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Abstract 

The distribution of resources among processors, memory and 
caches is a crucial question faced by designers of large-scale 
parallel machines. If a machine is to solve problems with a 
certain data set size, should it be built with a large number of 
processors each with a small amount of memory, or a smaller 
number of processors each with a large amount of memory? 
How much cache memory should be provided per processor for 
cost-effectiveness? And how do these decisions change as larger 
problems are NII on larger machines? 

In this paper, we explore the above questions based on the 
characteristics of five important classes of large-scale paral- 
lel scientific applications. We 6rst show that all the applica- 
tions have a hierarchy of well-defined per-processor working 
sets, whose size, performance impact and scaling Characteristics 
can help determine how large different levels of a multipro- 
cessor’s cache hierarchy should be. Then, we use these work- 
ing sets together with certain other important characteristics of 
the applications-such as communication to computation ratios, 
concurrency, and load balancing behavior-to reflect upon the 
broader question of the granularity of processing nodes in high- 
performance multiprocessors. 

We find that very small caches whose sizes do not increase 
with the problem or machine size are adequate for all but two of 
the application classes. Even in the two exceptions, the working 
sets scale quite slowly with problem size, and the cache sizes 
needed for problems that will be run in the foreseeable future 
are small. We also find that relatively fine-grained machines, 
with large numbers of processors and quite small amounts of 
memory per processor, are appropriate for all the applications. 

1 Introduction 

As larger multiprocessors are built, determining the appro- 
priate distribution of resources among processors, cache and 
main memory becomes increasingly challenging for a designer. 
Small-scale, bus-based, shared-memory multiprocessors usually 
provide relatively large per-processor caches (several hundred 
Kbytes to a few Mbytes) and tens of Mbytes of physical mem- 
ory per processor. These decisions make sense for small-scale 
machines. For example, with a small number of processors, the 
memory per processor must be large in order for the machine to 
have enough total memory to perform interesting computations. 
And large caches make sense for several reasons: (i) multipro- 
gramming and the need to accommodate several applications 
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simultaneously, (ii) the use of a shared bus interconnect and the 
need to reduce traffic on it, and (iii) the fact that there are only a 
few caches and a large amount of main memory, so that caches 
cost only a small fraction of the machine. 

On large-scale parallel machines, many of these reasons for 
large caches and main memories per processor no longer neces- 
sarily hold. The desirable amounts of main memory and cache 
per processor are therefore not obvious. These desirable ratios 
are also very difficult to determine owing to the wide range of 
issues involved, including application characteristics, machine 
usage patterns, hardware cost and performance estimates, and 
even determining the appropriate metrics to optimize. 

In this paper, we focus on one crucial input into the above de- 
sign decisions: the characteristics of applications that = likely 
to run on high-performance multiprocessors. By studying rele- 
vant application characteristics such as memory usage, working 
set sizes, communication to computation ratios, concurrency and 
load balancing, and by examining how these characteristics scale 
to larger problems and machine sizes, we reflect upon the ap- 
propriate amounts of memory and cache per processor for five 
important classes of scientific applications. These classes are: 
direct equation solvers, iterative equation solvers, spectral trans- 
form methods (represented here by a Fast Fourier Transform), 
hierarchical N-body methods, and volume visualization (volume 
rendering) methods. 

We divide our treatment of every application into two parts. 
First, we examine the working sets of the applications, which 
help in determining how large the levels in the machine’s cache 
hierarchy should be to keep performance losses due to capacity 
misses low. We find that all the applications have a well-defined 
hierarchy ofworking sets. such that a cache that is large enough 
to hold a given working set can yield dramatic performance 
benefits over a cache that is slightly smaller than that working 
set. We also find that the working sets of all the applications are 
bimodally distributed, consisting of a few small working sets 
and one large one that usually comprises a processor’s entire 
partition of the data set. In most cases, the working set that 
is critical to good performance is one of the smaller ones. In 
three of the applications (direct solvers, iterative solvers, and 
the FIT), this important working set-and hence the cache size 
needed for good performance-is very small and does not scale 
with problem or machine size. Even in the other two applications 
(N-body and volume rendering), the working set is quite small 
and scales very slowly with problem size, so that small caches 
will suffice for the foreseeable future. There is one application 
(the iterative solver) in which a large working set also has an 
important performance impact; however, accommodating this 

0884-7495/93 $3.00 8 1993 IEEE 
14 

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 21, 2009 at 08:54 from IEEE Xplore.  Restrictions apply.



working set requires the cache to be essentially as large as the 
local data set per processor, which is not a realistic design point 
for the near future. 

In the second part of our treatment of an application, we use 
the information about working set sizes as well as other rele- 
vant application characteristics to reflect upon desirable grain 
sizes for machines. The grain sizc (or granularity) of a machine 
can be loosely defined as the amount of main memory and cache 
per processor on the machine. Using several approximations and 
simplifying assumptions, we find that all but one of our applica- 
tions can effectively use large numbers of processors with small 
amounts of main memory and cache each. The argument for 
fine-grained machines from an applications perspective is fur- 
ther strengthened when time constraints are incorporated in the 
scaling model. However, there are reasons why one might not 
want to actually build machines with small amounts of memory 
per processor in the near term. and we discuss some of these. 

The paper is organized as follows. In the next section, we 
describe the methodology and framework we use to study the 
applications. Sections 3 through 7 discuss the individual appli- 
cations. In Section 8, we discuss our results and some caveats 
to the argument for fine-grained machines. Finally, Section 9 
summarizes the main conclusions of the paper. 

2 Methodology and Framework 

In this section, we describe the common framework we use to 
present the results for each application. Sections 2.1 through 2.3 
exactly mirror the structure of the computation description, 
working set size and grain size discussions in each individual 
application section, and also describe the methodology we use 
to obtain our results. Section 2.4 states some additional simpli- 
fying assumptions that we make. 

2.1 Description of Computation 
Our discussion of each application begins with a description 
of the most important steps of the computation. To make our 
investigations concrete, we also describe a prototypical problem. 
Our prototypical problem for every application is one whose 
data set is 1 Gbyte and is distributed at 1 Mbyte per node on a 
1024 node machine. This is intended to represent a fine-grained 
machine configuration. 

2.2 Working Set Hierarchy 
The second subsection for each application identifies the impor- 
tant application working sets. To determine the sizes of these 
working sets, we simulate a cache-coherent, shared-adkss- 
space multiprocessor architecture, with each processor having 
a single level of cache and an equal fraction of the total main 
memory. For a given problem size and number of processors, we 
simulate different cache sizes and look for knees in the resulting 
performance (or miss rate) versus cache size curve. 
To exclude the effects of conflict misses, which are influenced 

by a host of low-level artifacts, we use fully associative caches 
with an LRU replacement policy. To the extent that conflict 
misses are important, working set sizes measured this way are 
aggressive estimates of desirable cache size, and real caches- 
with low degrees of associativity-will need to be somewhat 
larger. For the first three applications we consider, the differ- 
ence between a cache with limited associativity and a fully asso- 
ciative cache is not significant, since the cache conflict problem 

are in reality expected to proceed over many time-steps or it- 
erations. Thus, what we measure are misses due to inherent 
conmwnicatwn and finite cache capacity. 

The first thrtc applications we consider are well-understood 
and highly pdictable computational kemels. In these cases 
(direct solvers, iterative solvers, and the FFl'), we determine the 
working set sizes analytically, and use simulation to confirm our 
estimates for some examples. Since these applications are highly 
floating-point intensive, the metric we use to describe cache miss 
rates is number of doubleword read misses per double-precision 
floating-point operation. The other two applications, Barnes-Hut 
and volume rendering, are full-scale applications that are not as 
regular, analytically describable, or floating point dominated. In 
these cases, we use simulation to look for knees in the read 
miss rate (read misses divided by number of read references) 
rather than misses per FLOP. We focus on read misses since 
these are likely to have a much greater impact on performance 
than write misses, the latencies of which can be easily hidden 
in these programs. 

Scaling: Having determined the working set sizes for the pro- 
totypical problem, we then look at how these sizes scale with 
various application parameters and numbers of processors. We 
assume for this discussion that machines are made larger by 
adding processors, each processor bringing with it an amount of 
cache and memory equal to the cache and memory per proces- 
sor on the original machine. We first examine how the working 
sets scale with individual parameters, and then look at how they 
scale under certain accepted models of scaling problems to run 
on larger machines. The two scaling models we consider are 
memory-constrained (MC) and timeconstrained (TC) scaling. 
Given a larger machine, the MC scaling model assumes that a 
user will scale the problem to fill the available main memory on 
the machine, regardless of the effect this has on execution time. 
The TC scaling model, on the other hand, assumes that the user 
will increase the problem size so that the new problem takes as 
much time to solve on the new machine as the old problem took 
on the old machine. For more information about these scaling 
models, see [9]. 

2.3 Grain Size 
Having understood the working sets, we then examine other 
application characteristics that affect the desirable granularity of 
processing nodes. In particular, we study the implications of 
interprocessor communication costs, load balance, and problem 
concurrency for node granularity. We begin by looking at the 
impact of these issues for the prototypical problem, and then we 
study how this changes with the problem and machine size. 

Communication Costs: To determine the relative cost of inter- 
processor communication for each application, we first calculate 
a computation to communication ratio for the prototypical prob- 
lem. To provide some feeling for what ratios we would consider 
sustainable, let us consider relevant parameters on existing and 
likely future parallel machines. One example is the Intel Paragon 
machine. Each node in this machine will have four 50-MFLOPS 
processors. yielding 200 MFLOPS per node. The machine uses 
a 2-D mesh interconnect with 200-Mbyte-per-second channels. 
Let us first consider nearest-neighbor communication. In this 
case, the bandwidth in the Paragon is limited by that of the node- 
to-router link, which is 200 Mbytes/sec peak. The sustainable 
ratio, in FLOPS per double-word, is therefore = 8. For 

can easily be avoided-We comment on the use of direct-mapped 
caches for the other two applications in their respective sections. 
Finally, to exclude cold-stuN misses where appropriate, we omit 
the first few time-steps or iterations in those applications that 

more random communication, sustainable communication vol- 
ume is determined by the bisection width of the network. For a 
32x32 (1024) node Paragon, the number of network links across 
a bisector is 64. Assuming that half of all random messages 
cross this bisector, each processor can generate only 64/512, 
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or one-eighth as much traffic as in the nearest-neighbor case, 
yielding a sustainable ratio of 64 FLOPdword. Similarly, the 
sustainable ratios on the Thinking Machines CM-5 are about 50 
FLOPS per word for nearest-neighbor communication and about 
100 for general communication (assuming l28MFLOPS vector 
nodes, 2OMbytelsec nearest-neighbor communication bandwidth 
and 5Mbyteisec general bandwidth). 

As technology progresses, we should see both faster floating 
point processors and faster communication chips. For this paper, 
we simply assume that computation to communication ratios of 
1-15 FLOPdword are extremely difficult to sustain, 15-75 are 
sustainable but not easy, and above 15 are quite easy to sus- 
tain. (Of come, all the analytical and experimental data we 
provide remain valid even if the reader makes different assump- 
tions about sustainability than we do.) 

Load Balance and Concurrency: Two other potential sources 
of difficulty in obtaining high parallel performance are load im- 
balances and deficiencies in available problem concurrency. We 
comment on the expected impact of these for the prototypical 
problem. 

Desirable Grain S k  We then attempt to determine what 
would constitute a desirable processor grain size for the proto- 
typical problem. Our goal is not to make fine distinctions in 
grain size, but rather only very coarse ones. That is, we are. not 
trying to determine whether the appropriate grain size is 1 Mbyte 
or 2 Mbyte of main memory per processor, but rather whether 
it is on the order of 1 Mbyte, 10 Mbytes or 100 Mbytes. To 
estimate a desirable grain size, we examine the expected par- 
allel performance-based on communication cost, load balance, 
and concurrency considerations-for two variations of the pro- 
totypical problem with very different granularities. The first is 
a 1 Gbyte problem on 64 processors, resulting in 16 Mbytes of 
data per processor. The second is the same problem on 16 thou- 
sand processors, resulting in 64 Kbytes of data per processor. 

Scaling: Finally, we consider how this desirable grain size 
changes as the problem is scaled. 

2.4 Other Assumptions 

We make a few additional simplifying assumptions in our anal- 
ysis. We assume that the processor is based on commodity 
processor technology and thus is a given; its performance does 
not change when the number of processors is changed. We also 
assume that since the machine supports a shared address space, 
it is optimized for small data exchanges between processors and 
thus provides inexpensive interprocessor synchronization. Fi- 
nally, we ignore the impact of contention in various parts of 
the machine as well as that of locality in the network topology, 
with the exception of our coarse notion of local versus random 
communication patterns discussed earlier in this subsection. 

3 Direct Methods for Solving Linear Systems 
The first application we consider is the LU factorization of large, 
dense matrices. This important and 'widely used computation 
factors a matrix -4 into the form A = LU,  where L is lower- 
triangular and U is upper-triangular. The most common source 
of large dense LU problems is radar cross-section problems, 
where people currently solve problems that require several hours 
on today's largest parallel machines. 

While we specifically examine dense LU factorization in this 
section, our analysis actually applies to a wider set of appli- 
cations. Applications with very similar structure. include dense 

U 

QR factorization, dense Cholesky factorization, dense eigen- 
value methods. and in many respects sparse Cholesky factoriza- 
tion. 

3.1 Description of Computation 
Dense LU factorization can be performed extremely efficiently 
if the dense n x n matrix -4 is divided into an N x N array 
of B x B blocks, (n = NB) [ll]. The following pseudo-code, 
expressed in terms of these blocks, shows the most important 
steps in the computation. 

1. f o r  K = O  t o  N do 
2 .  f a c t o r  block - k ~  
3 .  compute va lues  f o r  a l l  b locks  

4 .  f o r  J = K + l  t o  N do 
5 .  f o r  I = K + 1  t o  N do 
6 .  -&J + . ~ I J  - AIKAKJ 

i n  column K and row K 

The dominant computation here is Step 6, which is simply a 
dense matrix multiplication. 

The parallel computation corresponding to a single K itera- 
tion in the above pseudo-code is shown symbolically in Figure 1. 
Two details have been shown to be crucial for reducing interpro- 

L 
Figure 1: Dense block LU factorization. 

cessor communication volumes and thus obtaining high perfor- 
mance. First, the blocks of the matrix are assigned to processors 
using a 2-D scatter decomposition [2]. That is, the processors 
are thought of as a P x Q grid, and block (I. J) in the matrix 
is assigned to processor (I mod P. J mod Q). A simple 3 x 3 
processor example is shown in Figure 1. Second, the matrix 
multiplication in Step 6 above is performed by the processor 
that owns block -41.5. Within one K iteration, a processor thus 
uses blocks in the appropriate rows of column K (those blocks 
owned by a processor in the same row of the processor grid) 
and the appropriate columns of row K to update blocks it owns. 
The shaded blocks in Figure. 1 are the blocks that processor P1 
uses in one K iteration. 

Three factors must be traded off in choosing an appropriate 
block size B .  Larger blocks lead to lower cache miss rates. 
However, larger blocks also increase the fraction of the compu- 
tation performed in the less parallel portion of the computation 
(Steps 2 and 3 in the earlier pseudo-code), and can also cause 
load balancing problems. Relatively small block sizes (B = 8 
or B = 16) can be shown to sbike a good balance between these 
factors. 

3.2 Working Set Hierarchy 
Our prototypical 1 Gbyte data set on 1024 processors corre- 
sponds to a roughly 10. OOO x 10. OOO LU factorization problem. 
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Since people are currently solving 50, 000 x 50, 000 dense sys- 
tems arising from radar cross-section applications on 128 pro- 
cessor machines, our choice of a smaller problem on a larger 
machine is actually somewhat aggressive. 

The stn~cture of LU factorization is sufficiently simple that 
we can derive working set sizes analytically. Figure 2 shows 
analytical cache miss rates for an n = 10,000 matrix, using 
block sizes of B = 4, 16, and 64, and P = 1024 processors. 
The graph shows double-word cache misses as a fraction of 
doubleprecision floating-point operations. The important levels 

B.4 
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Cache site (bytes) 
Figure 2 Miss rates for LU factorization, n = 10,000, PE = 
1024. 

of the working set hierarchy are as follows. The level 1 working 
set (1evlWS) consists of two columns of a block, and is roughly 
260 bytes for B = 16. Once two columns fit, one column can 
be reused, roughly halving the overall miss rate. The sccond 
working set (leV2WS) consists of an entire B x B block, and is 
roughly 2200 bytes for B = 16. When this working set fits in 
the cache, the miss rate drops to roughly 1/B. The other block 
sizes (B = 4 and B = 64) naturally lead to different level 1 and 
level 2 working sets sizes and miss rates. 

Clearly, the cache sizes required to hold the lev2WS are much 
smaller than the caches p p l e  are building on parallel machines 
today, even for relatively large block sizes (B =16 or 32). The 
resulting miss rates are small enough to yield high performance. 
Almost all the misses would be serviced from a processor’s local 
memory, provided the matrix blocks are placed in the local mem- 
ories of their owner processors. Also, the misses are predictable 
enough to be easily prefctched. 

The next working set (lev3WS) includes all blocks in 
row/column K that affect blocks owned by a particular proces- 
sor (e.g.. the shaded blocks in row/column K of Figure 1). The 
size of lev3WS is 2NB2/@ = 2 n B / O  (roughly 80 Kbytes 
for B = 16). If the lev3WS fits in cache, then the miss rate is 
further reduced by a factor of 2 to 1/2B. However, the miss 
rate is small enough even before the lev3WS is rcached. so that 
the kv3WS is of only minor importance to performance. 

The final working set (lev4WS) is the set of all blocks be- 
longing to a processor. If the cache accommodates the lev4WS 
(of size n2/p), the miss rate is equal to the communication miss 
rate. 

Scalig: When considering problem or machine size scaling, 
we note that the most important working set, the lev2WS. de- 
pends only on the block size B. It is independent of R and P. 
In other words, a small amount of cache is sufficient for any 
problem or machine size. 

33 Grainsize 
Communication costa: LU factorization of m n x n matrix 
performs roughly 2n3/3 floating-point operations. Every block 

in the matrix is communicated to a row or column of pro- 
ct8sors. yielding an overall communication volume of n 2 0 .  
The computation to communication ratio is thus 2n/(3@), 
and depends only the grain size (nZ/P) .  For our prototypi- 
cal problem, with its 1 Mbyte grain size, this yields a ratio of 
roughly 200 floating-point operations per floating-point word of 
communication-a relatively low bandwidth requirement. Also, 
most of thcsc interprocessor communication costs can be hidden 
from the processors (using software prefetching, for example). 

h d  Balance and Concurrency: Another important issue 
that affects parallel performance is the load balance and avail- 
able concurrency of the computation. For our 10.000 by 10.000 
prototypical dense LU example with B = 16. each of the 1024 
processors is assigned roughly 380 blocks from the matrix. This 
is a large enough number of blocks for dense LU factorization 
that load balancing and concurrency issues do not detract sig- 
nificantly from achieved parallel performance either. 

Desirable Grain Size: Clearly, a 1024-processor machine with 
1 Mbyte of data per processor would produce good processor uti- 
lization. Let us consider whether the grain size can reasonably 
be reduced to solve the same 1 Gbyte problem. Consider solv- 
ing the problem on a 16K processor machine with 64 Kbytes 
of memory per processor. The computation to communication 
ratio would decrease by a factor of four to 50 operations per 
communicated datum, more difficult but still quite possible to 
sustain. The larger effect comes from load imbalance. With 
B = 16, each processor would now be assigned 25 blocks, which 
would reduce processor performance somewhat. This load bal- 
ance problem could be improved by reducing the block size, but 
at a cost of increased cache miss rates. In either case, the higher 
computation to communication ratio, combined with the perfor- 
mance loss due to either poorer load balance or higher cache miss 
rates, would reduce per-processor performance. Thus. while a 
1 Mbyte grain size is easy to sustain for a 1 Gbyte problem, a 
64 Kbyte grain size is not so easy. 

Scaling: Let us now see how the desirable grain size changes 
as larger problems are run. Keeping the grain size fixed at 
1 Mbyte per processor allows us to factor a 20,000 by 20,000 
matrix on 4096 processors. Compared with the prototypical 
problem, this problem would require the same amount of cache 
memory, would produce the same computation to communica- 
tion ratio, and would generate a very similar computational load 
balance (since each processor still handles 380 blocks (B = 16)). 
We therefore conclude that the desirable grain size is indepen- 
dent of the problem size. 

Keeping the grain size fixed while increasing the number of 
processors results in memory-constrained (MC) scaling. Since 
the amount of computation (which scales as n3) grows much 
faster than the data set size (which scales as nZ). the parallel 
execution time grows quite quickly under MC scaling, which 
may therefore be an unacceptable scaling model for this appli- 
cation. If, on the other hand, a timeconstrained scaling model 
were used, the per-processor data set would shrink with inmas- 
ing P (of course, the performance of the individual processo~~ 
would decrease as well). Constraints on execution time thereforc 
provide another argument for finer-grained processing nodes on 
large-scale machines. 

3.4 Summary 
To summarize, we have found that dense LU factorization places 
very modest demands on a parallel machine. A small cache 
is sufficient to reduce the cache miss rate to nearly negligible 
levels, even for large problems on large machines. Similarly, 
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a small amount of per-processor memory (1 Mbyte or less) is 
sufficient to yield good performance, regardless of n and P. 

4 Iterative Methods for Solving Linear Sys- 
tems 

The next class of computations we consider are iterative methods 
for solving linear systems of quations (or for finding eigenval- 
ues of large sparse matrices). Iterative methods, which begin 
with a guess at the solution and iteratively attempt to improve 
this guess, are finding increasing use in solving large systems 
of equations in parallel. At the heart of these iterative meth- 
ods is a sparse matrix-vector multiply, typically accompanied by 
some combination of vector additions and dot products. While 
we specifically consider the conjugate gradient (CG) method 
for solving sparse linear systems of quations here, the results 
should be similar for a range of other iterative methods. 

4.1 Description of Computation 
Each iteration of the CG method performs a single sparse matrix- 
vector multiply, 3 vector additions, and 2 dot products. The 
matrix-vector multiply is the dominant computation. This oper- 
ation is most easily described by considering the sparse matrix 
-4 as a graph G = (V, E), with a vertex U E V correspond- 
ing to each rowlcolumn in A and a weighted edge i, j E E 
corresponding to each non-zero Ai j .  The sparse matrix-vector 
multiply b c Az is performed by associating an z value with 
each vertex in the graph, and iterating over all vertices. For 
every vertex i, the value of bi is computed by summing the 
products of the weights of the edges ( i . j )  incident to i with the 
z values at the adjacent j vertices. 

The CG computation is parallelized by partitioning the ver- 
tices in the graph representation of the matrix among processors. 
Consider the case where the graph representation of the sparse 
matrix is a simple 2-D grid (Figure 3). The example grid is par- 
titioned among 4 processors in the figure. At each CG iteration, 

Po PI 

Figure 3: A 2-D grid partitioned among 4 processors. 

a processor iterates over the points assigned to it, computing 
new values for b at its vertices. Interprocessor communication 
is necessary when a processor handles a vertex that is adjacent 
to a vertex belonging to another processor (the vertices on the 
boundaries between processor partitions in Figure 3). since the 
value at the other end of that edge was presumably changed in 
the previous iteration. 

Our prototypical 1 Gbyte problem on 1024 processors cor- 
responds to a roughly 4OOO x 4OOO 2-D grid. An important 
trend in problem domains that use iterative methods is toward 
3 dimensional problems. In this case, the prototypical problem 
corresponds to a 225 x 225 x 225 3-D regular grid. 

4.2 Working Set Hierarchy 
A processor sweeps through the entire set of nodes assigned to 
it in every iteration, touching the data corresponding to every 
edge incident to these nodes. Thus, unless this entire data set 
fits in the cache, the computation provides few opportunities to 
reuse data. 

The working set hierarchies for our 2-D and 3-D grid exam- 
ples on 1024 processors are shown in Figure 4. For the 2-D 
problem, the levlWS consists of the z values from three adja- 
cent sub-rows of points assigned to a processor. This levlWS is 
quite small, consisting of roughly 5 Kbytes of data in the proto- 
typical 2-D problem. While the impact of this 5 Kbyte working 
set on miss rate is significant, the miss rate remains high even 
after this working set fits in the cache. The lev2WS consists 

0.20 

0.00 
5fi 1K 2K 4K 8K 16K 3% 64K 128K 256K 51% 1M 

Cache size (bytes) 
Figure 4: M i s s  rates for CG, 4OOO x 4OOO grid, P = 1024. 

of the entire set of data owned by a processor. At this point, 
the miss rate drops to the communication miss  rate. However, 
it is generally unreasonable to expect this set of entries to fit in 
cache. 

For the 3-D grid computation, the working sets are quite sim- 
ilar. The major difference is in the levlWS, which now consists 
of 2-D cross-sections from the 3-D region assigned to each pro- 
cessor, and thus represents a larger data set than the 1-D sub- 
rows from the 2-D grid. In the prototypical problem, the levlWS 
grows from 5K to 18K. Note that these numbers are still smaller 
than the first-level caches found in nearly all modern processors. 

Scaling: If we expect the per-processor data set to be larger 
than the processor cache, then the only working set that can 
fit in the cache is the levlWS. Since each processor receives 
an n j f l  x n j f l  portion of the n x n 2-D grid, the size of 
the 1evlWS is proportional to n /e. The size of this working 
set therefore remains quite moderate. A problem that requires 
16 Mbytes of storage per processor, for example, would have 
levlWS sizes of 18 Kbytes and 90 Kbytes for 2-D and 3-D grids, 
respectively. Furthermore, the size of levlWS can actually be 
kept constant through the use of blocking techniques. 

The fact that fitting the lev2WS (a processor's entire partition 
of the grid) in the cache has a substantial impact on the perfor- 
mance of CG brings up an interesting design issue. Particularly 
under time-constrained scaling, the data set per processor may 
not be very large on large-scale machines, so that it may make 
sense to build larger caches and fit the lev2WS in the cache. 
This amounts to fitting the entire data set in cache memory, so 
that there is no need for DRAM memory. While this may be 
an interesting design point for very large-scale machines, we 
restrict ourselves here to a more conservative model where the 
per-processor data set is much larger than the cache. 

4.3 Grain Size 
Communication Costs: The total amount of computation in 
one CG iteration on an n x n 2-D grid is roughly 10n2 oper- 
ations. Each processor owns a n j f l  x n / f l  grid of points. 
The 4n/@ points along the perimeter must be communicated 
to neighboring processors in every iteration. The computation 
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to communication ratio is thus 5n/(2*), and once again de- 
pends only on the grain s k .  For the l Mbyte grain size of our 
prototypical problem, the ratio would be roughly 300 PLOPS per 
word. This high ratio, combined with the fact that the commu- 
nication latencies can be easily hidden due to the very regular 
structure of the computation, make a 1 Mbyte pa processor grain 
size quite appropriate for CG on 2-D grid problems. 
For a 3-D grid pmblem, each processor would own a 3-D 

subgrid that is n / p  on a side. The processor would have to 
communicate the value.s on the 6 2-D faces of its subgrid to other 
processors. The computation to communication ratio would be 
7n/(3*), yielding a ratio of roughly 50 for the prototypical 
problem. This ratio is not as easily sustained as the ratio for 
2-D problems, but it is still feasible. 

Load Balance and Concurrency: The regularity of a grid 
computation makes load balancing quite simple. The only limi- 
tation on concurrency is the global sum that accompanies the two 
dot product operations. Given our assumptions about the costs 
of interprocessor communication and processor synchronization, 
the cost of the fully parallel portion should dwarf the cost of the 
less parallel global sum in the prototypical problem. Thus. the 
problem exposes sufficient concurrency for 1024 processors. 

We should note that many important problems (e.g., unstruc- 
tured problems that model complex physical structures) will not 
be nearly as regular as the 2-D and 3-D grids considered here. 
This reduced regularity will require more sophisticated strategies 
for partitioning the problem among a set of processors. This will 
have three important effects. First, the computational load bal- 
ance among the processors will certainly not be as good. Second, 
the computation to communication ratio for problems with the 
same data set size will most likely be significantly higher. Fi- 
nally, the partitioning step itself will represent a computational 
overhead whose cost increases with the number of processors. 
This partitioning step will generally possess limited paralleliim, 
so the presence of more processors would not necessarily reduce 
its cost. 

We conclude from the above discussion that a 1024 processor 
machine with 1 Mbyte of memory per processor would be quite 
appropriate for regular 2-D problems. The appropriate grain size 
for irregular problems or 3-D problems may be somewhat larger. 

Desirable Grain Size: Let us see if we can use a 16K- 
processor machine with only 16 Kbytes or memory each to solve 
a 1 Gbyte problem. The computation to communication ratios 
increase to roughly 75 and 20 for 2-D and 3-D grids, respec- 
tively. Thus, the desirable grain size is somewhere between 
1 Mbyte an 16 Kbytes for the prototypical CG problem as well. 

Scaling: Now consider how the appropriate grain size would 
change with a scaled problem. The important thing to note here 
is that the computation to communication ratio for both 2-D and 
3-D grid problems depends only on the volume of data on one 
processor, and is independent of the number of processors. Thus, 
if a grain size of 1 Mbyte per processor produces sustainable 
communication volumes on P processors, then it would also 
produce sustainable volumes on 2 P  processors, given a problem 
that is twice as large. The one other issue that might be relevant 
when considering scaling is the cost of the global sum operation 
in the dot products. While this cost clearly increases with P, the 
rate of increase (O(1og P)) is sufficiently slow that, under our 
machine model, this cost would not be a significant performance 
drain for practical P. 
4.4 Summary 
We therefore conclude that the conjugate gradient method re- 
quires a somewhat larger grain size than dense LU factorization. 

The desirable grain is still quite small, however. A 1 Mbyte per 
processor data set size appears reasonable. 

5 Transform Methods (FFT) 
The next computation we consider is the 1D complex fast Fourier 
transform (FFT). Our analysis in this section also applies to the 
complex 2D and 3D FlT. These computations form the compu- 
tational core of a wide variety of applications from the fields of 
image and signal processing as well as climate modeling. 

5.1 Description of Computation 
The structure of the FlT computation is captured by the familiar 
butterfly network. For an N = 2M point FFT, the computation 
proceeds in M stages, where in stage s. pairs of data points at a 
distance of 2" interact with each other to produce the points at 
stage 8 + 1. 

In a straightforward parallel implementation, each processor 
handles a contiguous set of points. During the first logN - 
logP stages of the butterfly, processors work locally with no 
interprocessor communication. In each of the remaining log P 
stages, all N points are exchanged between processors. 

Unfortunately, the simple, so-called radix-2 FFT computation 
described above makes very poor use of the memory system. It 
sweeps through all N points in one stage of the butterfly before 
moving on the next stage, thus making little use of the processor 
cache. In the last logP stages of the butterfly, the processors 
perform only a single computation step on each communicated 
point, thus producing a very low computation to communication 
ratio. Both the cache usage and the computation to communica- 
tion ratio can be improved dramatically by increasing the rudix 
of the computation (see [ l ]  and [12]). Increasing the radix is 
equivalent to 'unrolling' the butterfly, performing multiple but- 
terfly stages in a single pass through the data. A radix-8 FFT, 
for example, would combine three butterfly stages into a single 
stage, where each step in this new stage performs operations on 
8 points simultaneously. A radix-r FFT would combine logr 
butterfly stages into a single stage, operating on r points simul- 
taneously. 

An efficient parallel FFT is therefore structured as follows. 
To minimize interprocessor communication, the overall compu- 
tation is performed with as large a radix as possible. This tums 
out to be radix-D. where D is the number of points assigned to 
each processor (i.e., D = N/P). Thus, the logN stages of the 
butterfly are grouped into sets of log D stages. At each radix-D 
stage, a processor receives D points from other processors, per- 
forms logD stages of the butterfly on these points, and sends 
the resulting D data points to the processors that use them in 
the next stage. 

To make good use of the processor cache, the radix-D stages 
are further subdivided into smaller intemal groups. For example, 
a processor might perform the log D stages in the radix-D com- 
putation three-at-a-time, essentially performing a radix-8 com- 
putation within the radix-D computation. We call this smaller 
radix the intemal radix. This further sub-division produces a 
smaller processor working set than would be present if all log D 
stages were performed in a single sweep. We use this more 
efficient parallel FFT in the results we present below. 

5.2 Working Set Hierarchy 
The prototypical 1 Gbyte problem corresponds to a 64 million 
point complex FFT on 1024 processors, yielding 64K points per 
processor. 

Working set hierarchies for radix-2, radix-8, and radix-32 FFT 
computations on this data set are shown in Figure 5 .  
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kv2WS 

The first and mast important working set (levlWS) contains 
the set of data items needed to perform a single step of a stage 
swcep. If the intemal radix is 2, thc levlWS simply consists of 
the two data points that an at distance 2' from each other. Ihc 
miss rate is 0.6 misses per op when the levlWS with radix 2 fits 
in the cache. For intemal radices of 8 and 32, levlWS consists 
of the relevant 8 or 32 data points, and brings the miss rates to 
roughly 0.25 and 0.15 misses per operation. respectively. These 
misses can be easily prefetched. Thus, a small cache is sufficient 
to significantly reduce the miss rate for parallel FFT. 

The only other working set in a parallel FFT (lev2WS) is 
simply the entire data set assigned to a processor. 

Scaling: The s h e  of the important, level 1 working set de- 
pends only on the internal radii. The choice of intemal radix 
is independent of the problem size and the machine size, and a 
small radii suffices to keep the capacity miss rate small. Con- 
squently, a small cache (a few Kbytes) is sufficient for any 
probkm size or machine size. The kv2WS depends on -4' and 
P.  but is not expected to fit in a cache. 

5.3 Grainsize 
Communication costs: The computation to communication 
ratio is most easily estimated by considering the operations that 
a processor performs in a single stage of the radix-D computa- 
tion (D = N / P ) .  Within a single stage, a processor performs 
5DlogD operations, and then communicates all 2 0  double- 
words computed in that stage to other processors. Thus, the 
overall computation to communication ratio f log D = f log g, 
and depends only the grain size $. 

Tbis ratio is unfortunately inexact due to quantization effects. 
Consider our prototypical problem, with 1024 processors and 
64K points per processor. The resulting radik64K FFT p u p s  
the buttertly into sets of log64K or 16 stages. The difficulty is 
that the whole problem only requires log 64M = 26 stages. The 
second stage would therefore perform only 10 stages of com- 
putation for one communication stage, less than the 16 stages 
assumed by the model. 

The actual computation to communication ratio can be deter- 
mined by noting that the whole computation performs 5-4' log N 
operations, and it communicates the 2N words of data twice 
between processors. For our prototypical problem, N = 64M. 
yielding a ratio of 33. While this ratio would be sustainable if 
the communications were between neighbor processors, unfortu- 
nately it can be shown that communication in the FFT exhibits 
little locality for mast processor interconnection topologies. The 
exception is a hypercube topology, which is becoming less and 
less common in large-scale parallel machines. The ratio of 33 
operations per word would thus be difficult to sustain. 

Laid Balance and Concurrency: A very simple distribution 
of the FIT computation is quite adequate for load balancing. 
Furtbemre, there is more than enough available concumncy to 
keep a very large number of plocesmrs busy (ignoring processor 
stalls due to communication). 

Desirable Grain Size: We have seen that a 1 Mbyte data set 
per processor produces a computation to communication ratio 
that is difficult to sustain. A finer-grain machine would clearly 
exacerbate the problem. Let us therefore examine how this ratio 
would change if the same problem were solved on a coarser-grain 
machine. On a machine with one-sixteenth as many pmctssors 
(P = 64). we find that the computation to communication ratio 
surprisingly docs not change. This is an aitifact of the quantiza- 
tion of levels discussed earlier: there are still two communication 
stages in the computation. 

Let us now consider just how m e  the machine grain must 
be to produce a sustainable computation to communication ratio. 
If wc even use the optimistic expression for computation to com- 
munication ratio of log $ derived earlier, a ratio of R requires 
the number of data points per processor to be N / P  = 2iR. The 
exponential growth rate of per-processor memory r e q u i d  to im- 
prove computation to communication ratios has been previously 
noted in [4]. The consequences of this growth rate are quite se- 
vere. Increasing the computation to communication ratio f" 
33 to a more easily sustained ratio of 60, for example, would 
require the per-pmssor data set to be increased to roughly 
270 Mbytes. A ratio of 100, which may be required by some 
machines for good performance, would require approximately 
18 Terabytes of data per processor. It is clearly unrealistic to 
try to significantly increase the computation to communication 
ratio by increasing the node grain size. 

Scaling: Since the main factor limiting performance, the com- 
putation to communication ratio, depends only on grain size. the 
"desirable" grain size is essentially independent of the problem 
size or number of processors. MC scaling therefore produces 
comparable processor utilization on larger machines. 

5.4 Summary 
The FIT is a difficult computation for large scale parallel ma- 
chines. While the FFT is easily blocked for a cache to provide 
high per-processor performance, the communication volume in- 
henmt in the computation is sufficiently high that communica- 
tion costs will certainly dominate the execution time. While one 
might conclude that the solution to this high communication 
volume is to increase the processor grain size, unfortunately the 
grain size increase that would be required to significantly reduce 
communication volumes is unrealistically large. 

6 Hierarchicai N-Body Methods 
The classical N-body problem is to simulate the evolution of a 
system of bodies (e.g. stars in a galaxy) under the forces exerted 
on each body by the whole system. Typical domains of appli- 
cation include astrophysics, electrostatics and plasma physics, 
among others. As in many other computational domains, hierar- 
chical solution methods have recently attracted a lot of attention 
for N-body problems, since they construct efficient algorithms 
by taking advantage of fundamental insights into the nature of 
physical processes. The two most prominent hierarchical N- 
body methods are the Barnes-Hut and Fast Multipole methods. 
We shall use a three-dimensional galactic Barnes-Hut simulation 
as our example in this paper [lo]. 
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6.1 Description of Computation 
The computation in N-body problems proceeds over a number 
of time-steps. Every time-step computes the forccs experienced 
by all bodies, and uses these forces to update the positions and 
velocities of the bodies. The forcecomputation is by far the 
most time-consuming phase in a time-step, and we focus on it 
io our analysis (although our measurements include the whole 
application). 

The main data structure used by the Barnes-Hut method is an 
octree which represents the computational domain. The root of 
the octree is a cubical space that contains all particles in the sys- 
tem. Intemal cells of this tree represent recursively subdivided 
space cells, and the leaves repsent  individual bodies. The tree 
is traversed once per body to compute the net force acting on 
that body. The forct-calculation starts at the root of the tree and 
conducts the following test recursively for every cell it visits. If 
the center of mass of the cell is far enough away from the body, 
the entire subtree under that cell is approximated by a single par- 
ticle at the center of mass. Otherwise, the cell must be "opened" 
and each of its subcells visited. A cell is detennined to be far 
enough away if the relationship 4 < B is satisfied, where 1 is the 
length of a side of the cell, d is the distance of the body from the 
center of mass of the cell, and B is a userdefined accuracy pa- 
rameter (e is usually between 0.5 and 1.2). In this way, a body 
traverses deeper down those parts of the tree which represent 
space that is physically close to it, and groups distant bodies at 
a hierarchy of length scales. For large problems, higher order 
moments than the center of mass (for example, quadrupole mo- 
ments) are used to increase force-computation accuracy without 
making 0 too fine. We assume the use of quadrupole moments 
in our discussion. 

6.2 Working Set Hierarchy 
There are threc important levels of the working set hierarchy 
in these methods. These are shown in Figurc 6 for a small 
problem simulating 1024 particles on 4 processors. We start 
with a smaller problem in this application than the prototypical 
problem used for other applications because the working sets 
here are measured through simulation rather than analysis, and 
because it is impossible to simulate the prototypical problem 
on our multiprocessor simulator. The small problem, however, 
exposes all the important characteristics and constant factors, 
and the scaling trends that we discuss below have been verified 
by simulating some larger problems and machines. 

w2ws 
! lw3WS 

Cache size (bytes) 
Figure 6 Working Sets for the Barnes-Hut Application: n=1024, 
theta=l.O, p=4, quadpole moments. 

The levlWS in this application is the amount of temporary 
storage used to compute an interaction between a particle and 
another particldcell. It is only about 0.7 Kbytes in size. Having 
a cache large enough to hold the levlWS reduces the miss rate 
from 100% with no cache to about 2096 in most cases we have 
simulated. While this is a large reduction, the miss rate is still 

not low enough for effective performance since most of these 
misses are to nonlocal data. and are not predictable enough to 
be easily prefetched. 

The lev2WS is the most important working set in the ap- 
plication. It comprises the amount of from the tree needed to 
compute the force on a single particle. These data include par- 
ticle positions as well as cell positions and moments. If the 
partitioning of particles among processors is done appmpriately, 
most of these data will be reused in computing the forces on 
successive particles. Caches large enough to hold this working 
set take the miss rate quite close to the inherent communication 
miss rate obtained with infinite caches (0.2% for this pmblem). 
For this small problem, the size of the lev2WS is 20 Kbytes. 

Beyond the lev2WS. the miss rate decays much more slowly 
until the cache size reaches the lev3WS. The size of the lev3WS 
is roughly the maximum of (i) the amount of data in a proces- 
sors partition and (ii) the amount of data that a processor needs 
to compute the forces on all the particles in its partition. Thus. 
the lev3WS size decreases with increasing number of processors 
and increases with increasing force computation accuracy (de- 
creafing e). HOwever, since the lev3WS marks the culmination 
of a slow decrease in miss rate, and since the capacity miss rate 
is already very small after the lev2WS is reached, the lev3WS is 
not important to performance and we do not consider it further. 

Scaling: A realistic problem that people run today is one with 
64K particles and B=l.O. When run for 512 time-steps, this 
problem taka about three days on a single processor of an SGI 
4D/240. We use this problem, running on 64 processors, as the 
starting point for our discussion of scaling. The levlWS and 
lev2WS sizes for this problem are 0.7 Kbytes and 32 Kbytes. 
respectively. 

The total data set size increases linearly with the number of 
particles. and is about 230 bytes per particle when quadrupole 
moments are used. It is independent of 0 and essentially inde- 
pendent of the number of processors. 

The levlWS stays at 0.7 Kbytes independent of the number 
of particles, the number of processors, and B. It changes slightly 
only with the order of moments used, and hence with the nature 
of an individual interactions. 

The size of the important lev2WS is proportional to the num- 
ber of interactions computed per particle, which is of order 
& log n [3]. The lev2WS therefore scales very slowly with 
the number of particles n. more quickly with the accuracy pa- 
rameter 8, and is independent of the number of processors p. 
The constant of proportionality in the above size expression is 
about 6 Kbytes. How the lev2WS scales with larger problems 
therefore depends on how n and B are scaled, as we examine 
below. 

Under memoryconstrained (MC) scaling, n would increase 
linearly with p. If no other parameters are scaled, the size of 
the lev2WS grows very slowly, going from 32 Kbytes with 64K 
particles to 40 Kbytes with a million particles (about the largest 
number of particles that people run on the largest parallel ma- 
chines today) and to only 60 Kbytes with a billion particles 
(inconceivable today). Scaling only n, however, is naive. In 
practice, all of n, B and the time-step resolution At are likely 
to be scaled simultaneously, in order to scale their conhibutions 
to the overall simulation e m r  at the same rate [9]. This leads 
to the following rule: If n is scaled by a factor of s, At must 
be scaled by a factor of and 8 by a factor of k when 
quadrupole moments are used. A caveat is that B is likely to be 
decreased at this rate only up to a certain extent (Bd .5  or so), 
at which point higher order moments such as octopole moments 
would be used to increase force computation accuracy without 
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reducing 8 much. 
The lev2WS grows faster with MC scaling under this realistic 

parameter scaling rule, since 8-the dominant contributor to the 
working set size-is also scaled. Even under this model, a bil- 
lion particle problem (k0.6, &pole moments) would have a 
lev2WS of under 300 Kbytes. However, MC scaling of this soxt 
causes the execution time to grow rapidly, so that MC scaliig is 
in fact unrealistic in practice for this application. 

Timeconstrained scaling, while asymptotically limited in the 
amount the problem can be scaled, is more realistic in practice. 
In this case, the contributions of changing At and 8 to the execu- 
tion time don't allow n to scale linearly with p. In fact, n scales 
slower than 6, where k is the factor by which p is scaled. 8 
therefore scales more like *. The result is that both the data 
set size and the lev2WS (proportional to & log n) still increase 
in size, but much more slowly than under memoryconstrained 
scaling. For example, starting from our 64K particle problem on 
64 processors (kl.0). a 1K processor machine under TC scal- 
ing would run 256K particles (04 .84)  rather than the 1 million 
(k0.71) under MC scaling. The lev2WS size in this case is only 
25 Kbytes. A million processor machine would run not a bil- 
lion particles but rather only about 32 million (M.6. octopole 
moments), and the lev2WS size would be about 140 Kbytes. 

The bottom line is that although the important working set for 
this application is not trivial for large problems, it is still well 
under 100 Kbytes for the largest problems people can run today, 
and is likely to stay reasonably small even for problems whose 
solution is beyond the realm of possibilities today. 

6.3 Grainsize 
Communication Cos& Modeling the amount of communica- 
tion in the Barnes-Hut method accurately is very difficult. Using 
some curve fitting from (71 and some of our own, we find that 
the communication per processor required to compute forces in 
a time-step scales as $$kq4/3p. and that the communica- 

tion to computation ratio is therefore @$$e. Every unit 
of computation (a particle-particle or particle-cell interaction) is 
equivalent to about 80 instructions when quadrupole moments 
m used, and every unit of communication in the above expres- 
sion is 3 double words of data. 

Our prototypical problem for grain size discussions, which 
uses 1 Mbyte of main memory per processor on a 1024 proces- 
sor machine (1 Gbyte total), solves a problem with about 4.5 
million particles (a very large but feasible computation by to- 
day's standards). Let us assume that 8 = 1.0. Every processor 
is responsible for about 4500 particles. and the communication 
to computation ratio is very small, less than 1 double word per 
10,OOO processor busy cycles. Since the access patterns of this 
application are not predictable, communication latencies might 
not be hidden as effectively as in the regular computations we 
have discussed so far. However, the communication to compu- 
tation ratio is very small, and communication does not become 
a bottleneck until the number of particles per processor becomes 
very small. 

Load Balance and Concurrency: The concmncy in the ap- 
plication scales as the number of particles n, and load imbalance 
is also not a significant factor until the number of particles per 
processor (n /p )  becomes very small. Given that n is typically 
large (4.5 million in the prototypical problem), this also means 
that very large numbers of processors can be used effectively. 

Desirable Grain Size: The impoxtant per-processor growth 
rates for this application in terms of n, 8, At and p are as fol- 

lows. The data set size scales as %, the computation as &*. 
the working set as log n, the concurrency as n, the communi- 
cation as $ 3 0 g 4 / 3 p ,  and the communication to computation 

Clearly, we would get very good speedups on our 1 Gbyte 
problem on a coarser-grained machine than 1 Mbyte per pm- 
cessor, such as the 64-processor machine with 16 Mbytes of 
memory per processor. However, solving a 1 Gbyte problem on 
64 processors would take a very long time. Let us see what hap- 
pens when we go to the finer-grained machine instead, solving 
the same 1 Gbyte problem with 16K proassors and 64 Kbytes 
of memory per processor. Every processor now has about 280 
particles. The communication to computation ratio increases to 
about 1 double word per 1OOO instructions, but is clearly very 
small still. However, particularly given the large number of 
processors, load balancing may become a problem at this point. 
The result is that the grain size can probably be pushed to a few 
h u n d d  kilobytes per processor for a 1 Gbyte problem without 
compromising parallel performance much. 

Scaling: Finally, let us see how the desirable grain size scales 
with problem size. A memoryconstrained scaling model, in 
which the processor grain size remains constant, provides high 
processor utilization for this application. The number of parti- 
cles per processor remains the same, so load balancing is not 
affected, and the communication to computation ratio either in- 
creases extremely slowly (if the accuracy is not scaled as well) 
or stays constant (if accuracy is scaled) [8]. The cache size 
needed per processor grows, but is still relatively small, as we 
have seen. However, such memory-constrained scaling to keep 
the grain size constant causes the execution time to increase 
very rapidly. If the goal is to run a problem in the same amount 
of time, n does not grow nearly as quickly as p. The grain 
size needed therefore decreases, as does the efficiency of a node 
(since both communication and synchronization increase relative 
to computation, and the load balance gets worse). 

6.4 Summary 
Our results show that fine-grained machines, with well under 
1 Mbyte of memory and a couple of hundred kilobytes of cache, 
can be very effective for this application. A couple of issues, 
however, may inhibit going to a very fine grain. First, for large 
problems, the amount of fully associative cache needed will be 
as large as or larger than the local memory per node. The use of 
realistic-set-associative or direct-mapped-caches would fur- 
ther increase the required cache size, resulting in an expen- 
sive design point that may not be appropriate for other kinds 
of computations. Preliminary results with direct-mapped caches 
for small problems show that the knees in the miss rate versus 
cache size curves are not as well-defined as with fully associa- 
tive caches, and that the direct-mapped cache size required to 
hold the important working set is about three times as large as 
the corresponding fully associative cache size. Set-associative 
caches and data restructuring might d u c e  this factor of three. 
While we have not simulated large problems with direct-mapped 
caches, there is little reason to believe that the factor increase 
in required cache size will be much different as the problem 
scales. 

The second issue is that although the force-calculation phase 
can be parallelized very efficiently on large numbers of pro- 
cessors, some other phases-such BS building the octree and 
computing the moments of cells-do not yield quite as good 
speedups due to larger amounts of synchronization and con- 
tention that they encounter. These phases consume a small frac- 
tion of the execution time on moderately parallel machines (at 
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least up to 512 processors for large problems), but may become 
significant for very fine-grained machines with very large num- 
bers of processors. 

7 Volume Rendering 
Our next application is from the field of scientific visualization. 
Volume visualization techniques are of key importance in the 
analysis and understanding of multidimensional sampled data. 
This application, which renders volumes using optimized ray 
tracing techniques, uses a parallel version of the fastest known 
sequential algorithm for volume rendering [a]. 
7.1 Description of Computation 
The volume to be rendered is represented by a cube of voxels 
(or volume elements). The outermost loop of the computation 
is over a series of frames or images. Successive frames corre- 
spond to changing angles between the viewer and the volume 
being rendered. For each frame, rays are cast from the viewing 
position into the volume data through every pixel in the image 
plane corresponding to that frame. The voxel data are resampled 
at evenly spaced locations along each ray by trilinearly interpo- 
lating the values of surrounding voxels. Rays are not reflected at 
all, but pass straight through the volume unless they encounter 
too much opacity and are terminated early. Finally, ray sam- 
ples are composited to produce an image or frame. The goal of 
the application is to render individual frames in real time (30 
framedsecond), so that an interactive user can view the volume 
from arbitrarily changing positions efficiently. 

7.2 Working Set Hierarchy 
There are three important levels of the working set hierarchy 
in this application. Data reuse is afforded across sample points 
along a ray (IevlWS), across successive rays (lev2WS), and per- 
haps across successive frames (lev3WS). These working sets are 
shown in Figure 7 for a 256x256~113 voxel data set of a human 
head. While smaller than our prototypical 1 Gbyte problem (the 
data set is about 30 Mbytes) for reasons of simulation feasibd- 
ity, this data set is a very realistic real-time challenge for today's 
parallel machines. 

An octree 
data structure is used to find the first interesting (non-transparent) 
voxel in a ray's path efficiently, as well as to determine whether 
the neighboring voxels around a sample point are interesting. 
The levlWS consists of the voxel and octrce data that are reused 
m s s  neighboring sample points along a ray. This working set 
is very small: about 0.4 Kbytes. A cache that accommodates it 
reduces the read miss rate to about 1556, which is still too large 
to be acceptable, particularly since the misses are potentially to 
nonlocal data and the access pattems are not regular enough to 
be easily prefetched. 

The lev2WS is the most important working set. It measures 
the fraction of the data used in computing a ray that is typically 
reused by the next ray. This reuse owes itself to the partitioning 
scheme, which assigns every processor a contiguous rectangular 
subblock of pixels in the image plane. Successive rays cast 
by a processor therefore pass through adjacent pixels and tend 
to reference many of the same voxels in the volume. The 
lev2WS is about 16 Kbytes for this data set, and a cache that 
accommodates this working set reduces the read miss rate to 
about 2%. 

After the lev2WS is reached, the miss rate diminishes more 
slowly until the lev3WS is reached. The size of the lev3WS 
depends on how quickly the angle between the viewing position 
and the data set is changed between successive frames. If the 
change is gradual, as in our simulations, a given processor refer- 
ences many of the same voxels in successive frames; otherwise, 

The voxel data in this application are read-only. 

the overlap may be negligible. Thus, the lev3WS size can vary 
from the voxels referenced by a processor in one frame to almost 
the entire voxel data set. For our data set and simulations, the 
lev3WS is about 700 Kbytes, and a cache that accommodates 
it brings the miss rate down to the communication miss rate of 
0.1%. The lev3WS is therefore large, but is not very important 
to performance and we do not consider it further. 

lev3WS 
\ 

3 m[ lev2WS 
I 
I = 10 

e* ~ ~ 
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Figure 7: Working Sets for the Volume Rendering Application: 
256x256~113 head, p=4. 

Scaling: With n voxels along a single dimension, the data set 
for the volume rendering application is roughly 4n3 bytes. The 
two important parameters that might be scaled in this application 
are n and the number of processors p. The levlWS size is 
independent of either of these. The lev2WS is also independent 
of p, but grows proportionally to n, corresponding to the number 
of voxels sampled along a ray. The size of the lev2WS is roughly 
(4OOO + 110*n) bytes. Note that n here is only the cube root of 
the data set size. 

Since the execution time grows at the same rate as the data 
set size (3) .  time-constrained scaling is essentially the same as 
memory-constrained for this application. Thus. the important 
working set grows as only the cube root of the number of pro- 
cessors under either scaling model, with a very small constant 
factor of only 110 bytes. Even for a very large, 1024~1024~1024 
problem, far from renderable in real time on even the largest ma- 
chines today, the lev2WS is only 116 Kbytes large. For a while, 
also, the push in using larger machines is going to be to ren- 
der relatively small data sets in real time, rather than to render 
bigger data sets. Finally, as data sets get larger, the octne will 
probably be used to skip transparent voxels along a ray even 
after the first nonempty voxel is found, which may reduce the 
size of the lev2WS. Thus, the important working set of this ap- 
plication is likely to remain relatively small (under 100 Kbytes 
or so) for a while to come. 

7.3 Grain Size 
Communication Costs: The most important and heavily ref- 
erenced data structure, the voxel data set, is accessed in a read- 
only fashion. Thus, if the entire voxel data set were replicated 
in the local memory of every processing node, there would be 
essentially no communication during rendering (except the small 
amount of communication generated by the ray-stealing per- 
formed to ensure load balancing toward the end of the rendering 
phase [6]). However, such replication would imply either un- 
reasonable amounts of local memory per processor or that large 
data sets cannot be run. In our s h d  address space implemen- 
tation, the data set is not replicated at all in main memory but 
only to some extent in the caches. Because of this, communi- 
cation is generated when accessing voxel data, since voxel data 
get replaced in the caches. 

If the cache provided is significantly smaller than the lev3WS, 
as is very likely, we can assume that almost all of the voxel data 
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that a processor accesses during a frame are not in its cache at 
the beginning of that frame. Since the viewing angle changes, 
the most reasonable data distribution acmss local memories is 
an interleaved or random one to minimize contention. Thus. 
the first accesses to voxel data in a frame have no more than 
a random chance of being satisfied in local memory, and are 
likely to generate communication. Two bytes of data are read 
per voxel, so that the total volume of communication in a frame 
is somewhat larger than 2n3 bytes (since processors overlap to 
some extent in the voxels they eccess). Since a frame involves 
more than 300713 instructions, the computation to communica- 
tion ratio is very large, close to 600 instructions per word of 
communicated data, independent of n or p (see the limitations 
of this analysis below). If caches yield reuse across frames, the 
computation to communication ratio will be even larger. 

Our prototypical problem amounts to a 6OOx6OOx600 voxel 
problem on a 1024-processor machine, with every processor be- 
ing respoosible for about loo0 rays. Since the computation to 
communication ratio is independent of n or p, it is 600 instruc- 
tions per word in this case as well. 

Load Balance and Concurrency: After a processor has pro- 
cessed its statically assigned rays, it steals rays f" other pro- 
cessors if it is idle. Stealing introduces additional synchroniza- 
tion and communication, and is the main source of performance 
loss if the number of rays stolen by a processor is large compared 
to the number initially assigned to it. In the prototypical prob- 
lem, every processor is assigned lo00 rays, so that the amount 
of stealing is not significant. 

Desirable Grain Size: The important per-processor growth 
rates for this application in terms of n and p are as follows. 
The data set size scales as $, the computation as $, the im- 
portant working set as n, the communication as 5, and the 
communication to computation ratio stays roughly fixed. The 
concurrency in the application is equal to the number of rays, 
which grows as n2: There is one ray per pixel, and there are n2 
pixels in the 2 d  image plane projected f" the data set. 

Running the 6OOx6OOx600 voxel data set on a coarser-grained 
machine than 1 Mbytes per processor (e.g. 64 processors with 
16 Mbytes per processor) is obviously not a problem from the 
viewpoint of processor efficiency. However. a 64 processor ma- 
chine would clearly not be able to render this data set in real time. 
Let us see what happens when we solve the same 6OOx6OOx600 
voxel problem on a finer-grained machine. with 16K processors 
and 64 Kbytes of memory per processor. The communication 
to computation ratio (ignoring task stealing) is still about 600 
instructions per word. However, every processor now processes 
roughly or 66 rays, likely to be too few for good load 
balancing wi out excessive stealing. As in Barnes-Hut, a grain 
size of a few hundred kilobytes is therefore likely to be adequate 
for good parallel performance on the 1 Gbyte data set. 

Scaling: Finally, we examine how the desirable grain size 
changes as larger problems are run. If the data set size is in- 
creased by a factor of k, keeping the memory per processor or 
grain size fixed (and therefore scaling p by a factor of k) will 
cause every processor to process a smaller number of rays (de- 
creasing by a factor of k113, since the size of a ray grows by 
a factor of This is not a problem until the number of 
rays per processor becomes very small, in which case increased 
synchronization and communication due to task stealing detract 
from performance. To maintain the same number of rays per 
processor and hence roughly the same processor efficiency, the 
amount of memory per processor (the grain size) must increase 

by a factor of k113 when the data set size is increased by k (the 
working set size per processor also grows as k1I3). That is, the 
number of processors increases by a factor of k2I3 rather than k. 
However, the execution time grows as k113 as well in this case, 
which is not desirable from the viewpoint of real-time rendering. 

Fortunately, the number of rays needed per processor to retain 
high processor efficiencies is small. And we mentioned earlier 
that the data set sizes are not likely to get too much larger in 
the near future, since the goal today is still to get moderately 
sized data sets rendered in real time. Thus, the memory needed 
per processor for this application is small and likely to remain 
so for some time to come. 

7.4 Summary 
Our general conclusion is that fine-grained machines (under 
1 Mbyte of memory per processor) are likely to perform very 
well on this application. 

8 Discussion 

We begin our discussion by bringing together the results for 
the various applications. Table 1 shows the growth rates for 
the most important application characteristics, including data set 
sizes, total operations performed on these data, available con- 
currency, communication volumes, and the sizes of the most 
important working sets. Table 2 then shows the implications of 
these data, including the sizes of the important working sets for 
our prototypical 1 Gbyte. 1024 processor problem, expressed as 
a function of total data size (DS), and the desirable amounts 
of per-processor memory. Table 2 also shows growth rates for 
both as the problem is scaled. (We note that for the FIT the 
'desirable' grain size of 1 Mbyte is not really all that desirable, 
but that enormous increases would be required to improve the 
situation.) 

Our results show that reasonably fine-grained parallel ma- 
chines, with memory of l Mbytc per processor or less, can be 
effective for the application classes studied here. However, we 
now briefly discuss some pragmatic reasons, both hardware. and 
software, why coarser-grained machines are likely to continue 
being built in the near term. 

On the hardware side, one reason is the fact that memory 
chips have large capacity but currently provide very n m w  in- 
terfaces (1-8 bits wide). Thus, building the high-bandwidth 
memory systems that are needed by high-performance proces- 
sors requires the use of multiple memory chips in parallel, result- 
ing in substantial amounts of total memory per node. Another 
reason is that the distributed-address-space programming model 
that is common in today's large-scale parallel machines severely 
limits the ability of a processor to efficiently access memory that 
is not local to it. Such a model also makes fine-grained paral- 
lel computation less attractive because of the large fixed costs 
associated with exchanging data between processors. A final 
hardware. reason is the relative costs of processors and mem- 
ory. It makes little sense, for example, to place $50 worzh of 
memory on a $lo00 node. A machine with 4 times as much 
memory would not cost significantly more and would be much 
more versatile. Many of these reasons may disappear, however, 
due to continually improving technology and integration levels. 
Within a decade, we are likely to see chips with more than 100 
million transistors each [5] .  This will allow processors. caches, 
and memory to reside on the same chip. Decisions about how to 
partition the transistors on a chip among processor, cache, and 
memory will then involve entirely different tradeoffs. The data 
presented in this paper show that fine-grain machines should be 
seriously considered, since applications can use them effectively. 

- -1 
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Table 1: Important application growth rates. 

Table 2 Summarv of immrtant application parameters (DS is total data set size). 

On the software side, reasons for coarser grain nodes include 
support for a sophisticated node operating system, support for 
multiprogramming, and the flexibility to run applications with 
limited parallelism more effectively. However, these capabilities 
are not necessarily as important on large-scale machines as they 
are on small ones. 

In summary. the grain size issue is a complex one. In this 
paper, we have taken an applications-oriented view; the other 
issues must also be taken into account to reach more defini- 
tive conclusions about how to actually build large-scale paral- 
lel machines. We are cumntly exploring these other tradeoffs. 
Overall, it may turn out that designs that split the cost equally 
between processors and memory will be the most competitive, 
in that they will be within a small constant factor of the optimal 
design for any given application. 

9 Concluding Remarks 

We have presented an application-driven study of issues relevant 
to determining the appropriate distribution of resources among 
processors, cache, and main memory for large-scale multipro- 
cessors. We 6rst showed that all of the application classes we 
studied have a hierarchy of working sets, each of whose size, 
performance impact and scaling pmperties we identified. Our 
conclusion is that relatively small (in some cases trivially small) 
caches suffice for all the applications. One reason for this is the 
bimodality in the working sets of applications: The working sets 
are either very small, so that small caches suffice, or too large 
to be expected to fit in caches. Fortunately, the small working 
sets have the most impact on performance. 

Next, we examined certain other important characteristics of 
the computations-communicatim, computation. data require- 
ments, concurrency, and load balancing behavior-to reflect 
upon desirable grain sizes for machines to support these com- 
putations effectively. We found that relatively fine-grained ma- 
chines, with large numbers of processors and small amounts of 
cache and memory per processor. are appropriate for all of the 
applications. 
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