Computer Communications 180 (2021) 259-270

Contents lists available at ScienceDirect computer

communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Demystifying frame aggregation in 802.11 networks: Understanding and n

Check for

approximating optimality
Ali Abedi ®*, Tim Brecht?, Omid Abari”

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
b Computer Science Department UCLA, Los Angeles, California, USA

ARTICLE INFO ABSTRACT

Keywords: MAC-layer frame aggregation has significantly improved the efficiency of IEEE 802.11n and 802.11ac networks
802.11 networks by placing multiple MAC-layer data units in a large PHY-layer frame. In this paper, we focus on finding the
Frame aggregation optimal length of an Aggregated MAC Protocol Data Unit (A-MPDU) in order to maximize throughput. In theory,
A-MPDU

larger A-MPDUs amortize overheads over more bits and therefore increase throughput. However in practice,
throughput can be negatively impacted if too many frames are aggregated, due to higher error rates at the end
of A-MPDUs. Determining the optimal number of subframes is challenging because error rates can be higher
in the later part of the A-MPDU which change with factors such as mobility, speed and transmission rate.
Additionally, there are dependencies between consecutive A-MPDUs due to software retransmissions.

We develop a model of A-MPDU frame aggregation and use it to design a statistically optimal algorithm.
Using our understanding of that algorithm we develop a standard compliant, Practical, Near-Optimal Frame
Aggregation algorithm (PNOFA). Our trace-based evaluation shows that across a variety of devices and
scenarios PNOFA outperforms existing state-of-the-art algorithms and obtains throughputs that are within
97% of those obtained using the statistically optimal algorithm. Furthermore, we implement PNOFA as a
user-space process on an 802.11ac Wave 2, Google Wifi access point. We find that when compared with the
frame aggregation algorithm provided in the device’s Qualcomm IPQ 4019 chipset’s firmware, PNOFA increases
average throughput by 17% and 13% for UDP and TCP traffic on the scenarios tested.

Optimal length
Protocol optimization

1. Introduction Because channel estimation is done only once using the preamble of
each A-MPDU, it may not be as accurate for MPDUs that are farther

The 802.11n and 802.11ac standards are able to achieve high from the beginning of the A-MPDU (for more details see Section 2.1).
physmal—layer. bit rates by a‘?dmg new features Sl,ICh as MIMO and As a result, MPDUs near the end of an A-MPDU may be more likely
channel bonding. However, without frame aggregation, the MAC-layer . L.

. to fail than those near the beginning, especially in environments with
throughput does not surpass 50 Mbps regardless of the physical layer bilit
bit rate, due to overheads such as the inter-frame spacing and acknowl- mo 1 - . .
edgments. To reduce this overhead, a MAC-layer frame aggregation Fig. 1 plots the MPDU Delivery Ratio (MDR) for each subframe at
mechanism has been introduced starting with the 802.11n standard different positions in an A-MPDU for an instance in time. Index 1 is the
that aggregates multiple MAC-protocol data units (MPDUs) into one first MPDU in the frame and index 32 is the last. The figure shows that
larger aggregated MPDU (A-MPDU). As a result, rather than sending as the MPDU index increases, the MDR generally decreases (i.e., there
multiple small frames, which require their own backoff, inter-frame is a lower probability of successful delivery). In this example, peak
spacing, and acknowledgments, one larger aggregated frame containing throughput is obtained with a size of 7. As will be seen later in this
multiple subframes is transmitted instead.

Maximizing throughput during transmission requires optimizing the
number of subframes (MPDUs) to aggregate for the current channel
conditions. If only a small number of MPDUs are aggregated, through-
put may suffer. However, if too many MPDUs are aggregated and many

paper the MPDU delivery ratios vary over time and change with several
factors including speed of movement and transmission rate. As a result,
the optimal A-MPDU size also changes over time.

Recent studies such as MoFA [1] and STRALE [2] have developed

of them are not received successfully, throughput may also be lower frame aggregation algorithms that use heuristics to adapt to changing
than possible. One key factor that has to be considered by frame aggre- channel conditions in an attempt to maximize throughput. In this
gation algorithms is channel compensation (or correction) limitations. paper, we develop an analytic model that can be used to determine

* Corresponding author.
E-mail addresses: ali.abedi@uwaterloo.ca (A. Abedi), brecht@uwaterloo.ca (T. Brecht), omid@cs.ucla.edu (O. Abari).

https://doi.org/10.1016/j.comcom.2021.09.019

Received 31 March 2021; Received in revised form 8 July 2021; Accepted 20 September 2021
Available online 26 September 2021

0140-3664/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2021.09.019
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2021.09.019&domain=pdf
mailto:ali.abedi@uwaterloo.ca
mailto:brecht@uwaterloo.ca
mailto:omid@cs.ucla.edu
https://doi.org/10.1016/j.comcom.2021.09.019

A. Abedi, T. Brecht and O. Abari

60

1 ~
50 &
0.8 49 a
= o, 40 2
2 o 20 2
0.4 S g
0.2 * Throughpu AN BAAN A S
“A ‘MDR ‘ ‘ ‘ AALLAAAN AN 10 _ﬁ

MPDU Index

Fig. 1. Impact of A-MPDU size on throughput.

the statistically optimal number of frames to aggregate to maximize
throughput. Our model is also the first to consider the impact of
the combination of software retransmission and the block ACK mech-
anism, which creates dependencies between consecutive A-MPDUs.
These dependencies make frame aggregation more challenging. Us-
ing our analytical model, we design a Practical, Near-Optimal Frame
Aggregation algorithm (PNOFA) for modern 802.11 networks. Our
trace-driven evaluations show that PNOFA outperforms state-of-the-
art algorithms and achieves throughputs that are very close to those
obtained using the statistically optimal algorithm across a wide variety
of scenarios and devices.

We also implement PNOFA on a Google Wifi access point [3]
that utilizes the modern Qualcomm IPQ 4019 [4] system-on-chip that
supports Wave 2 802.11ac features. This chipset is used in at least
65 other access points from major manufacturers [5]. This and other
WiFi chipsets used in modern 802.11ac devices typically implement
frame aggregation in the chipset’s closed-source firmware. However,
because PNOFA requires relatively little information and support from
the underlying device we are able to implement PNOFA as a user-space
process. Such an implementation is not possible for existing algorithms
(e.g., MoFA and STRALE) because they would require modifications
to closed-source firmware. Our experimental results show that PNOFA
can provide throughput improvements over the frame aggregation
algorithm in the Qualcomm IPQ 4019 chipset.

Our contributions in this paper are:

» We determine statistically optimal A-MPDU sizes by modeling A-
MPDU frame aggregation and block ACK window advancement.
Then, we develop a practical frame aggregation algorithm called
Practical, Near-Optimal Frame Aggregation (PNOFA). In contrast
with the statistically optimal algorithm PNOFA does not require
a priori knowledge of the MPDU delivery ratios.

Using trace-driven evaluation, we show that average throughput
obtained using PNOFA is within 97% of that obtained using the
statistically optimal algorithm across different scenarios and de-
vices, and that state-of-the-art approaches do not perform nearly
as well.

The properties that PNOFA relies on enable a user-space imple-
mentation on a Google Wifi access point. Our experimental results
show that for the scenarios examined, PNOFA improves UDP
and TCP throughput when compared to the Qualcomm IPQ 4019
chipset’s frame aggregation algorithm on this device by 17% and
13%, respectively.

The organization of this paper is as follows: In Section 2, we study
the challenges of A-MPDU frame aggregation. We then review the state-
of-the-art solutions for this problem in Section 3. We then present
our statistically optimal algorithm and practical near-optimal algorithm
in Sections 4 and 5. Finally, we evaluate the performance of PNOFA
and compare its performance with the state-of-the-art algorithms using
trace-based simulation and empirical evaluations in Sections 6 and 7.

2. Aggregation challenges

In this section, we explain why creating an effective frame aggrega-
tion algorithm is an important, interesting, and challenging problem.

Computer Communications 180 (2021) 259-270

~~ BPSK 1/2 16-QAM 1/2 o~ 64-QAM 3/4
-+ QPSK 1/2 16-QAM 3/4 - 64-QAM 5/6
- QPSK 3/4 -o- 64-QAM 2/3
1.0 frm—e i |
0.8 .

%06 [B

1.0
0.8
Eo6
= 0.4
02k
0.0

Time (ms)

Fig. 2. Impact of modulation, coding and movement on MPDU delivery ratio (MDR).

2.1. Channel compensation limitations

MAC-layer frame aggregation significantly improves the throughput
of 802.11 networks, however it introduces some challenges in the op-
eration of these networks. The first challenge caused by A-MPDU frame
aggregation is due to limitations in channel compensation (correction).
Although the MPDUs in an A-MPDU have their own MAC header and
CRC, Byeon et al. [1] have shown that the frame error rate (FER) of
MPDUs depend on their location in an A-MPDU, especially in mobile
environments. Since timing and frequency calibration are done only
once using the preamble of an A-MPDU, if channel conditions change
during the reception of the A-MPDU, the initial channel estimations are
no longer valid rendering channel correction ineffective. Consequently,
subframes at the end of an A-MPDU are more likely to fail. A direct
consequence of this finding is that the throughput is not necessarily
maximized by adding as many MPDUs as possible in an A-MPDU.

To provide some examples of channel compensation limitations, we
conduct an experiment where we measure the MPDU delivery ratios
for all transmission rates using a technique presented in Section 6.1.
Fig. 2 shows the average MPDU delivery ratios for 8 modulation and
coding schemes over the 200 s experiment for slow and normal walking
speeds in the top and bottom plots. All 8 configurations use 3 spatial
streams, a long guard interval, and a 20 MHz channel. The x-axis
shows the location within the A-MPDU for each MPDU, in terms of the
elapsed time from the PHY header. Due to limits on the total number
of bytes in an aggregated frame the transmission of A-MPDUs with
faster modulation and coding rates end sooner. As can be seen in these
figures, the speed of movement, modulation and coding schemes have a
direct impact on how fast the MPDU delivery ratio decreases for MPDUs
that are farther from the beginning of the A-MPDU. As a result, a frame
aggregation algorithm has to constantly monitor these changes to find
the best A-MPDU length. For example, when comparing results using
16-QAM 3/4 across the two graphs the delivery ratio drops to a little
below 0.5 for the last MPDU in the frame when the walking speed is
slow. However, the delivery ratio for the last frame is below 0.1 when
the walking speed is normal.

2.2. Dependencies between A-MPDUs

The second challenge in determining the best A-MPDU length is
caused by the block acknowledgment (block ACK) mechanism and
software retransmission. The 802.11n and 802.11ac standards support
block acknowledgment in which the receiver selectively acknowledges
receiving multiple subframes by transmitting a single acknowledgment.

A. Abedi, T. Brecht and O. Abari

This mechanism improves efficiency since only one block ACK is trans-
mitted which covers all subframes instead of one acknowledgment per
subframe. The receiver of an aggregated frame selectively acknowl-
edges the successful reception of multiple subframes with one block
ACK. In addition, the block ACK determines which MPDUs were not
received and have to be retransmitted. This process is called software
retransmission.

In 802.11n and 802.11ac protocols, a block acknowledgment, con-
sisting of a starting sequence number and a 64-bit bitmap, is transmitted
back to the sender, where each bit acknowledges a subframe with the
corresponding offset from the starting sequence number. For example,
if the starting sequence number is 1000, the first and second bits
acknowledge sequence number 1000 and 1001. With this block ACK
mechanism, only MPDUs with sequence numbers that are within the
64-MPDU window can be transmitted. This can potentially limit the
number of frames that the sender can aggregate in an A-MPDU [6]. For
example, suppose that the sender transmits 64 frames with sequence
numbers 1000 to 1063. If the MPDU with sequence number 1000 is
lost, the sender cannot aggregate new MPDUs (i.e., beyond 1063) in
the next A-MPDU because their sequence number will be outside the
current block ACK window (BAW). Therefore, even if all other trans-
mitted MPDUs are successfully received, the sender cannot transmit
new subframes in the next A-MPDU(s) until the MPDU with sequence
number 1000 is acknowledged or a software retry limit is reached.

In this example, we clearly see how the fate on subframes in one A-
MPDU can affect the next A-MPDUs in terms of the maximum number
of MPDUs that can be aggregated. The chain of dependencies between
consecutive A-MPDUs, caused by block ACK window advancements and
software retransmission, significantly complicates how to determine the
optimal number of frames to aggregate. For example, does an optimal
frame aggregation algorithm need to consider all possible outcomes for
subsequent A-MPDUs to optimize the length of the next A-MPDU? In
Section 4, we show that despite this chain of dependencies an optimal
decision can be made for the current A-MPDU without considering
future A-MPDUs.

3. Related work

Frame aggregation in 802.11 networks has attracted a lot of atten-
tion due to the significant efficiency improvements promised by this
feature. As a result, different categories of frame aggregation algorithms
have been studied in recent years. We first provide a brief overview
of the different categories of frame aggregation algorithms. We then
describe related A-MPDU aggregation algorithms, the focus of this

paper.
3.1. Frame aggregation scheduling

Frame Aggregation Schedulers [7,8] are concerned with optimiz-
ing the transmissions under unsaturated link conditions. The frame
aggregation schedulers wait for new packets to become available for
transmission on the sending device in order to create longer aggregated
frames to improve the efficiency. These algorithms attempt to find a
balance between delay and throughput as waiting too long for new
packets may impact the QoS of the ready-for-transmission packets. Our
work is concerned with ensuring maximum throughput, which occurs
when there are no delays between packets.

3.2. A-MSDU frame aggregation

The second category of frame aggregation algorithms is concerned
with finding the optimal length of an Aggregated MAC Service Data
Unit (A-MSDU). In A-MSDU frame aggregation, there is one MAC
header for all subframes, consequently if one MSDU fails the entire
frame is lost. Therefore, A-MSDU frame aggregation algorithms [9-11]
try to balance efficiency and frame error rates by dynamically adjusting

261

Computer Communications 180 (2021) 259-270

the number of subframes aggregated in an A-MSDU. Similarly, another
group of algorithms [12-14] try to optimize throughput by adjusting
the size of MPDUs (i.e., not the number of MPDUs in an A-MPDU). This
category of algorithms is similar to A-MSDU frame aggregation, because
both of them ultimately change the size of MPDUs, either by changing
the number of MSDUs in an MPDU or by changing the payload of
MPDUs without using A-MSDU aggregation.

Our work is complementary to frame aggregation schedulers and
A-MSDU frame aggregation algorithms so we do not consider them in
this work.

3.3. A-MPDU frame aggregation

This category of frame aggregation algorithms is concerned with
finding the optimal number of subframes to aggregate in an A-MPDU.
The most closely related papers to our work are those describing the
MOoFA [1] and STRALE [2] frame aggregation algorithms. As a result,
we implement these algorithms and compare their performance to that
of our proposed algorithm. We now briefly review MoFA and STRALE
followed by a description of the ChASER algorithm.

To overcome channel compensation limitations, Byeon et al. [1]
propose a frame aggregation algorithm called MoFA that adjusts the
length of A-MPDUs in a attempt to maximize throughput. This algo-
rithm tries to distinguish stationary and mobile channel conditions and
reduces the length of A-MPDUs dynamically under mobile conditions.
This algorithm compares the average frame error rates (FER) of the first
and second half of an A-MPDU. If the difference between the average
FERs is higher than 20% the environment is considered mobile and
the A-MPDU length is reduced. If this difference is less than 20% for
multiple consecutive A-MPDUs, the algorithms assumes the channel
is ready to support longer A-MPDUs. Therefore, MoFA increases the
number of subframes in the next A-MPDUs.

Byeon et al. [2] propose another algorithm called STRALE that tries
to jointly optimize frame aggregation and rate adaptation. The authors
find that under certain conditions, in addition to limiting the length
of an A-MPDU, reducing the transmission rate can also help to cope
with the channel compensation limitations. They utilize this finding to
implement a heuristic that considers two options to cope with channel
compensation limitations. STRALE estimates the expected throughput
for two transmission settings: (1) the same transmission rate with a
smaller A-MPDU size (2) a lower transmission rate (i.e., one-level lower
MCS index) with the same A-MPDU size. If option (1) results in higher
expected throughput, the A-MPDU size is decreased based on the fate
of the previous A-MPDUs. Otherwise, the rate adaptation algorithm is
instructed to override its chosen transmission rate by one MCS index.
Therefore, in some cases the frame aggregation algorithm impacts the
rate adaptation algorithm.

Byeon et al. [1,2] implement and evaluate MoFA and STRALE
on an 802.11n platform. In addition, STRALE was also evaluated us-
ing an 802.11ac simulator, since it could not be implemented due
to limitations in the ath10k driver [2]. We study these algorithms
using trace-driven evaluation (802.11n) and find that PNOFA outper-
forms them in a variety of scenarios. We also implement PNOFA as a
user-space process on an 802.11ac Google Wifi access point. Such an
implementation is not possible for these algorithms because they would
require modifications to closed-source firmware.

Okhwan et al. [15] propose ChASER an algorithm that re-estimates
the CSI multiple times during the A-MPDU transmission to solve chan-
nel compensation limitations in the physical layer. The authors utilize
a software radio to implement a prototype of their algorithm. This ap-
proach is costly and impractical for large-scale adaptation by commer-
cial products [2]. In contrast, PNOFA is a standard compliant, practical
algorithm that could easily be implemented in existing devices.

Although some past work has identified the problem of higher error
rates at the end of A-MPDUs, their solutions are based on heuristics or
hardware modifications. In contrast, for the first time, we study the

A. Abedi, T. Brecht and O. Abari

0: Overhead (time)
]

— L

DIFS + Backoff ‘ MPDU 1 H MPDU 2 ‘ ‘ MPDU n

—

SIFS + B-ACK

A: Transmission
time of MPDU

Fig. 3. 802.11 A-MPDU and transmission overheads.

inter-dependency between multiple A-MPDUs and derive a statistically
optimal algorithm and a practical near-optimal A-MPDU frame aggre-
gation algorithm. Moreover, the simple design of our algorithm enables
the first implementation of a custom A-MPDU frame aggregation on a
commercial 802.11ac access point. Finally, this work has enabled us to
devise an algorithm that combines statistically optimal frame aggrega-
tion with a novel statistically optimal rate adaptation algorithm [16].
These algorithms provide a strong foundation for comparing new and
existing algorithms.

4. Optimizing A-MPDU length

The goal of this section is to find the optimal length of an A-
MPDU given the expected frame error rates of each subframe within
an A-MPDU (for the given transmission rate). We model A-MPDU
frame aggregation in 802.11 networks in order to optimize throughput,
first without considering the dependencies between consecutive A-
MPDUs. Then, we examine how these dependencies may change frame
aggregation decisions.

4.1. Modeling optimal A-MPDU length

We model the transmission time of an A-MPDU with » subframes,
Ta.mppu(n); as follows:

Tamppu(m) =0+ An 1

where 0 includes all overheads associated with transmitting an A-
MPDU, including PHY header, DIFS, SIFS, backoffs, and block ACK as
illustrated in Fig. 3. A is the transmission time of one MPDU and is
defined as 1 = %, where B is the number of bits in an MPDU and
R is the transmission rate in bits per second. The expected number of
successful MPDUs, N (n), in an A-MPDU with »n subframes is:

n
N(n) = Z M DR(i)
i=1
where M DR(i) is the delivery ratio of MPDU index i (i.e., the prob-
ability of the successful transmission of i’th MPDU in an aggregated
frame).

Finally, we compute the expected throughput when n subframes are
aggregated in an A-MPDU. Since the transmission time of an A-MPDU,
including all overheads such as receiving a block ACK, is 6 + in, we
can transmit 1/(60 + An) A-MPDUs of size n per second. The number
of successful MPDUs in each aggregated frame is N (n), therefore the
expected throughput will be:

BN,(m) BY | MDR()
6+ A.n

@

T put(n) = 3)

Ta-mppu(?)
To maximize throughput, we need to find the value of » that maxi-
mizes Eq. (3). The derivative of Eq. (3) with respect to n does not have
a general closed-form and depends on the M DR(i) function. However,
the optimal length of an A-MPDU can be calculated numerically by
computing the expected throughput for all possible lengths of an A-
MPDU. Note that MoFA [1] and STRALE [2] use a similar formula
to compute what the best length would have been for past A-MPDUs.
Then they utilize this metric in their proposed heuristic to decrease

262

Computer Communications 180 (2021) 259-270

the length of subsequent A-MPDUs if necessary. They also propose a
separate heuristic for increasing the length of subsequent A-MPDUs that
is substantially different from the technique we employ. In contrast, we
provide the expected delivery ratios (MDRs) to Eq. (3) to compute the
optimal length for the next A-MPDU.

4.2. Dependencies between A-MPDUs

In Section 4.1, we computed the optimal length of an aggregated
frame without considering the dependency between consecutive A-
MPDUs. As explained in Section 2.2, one might think that because of
the limitations caused by block ACKs and software retransmissions, it
might be beneficial to transmit shorter A-MPDUs than computed in the
previous section. However, we now show that these dependencies do
not affect the optimal length of A-MPDUs.

Theorem 1. An algorithm that optimizes the length of an A-MPDU
without considering the following A-MPDUs achieves the statistically optimal
throughput.

Before formally proving this theorem, we describe an example that
provides some intuition behind the proof. Suppose that based on Eq. (3)
the optimal length of an A-MPDU is calculated to be 64. In this extreme
example imagine that all MPDUs are delivered successfully except
the first MPDU. In this case, the software retransmission mechanism
reschedules the first MPDU in the next A-MPDU and the block ACK
window cannot be advanced. Therefore, no new subframes can be
sent, and the length of the first and second A-MPDUs will be 64 and
1, respectively. Recall from Fig. 1 that throughput of A-MPDUs with
only one subframe will be very low. As a result, we now consider the
question of whether or not limiting the first A-MPDU results in higher
throughput. For example, does sending 32 and 33-subframe A-MPDUs
(the second frame carries the retransmission of the first MPDU and 32
new MPDUs) result in higher throughput? To compare the two cases
we calculate their total transmission times. Recall that § denotes all
overheads when transmitting an A-MPDU. In both cases, since two A-
MPDUs are transmitted, the total overhead will be 26. The transmission
time of all 65 (i.e., 64+1 or 32+33) MPDUs will be 654. Therefore, the
total transmission time in both cases will be 20 +654. As a result, in this
worst case there is no gain in throughput by limiting the first A-MPDU.
We now provide a proof of Theorem 1.

Proof. We consider different possibilities when creating two consecu-
tive A-MPDUs x and x+1. As illustrated in Figs. 4a and 4b, when cre-
ating A-MPDU,, we need to schedule i > 0 MPDUs for retransmission,
because they failed in previous A-MPDUs.

Assume that the optimal length of A-MPDU,, without considering
the dependency between A-MPDUs is i + k, therefore, we can add k
new MPDUs to A-MPDU,, denoted N,...N,. To prove the theorem, we
compare the possible outcomes of sending i + k or i + k — 1 subframes
in an A-MPDU.

Aggregating i + k — 1 MPDUs (Fig. 4a):

Assume that we add k — 1 new MPDUs to A-MPDU,.. When creating
A-MPDU,_, ;, we need to retransmit j > 0 MPDUs. The length of an A-
MPDU can be limited by the block ACK window, the length suggested
by Eq. (3) and possibly the maximum size of the frame. Since the last
transmitted MPDU was N,_;, the new MPDUs that can be transmitted
in A-MPDU_, start from N,. The last MPDU that can be aggregated
because of the block ACK window is denoted by N, p. Similarly, the
last aggregated MPDU based on Eq. (3) is denoted by N, .. To illustrate
a sample A-MPDU, in Fig. 4a, N, p happens before N, _ , although these
two imaginary MPDUs can have any order. Therefore, the last MPDU
that actually can be aggregated is min(N;p, N,).

Aggregating i + k MPDUs (Fig. 4b):
If k new MPDUs are aggregated, two outcomes are conceivable for
the next A-MPDU (i.e., A-MPDU_,). If N; succeeds, j MPDUs have to

A. Abedi, T. Brecht and O. Abari

Computer Communications 180 (2021) 259-270

T
: A-MPDU : | i MPDUs retransmitted : Nl Nk |
A-MPDU,: | i MPDU retransmitted : N] Nk_1 |
) T
RV o : : N, fails | J MPDUs + N, retransmitted : Nk+l Nk+B"' NkJrZ ‘
x+1* | /MPDUs retransmitted H Nk Nk+B Nk+z A-MPDU_: :
N, succeeds | ; i 1
K JMPDUs retransmitted h Nk4l"' Nk\B"' Nkuﬂ |

(a) Transmitting k — 1 new MPDUs

(b) Transmitting k new MPDUs

Fig. 4. Transmitting k — 1 versus k new subframes in an A-MPDU.

be scheduled for retransmission, otherwise, N, must also be retrans-
mitted. In these cases, the new MPDUs start from N, since N, was
attempted in the last A-MPDU. Similar to the i+ k —1 case, A-MPDU_
is limited by the block ACK window or the length from Eq. (3). In
both cases (i.e., N, fails or succeeds), if B < z, the last MPDU will be
N,,p- Note that, N, p refers to the frame with the highest sequence
number in the block ACK window. As a result, the fate of N, does
not impose further restrictions on the BAW in this case. However, if
z < B the last MPDU will be N, or N;, ., if N; fails or succeeds,
respectively. In this case (with i +k MPDUs), including N, in A-MPDU,
creates an opportunity to possibly transmit one more packet when
compared to the case where N, is not included in A-MPDU,, (Fig. 4a).
As a result, there is no throughput gain from aggregating fewer MPDUs
than what Eq. (3) suggests. This proof can be recursively applied on
smaller A-MPDUs to show that smaller MPDUs do not provide higher
throughput either. Hence, the best throughput is achieved when the
length from Eq. (3) is used. []

Note that aggregating more frames than what Eq. (3) suggests does
not provide higher throughput either. This is because the first A-MPDU
is sub-optimal and it creates no opportunity for improvement in the
following A-MPDUs.

4.3. Statistically optimal algorithm (SO)

We now use our findings from Sections 4.1 and 4.2 to define the
Statistically Optimal A-MPDU aggregation algorithm (SO). For each A-
MPDU, the SO algorithm calculates the number of MPDUs to aggregate
based on Eq. (3) for the given PHY rate and MPDU delivery ratios. Note
that SO uses knowledge of the MDRs for future A-MPDUs (i.e., it is an
offline algorithm), in contrast to practical (i.e., online) algorithms like
PNOFA, which estimates MDRs using the fate of previous A-MPDUs.
To implement SO in our trace-driven evaluation, we calculate the
expected throughput for all A-MPDU sizes from 1 to a maximum of
32 subframes' using Eq. (3) and choose the length that achieves the
highest throughput.

To provide some evidence that the statistically optimal algorithm
is operating as expected, we conduct a trace-driven evaluation. In this
evaluation, we compare the throughput obtained from this algorithm
with that of a variety of constant A-MPDU length settings. The idea is
that as channel conditions change, each different fixed length setting
may produce the best throughput at different points in time. However,
SO should meet or exceed the throughput of these different lengths over the
entire experiment. Details of our performance evaluation methodology
can be found in Section 6.1. In these experiments, we use a constant
transmission rate (i.e., MCS = 14, LGI, and 20 MHz channel) to elimi-
nate the effect of the rate adaptation algorithm on the throughput. Each
constant length setting algorithm chooses the same aggregation length
throughout the experiment. In this 10 min experiment, we gradually
increase the speed of movement from 0.5 m/s to 1.5 m/s. As illustrated
in Fig. 5 (top), the throughput of SO is always the same or higher than
all constant configurations. We show the performance of a subset of all
possible settings due to the limited space on this plot.

1 Using the ath9k driver’s optimization of creating a subsequent frame while
the current A-MPDU is transmitted.

Tput (Mbps)

#MPDUs

| | | |
200 300 400 500
Time (seconds)

!
0 0 100

Fig. 5. SO versus constant A-MPDU sizes.

Fig. 5 (bottom) shows the number subframes SO aggregates in an
A-MPDU for the same experiment. In this experiment the optimal A-
MPDU length constantly changes over relatively short periods of time.
Changes in the optimal length are due to short term variations in speed
while walking and the movement of the device in a person’s hand
or pocket. In addition, we observe that the A-MPDU size generally
decreases as the movement speed increases during the experiment.

5. PNOFA

The statistically optimal algorithm (SO) utilizes Eq. (3) and infor-
mation about future transmissions to determine the optimal length of
an A-MPDU. In order to derive a practical and standard compliant
algorithm that approximates SO we had to overcome some practical
challenges.

5.1. PNOFA Algorithm

We now describe how we handle the practical challenges and
present pseudocode for the implementation of PNOFA in Fig. 6. The
first challenge is that MPDU delivery ratios are not known for the
A-MPDU that is being aggregated for the next transmission. If the
transmission rate is R, PNOFA estimates the MDRs using recent trans-
missions for that rate. Specifically, the average MDRs (for each rate)
are computed over a specified window of time (i.e., AveragingWindow)
[lines 5-6]. If rate R had not been used in the last window, the
aggregation level is set to the maximum length [line 3]. We use the
maximum because as shown in Section 4.1 if the failure probabilities
for each MPDU are roughly equal this yields the best throughput.
Alternatively, we could have considered rates that are similar to R
(e.g., R-1 or R+1).

The second challenge is that if a maximum of » MPDUs have been
recently aggregated, we do not have any information about the MDR
of subframes n + 1 and beyond. Therefore, if the length should be
increased, the algorithm may not be able to properly adapt as no
information is available about MPDU rn+ 1 and later subframes. To
address this challenge with very little overhead, PNOFA always adds
a few additional MPDUs (beyond the value obtained from Eq. (3)). The
number of additional MPDUs is determined by the ExtraMPDUsWindow
and 4 (the MPDU transmission time at rate R)[line 9]. This approach
aggregates slightly more than the optimal number of MPDUs, in order

A. Abedi, T. Brecht and O. Abari

Input: Fate of MPDUs in the last AveragingWindow
Parameters: Transmission rate R

SAMPLES « Fate of MPDUs transmitted at rate R in the
last AveragingWindow;

-

if size(SAMPLES) == 0 then
‘ A-MPDU-SIZE = MAX-MPDU(R);

w N

4 else

5 for i in 1 to MAX-MPDU(R) do

6 ‘ MDR[i] «— Delivery ratio of MPDU i in SAMPLES;
7 end

8 OPT-SIZE « Compute optimal A-MPDU size based on
Eq. 3 (using MDR and R as input);

9 A-MPDU-SIZE « OPT-SIZE + %‘M;

if A-MPDU-SIZE > MAX-MPDU(R) then
A-MPDU-SIZE = MAX-MPDU(R);
end

10
11

12

end

Output: A-MPDU-SIZE

Function MAX-MPDU(R) is
return max size of A-MPDU for rate R;
end

13

14
15

16

Fig. 6. PNOFA algorithm.

to obtain a bit of information about the delivery ratios of slightly longer
than optimal length A-MPDUs. If the optimal length should be increased
the algorithm will have information about the MDRs of longer frames.
In addition, aggregating only a few more MPDUs than the optimal
decreases throughput only very slightly (if at all). In Section 6, we show
that the throughput obtained using PNOFA is very close to that of the
statistically optimal algorithm.

PNOFA is a lightweight algorithm that can be implemented on all
WiFi devices. We now briefly explain the complexity of this algorithm.
PNOFA first calculates MDRs over the last averaging window that
contains k samples. This operation is a simple averaging and hence
its complexity is O(k). k is bounded by the number of A-MPDUs that
can be transmitted in an averaging window. As we explain in the next
section, the averaging window is typically a few hundred milliseconds
and therefore k is typically under 100. A careful implementation can
avoid recalculating the averaging window for every A-MPDU by only
adding new samples and removing those that are no longer inside the
window. In the next step, PNOFA calculates the expected throughput
for all A-MPDU lengths from 1 to 64. Therefore, the complexity of this
step is O(1). Our implementation of PNOFA on a commercial access
point shows that the AP’s WiFi chipset can easily handle the extra
computations.

5.2. PNOFA parameters

We now explain the choice of values used for ExtraMPDUsWindow
and AveragingWindow in our prototype.

ExtraMPDUsWindow: We have empirically determined how many
subframes to add to an A-MPDU beyond the value obtained from
Eq. (3). Because the amount of time required to transmit an MPDU
depends on the transmission rate, we use an approach where the
number of additional subframes changes with the rate. The idea is that
PNOFA adds x additional MPDUs for a rate R, where x is the number
MPDUs that can be sent in time ExtraMPDUsWindow.

To find a good value to use for ExtraMPDUsWindow, we conduct
several evaluations using different scenarios consisting of different

Computer Communications 180 (2021) 259-270

120 |

100 | b
80 [B
60 ;
40 - —— i
20 - S1 —— 54 S5 7

Average Throughput

0 200 400 600 800
Window Size (microseconds)

1000

Fig. 7. ExtraMPDUsWindow sizes and throughput.

devices and walking speeds (refer to Section 6.2 for details for each
scenario). In the scenarios tested, a client device is carried with slow
and normal walking speeds (approximately 1.0 and 1.4 meters per
second, respectively) in a lab and office space. In S1, we carry a
laptop equipped with an Intel AC 3160 802.11ac WiFi card at normal
walking speed for 300 s. In S4 and S5, we carry a laptop equipped
with a TL-WDN4200 802.11n and Archer TOUH 802.11ac WiFi cards,
respectively. Both experiments are run for 400 s with a mix of slow and
normal walking speeds.

Fig. 7 shows results for three different scenarios, S1, S4 and S5
while plotting the average throughput obtained using different values
of ExtraMPDUsWindow. This graph shows that if the window size is
too small, not enough MPDUs are added and PNOFA does not have
the necessary information to increase the A-MPDU size when channel
conditions improve (e.g., movement speed decreases). The figure also
shows that if the window size is too large, throughput decreases (due
to the higher error rate of the later subframes in an A-MPDU). The best
throughput is achieved when the window size is about 250 microsec-
onds (which is used in our prototype implementation). To provide
insight into the number of extra subframes that would be added with
250 microseconds, a physical rate of 144 Mbps allows for 3 extra
MPDUs, while a rate of 72 Mbps allows for 1 extra MPDU. We have
found that 250 microseconds allows PNOFA to quickly adapt when
the A-MPDU length should be increased while otherwise incurring very
little overhead.

AveragingWindow: Similarly we have examined different values
for the averaging window size under a variety of channel conditions
(the results are not included here). We have found that a window size
of 200 ms works well in practice and that PNOFA was not very sensitive
to this window size in the scenarios tested (obtaining peak throughput
for values of up to one second). The reason is that the acceleration of
a human body is quite limited when walking and therefore the speed
of movement does not change significantly with windows of up to one
second.

The near optimal throughput of PNOFA obtained in Section 6
indicates that these choices of parameters are effective across a variety
of channel conditions and transmission rates.

6. Trace-driven evaluation
6.1. Methodology

As discussed previously, we could not implement existing frame
aggregation algorithms such as MoFA and STRALE on modern 802.11ac
platforms because of the closed-source firmware. In order to compare
the performance of PNOFA with that of the state-of-the-art algorithms,
we conduct trace-driven evaluations. We obtain and use T-SIMn, a
trace-driven evaluation framework [17] that allows for highly accurate
and fair comparisons under conditions that include mobility, WiFi and
non-WiFi interference, and which use 2.4 and 5 GHz spectrums. Previ-
ous research [18] has demonstrated that T-SIMn is extremely realistic
and highly accurate. A key to this trace-driven evaluation is that infor-
mation about the properties of the channel that impact throughput are
captured in the traces. With this approach traces are collected during

A. Abedi, T. Brecht and O. Abari

real experiments using real devices in a variety of environments that
are representative of those in which the devices are likely to be used.
Different algorithms can then be compared by replaying the same trace
using each algorithm. In addition, using trace-driven evaluation allows
us to implement the statistically optimal algorithm which requires a
priori knowledge of the fate of future frames.

6.1.1. Trace-driven evaluation platform

To evaluate the performance of different frame aggregation algo-
rithms, for each scenario we run an experiment to collect a trace
of A-MPDU transmissions. The sending device (i.e., the access point)
transmits every A-MPDU at a new rate. All rates are sampled in a
round-robin fashion and this process continues for the duration of the
experiment. The fate of all packets are recorded in the trace which
allows the evaluation framework to determine the MPDU delivery
ratios for all transmission rates over any window of time. During trace
collection, A-MPDUs are transmitted at the maximum length to measure
the MPDU delivery ratios of all MPDU indexes. In the next step, T-
SIMn uses the collected trace to evaluate different frame aggregation
algorithms.

Implementation: We ported code from the publicly available STRALE
implementation [2] to T-SIMn. We have also implemented MoFA as
described by Byeon et al. [1]. Finally, the statistically optimal algorithm
and PNOFA are implemented as described in Sections 5 and 4.3.
We have also ported the Minstrel HT rate adaptation algorithm from
Linux to T-SIMn. Minstrel HT is a sampling-based algorithm and is the
default rate adaptation algorithm in the widely used Linux mac802.11
module [19].

6.1.2. Trace collection test bed

We have created a small test bed for collecting traces. It is housed in
lab and office spaces in a building on a university campus. Our access
point is a desktop with a TP-Link TL-WDN4800 dual-band wireless
N PCI-E adapter (AR9380 chipset) that supports up to three streams
(i.e., 3 x 3:3 MIMO configuration). We create an 802.11n AP us-
ing Hostapd [20] on this machine. This device uses a modified
ath9k (Atheros) device driver that enables round-robin trace collec-
tion. Traces are used as input to the trace-based evaluation.

To diversify our experiments, we use a few different client (receiv-
ing) devices. In most experiments, we use a laptop configured to use a
TP-Link TL-WDN4200 dual-band wireless 802.11n card (3 x 3:3 MIMO
configuration) or a TP-Link Archer T9UH dual-band wireless 802.11ac
USB adapter (this supports up to a 4 x 4:4 MIMO configuration). We
have also used a laptop equipped with 802.11ac Intel AC 3160 WiFi
chipset (1 x 1:1 configuration) as the client in some experiments. The
802.11ac devices support a backward compatible mode which allows
them to be used with the 802.11n access point. In this mode, they are
limited to 3 x 3 MIMO transmissions because our access point supports
up to 3 spatial streams. Since the goal of these frame aggregation
algorithms is to maximize MAC-layer throughput we use iperf [21]
to generate UDP traffic to determine the maximum throughput each
algorithm can achieve.

Obtaining the maximum possible throughput is an important goal
not only because it determines the maximum speed for one client device
in the network, but it also impacts the network’s overall throughput.
For instance, if one or more clients are generating bursty traffic (as is
the case for widely popular streaming video requests) it is important to
maximize network throughput in order to minimize the transmission
time of each chunk of bursty video traffic, since the WiFi channel is
a shared medium. Therefore, the performance of frame aggregation
algorithms is critical in both saturated (e.g., large downloads) and
bursty (e.g., video streaming) traffic scenarios.

In this section, we evaluate the performance of PNOFA in determin-
ing the optimal number of frames to aggregate. Our main goal in this
section is to determine how close PNOFA is to the statistically optimal

Computer Communications 180 (2021) 259-270

Table 1
Different scenarios (S). Mix: slow and normal.
S Device MIMO BW Band Speed
1 Intel AC 3160 I1x1 20 5 Normal
2 TL-WDN4200 1x1 20 5 Mix
3 TL-WDN4200 3x3 20 5 Mix
4 TL-WDN4200 3x3 40 5 Mix
5 Archer TOUH 3x3 20 5 Mix
6 Archer TOUH 3x3 20 2.4 Mix
7 TL-WDN4200 3x3 20 5 Zero
ath9k MoFA — SO
—— STRALE —— PNOFA
50 T T
2
o
o
2
5
2.
=
)
=
2
= 0 1 1 1 1 1
0 50 100 150 200 250 300
Time (seconds)
1.0
0.8 B
3 i
A 0.6
©o4 E
0.2 b
I I L I I
0.0 0 10 20 30 40 50 60

Relative Loss (Percentage)

Fig. 8. Throughput and CDF of relative loss.

algorithm. We also examine the performance of existing state-of-the-
art frame aggregation algorithms namely, MoFA [1] and STRALE [2].
Additionally, we study the frame aggregation algorithm used in the
widely-used ath9k driver (subsequently referred to as ath9k). This
algorithm always aggregates as many MPDUs as possible because it was
created before channel compensation limitations had been discovered.

6.2. Scenarios studied

We conduct experiments using several scenarios to evaluate the
performance of PNOFA (and other competing frame aggregation algo-
rithms) using different network configurations and devices. Each ex-
periment is long enough for devices to experience a variety of channel
conditions. Table 1 summaries all scenarios including MIMO configura-
tions, channel bandwidths, frequency bands and the speed of mobility.
In Scenario 1, a laptop equipped with Intel AC 3160 WiFi card is carried
for 300 s at normal walking speed. Scenarios 2 through 6 start with
200 s at a low walking speed followed by 200 s of normal walking
speed (i.e., mixed speed). Finally, in Scenario 7, a stationary experiment
is conducted for 400 s.

6.3. Performance details for Scenario 1

We start by examining the throughput obtained using the different
frame aggregation algorithms in Scenario 1 (S1). Fig. 8 (top) shows
the achieved throughput over time (averaged over 5 s intervals) for all
algorithms and the statistically optimal algorithm (labeled SO). This
graph shows that for the duration of the experiment the throughput ob-
tained using PNOFA is always close to SO despite continually changing
channel conditions due to interference and mobility. Because ath9k
is oblivious to the channel compensation problem it performs quite
poorly. MoFA and STRALE provide higher throughput but are still
sometimes quite far from optimal.

To more easily see the difference between these algorithms and
the statistically optimal algorithm we plot the CDF of the throughput

A. Abedi, T. Brecht and O. Abari

1.0 T T T ST —]

0.8 S2 .
S3]

0.6 f S4 1

0.4 | S5 —
S6 —]

3(2) ! ! 1 |S7 .

' 20 30 40 50 60
Relative Tput Loss (%)
(a) PNOFA

1.0 T T T T |Sl T 7

0.8 S2 .
S3]

0.6 S4 |

0.4 S5 —
S6 —]

0.2 §7 —]

0.0 1 1 1 1 I I

0 10 20 30 40 50 60
Relative Tput Loss (%)
(c) MoFA

Computer Communications 180 (2021) 259-270

1.0 F T 7
0.8]
0.6 S4]
04 S5 —
B S6 —
0.2 1 7 —]
0.0 T | | |
0 10 20 30 40 50 60
Relative Tput Loss (%)
(b) athok

= ST — |
S2 .
S3]
S4 1
S5 —
, S6 —]
/ S7 — |

00 A | | | | | |

0 10 20 30 40 50 60

Relative Tput Loss (%)
(d) STRALE

Fig. 9. CDFs of throughput loss, relative to optimal.

relative to that of SO in Fig. 8 (bottom). Specifically, This figure shows
that the relative loss is bound by 8%, while the throughput of MoFA
and STRALE deviates from optimal by up to 24% and 36%, respectively.
Note that even occasional drops in throughput can significantly impact
a user’s quality of experience. The ath9k algorithm achieves the
lowest throughput because it always aggregates as many MPDUs as
possible.

6.4. Performance with different scenarios

Fig. 9 plots the performance of each algorithm using the CDF of
the relative loss of throughput (when compared with the statistically
optimal algorithm) for all 7 scenarios. The purpose of these graphs is
to examine how close each algorithm is to optimal across the variety
of scenarios being studied.

Fig. 9a shows the performance of PNOFA across all 7 scenarios
described in Table 1. This graph shows that the performance of PNOFA
is very close to the statistically optimal algorithm across all scenarios.
Specifically, the median and 90th percentile relative loss are less than
4% and 9% in all scenarios, respectively. These experiments demon-
strate that despite the advantage the statistically optimal algorithm has
in using a priori knowledge of actual frame error rates for MPDUs (ob-
tained from the trace), the estimates of frame error rates from PNOFA
are sufficiently accurate to obtain excellent performance. In addition,
PNOFA’s mechanism of aggregating some extra MPDUs (beyond what
is determined to be optimal) does not impose significant overhead.

Fig. 9b shows results for the ath9k algorithm. It only performs well
in one scenario, S7. In S7, the client device is always stationary, channel
compensation is effective, and it does not impact the MPDU delivery
ratios significantly. As a result, the aggregation level should not be
limited and ath9k performs well (as do all algorithms for S7). Fig. 9b
also nicely highlights the differences in the scenarios we have chosen
because the ath9k algorithm is oblivious to the channel compensation
problem. Consequently, throughputs for scenarios that are farther from
optimal are more severely impacted by this problem.

Figs. 9c and 9d show the performance of MoFA and STRALE, re-
spectively. These graphs demonstrate that although their performance
is reasonable, there is significant room for improvement relative to
the statistically optimal algorithm. The median and 90th percentile
throughput loss for MoFA is as high as 15% and 30%, respectively, and

the median and 90th percentile loss for STRALE is as high as 15% and
25%, respectively.

Figs. 9c and 9d also reveal that the performance of MoFA and
STRALE are not robust in terms of their performance rankings. In some
scenarios, such as S1 and S5, STRALE outperforms MoFA, while in other
scenarios, such as S4, MoFA performs better. These differences can be
explained by the fact that these algorithms are based on heuristics that
are not necessarily accurate for all scenarios.

Thanks to the repeatability of the trace-driven evaluation, we could
collect traces in environments with WiFi and non-WiFi interference
and then fairly compare the competing algorithms. These evaluations
show that the PNOFA'’s performance is resilient to WiFi and non-WiFi
interference because its throughput is always very close to that of the
statistically optimal algorithm. In contrast, we believe that some of the
performance issues of MoFA and STRALE could be rooted in confusing
subframe errors caused by interference with errors due to limitations
in channel estimation.

6.5. Analysis of algorithm differences

To better understand the differences between the behavior of
PNOFA, STRALE and MoFA, Fig. 10 shows several different metrics
for each algorithm across two scenarios (S1 on the top and S2 on the
bottom). The comparison with STRALE is especially interesting because
it is designed to change both the number of frames aggregated and
the rate being used for transmission. Therefore, one might expect that
STRALE could provide higher throughput than the other algorithms
that do not modify the rate adaptation algorithm.

When examining scenario S1 (Fig. 10 top), one can see that over
the length of the experiment the mean throughput (Fig. 10a top) of
PNOFA is consistently higher than STRALE which is almost always
higher than MoFA. MoFA’s throughput suffers because it is aggregating
more frames (between about 5 and 7 frames) than the other algorithms
(Fig. 10b top), which results in higher frame error rates (Fig. 10c top).
On the other hand, STRALE’s mean A-MPDU length is on average a
bit lower than that of PNOFA and its frame error rate is on average
relatively close to that of PNOFA. However, its mean PHY rate is
slightly lower than that of PNOFA and MoFA (Fig. 10d top) because
STRALE sometimes reduces the transmission rate to help cope with the
channel compensation problem. The shorter A-MPDU frames combined

A. Abedi, T. Brecht and O. Abari

E = PNOFA

= MoFA

= STRALE = PNOFA — MoFA = STRAL
T T

Computer Communications 180 (2021) 259-270

= MoFA = STRALE == PNOFA = MoFA = STRALE == PNOFA
T T T T

Weowe g

S =N WA Lo o

0.4
0.3
0.2
0.1

I I I I
100 150 200 250 300

orT T T T

50 0 50

I I I I
100 150 200 250 300

0.0

I I I I I I I
150 200 250 100 150 200 250 300
T T

50

300

I
100
T

O B O T

Il
0 100

| |
200 300

Time (seconds)

| | |
200 300 400 0 0 100

Time (seconds)

(a) Mean Tput (Mbps) (b) Mean A-MPDU len

| |
200 300

Time (seconds)

Il L Il
200 300 400 %o 100
Time (seconds)

L
100 400

(c) Frame Error Rate (d) Mean PHY rate, Mbps

Fig. 10. Comparing metrics for different algorithms: Scenario S1 (top) and S2 (bottom)

with the lower mean PHY rate used by STRALE result in lower frame
error rates and higher throughput than MoFA but the shorter frames
and lower average PHY rate result in lower throughput than PNOFA.

Scenario S2 (Fig. 10 bottom) presents a slightly different picture,
especially with regards to average lengths of frames aggregated. For
the first 240 s of the experiment the mean A-MPDU length used by
STRALE is noticeably higher than that of MoFA and PNOFA and then
is fairly close to or slightly lower than MoFA for the remainder of the
experiment (Fig. 10b bottom). During that first 240 s the throughput
of MoFA is mostly higher than that of STRALE (Fig. 10a bottom). This
is because during that time the frame error rates are relatively similar
(Fig. 10c bottom), but STRALE is using PHY rates that are lower than
MoFA (Fig. 10d bottom). During the interval from 240 to 400 s, STRALE
reduces the mean number of frames it aggregates which combined with
lower PHY rates results in lower frame error rates and throughput that
is mostly higher than MoFA. Throughout this experiment the mean
number of frames aggregated by PNOFA is almost always lower and
throughput is almost always higher than STRALE and MoFA.

The results for MoFA suggest that it generally aggregates too many
subframes, resulting in higher error rates and lower throughput than
PNOFA. Our experiments also show that STRALE’s mechanism of low-
ering the transmission rate appears to be too conservative and it
cannot compensate for the loss of throughput caused by choosing lower
transmission rates. Our evaluations in Sections 6.4 and 6.5 show that
PNOFA consistently maintains effective A-MPDU sizes. Across all seven
scenarios studied the average throughput of PNOFA is within 97%
of the average throughput of the statistically optimal algorithm. The
key is PNOFA’s ability to balance between efficient aggregated frames
(with longer A-MPDUs) and sufficiently low error rates (with shorter
A-MPDUs).

6.6. The impact of network configurations

In this section, we characterize the impact of network configurations
such as the channel bandwidth and the spectrum on the MPDU delivery
ratios. Our goal is to obtain deeper insights into the differences in
scenarios studied and their impact on frame aggregation algorithms.

6.6.1. Effect of frequency band

We now compare the effects of frequency bands on A-MPDU ag-
gregation. We run two experiments in the 2.4 and 5 GHz spectrums
using a constant transmission rate (i.e., MCS = 14, long guard interval,
and 20 MHz channel) at two different speeds of movement. Fig. 11
(top) plots the relative MPDU delivery ratio over time for different
bands and mobility speeds when other parameters remain constant.
We plot relative values instead of absolute values in order to easily
compare delivery ratios on the same plot. This graph show that the
MPDU delivery ratio degrades much faster for the 5 GHz band than the

—_
(=}

2.4 GHz, Slow =%
2.4 GHz, Normal -+ |
5 GHz, Slow =%

5 GHz, Normal -4~

Relative MDR
o o
o

e e e
(<IN SIS

—_
(=)

o o
N o0

20 MHz, Slow
20 MHz, Normal
40 MHz, Slow

" 40 MHz, Normal
1 1 1 1 1 1

0.5 1 1.5 2
Time (ms)

Relative MDR

-
e
-
e

e e 2
[=J SIS

Fig. 11. Impact of frequency and channel bandwidth on MPDU delivery ratios.

2.4 GHz band. This is due to the fact that the channel coherence time
is much shorter in the 5 GHz band, and therefore the channel changes
much faster. Therefore, the 5 GHz band is more prone to problems
caused by channel compensation limitations. This observation explains
why ath9k performs better in Scenario 6 (i.e., 2.4 GHz) than Scenario
5 (i.e., 5 GHz).

6.6.2. Effect of channel bandwidth

In the 802.11n and 802.11ac standards, the number of pilot sub-
carriers used for channel compensation is 4 and 6 in 20 MHz and 40
MHz channels. Since the ratio of pilots to all subcarriers is lower in the
40 MHz channels, one might think that channel correction could be
less effective. We run two experiments using 20 and 40 MHz channel
bandwidths using the 5 GHz spectrum with MCS = 12 and long guard
intervals at two different speeds. Fig. 11 (bottom) plots the relative
MPDU delivery ratio over time for different channel bandwidth and
mobility speeds while other parameters are unchanged. The figure
shows that despite the different ratios of pilot subcarriers, the relative
MPDU delivery degrades at the same rate for both 20 MHz and 40
MHz channels. However, for the same A-MPDU length, the transmission
time is much longer for 20 MHz channels. Therefore, the network
configurations that utilize a 20 MHz channel encounter more changes
in the channel conditions during the transmission of an A-MPDU and
as a result they are more prone to problems caused by calibration
compensation than those with 40 MHz channels. This observation
explains why ath9k performs better in Scenario 4 (i.e., 40 MHz) than
Scenario 3 (i.e., 20 MHz).

A. Abedi, T. Brecht and O. Abari

1.0 |

0.8 { :
=

0.6 s
80 nl ath9k — |

- MoFA

0.2 - PNOFA —]|

00 | | | | |

0 10 20 30 40 50 60

Relative Loss (Percentage)

Fig. 12. Performance of frame aggregation algorithms in isolation from rate adaptation.

6.7. Frame aggregation in isolation

In practice frame aggregation and rate adaptation algorithms work
together to determine the transmission configuration. For this reason,
the previous section evaluates the performance of frame aggregation
algorithms with a widely used rate adaptation algorithm. Since a frame
aggregation algorithm may impact the error rate by changing the length
of transmitted A-MPDUs, it may in turn modify the operation of the rate
adaptation algorithm. For instance, in many of the scenarios studied
here, reducing the length of A-MPDUs reduces the overall error rate.
Consequently, the rate adaptation algorithm may decide to switch to a
faster rate.

It is not possible to separate the impact of these algorithms when
analyzing performance under the representative scenarios used in the
preceding sections. However, we believe that it is interesting to ex-
amine the performance of frame aggregation in isolation from rate
adaptation algorithms.

We have designed an experiment where the transmission rate re-
mains constant during the experiment. As a result, any observed per-
formance difference is only due to the frame aggregation algorithm. In
this experiment, the client device is carried for 200 s at a slow walking
speed (approximately 1.0 m/s), followed by another 200 s of normal
walking speed (approximately 1.4 m/s). The transmission rate is set to
MCS=14, long guard interval, and 20 MHz channel (i.e., 117 Mbps).
Fig. 12 plots the CDF of the relative throughput loss of PNOFA, MoFA
and ath9k when compared to the statistically optimal algorithm.
STRALE cannot be evaluated in this experiment because by design
it interacts with the rate adaptation algorithm (adjusting both frame
aggregation and rates together). The results in this graph show that
the throughput obtained from PNOFA is always within 3% of optimal.
The throughput of MoFA and ath9k deviates from optimal by up to
15% and 57%, respectively. This experiment confirms again that the
throughput obtained using PNOFA is very similar to that of the SO
algorithm, throughout the entire experiment.

7. Experimental evaluation
7.1. Implementation

We have implemented PNOFA on a commercial Google Wifi access
point [3]. This device utilizes a Qualcomm IPQ 4019 [4] system-on-
chip that supports Wave 2 802.11ac features. This chipset is widely
used in over 65 models of WiFi access points including wireless mesh
systems offered by Google, ASUS, D-Link, Linksys, Netgear, TP-LINK
and Samsung [5]. Fig. 13 illustrates the architecture of our system
implementation. PNOFA runs as a user-space process and receives block
ACK and PHY-layer rate information from tcpdump [22] and iw [23],
respectively. In addition, PNOFA adaptively adjusts the A-MPDU length
via an interface provided by the ath10k driver [24] that enables manual
A-MPDU size adjustments per station.

Tepdump is used to capture the block ACK of the transmitted
A-MPDUs to find out the fate of subframes. PNOFA utilizes this infor-
mation to compute the MPDU Delivery Ratios (MDR) to determine the
optimal A-MPDU length under the current channel conditions. Since
the MDRs of different PHY-layer transmission rates are different, when

Computer Communications 180 (2021) 259-270

User space Ltcpdump B-ACK | JxRate
L)
y
FA Settings
1
Kernel space ATH10K driver |
Y
SEN A—
Hardware ‘ 1PQ4019 ' Firmware ' ‘

Fig. 13. The architecture of system implementation.

PNOFA receives a block ACK it needs to know the rate at which the
A-MPDU was transmitted (to record the data for the correct rate). How-
ever, this information is not available in the block ACK. Consequently,
PNOFA retrieves the physical rate from the iw command for each
connected station.

Although in theory it might be possible to implement PNOFA in
the ath10k driver, that requires recompiling and installing new op-
erating system firmware on the access point. We expect that PNOFA
would perform better if implemented in the ath10k driver or by
manufacturers in the WiFi chipset’s closed-source firmware. Neither
of these approaches is an option because the source is not available
for the Google Wifi operating system firmware or for the Qualcomm
IPQ4019 firmware. In contrast, our user-space implementation requires
no modifications to the existing 802.11ac drivers or chipset firmware.
Therefore, it can be installed on commercially deployed access points.

To the best of our knowledge, PNOFA is the first A-MPDU frame
aggregation algorithm that can be implemented as a user-space process
on an 802.11ac platform. This is possible with PNOFA because it relies
on statistical properties of recent frames (i.e., the 200 ms averaging
window) to make decisions about the size of future frames. Such an
implementation is not possible for MoFA and STRALE since they make
decisions about the size of the next A-MPDU based on the fate of
previous A-MPDU. However, the delay in receiving this information in
the application layer is too large. In addition and more importantly,
STRALE also modifies the rate adaptation algorithm, which is not
possible because it is also implemented in the chipset’s closed-source
firmware. On the other hand, PNOFA can be implemented as a user-
space process and does not require any modifications to the driver or
firmware.

7.2. Performance results

To evaluate the performance of PNOFA, we setup an experiment
where a Google Wifi access point transmits UDP or TCP packets using
iperf [21] to a mobile client. The client device is a Microsoft Surface
Pro (5’th Gen) that is carried in an office environment (described
in Section 6.1.2) at walking speed. We compare the performance of
the frame aggregation algorithm in the Qualcomm IPQ4019 chipset
and PNOFA in terms of the maximum achieved throughput. There is
no line of sight between the access point and client for most of the
trial. Each experiment consists of ten 30 s trials for each algorithm.
We use a randomized interleaved trials [25] technique in which we
switch between the two algorithms rather than running all trials of one
algorithms and then the other one. This ensures that the two algorithms
are exposed to similar channel conditions for a fair comparison.

Table 2 summaries our evaluation results for the UDP and TCP
experiments. The table shows the average throughput obtained from
ten trials along with 95% confidence intervals. PNOFA outperforms
the frame aggregation algorithm of the Qualcomm IPQ4019 chipset in
terms of the average throughput by 17% and 13% for UDP and TCP
traffic.

We now examine how the performance gains change over time.
Fig. 14 shows the average UDP throughput (of 10 trials) obtained by
each algorithm over the duration of the experiment. Each data point is
the average throughput obtained during that one second window across

A. Abedi, T. Brecht and O. Abari

Table 2
Average throughput of 10 trials (Mbps).
Protocol PNOFA Qualcomm Gain
UDP 2103 +3.0 179.5+0.8 17.2%
TCP 1629 + 1.1 1447 + 4.6 12.6%
% 250
a
S 200
g 150 - : : T
<, 100 [—
3 L i i PNOFA — |
© 50
E Qualcomm—
E o I I I I I
° 30 T T T T
jE 20 ; ;
5 10 - *
0 I I I I I
0 5 10 15 20 25 30

Time (seconds)

Fig. 14. Average UDP throughput over time.

200
150 -

50 PNOFA — A
| Qualcopm—

Throughput (Mbps)
S
(=)
T

Gain %

Time (seconds)

Fig. 15. Average TCP throughput over time.

all 10 trials. As the figure shows PNOFA consistently outperforms the
frame aggregation algorithm in the Qualcomm chipset. The achieved
gain is up to 29% with a mean of 17%.

Fig. 15 shows the throughput achieved by each algorithm with TCP
traffic. Similar to the UDP results, PNOFA consistently achieves higher
throughput. The gain is up to 36% with a mean of 13% for the duration
of the experiment.

Despite delays due to a user-space implementation PNOFA signifi-
cantly improves the throughput of the Qualcomm IPQ4019 chipset. An
interesting observation is that during our experiments we noticed that
the Qualcomm chipset restricts the duration of A-MPDUs to about 2 ms
which is far less than the 5.5 ms limit specified by the IEEE 802.11ac
standard. Note that in our experiments this hard coded limit also ap-
plies to PNOFA. Specifically, if PNOFA determines that the best size of
an A-MPDU is more than 2 ms, the IPQ4019 chipset restricts the packet
to 2 ms and our algorithm cannot take advantage of more efficient
longer frames. If this restriction is removed, PNOFA'’s gains may be even
larger than those observed in these experiments. We speculate that this
self-imposed static limit was introduced by Qualcomm to ameliorate the
channel compensation problem. Despite these potential efforts, we are
still able to obtain improvements which demonstrates the advantages of
an algorithm that dynamically adjusts to changing channel conditions.

8. Conclusions and future work

In this paper, we derive a model for determining the statistically
optimal number of frames to aggregate in modern 802.11 networks.
We then develop a standard compliant, Practical, Near-Optimal Frame
Aggregation algorithm (PNOFA). PNOFA estimates the expected sub-
frame delivery ratios to determine the number of frames to aggregate
and approximates the statistically optimal algorithm.

Computer Communications 180 (2021) 259-270

We evaluate the performance of several competing frame aggrega-
tion algorithms using trace-driven evaluations. We find that PNOFA
outperforms state-of-the-art algorithms in a variety of scenarios. Most
importantly, across all seven scenarios studied the average throughput
of PNOFA is within 97% of the average throughput of the statistically
optimal algorithm. We also implement PNOFA on a Google Wifi access
point and compare its performance with that of the frame aggregation
algorithm used by the Qualcomm IPQ4019 chipset on this device. In
contrast with previous work, PNOFA can be implemented as a user-
space process and does not require any modification to the firmware
of WiFi chipsets. Our experimental results show that PNOFA improves
average throughput for both UDP and TCP traffic by up to 17% and
13%, respectively.

We believe that maximizing WiFi throughput requires a holistic
approach that combines frame-aggregation and rate adaptation. There-
fore, in future work we plan to design a combined frame aggregation
and rate adaptation algorithm that incorporates ideas from PNOFA.
Additionally, as the number of physical bitrates continues to grow
finding the optimal bitrate becomes increasingly challenging. As a
result, we plan to utilize relationships between different bitrates [26]
to use only a subset of physical bitrates to reduce sampling overhead
and increase throughput.

CRediT authorship contribution statement

Ali Abedi: Conceptualization, Methodology, Software, Validation,
Investigation, Writing — original draft, Writing — review & editing,
Visualization. Tim Brecht: Conceptualization, Methodology, Writing —
original draft, Writing — review & editing, Visualization, Supervision.
Omid Abari: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), the Canada Foundation
for Innovation (CFI), the Ontario Research Fund (ORF), Canada, and
Google.

References

[1] S. Byeon, K. Yoon, O. Lee, S. Choi, W. Cho, S. Oh, MoFA: Mobility-aware frame
aggregation in Wi-Fi, in: CoNEXT, 2014.

[2] S. Byeon, K. Yoon, C. Yang, S. Choi, STRALE: Mobility-aware PHY rate and frame
aggregation length adaptation in WLANs, in: INFOCOM, 2017.

[3] G. Inc., Google wifi, 2019, URL https://store.google.com/product/google_wifi.

[4] Qualcomm Technologies, Inc, IPQ4019, 2019, URL https://www.qualcomm.com/
products/ipq4019.

[5]1 W. CAT, Qualcomm chipsets, 2020, URL https://wikidevi.wi-cat.ru/Qualcomm.

[6] I. Pefkianakis, Y. Hu, S.H. Wong, H. Yang, S. Lu, MIMO rate adaptation in
802.11n wireless networks, in: MobiCom, 2010.

[7] T. Selvam, S. Srikanth, A frame aggregation scheduler for IEEE 802.11n, in:
National Conference on Communications (NCC), 2010.

[8] N. Hajlaoui, I. Jabri, M. Taieb, M. Benjemaa, A frame aggregation scheduler for
QoS-sensitive applications in IEEE 802.11n WLANS, in: International Conference
on Communications and Information Technology (ICCIT), 2012.

[9] Y. Lin, V.W.S. Wong, Frame aggregation and optimal frame size adaptation for
IEEE 802.11n WLANSs, in: GLOBECOM, 2007.

[10] A. Saif, M. Othman, S. Subramaniam, N.A.W.A. Hamid, An enhanced A-MSDU
frame aggregation scheme for 802.11n wireless networks, Wirel. Pers. Commun.
(2012).

[11] A. Saif, M. Othman, SRA-MSDU: Enhanced A-MSDU frame aggregation with
selective retransmission in 802.11n wireless networks, J. Netw. Comput. Appl.
(2013).

[12] N. Hajlaoui, I. Jabri, M. Jemaa, Analytical study of frame aggregation in
error-prone channels, in: IWCMC, 2013.

http://refhub.elsevier.com/S0140-3664(21)00356-X/sb1
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb1
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb1
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb2
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb2
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb2
https://store.google.com/product/google_wifi
https://www.qualcomm.com/products/ipq4019
https://www.qualcomm.com/products/ipq4019
https://www.qualcomm.com/products/ipq4019
https://wikidevi.wi-cat.ru/Qualcomm
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb6
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb6
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb6
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb7
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb7
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb7
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb8
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb8
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb8
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb8
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb8
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb9
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb9
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb9
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb10
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb10
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb10
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb10
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb10
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb11
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb11
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb11
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb11
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb11
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb12
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb12
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb12

A. Abedi, T. Brecht and O. Abari

[13]

[14]

[15]

[16]

[17]

[18]

K.-T. Feng, P.-T. Lin, W.-J. Liu, Frame-aggregated link adaptation protocol for
next generation wireless local area networks, EURASIP J. Wireless Commun.
Networking (2010).

X. He, F. Li, J. Lin, Link adaptation with combined optimal frame size and rate
selection in error-prone 802.11n networks, in: IEEE International Symposium on
Wireless Communication Systems, 2008.

O. Lee, W. Sun, J. Kim, H. Lee, B. Ryu, J. Lee, S. Choi, ChASER: Channel-aware
symbol error reduction for high-performance WiFi systems in dynamic channel
environment, in: INFOCOM, 2015.

S. Khastoo, T. Brecht, A. Abedi, NeuRA: Using neural networks to improve WiFi
rate adaptation, in: MSWiM, 2020.

A. Abedi, T. Brecht, A. Heard, T-SIMn: A trace collection and simulation
framework for 802.11n networks, Comput. Commun. 117 (2018).

A. Heard, T-SIMn: Towards a Framework for the Trace-Based Simulation of
802.11n Networks (Master’s thesis), University of Waterloo, 2016.

[19]
[20]

[21]
[22]
[23]

[24]
[25]

[26]

Computer Communications 180 (2021) 259-270

F. Fietkau, D. Smithies, Minstrel HT: New rate control module for 802.11n, 2010.
J. Malinen, Hostapd, 2020, https://wireless.wiki.kernel.org/en/users/
documentation/hostapd.

J. Dugan, IPerf: The ultimate speed test tool for TCP, UDP and SCTP, 2020,
http://sourceforge.net/projects/iperf/.

tepdump, http://www.tcpdump.org/.

iw, https://wireless.wiki.kernel.org/en/users/documentation/iw.

Ath10k, 2019, https://wireless.wiki.kernel.org/en/users/drivers/ath10k.

A. Abedi, A. Heard, T. Brecht, Conducting repeatable experiments and fair
comparisons using 802.11n MIMO networks, SIGOPS Oper. Syst. Rev. 49 (1)
(2015).

A. Abedi, T. Brecht, Examining relationships between 802.11n physical layer
transmission feature combinations, in: MSWiM, 2016.

http://refhub.elsevier.com/S0140-3664(21)00356-X/sb13
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb13
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb13
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb13
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb13
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb14
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb14
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb14
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb14
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb14
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb15
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb15
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb15
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb15
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb15
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb16
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb16
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb16
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb17
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb17
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb17
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb18
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb18
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb18
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb19
https://wireless.wiki.kernel.org/en/users/documentation/hostapd
https://wireless.wiki.kernel.org/en/users/documentation/hostapd
https://wireless.wiki.kernel.org/en/users/documentation/hostapd
http://sourceforge.net/projects/iperf/
http://www.tcpdump.org/
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://wireless.wiki.kernel.org/en/users/drivers/ath10k
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb25
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb25
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb25
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb25
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb25
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb26
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb26
http://refhub.elsevier.com/S0140-3664(21)00356-X/sb26

	Demystifying frame aggregation in 802.11 networks: Understanding and approximating optimality
	Introduction
	Aggregation challenges
	Channel compensation limitations
	Dependencies between A-MPDUs

	Related work
	Frame aggregation scheduling
	A-MSDU frame aggregation
	A-MPDU frame aggregation

	Optimizing A-MPDU length
	Modeling optimal A-MPDU length
	Dependencies between A-MPDUs
	Statistically optimal algorithm (SO)

	PNOFA
	PNOFA Algorithm
	PNOFA parameters

	Trace-driven evaluation
	Methodology
	Trace-driven evaluation platform
	Trace collection test bed

	Scenarios studied
	Performance details for Scenario 1
	Performance with different scenarios
	Analysis of algorithm differences
	The impact of network configurations
	Effect of frequency band
	Effect of channel bandwidth

	Frame aggregation in isolation

	Experimental evaluation
	Implementation
	Performance results

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

