Modelling and Improving Group Communication in Server Operating Systems

Michael Kwok, Tim Brecht
Martin Karsten, Jialin Song

University of Waterloo, Canada
Introduction

- Many app. send data to groups of recipients
- Need efficient group communication mechanisms
- Need an analytic framework
 - Micro-benchmarking \rightarrow macro-benchmarking
Example Application – DVE

- DVE (Distributed Virtual Environment)
 - A shared virtual environment
 - May involve a large number of simultaneous users
 - E.g., multi-player online games, CSCWs
Example Application – DVE

- Updates need to be distributed as soon as possible
- DVE system
 - Client-server
 - UDP
- Concerned with the efficiency of the group communication mechanism used
Group Communication

- Common approach:
 user-level unicast (*user-groupcast*)

```c
for (i=0; i<GRPSIZE; i++) {
    fds[i]=socket(PF_INET, SOCK_DGRAM, 0);
}
for (i=0; i<GRPSIZE; i++) {
    totalbytes+=send(fds[i], buf, bytes);
}
```
Group Communication

- Proposed approach:
 kernel-level unicast (*kernel-groupcast*)

```c
grp=socket(PF_INET, SOCK_DGRAM, 0);
setsockopt(grp, SOL_SOCKET, SO_SETGRP,
          addrs, GRPSIZE*sizeof(struct
          sockaddr_in));
totalbytes=send(grp, buf, bytes);
```
Problem

- How does kernel-groupcast improve the server capacity?

- Develop an analytic framework
 - Translate improved groupcast efficiency into server capacity improvement

\[
\max N \text{ with new groupcast} \\
\max N \text{ with original groupcast}
\]
Immediate Send Model

- Pseudo-code

  ```pseudocode
  while (1) {
    receive_client_msg();
    process_client_msg();
    send_update_to_group();
  }
  ```

- \(\lambda N(H + S) \leq T \)
 - \(T \): max. avg. \(t \)
 - \(\lambda \): avg. msg. from a user per \(T \)
 - \(N \): no. of users

Michael Kwok
Periodic Send Model

- Pseudo-code
  ```c
  set_alarm_handler(
    send_update_to_group, 
    period);
  while (1) {
    receive_client_msg();
    process_client_msg();
  }
  ```

- $\lambda NH + S \leq T$
Of interest is the capacity improvement ratio:

\[k = \frac{N_{\text{new}}^{\text{max}}}{N_{\text{orig}}^{\text{max}}} \]
Parameter Characterization

- Send operation, S
 - Characterize S by measurement experiments
 - Based on our results, S can be best described by
 \[xN + yNb \]
 where x and y are constants
Parameter Characterization

- Other operation, H
 - Consider two example cases
 1. Constant: $H_1 := c_1$
 2. Linear: $H_2 := c_2 N$

where c_1 and c_2 are constants
Numerical Examples

- User-groupcast vs. kernel-groupcast
- Conduct micro-benchmarks on a server running on
 - i368: a 2.8 GHz Intel Xeon
 - ia64: a 900 Mhz Intel Itanium2

to characterize S
Numerical Examples

- Experimental results

![Graph showing average send time (ms) vs. N for different configurations: i386,user (green), i386,kernel (blue), ia64,user (red), ia64,kernel (purple).]
Numerical Examples

- To characterize H, define

$$f = \frac{\text{total send time}}{\text{total processing time}}$$

- Vary f between 0 and 1
Numerical Examples

- Other input parameters
 - $T = 33.3$ ms (30 fps refresh)
 - $\lambda = 1$ (avg. 1 msg per period)
 - $b = 80$ bytes (avg. msg size [Farber 2002])
Numerical Results

- H_1 – constant

![Graph showing numerical results for different architectures and execution modes, including i386, immediate, i386, periodic, ia64, immediate, and ia64, periodic.]
Numerical Results

- H_2 – linear
Bounds on Capacity Improvement

- For the immediate model
 \[k \leq \sqrt{r} \]
 where \(r \) is the speedup factor defined as
 \[r = \frac{S_{\text{orig}}}{S_{\text{new}}} \]

- For the periodic model
 \[k \leq r \]
Summary

- Kernel-groupcast
 - Improve the efficiency of group communication

- Analytic framework
 - Consider two server models
 - Predict performance impact of an improved group communication mechanism
 - Derive the upper bounds on capacity improvement
Future Work

- Study the behavior of other group communication applications
- Extend our analytic framework to consider stochastic workload and processing requirement of different operations
- Apply kernel-groupcast to other transport protocols
- Design improved system call interface
Thank you