subset of rates
- increase throughput
Neural network to
- find good set of rates to sample
- predict tput of other rates
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Relationships Exist Between Rates
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[Abedi and Brecht, MSWiM, 2016]
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NeuRA Overview
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Trace Collection

. Modify WiFi device driver (ath9k)
. Round robin all rates

« Rates see similar channel conditions 1in round

’ Round 1 ! Round 2 ! Round 3 \
R, IR, | .|R [|R||R,| |R |[|R||R,| . |R

11 1110 .. 00000 11 1100 .. 00000 10 1101 .. 00000

Time
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Training Data

* For 1-second time intervals, throughput of each rate 1s calculated

* Normalize to maximum: ([0, 1] range) to prepare for neural network training

Time (s) | TPut, | T Put, T Putgy
0 0.01o | 0.039 0.0
1 0.016 | 0.035 0.0
2399 0.009 | 0.027 0.0
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Neural Network
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Input: Fixed set of rates and tputs, Output: expected tput of all rates
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NeuRA'’s Resulting Neural Network Model
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NeuRA
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Evaluation Methodology

Two separate models: 2.4 GHz and 5 GHz

Two separate sets of traces for each: training and testing (evaluation)

Config | Spectrum | # Streams | Channel Width | # Rates | Channel Condition
A 2.4 GHz 2 20 MHz 32 Congested
B 5 GHz 2 40 MHz 64 Unoccupied
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Scenarios for Trace Collection

Office Environment
Graduate student offices / lab

Hallway
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Scenarios for Trace Collection

Office Environment
Graduate student offices / lab

Access Point
PC with ath9k WiFi1 (802.11n)

TP-Link WDN4800
i

Hallway
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Scenarios for Trace Collection: Training Data

Stationary:
Close to AP ~1 m
Far from AP ~10 m

-

Laptop with Samsung
TL-WDN4200 Galaxy Note 5

Hallway :
USB device 27



Scenarios for Trace Collection: Training Data

Mobile: Walking
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Scenarios for Trace Collectlon Tramlng Data

Mobile: Toy Train
Fast and slow

q

Hallway
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Relative Rate Adaptation Error
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* Rate adaptation using model (avg. error on testing dataset)
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Relative Rate Adaptation Error

32.0 : : ‘ ] | |
28.0 L = Model A: Relative RA Error |

Relative RA Error (%)
>
-}
I

N

0.0 | | | » Ly o
0 4 8 1216 200 24 28 32

Number of Sampling Rates

* Rate adaptation using model (avg. error on testing dataset)



Relative Rate Adaptation Error

Relative RA Error (%)
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Evaluation: Algorithms

e Minstrel HT
e NeuRA

e Intel iwl-mvm-rs

t Minstrel HT w/o LGI Sampling / k

ﬁiate Adaptation Algorithms \ @ame Aggregation Algorithms

e Minstrel HT + PNOFA
e Minstrel HT + OSOFA

~

« STRALE

Both

* Offline Statistically Optimal
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Evaluation: Algorithms

ﬁiate Adaptation Algorithms \
 Minstrel HT
* NeuRA

e Intel iwl-mvm-rs

t Minstrel HT w/o LGI Sampling/

Most widely used algorithm
100’s of millions of devices
In Linux

Use as a basis for comparison
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Evaluation: Algorithms

ﬁiate Adaptation Algorithms \
 Minstrel HT
* NeuRA

e Intel iwl-mvm-rs

t Minstrel HT w/o LGI Sampling/

From this work
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Evaluation: Algorithms

ﬁ{ate Adaptation Algorithms \ * Another practical widely used alg
 Minstrel HT * Used in recent Intel chipsets
* NeuRA * Described in and code ported from
e Intel iwl-mvm-rs [Griinblatt, et al. MSWiM, 2019]

k. Minstrel HT w/o LGI Sampling/
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Evaluation: Algorithms

ﬁlate Adaptation Algorithms \ * From “relationships™ paper
 Minstrel HT [Abedi and Brecht, MSWiM, 2016]
* NeuRA * Proof of concept for relationships
* Intel iwl-mvm-rs * Samples SGI rates, estimates LGI

! Minstrel HT w/o LGI Sampling/
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Evaluation: Algorithms

ﬁiate Adaptation Algorithms \
 Minstrel HT
* NeuRA

 Intel iwl-mvm-rs

! Minstrel HT w/o LGI Sampling/

Frame Aggregation: all maximize number of frames
Except: NeuRA in 5 GHz (PNOFA)

40



Evaluation: Algorithms

* Practical Near Optimal Frame
Aggregation

* Offline Statistically Optimal Frame
Aggregation

PNOFA paper
[Abedi et al, MSWiM, 2020]

érame Aggregation Algorithms
* Minstrel HT + PNOFA
* Minstrel HT + OSOFA

o

~
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Evaluation: Algorithms

* Adjusts Frame Length and Rate
[Byeon et al. INFOCOM 2017]

Both
« STRALE
* Offline Statistically Optimal
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Evaluation: Algorithms

Both
« STRALE
* Offline Statistically Optimal
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Offline Statistically Optimal: FA and RA Algorithm

Key contribution
Statistically optimal frame length and rate

Upper bound on throughput of practical RA and FA algorithms

Previously weak understanding of how well algorithms were doing
* Only relative to each other
* No idea of how much room there is for improvement

When do we stop creating new algorithms?
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Offline Statistically Optimal: FA and RA Algorithm

Subframe error rates from Calculate best aggregation Return the rate and length
oracle length for each rate with highest throughput

|
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Trace-Based Evaluation

e T-SIMn: trace-driven simulator [Abedi et al. MSWiM, 2016]

* Trace-based: all algorithms see the same channel conditions
Differences are due to algorithms not changes in the channel

* Can implement Offline Statistically Optimal (look ahead in trace)
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Different Traces and Scenarios for Testing

* All new traces
* Some similar setting as training
* Previously unseen scenarios

- 2 new devices

- New mobility patterns Intel 8265 laptop

(extreme movement) WiFi card

* 7 scenarios for each model
* 5 -20 minutes each
« Stationary and mobile

Walking

Hallway
Huawei P20
Traces from WiFi1 experiments collected using (EML-L09C)
real-world conditions Walking and

Stationary 47



Trace-Based Evaluation (Model A, 2.4 GHz)
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Trace-Based Evaluation (Model A, 2.4 GHz)
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Trace-Based Evaluation (Model A, 2.4 GHz)
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Trace-Based Evaluation (Model B, 5 GHz)
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Trace-Based Evaluation (Model B, 5 GHz)
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Summary of Trace-Driven Evaluation

* NeuRA
* Up to 24% higher tput than Minstrel HT (16% on average)
* Up to 32% higher tput than Intel iwl-mvm-rs (13% on average)
* Reduces gap between Minstrel HT and upper bound by half

* Remaining gap not overly large
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Real-World Prototype (in Linux)

B Minstrel HT (ath9k)
B NeuRA (ath9k)
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e (CPU: 20% of a 800 MHz core



Conclusions

NeuRA
* Use predictions from neural network model, reduce sampling overhead

* Generalized model improves throughput on unseen scenarios
* Low processing overhead to improve throughput in real world

* Potentially greater impact with more rates (802.11ax: up to 768!)

Offline Statistically Optimal Algorithm
e Obtain upper bound on throughput (NeuRA is not that far from opt)

Simulator, Traces, Algorithms to be made available

https://cs.uwaterloo.ca/~brecht/neura
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