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Abstract

Advancements in player tracking technology and
analytics have revolutionized how professional
sports are managed, played, and even consumed.
However, these tracking systems have mainly failed
to translate to ice rinks, leaving ice hockey to col-
lect relatively coarse and offensively-biased data
for player statistics. As a result, current artificial in-
telligence (AI) models for player valuation and op-
timal group formation for ice hockey are limited to
comparing with offensively-biased data, reinforc-
ing these biases in models. The National Hockey
League (NHL) used a new tracking system in the
2020 Stanley Cup Playoffs, and we design a suite of
novel analytics that add new insights into the per-
formance and behaviour of players, groups of play-
ers, and teams. We calculate metrics for passing
lanes and player movement, passing effectiveness,
and pressure which have not previously been possi-
ble to compute in hockey. We expect our analytics
to support future and more accurate performance
and coalition models, and to be of direct interest to
the ice hockey and Al communities.

1 Introduction

Data analytics in professional sports has revolutionized how
and what data is collected and used, and is expected to reach
revenues of $4.5 billion by 2024 [BusinessWire, 2018]. In the
National Hockey League (NHL), a team can roster 18 skating
players and two goalies per-game, with five skaters and one
goalie in the game at a time. Players interchange during play
with fatigue and according to the situation, meaning play-
ers are often involved in different scenarios all over the ice.
However, current hockey statistics consider mainly offensive
events like goals, assists, and shots-on-goal (SOG), which oc-
cur relatively infrequently. The 2019-2020 NHL season saw
an average of 3.02 goals scored per-team per-game [NHL,
2020]; thus, traditional statistics would suggest a maximum
of nine players (45% of the roster) receive a point for a goal or
assist (assuming the maximum of two assists for every goal).
In addition, a single player accumulating multiple points on
multiple goals means the number of possible players that re-
ceive statistical updates begins to decrease. SOG are more

common than goals, but the 2019-2020 average of only 1.7
SOG per-player per-game also fails to accurately represent
performance throughout a game, especially a player’s non-
offensive play. In some cases, not including the recorded
time-on-ice, there may be no indication from current statis-
tics that a player actually played in a game despite potentially
bringing value to their team in other ways such as defense
or play making. This may lead to misaligned incentives be-
tween players trying to improve their statistics and their team
relying on them to play a less offensive role.

Success in ice hockey relies on possession of the puck and
passing between teammates. Despite hundreds of passes ev-
ery game, no current ice hockey statistic records players’
passing effectiveness. As a result, existing artificial intelli-
gence (Al) models for player valuation and optimal pairing,
or coalition formation have no choice but to compare their
results or use models that rely on existing offensively-biased
statistics based around goals, assists, and SOG. These statis-
tics which overlook valuable position players who may not
generate as much offense [Ljung er al., 2018; Luo et al.,
2020]. Utilizing biased data is a known problem in AI and
has dramatic impact when deployed. New hockey analytics
that capture other critical aspects of the game are necessary
for a deeper understanding of player value and improved Al
models.

Insights from modern analytics across other sports, many
of which depend on high-resolution player tracking sys-
tems [Amin, 2018; Baysal and Sahin, 2016; Manafifard er
al., 2017], are used to improve player performance, ros-
ter management, and various Al applications [Lewis, 2003;
Lindstrom et al., 2020]. Unfortunately, the tracking methods
used in other sports have failed to transfer to ice hockey due
to technical challenges caused by the fast pace, small puck,
white-coloured ice, and other hardware challenges [Walkters
et al., 2020; Vats et al., 2020; Douglas and Kennedy, 2019].
This has led to hockey metrics which infer performance based
on the aggregation of sparse events instead of tracking actual
behaviour [Hammond, 2011]. Recent technological advance-
ments have led to the implementation and testing of a new
player and puck tracking system during the 2020 NHL Stan-
ley Cup Playoffs for the first time in real gameplay. While
tracking itself is a technological accomplishment, the data
does not provide general managers, coaches, players, agents,
fans, or Al models with meaningful information.



We propose a suite of novel player analytics in hockey de-
signed to extract and aggregate insightful information from
the raw tracking data. To the best of our knowledge, we are
the first to propose new ice hockey analytics using the re-
cently collected tracking data. Our goal is to represent situ-
ational player strengths, weaknesses, and trends throughout
the ice surface to offer new perspectives into player perfor-
mance and value. We make the following contributions:

* We develop new hockey analytics designed to improve
our understanding of passing, player movement, trends,
and how players respond under pressure.

* We propose a new passing lane metric and a metric to de-
termine the degree to which potential pass receivers are
open (or available). These metrics can can be adapted to
other sports that involve passing.

* We utilize real tracking data from the 2020 Stanley Cup
Playoffs to compute our new metrics and discuss initial
insights that our analytics provide.

The aim of our work is two fold. First, we urge the Al and
hockey communities to recognize the need for higher reso-
lution hockey analytics that provide insight into how players
perform apart from sparse offensive events. Second, we hope
our work provides new initial benchmarks for player valua-
tion and coalition formation Al models in hockey, helping to
provide a more balanced view of player performance. Es-
tablishing new metrics are necessary for Al to mature in ice
hockey; thus, we view our contributions as the first steps in
the new frontier of ice hockey analytics supported by track-
ing data and towards a large corpus of future work involving
game theory [Yan er al., 2020], multi-team systems [Zaccaro
et al., 20201, and cooperative Al [Dafoe et al., 2021].

2 Background

Ice hockey in the NHL is played on an ice surface that is
200 feet long and 85 feet wide (imperial units are used in
the NHL). A game consists of two teams competing for three
20-minute periods. Overtime rules vary between the regular
season and playoffs. A maximum of six players of any com-
bination of defense, forwards, and one goalie are allowed on
the ice at any time for each team. Penalties remove a player
from the ice surface for two or five minutes depending on the
severity of the infraction, so that the penalized team temporar-
ily has fewer players in the game. Both teams playing with
the same number of players on the ice is referred to as “even
strength” and without penalties a team is at “full strength”.

The objective of hockey is to score a goal by putting the
puck into the opposing team’s net, referred to as the attacking
net. The team with the most goals at the end of the game
wins. Throughout the paper, we refer to a player in possession
of or passing the puck as p; we use r to denote a teammate
receiving the pass; and o refers to any player on the opposing
team.

3 Related Work

3.1 Player Tracking in Soccer

Over the past decade, advancements in player tracking tech-
nology for professional soccer have enabled researchers to

develop advanced analytics for team and individual perfor-
mance. Several studies leverage player and ball tracking data
to analyze passing, quantifying a pass’s disruption to defen-
sive formations [Goes et al., 2019] and the number of out-
played opponents [Steiner et al., 2019]. Other work, with
sufficient tracking data, has used deep learning to evaluate the
behaviour of players in soccer by predicting the performance
of “league average” players and teams in simulated scenar-
ios [Meerhoff er al., 2019; Lindstrom et al., 2020]. [Kempe et
al., 2018] evaluate tracking data to show that scoring events
and player performance typically highlighted by human an-
notators can be determined and assessed automatically using
ridge regression. Similarly in [Ferndndez, 2019], tracking
data, deep learning-based models and stochastic processes are
used to calculate the likelihood that a soccer possession ends
in a goal and assign value to passes.

3.2 Analytical Insights in Ice Hockey

Existing research in ice hockey player valuation and an-
alytics has mainly utilized event data, typically using the
SPORTLOGIQ NHL dataset which records the location, in-
volved players, and time of events, such as shots, hits, and
passes [Liu er al., 2018; Silva er al., 2018; Yu et al., 2019].
These have been utilized to extract representations of play-
ers’ abilities through clustering and Markov Decision Pro-
cesses [Schulte and Zhao, 2017], and deep learning [Liu et
al., 2020; Mehrasa et al., 2018; Guo et al., 2020]. These
models typically benchmark their results with the offensively-
biased currently recorded statistics due to a lack of recorded
ground truth statistics based around other aspects of the game.

Current advanced statistics used by the NHL, such as Corsi
and Fenwick, have been shown to be good performance indi-
cators for teams [Macdonald, 2012]. Corsi is a plus/minus
rating of shot attempts (shots for minus shots against) dur-
ing even strength play. Shot attempts include blocked shots,
missed shots, and SOG, which have traditionally been tracked
by human annotators [Hammond, 2011]. Fenwick is similar
to Corsi, but omits blocked shots since this could be a player’s
positive skill. Positive Corsi and Fenwick scores imply the
player’s team produced more offense than their opponent dur-
ing the even strength time the player was on the ice.

4 Dataset

We utilize a proprietary sample dataset made available
through an exclusive contract with Rogers Communica-
tions [Rogers, 2021] and Sportsnet [Sportsnet, 2021]. Track-
ing data is collected by SportsMEDIA Technology [SMT,
2021] (a partner of the NHL) with infrared puck and player
tracking systems in every NHL arena. Our dataset consists
of player and puck tracking data from games five and six of
the 2020 Stanley Cup Finals between the Tampa Bay Light-
ning and the Dallas Stars. Sensors are located inside the puck
and on the right shoulder of every player, sampled at rates
of 60 times per second (60 Hertz) for the puck and 12 Hertz
for players. The location coordinate system is based on the
dimensions of a hockey rink with center-ice being the origin
(0, 0). The x-axis has a range of —100 < z < 100, and the y-
axis has a range of —42.5 < y < 42.5. Our dataset includes
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Figure 1: Our method to calculate a passing lane. PA is the value of
~ corresponding with the largest passing lane not containing any o.
In this case, the pass availability PA = 0.6.

pre-labeled events such as hits, shots, passes, faceoffs, and
puck possession gains and losses. We perform data cleaning
and pre-processing for player and puck locations rounded to
0.1 second intervals to align with provided event labels. Note
that our analytics can be implemented using data from any
tracking system that provides frequent enough data for the
locations of all players and the puck (or ball).

5 Our Analytics

Ice hockey is a unique sport due to its speed and dynamic
game flow, with specific plays and decisions often taking only
fractions of a second. Player and puck tracking makes high
resolution analysis into specific situations possible. In this
section, we detail our new player analytics with tracking data.
A portion of our analytics are averaged over 60-minutes, as
a game in our dataset extended to double overtime, lasting
almost 90 minutes. Due to space constraints we often re-
port the mean of each metric, however one could also ana-
lyze the distribution of values or changes over time to obtain
more detailed information. Our implementation is based in
ice hockey, however we expect our contributions to translate
to other multi-player possession sports.

5.1 Passing Lanes

When a team is at full strength, a passer has four passing
lanes to their teammates, not including the goalie. We de-
velop a novel method for analyzing passing lanes and record
two metrics: the passing lane availability average of p’s com-
pleted passes PAA; and the average “openness”, or passing
lane availability, to a player who is a potential receiver r for
their teammate OPA. PAA provides insight into players’ deci-
sions, passing skill, and risk, while OPA shows their ability to
become open for a pass from a teammate.

Calculating a passing lane value has several challenges.
Specifically, a proper method should: 1) always assign a pass-
ing lane a real number to allow aggregation; 2) incorporate
the area surrounding p and r (i.e., consider the proximity of
all opponents); 3) be asymmetric with respect to p and r as
passes are directed events, and 4) scale with respect to the
pass length, as longer passes take more time to reach r, giv-
ing opponents more time to potentially disrupt the pass.

One attempt to analyze passing lanes in soccer uses the
difference in angle between the direct passing lane, the line
pr from p to r, and the most threatening opponent o within
the distance of the pass [Steiner er al., 2019]. While this
method addresses 3) and 4), it fails to satisfy 1) and 2). The
circle-based (3-skeleton [Kirkpatrick and Radke, 1985] from
graph theory calculates a maximal empty region between two
points, addressing 1), 2), and 4), but point 3) remains unsatis-
fied. Therefore, we propose a novel method using Euclidean
geometry to simultaneously satisfy all four points above.

Our algorithm uses a non-negative real-number parameter
~ to define the passing lane region from p to r (PL(p,r,7)),
shown as the coloured regions in Figure 1. Specifically,
determines the shape and size of PL(p,r,~). PA, the pass
availability of a potential pass, is the value of ~ with the
largest PL(p,r,~y) that does not contain any o. For exam-
ple, Figure 1 shows three passing lanes from p to r with
~ € {0.6,1.0,1.4}. Since no opponents are inside the pass-
ing lane region when v < 0.6, PA = 0.6. PAA is the average
value of PA for a player’s completed passes.

Our passing lane is asymmetrical, meaning PL(p,r,7y) #
PL(r,p,~). The boundary of our passing lane is constructed
by two asymmetric circles C}, and C,, centered at p and r re-
spectively, and the area between the circles contained by two
arcs tangent to these circles, seen in Figure 1. This asymme-
try accounts for the directional nature of a pass, p — r, and
the notion that an opponent close to 7 has more time to react.

The radii of circles C}, and C'., R, and R, respectively,
are calculated using Equations 1 and 2, where d = d(p,r),
the euclidean distance from p to r, and ¢ = 0.25 is fixed to
ensure passing lane asymmetry, scaling the growth of R, 3
times faster than R, as -y increases.

Ry, = ~dt ) R.=~d(1-t) (2
The arcs come from two larger circles tangent to both C),
and C, with radii R, = ‘;—d, where c is used to scale the

numerator to ensure the centre points of the arcs are real and
not imaginary. Specifically, ¢ must be > 3 due to our choice
of ¢ = 0.25, so we use ¢ = 4. Since IR, grows faster than R,
as vy increases, when v > 2, C,. encompasses C, and the
passing lane is simply C,.

The parameter v monotonically affects the size and shape
of PL(p,r,7), so that PL(p,r,v1) € PL(p,r,2) for 0 <
71 < 75. The naive method of calculating ~ for any p, r, and
o is to initialize vy = 0 so that PL(p,r,v) = pr, and subse-
quently increment «y by a small value until the lane contains o.
The most recent value of + is then determined as the PA value
when a pass is made (i.e., the largest v not containing o). For
efficiency, we use a binary search with a stopping resolution
of 0.01 to calculate . Since there are always opponents, we
guarantee v < oo for each pass and PA < oo. We summarize
our passing lane metrics in Table 1.

5.2 Passing Performance

A completed pass is when the puck moves from one player,
the passer p, to another player on the same team, the receiver
r. A pass that advances the puck beyond an opponent o, over-
taking them, can leave o in a poor defensive position. Despite



| Sym][| Description ]

Sym || Description ]

PAA || Pass availability (value of v) for a player’s com-

pleted passes (average).

PASA|| Successful passes made (average).
OVA || Overtaken opponents with passes (average).

OPA|| Openness (value of 7y) as a receiver for each
timestep a teammate has the puck (average).

OVT || Overtaken opponents with passes (total).
BTT || Beaten by opponent’s passes (total).

Table 1: Passing lane analytics for a single player.

hundreds of completed passes every game, there currently ex-
ists no recorded ice hockey metric to understand a player’s
passing with respect to opponent positions. Therefore, we
introduce metrics to analyze passing in ice hockey inspired
by overtaking opponents in soccer [Steiner et al., 2019] and
zero-sum games [Dafoe et al., 2020].

We determine a player’s average number of successful
passes over 60 minutes (PASA) and for each pass compute
the ratio of possible opponents overtaken. The sum of those
values is the overtaken ratio total (OVT) and the mean of those
values is the overtaken ratio average (OVA). On the defensive
side, we similarly evenly distribute that ratio of opponents
overtaken across all players that have been beaten with the
pass. This sum of these values is denoted as BTT (beaten to-
tal). Note that OVT and BTT across all players is a zero-sum
game. Inspired by the current plus/minus statistic for goals,
for each player we calculate the difference between overtak-
ing players and being overtaken as “passing plus/minus” PPM
=OVT - BTT. Additionally, we normalize PPM by the number
of times a player overtakes, or is overtaken by an opponent
(count) for “normalized PPM”, NPPM = —E2- . As is the
case with the scoring plus/minus statistic, we only consider
even-strength play to avoid biases for players given heav-
ily offensive or defensive roles during penalties. Finally, we
record a player’s average number of turnovers, an immediate
change of possession between teams, over 60 minutes (TOR).

Previous work in soccer records the number of oppo-
nents overtaken by each pass and computes a total from all
passes [Steiner er al., 2019]. A pass overtaking an oppo-
nent results in o being in poor defensive position, where r
receiving the pass is now closer to o’s net. Formally, if
NET is the entrance to o’s net, o is considered overtaken if
d(p, NET) > 6(o, NET) and 6(0, NET) > §(r, NET).
Directly translating this metric to ice hockey results in heavily
defensemen-biased metrics since formations are more com-
pact and defensemen typically have more opportunity to over-
take opponents in their offensive direction than forwards.
Therefore, we scale the resulting values by calculating the
ratio of players overtaken with a pass that were possible to
overtake. For example, if there are 3 players between p and
the net (not counting the goalie) and the pass overtakes 2 op-
ponents, the computed value is 0.67. In this example, OVT
for p would increase by 0.67, and BTT for the two opponents
overtaken would increase by 0767 = 0.33 each. Our intuition
is the closer the value is to 1, the fewer players remaining for
r to beat. We summarize our passing analytics in Table 2.

5.3 Metrics Indicating Pressure

Exerting pressure on the puck possessor p is a tactic used by
one or more opponents o to try and force p to make a mistake.
Calculating pressure can help analyze how players respond to

PPM OVT - BTT
NPPM %, PPM is normalized by the number of
passes when OVT or BTT are incremented.

TOA Turnovers made (average).

Table 2: Passing analytics for a single player over 60 minutes.
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Figure 2: Zone of pressure (ZoP) around p, direction of
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o. Darker corresponds with more pressure.
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different scenarios, if they are putting themselves in difficult
situations and if they are reacting quickly enough. To un-
derstand pressure when players are in offensive situations we
calculate the average amount of pressure on the player when
they move the puck PrMA and shoot the puck PrSHA. On the
defensive side we compute the average pressure each player
exerts on shooting opponents PrSOA.

To calculate pressure we slightly modify the Zone of Pres-
sure (ZoP) used in soccer [Andrienko et al., 2017]. First, we
decrease the ZoP size since team formations and the playing
surface are smaller in ice hockey. Next, we scale the disper-
sion of pressure in response to the smaller ZoP and to account
for the use of hockey sticks which increasing the reach of o.

As in [Andrienko et al., 20171, let the direction in front
of p be represented by vector V*"7¢?* (Figure 2). Instead
of Vthreat pointing up-ice, we define V¢4t to point to-
wards the center of the opening to the attacking net. The
pressure boundary is calculated using the same method as
in [Andrienko er al., 2017], resulting in an oval-like structure
surrounding p with greater distance along V/th7eat,

The limits of the ZoP directly in front and behind p are
denoted as dfrons and dpger. We modify dpacr, to be 5 feet,

[ Sym ][ Description ‘
PrMA Pressure when moving the puck (average).
PrSHA || Pressure for each SOG by p (average).
PrSOA || Pressure excerted on a shooting opponent

while inside the ZoP of o (average).

Table 3: Pressure analytics for a single player.



| Player

[ PAA [ OPA | PASA | OVA [ OVT | BTT | PPM | NPPM | TOA [ PrMA | PrSHA [ PrSOA |

1 | Bogosian* || 1.19 | 0.44 | 15.00 | 0.55 | 438 | 0.98 | 3.40 0.28 | 1.00 0.28 0.47 0.57
2 | Cernak 097 | 045 | 21.25 | 042 | 456 | 035 | 4.21 0.27 | 2.00 0.31 0.00 0.38
3 | Sergachev || 0.78 | 0.62 | 18.04 | 0.43 | 453 | 0.79 | 3.74 0.25 | 0.40 0.29 0.11 0.48
36 | Maroon 142 | 0.36 401 | 0.67 | 0.27 | 227 | -2.00 | -0.14 | 1.60 0.63 0.00 0.56
37 | Volkov* 0.63 | 0.44 3.00 | 0.75 | 0.75 | 2.60 | -1.85 | -0.14 | 0.00 0.55 0.00 0.48
38 | Benn 0.93 | 0.44 9.62 | 040 | 0.64 | 639 | -5.75 | -0.15 | 4.01 0.39 0.76 0.43

Table 4: Analytic results, top three and bottom three players (excluding goalies) ordered by normalized passing plus/minus (NPPM) in

decreasing order. DAL = green, TBL = blue. (* = played one game)

equivalent to about the length of a hockey stick so that o can
reach p when they are directly behind p. Keeping the same
scale as in [Andrienko et al., 2017], we make dfo three
times larger (15 feet). We also simplify and alter their for-
mula for pressure from o onto p to scale linearly, so that the

pressure o exerts on p inside of the ZoP, o(p) = 1 — ggz Z;,
where z is the point on the ZoP boundary in the direction of o.
This dispersion is less dramatic than in soccer because hockey
sticks increase the reach of o. The total pressure experienced
by p with O pressers is calculated by Pr (p) =) o(p). Fig-
ure 2 shows pressure in relation to p, with darker red corre-
sponding to higher pressure depending on the location of o.

We summarize pressure analytics in Table 3.

6 Evaluation

We compute our analytics using the dataset from two 2020
Stanley Cup Playoff games between the Tampa Bay Light-
ning (TBL) and the Dallas Stars (DAL). Due to space limi-
tations, Table 4 shows only the top and bottom three players
across both games according to decreasing normalized pass-
ing plus/minus (NPPM). The rows are coloured blue for TBL
and green for DAL players.

The top three players in Table 4 are all defensemen for
TBL, and the bottom three are all forwards. All players
display variation in PAA and OPA, with a slight openness
advantage for the defensemen, likely due to their position-
ing. Bogosian (TBL), Cernak (TBL), and Sergachev (TBL)
all frequently overtake opponents (high OVT) and do not get
overtaken much (low BTT), leading to relatively high NPPM.
While Volkov (TBL) and Maroon (TBL) have the highest
OVA, their frequency of passes is low and they are overtaken
more than other players, leading to low NPPM. Benn (DAL)
averages almost 10 passes over 60 minutes, however he does
not overtake opponents as often as some other players, seen
through OVA and OVT, while he is also more frequently over-
taken with BTT = 6.39. Pressure measures are most useful
when compared relative to other players, or cross-referenced
with other metrics as described next.

6.1 Cross-Referencing Metrics

We cross-reference a subset of our analytics to show how met-
ric pairings could potentially lead to further player insights.
Figure 3a compares the average pressure on puck movement
(PrM2) with the average turnovers (TOA) and Figure 3b com-
pares the pass availability average (PAA) with the average
turnovers (TOA). We highlight a handful of players which
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Figure 3: Cross-referencing TOA with (a) PrMA and (b) PAA.

demonstrate potentially interesting observations. In Figure
3a, Coleman (TBL), Cirelli (TBL), and Dickinson (DAL)
have both high PrMA and TOA, suggesting they move the
puck when under a lot of pressure and turn the puck over rel-
atively frequently. In contrast, Verhaeghe (TBL) and Volkov
(TBL) move the puck under similar pressure, but did not turn
the puck over. Shattenkirk (TBL), Klingberg (DAL), and
Benn (DAL) move the puck under less pressure than the me-
dian, however Shattenkirk averages fewer turnovers.

We note that although PAA shows completed passes, it
also captures general trends of risk level for a player’s de-
cisions (lower values means smaller passing lanes and riskier
passes). In Figure 3b, we see that Coleman (TBL), Cirelli
(TBL), Dickinson (DAL), and Verhaeghe (TBL) have higher
PAA than the dataset median, suggesting they find and/or use
more open passing lanes. Comparing these metrics with aver-
age turnovers (TOR), we see that Verhaeghe has a much lower
turnover rate than Coleman, Cirelli, and Dickinson. Players
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Figure 4: (a) PAA heatmaps, (b) Pressure maps.

below the dataset median for PAA are Volkov (TBL), Shat-
tenkirk (TBL), Klingberg (DAL) and Benn (DAL), meaning
smaller (possibly riskier) passing lanes. Note the differences
in TOA for these players. This type of analysis could help
adjust a player’s game or anticipate opponents’ actions.

6.2 Spatial Trends

PAA Heatmaps: We have constructed pass availability aver-
age (PAR) heatmaps for each player by overlaying the passing
lane PL(p, r, ) oriented to their attacking direction for com-
pleted passes. In these heatmaps darker areas represent more
passes being made in that direction due to more overlapping
passing lanes and the variation in colours shows passing be-
haviour across positions and players. Figure 4a shows three
heatmaps for two defensemen, Lindell (DAL) and Klingberg
(DAL) who are often paired together and one forward, Palat
(TBL). Each chart is coloured according to its own scale. We
notice significantly different trends in passing across defense
and forwards in our dataset. For example, Lindell and Kling-
berg tend to pass between each other and up-ice, whereas
Palat makes most of his passes backwards. A larger dataset
is needed for more general trends, however initial studies of
passing lanes and direction help identity key differences in
passing style due to position and player. Identifying trends
becomes more important for coalition models pairing de-
fensemen, three forwards, or a pairs of defense with forwards.

Pressure Maps: Another method of visualizing our metrics
is to display them directly on a 2-dimensional rink, as shown
in Figure 4b. The spatial aspect of understanding pressure is
important when designing representative models of simulated

player behaviour, which has been done in soccer [Lindstrom
et al., 2020]. Modeling how a player spatially handles pres-
sure helps understand their playing style beyond when they
move or shoot the puck. Figure 4b shows each possession
by Joe Pavelski (DAL; top) and Ondrej Palat (TBL; bottom)
throughout game five. Note that although teams change ends
at the start of each period, we have adjusted these diagrams so
they are relative to the direction of the opponents net. Each
dot represents a timestep of possession beginning with hol-
low black circles. The shade in subsequent dots represents
the experienced pressure normalized between O (transparent;
low pressure) and 1 (dark; high pressure). This view suggests
significant differences in playing style and handling pressure
which could inform future simulations and models. Specifi-
cally, Pavelski tends to possess the puck for shorter durations
on average than Palat, which we confirmed with an average
possession time of 0.8 s compared to 1.13 s. Palat also tends
to skate towards pressure when possessing the puck, whereas
Pavelski doesn’t carry the puck as long. These visualizations
provide some preliminary analysis of how our analytics might
be used to identify different playing styles. Further analy-
sis into distributions, timelines, and play-by-play situations
could further expose behavioural differences.

7 Discussion and Future Work

Although our analytics provide us with the possibility of
identifying trends in player behaviour, it is important to em-
phasize that our dataset only includes two games due to
data availability limitations. Therefore, we emphasize that
these initial example insights may not be representative of a
player’s true longer-term behaviour. Furthermore, some of
our metrics result in slightly defensive-bias results since for-
wards tended not to overtake defense often. While our meth-
ods allow for forwards to overcome this bias with larger re-
wards in OVT, we believe a complete representation of per-
formance can be achieved when combined together with the
current offensively-biased data. Additionally, our metrics are
most effective when comparing players of the same position
as their in-game situations would be more similar.

We expect the broader impact of our work to change the
way Al and ice hockey work together, supporting an abun-
dance of work around game theory, optimal coalition forma-
tion, and learning deep representations that are of broader in-
terest to the AI community. Specifically, our metrics pro-
vide a new perspective of performance and we hope future
models of performance can learn and validate which actions
are valuable apart from sparsely recorded offense. Addition-
ally, analytics can change the way players, coaches, general
managers, and fans interact and understand the game, poten-
tially helping to identify undervalued or overvalued players.
By visualizing passing lanes and pressure for each timestep a
player has the puck, new temporal and situational analysis of
players’ trends can be studied.

In conclusion, our contributions help capture attributes
about every player in the game, not just those who gener-
ate offense. Future work involves improving Al in ice hockey
with new player evaluation and roster management models
and trying to quantify the elusive notion of momentum.
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