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Background
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Two critical decisions before transmitting each frame
1) Which physical (PHY) rate to use

2) How many subframes (MPDUs) to aggregate in a frame (A-MPDU length)

Both can have a big impact on throughput



Main Contributions
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NeuRA: uses a neural network to improve rate adaptation and throughput

Offline Statistically Optimal: rate adaptation and frame aggregation algorithm
Upper bound on throughput
Can finally better determine how well algorithms are performing



Rate Adaptation
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NeuRA:
Reduce sampling overhead

- sample smaller subset of rates
- increase throughput

Neural network to 
- find good set of rates to sample
- predict tput of other rates

PHY rate



Relationships Exist Between Rates

17[Abedi and Brecht, MSWiM, 2016]



NeuRA Overview
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Training 
Data

Neural
Network

Model i

Sample
Set i

Used in
NeuRA

RFE

Trace
Data

Recursive Feature Eliminate (RFE) optimizes
Estimation Power

Sampling Time



● Modify WiFi device driver (ath9k)
● Round robin all rates
● Rates see similar channel conditions in round
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Trace Collection
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Training Data
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• For 1-second time intervals, throughput of each rate is calculated

• Normalize to maximum: ([0, 1] range) to prepare for neural network training



Neural Network
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Input: Fixed set of rates and tputs, Output: expected tput of all rates



NeuRA’s Resulting Neural Network Model
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Weights on edges determined during training

Wn Wn Wn Wn

W1 W1 W1 W1



NeuRA
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Neural 
Network
Model

NeuRA

R23R17R5 R61

Sample Set and Throughputs
R3R2R1 R64

Estimate Tput for all rates

R38

Rate with best
expected throughput

(subset of rates)



Evaluation Methodology
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• Two separate models: 2.4 GHz and 5 GHz

• Two separate sets of traces for each: training and testing (evaluation)



Scenarios for Trace Collection
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Office Environment 
Graduate student offices / lab



Scenarios for Trace Collection
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Office Environment 
Graduate student offices / lab

Access Point
PC with ath9k WiFi (802.11n)

TP-Link WDN4800



Scenarios for Trace Collection: Training Data
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Stationary: 
Close to AP ~1 m

Far from AP ~10 m

Close

Far

Samsung
Galaxy Note 5 

Laptop with
TL-WDN4200

USB device



Scenarios for Trace Collection: Training Data
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Mobile: Walking



Scenarios for Trace Collection: Training Data
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Mobile: Toy Train
Fast and slow



Relative Rate Adaptation Error
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• Rate adaptation using model (avg. error on testing dataset)



Relative Rate Adaptation Error
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• Rate adaptation using model (avg. error on testing dataset)



Relative Rate Adaptation Error
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• Rate adaptation using model (avg. error on testing dataset)
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Evaluation: Algorithms
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Rate Adaptation Algorithms

• Minstrel HT

• NeuRA

• Intel iwl-mvm-rs

• Minstrel HT w/o LGI Sampling

Frame Aggregation Algorithms

• Minstrel HT + PNOFA

• Minstrel HT + OSOFA

Both
• STRALE
• Offline Statistically Optimal
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Evaluation: Algorithms
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Rate Adaptation Algorithms

• Minstrel HT

• NeuRA

• Intel iwl-mvm-rs

• Minstrel HT w/o LGI Sampling

• Most widely used algorithm

• 100’s of millions of devices

• In Linux

• Use as a basis for comparison



Evaluation: Algorithms
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Rate Adaptation Algorithms

• Minstrel HT

• NeuRA

• Intel iwl-mvm-rs

• Minstrel HT w/o LGI Sampling

• From this work



Evaluation: Algorithms
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Rate Adaptation Algorithms

• Minstrel HT

• NeuRA

• Intel iwl-mvm-rs

• Minstrel HT w/o LGI Sampling

• Another practical widely used alg

• Used in recent Intel chipsets

• Described in and code ported from 
[Grünblatt, et al. MSWiM, 2019]



Evaluation: Algorithms
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Rate Adaptation Algorithms

• Minstrel HT

• NeuRA

• Intel iwl-mvm-rs

• Minstrel HT w/o LGI Sampling

• From “relationships” paper

[Abedi and Brecht, MSWiM, 2016]

• Proof of concept for relationships

• Samples SGI rates, estimates LGI



Evaluation: Algorithms
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Rate Adaptation Algorithms

• Minstrel HT

• NeuRA

• Intel iwl-mvm-rs

• Minstrel HT w/o LGI Sampling

Frame Aggregation: all maximize number of frames
Except: NeuRA in 5 GHz (PNOFA)



Evaluation: Algorithms
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Frame Aggregation Algorithms

• Minstrel HT + PNOFA

• Minstrel HT + OSOFA

• Practical Near Optimal Frame 
Aggregation

• Offline Statistically Optimal Frame 
Aggregation

PNOFA paper
[Abedi et al, MSWiM, 2020]



Evaluation: Algorithms

42

• Adjusts Frame Length and Rate
[Byeon et al. INFOCOM 2017]

Both
• STRALE
• Offline Statistically Optimal



Evaluation: Algorithms
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Both
• STRALE
• Offline Statistically Optimal



Offline Statistically Optimal: FA and RA Algorithm
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Key contribution 

Statistically optimal frame length and rate

Upper bound on throughput of practical RA and FA algorithms

Previously weak understanding of how well algorithms were doing

• Only relative to each other

• No idea of how much room there is for improvement

• When do we stop creating new algorithms?



Offline Statistically Optimal: FA and RA Algorithm
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Trace-Based Evaluation
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• T-SIMn: trace-driven simulator [Abedi et al. MSWiM, 2016]

• Trace-based: all algorithms see the same channel conditions
Differences are due to algorithms not changes in the channel

• Can implement Offline Statistically Optimal (look ahead in trace)



Different Traces and Scenarios for Testing
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Intel 8265 laptop
WiFi card
Walking

Huawei P20
(EML-L09C)
Walking and 

Stationary

• All new traces
• Some similar setting as training
• Previously unseen scenarios

- 2 new devices
- New mobility patterns
(extreme movement)

• 7 scenarios for each model 
• 5 - 20 minutes each
• Stationary and mobile

Traces from WiFi experiments collected using 
real-world conditions



Trace-Based Evaluation (Model A, 2.4 GHz)
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Trace-Based Evaluation (Model A, 2.4 GHz)
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Trace-Based Evaluation (Model B, 5 GHz)
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Trace-Based Evaluation (Model B, 5 GHz)
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Summary of Trace-Driven Evaluation
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• NeuRA

• Up to 24% higher tput than Minstrel HT (16% on average) 

• Up to 32% higher tput than Intel iwl-mvm-rs (13% on average) 

• Reduces gap between Minstrel HT and upper bound by half

• Remaining gap not overly large



Real-World Prototype (in Linux)
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• CPU: 20% of a 800 MHz core
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Conclusions
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NeuRA
• Use predictions from neural network model, reduce sampling overhead

• Generalized model improves throughput on unseen scenarios

• Low processing overhead to improve throughput in real world

• Potentially greater impact with more rates (802.11ax: up to 768!)

Offline Statistically Optimal Algorithm
• Obtain upper bound on throughput (NeuRA is not that far from opt)

Simulator, Traces, Algorithms to be made available 
https://cs.uwaterloo.ca/~brecht/neura


