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Abstract 1 Introduction 
\\*liile mauy applications incur few page faults. some 

scientific and database applicatious perform poorly 

when running on t,op of a traditional \.irt,ual nlennor!’ 
i~n~~lelrlentatiol1. To help address this problem. several 
s@rms have been built to allow rach prograni the fles- 

ihilit! t,o use its own nppllcnflon-.sptrr,~c page replace- 
ment policy. iu place of the generic policy provided h> 

the operating q-stem. This has the potential to improve 
perfornlancc for t,he class of applications linCt,ed by vir- 
tual nirnior\- behavior: however. to realize this perfor- 

niancc‘ gain. applicatioii developers must re-iniplenient 

much of the virtual nienior>- systrim. a non-trix-ial pro- 
grainniing task. 

Our goal is to imake it easy for programmers to de- 

\.elop new application-specific page wplacenient poli- 
cies. To do this. we have implemented (i) an estrnsihle 

object-orient,ed user-level virtual memory system and 
(ii) a graphical performance monitor for virtual nien- 
ory behavior. Together. these help the user to identify 

prohleins with an application‘s existing paging poliq 
and to quickI?; Inodify the syst,em to fix these prohlenis. 
11-r haw used our tools for tuning t,he Crtual nienior> 
performance of several applications: we present one case 
study illust,rating t,he benefik and the lirnitations of our 
tools. 
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Recent technological advances have led to ver>- 

rapid increases in many areas of computer hard- 

ware performance. Processor speed. net,work band- 

width. memory and disk capacity are all improving 

at exponential rates. However. not all part.s of corn 

puter systems are improving so quickly: because of 

mechanical limitations, disk latencies have not kept 

up with the advances in C’PT: speeds. On current 

hardware. a single disk read can take the equiva- 

lent of about one million machine instructions to 

service. and this gap is likely to increase in the fw 

t ure. 

Operating systems have t,ra.ditionally used vir- 

tual memory to help hide t,he gap between CPP 

speed and disk access time [Denning 19801. 1% 

tual memory provides the illusion of a large. fast 

address space for each applicat,ion. by managing 

physica, memory as a cache for disk. To exploit 

the temporal and spatial locality in the memory ac- 

cess patterns of most programs, operating systems 

commonly use an approximat,ion of **least recentl? 

used” (L,Rrr) [Levy k Lipma,n 19821 as the page 

replacement policy. This has been remarkably suc- 

cessful: applications can be writt,en independent of 

the amount of phj-sical memory ava.ilable to each 

job. yet the overhead associa,ted with virtual mem- 

ory is not an issue for most programs. 

However. some applications can perform es- 

tremely poorly when running on top of virtual 

memory - examples include scientific applications. 

dat,abases, garbage collected systems, and graphics 

OOPSL,4’93, pp. 48-64 
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programs. These application:, all have memory re- 

quirement 5 that can exceed the amount of physical 

memory on the machine. but the>. do not displa! 

the locality needed to maintain the illusion that 

access to Ivirtual memor!- is as fast as running di- 

rect 1). on top of physical memory. \\,rse. this prob- 

lem n-ill not improve with time: the performance 

of these applications will continue to deteriorate as 

the relative performance of disks continues to get 

slo\ver. 

One possible solution would be to try to develop 

a “hero” virtual memorp system that performs well 

for these programs (see [Hagmann 19921 for an at- 

tempt ). The difficulty- in developing such a system 

is that the operating system page replacement pol- 

icy must balance the needs of all applications. An> 

change that benefits those programs that perform 

poorl!. under LRIT may ha\-e an adverse effect on 

the performance of the vast majority of programs 

that do well Ii:ith LRP. and thus hurt overall sys- 

tem performance. 

Instead. we consider a different approach, one 

Lvliich offers near-optimal performance for all pro- 

grams. A number of systems have been built 

it-hich allow each a.pplication to specify its own 

opylicatiolz-sl,trlfic virtual memory policy. The op- 

erating system kernel is responsible for allocating 

the machine’s pli>sical page frames among compet- 

ing jobs: user-level pagers associated rvith each pro- 

gram decide which of the program’s virtual pages 

are to be cached in the available physical mem- 

or>-. -Any program vil-hich performs well lvith LRP 

can use the system’s default policy: other appli- 

cations can use a policy tuned to their specific 

needs. Mach [\-oung et al. 1987, Rashid et al. 

19881. I-++ [Harty b_ Cheriton 19921, and Aper- 

tos [\bkote 19921 a.re all systems that implement 

this appr0ach.r 

\A’hile these systems have the potential for large 

improvement,s in application performance. it can 

be difficult for an ordinary a.pplication progra.m- 

mer t,o realize the potential performance gain. The 

‘Xpertos takes this notion one st,ep farther: the entire 

operat.ing system is r~flectiue: all operating system policy 

can, in theory, be made application-specific. 

programmer must be able to diagnose the prob- 

lem with the default page replacement policy and 

then. to change t.he policy.. implement a new virtual 

memory- system. 

In this paper. IL--e describe a toolkit \ve have 

built to make it easy for programmers to develop 

nen- application-specific page replacement policies. 

First. we have implemented an c.rten.siblt user- 

level virtual memor~~ system: this system is object- 

oriented. with disciplined ent.ry points for non- 

espert programmers to easily modif!- key poliq 

choices. Second. tve have developed I-;Upurof. a 

graphical debugging tool t,o allow a user t,o evaluate 

competing policies. LVe have used the the combina- 

tion of our extensible virtual memory s?-st~em a,nd 

\*Mprof to tune the page replacement policy of se\-- 

era1 applications. using an instruct,ioii-level simula- 

tor to capture their paging behavior. \Ve describe 

a case study of one of these applications. successive 

over-relaxation (SOR). This example illustrates a 

key advant,age of custom policies: graceful degra- 

dation of performance when the system Ivould oth- 

erwise start to thrash. 

‘The remainder of this paper discusses these is- 

sues in more detail. In the next sect,ion. \ve moti- 

vate the need for a.pplication-specific virtual mem- 

ory management. Section 3 describes the kernel 

support we need. while Sections 4 and 5 describe 

our toolkit. Section 6 presents our case study. Sec- 

t,ion 7 discusses our work in the context of related 

work. and Section 8 summarizes our conclusions. 

2 Mot ivat ion 

In this section, we motivate the need for 

application-specific virtual memory management 

by first describing some common applications 

which do not perform well under LRU. and then 

out,lining some of t,he problems with alt.ernative so- 

lutions. 

2.1 Examples 

A da.t.abase is t,he canonical example of a sys- 

tern which performs poorly under an LRU pol- 
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ic!. [Iiearns k DeFazio 19891. Databases often scan based on the semantics of the program). 

through large amounts of data in a sequential 01 

even random fashion. \,\‘hile the code implement- 

ing the dat a.base should be managed vvith an LRT- 

policy. the ideal policy for the data changes from 

operation to operation. \1’orse. the database is of- 

ten arvare of its access patterns ahead of time. but 

it has no ivay of informing the operating s!-stem 

of its needs. Typically. database management sys- 

terns control their on’n buffer space in part to avoid 

using the generic policy provided by the operating 

svstem. but, problems can still result if these buffers 

are in fact mapped into virtual memory. [Stone- 

braker 19811 estimates that using a page manager 

designed for database access patterns could in- 

prove performance by an order of magnitude. 

-1 garba.ge collector is another application 

that accesses memory in a way unsuitable for 

LRP [.Alonso AC Appel 19901. Once a page has been 

garbage collected. it is not needed until the heap 

snings around again. yet LRI’ n-ill keep it in mem- 

ory because the page has been recentl!. touched. If 

the number of garbage-collected pages is large. the 

application’s 01~11 code and data can end up be- 

ing skvapped out. Ideally. a memory manager for 

this application should give a high priority t.o the 

garbage collector’s own code and dat,a. so that re- 

gions of collected memory are always swapped out 

first. Further, the memor>- allocator should not re- 

use parts of the heap that have been swapped out 

until there is room for those pages t,o be s\vapped 

back in. 

Some of the interactive graphics programs cur- 

rently being developed [Teller &: Sequin 19911 also 

require special virtua.1 memory management t,ecli- 

niques. These programs often precompute vast 

amounts of information to enable real-time inter- 

action. Access to this information is often sequen- 

tial and the size of the needed information is often 

larger tha.n physical memory, which means thrash- 

ing will occur under an LRV page replacement* pol- 

icy. Such applications could produce more detailed 

images and exhibit much higher throughput if the 

page replacement, policy of the operat.ing system 

xvere more finely tuned (e.g., through pre-fetching 

Finall!.. if applications knon tl1e llllnlbr~ of 

pli!-sical pages current 1). availa hle t 0 them. t lie!, 

can modify their runtime belia\+or to malie opt i- 

ma1 use of alrailable resources [Hart!. Sr (‘heriton 

1992. Cheriton et al. 19911. For example. certain 

Monte Carlo simulations generate a final result 1)). 

averaging the results of a number of runs. Fewer 

runs of the simulation can be made to produce the 

same results if there is a larger sample size. Such 

simulations could vary their sample size based on 

the available physical niemor!-. thus lotvering the 

number of page faults. -1dapting application be- 

havior to the amount of available physical memory 

is straightfor\~.ard if there is user-le\-el control over 

\:irtual memory. but nearly impossible if paging is 

implemented in the kernel. transparent to the ap- 

p1ica.t ion. 

2.2 Alternative Solutions 

Before discussing how to build an application- 

specific virtual memory system. ive consider some 

alternatives. One would be to devise an ideal page 

replacement policy which performs well for all of 

the above applications, a.s well a,s for programs that 

do well under an LRI: policy. Such a policy does 

not exist today. and moreover. we believe it is un- 

likely to in the near fut,ure. Because of the large 

gap betlveen C’PP and disk performance. even if 

using a generic policy results in only a few est.ra 

page faults relative to using an optimal application- 

specific policy. there can be a large impact on ap- 

plica,tion performance. In the absence of an ideal 

paging syst,em, application programmers have been 

faced with t,he follolving opt,ions, none of which are 

always applicable: 

0 Purchase enough memory so that t,lie appli- 

ca.tion fits in physical memory. L5:hile this 

may appear att,ractive because memory is in- 

creasingly inexpensive. application program- 

mers often tvould like to scale t,o even larger 

data set sizes. So, irrespect,ive of the amount 

of physical memory: there will always be prob- 

lems which require more memory than the 
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hard&are can ~llppol~i [Haglnalllr l!K!‘L]. 

0 Bypass the operating cyst em’s \.irtual mem- 

or>. SJ-stem b,~- pinning a pool of the appli- 

cation’s pages into plr!-sical memory- [Stone- 

braker 19x1]. I-her code es1 ,licitly manages 

the buffer pool as a cache for disli b!. decid- 

ing nhicli disk pages get sn.apped into main 

n~emor~-. This can require large changes to 

application code since accesses to data struc- 

t ures must no~f. indirect through the buffer 

pool nianager. and it is inflexible in a multi- 

programmed en\.ironment [Hart? k C’heriton 

19931. \lorse. this essentially requires each ap- 

plication programmer to wimplenient the I-ir- 

tual memory s!‘stem. Our tools allo\~~ a sep- 

aration of concerns: the applicat,ion can be 

nrit ten in terns of normal memory- reads and 

n-rites. while the paging policy- can be easily 

changed n-itli no changes to the application 

COdf?. 

l Restructure the application to improTe its spa- 

tial and temporal locality. This technique. 

knou-n as “blocking”. is commonly used Gthin 

the scientific programming community to ini- 

prove processor cache performance. but it can 

also be used to improve virtual memor!- be- 

havior. 1T-hile the result can be obscure code 

bearing little resemblance to the original pro- 

gram. a blocked program can have mulch het- 

ter performance. Our monitoring tool. I7M- 

prof. helps identif!- the places in the applica- 

tion code where blocking nould benefit perfor- 

mance; moreover. even after an application is 

re-urit,ten. there may still be a benefit to using 

a custom paging policy in place of LRT:. The 

example SOR application described in Sec- 

tion 6 illustrates the advantage of using our 

tools on a blocked program. 

3 Kernel Support for User-Level 

Virtual Memory Management 

Before describing our extensible virtual memory. 

manager. n-e first outline the kernel support nec- 

essary lo allon- each application to set its 0Jvn pag- 

ing policy. at user lel~l. Support similar to n-hat n-e 

describe here is provided 1,~. Xach (as extended b! 

[\IcNamee k .4rmstrong 1990]. I-++. and ;2pertos. 

The key obserlyation is to appropriately dij-ide 

responsibility for virtual memory between the ap- 

plication. the kernel. and a separate user-level pag- 

ing system. specific to the application. This orga- 

nization can be seen in Figure 1. In the simplest 

case. the application sees no change: it can do nor- 

mal reads and n-rites t,o its virtual memory loca- 

tions. and the combination of the kernel a,nd the 

user-level pager handle any page faults that occur, 

completely transparentl?- to the application. 

The operating system kernel is modified to hand 

off control o\-er paging policy to the user level. T;n- 

like a traditional organization. the kernel is respon 

sible only for allocating physical pages among com- 

peting jobs and for providing a mechanism for user 

level pagers to modify page tables. For rea,sons of 

security. page tables cannot be modified directly 

at the user level. Each user-level manager is given 

a set of physical pages t,o manage b!T the kernel, 

and has complete control over which of the appli- 

cation’s virtual pages are to be assigned to those 

physical pages and which are to be on disk. In 

this n-a!-. the n2rchnnisr22.~ necessary t,o implement 

virtual memory are separat,ed from the application 

specific ~~Aicy implemented at the user level. 

\A%enever the kernel would make a virt,ual mem- 

ory policy decision, the kernel makes an upcall to 

the user-level pager instead.’ For instance, on a 

page fault. a decision is needed as t,o which page 

currently in memory will be swapped to disk to 

make room for the incoming page. Inst’ead of mak- 

ing t~his decision itself. the kernel upcalls to the 

‘An upcall is t.he rererse of a system call. A q&em 
call implements a procedure call from applicat,ion code to a 

kernel routine, while an upcall implemenk a’procedure call 

from the kernel to application code. 
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Figure 1: Operating System \I-ith AApplication-Specific \‘irtual hlemor> 

user-level pa.ger on each fault, providing the needed 

information (such as hardTvare page reference in 

formation) t,o the user-level pager. The user-level 

pager then chooses which page to replace. The ker- 

nel is also responsible for informing the user-level 

pager of changes in the number of pages a.ssigned 

to it. 

In addition. a sophisticated applicat,ion may have 

a communication channel to the user-level pa.ger. 

The application can inform the virtual memory sys- 

tem in a.dvance of phase cha.nges nhere a different 

policy might he used: the virtual memory system 

can inform the application of any increase or de- 

crease in the amount of available physical memory, 

to allow the application to adapt its behavior. 

The interactions between the application. the op- 

erating system kernel, and the user-level pa.ger are 

summarized a.s follows: 

0 Upon a page fa.ult. a trap into the operating 

system t,akes place. The kernel makes an up- 

call to t,he application’s pager with the fault- 

ing virtual address. This upcall dispa.t.ches a, 

procedure HandlePageFault within t,he user 

level pa.ger. This procedure is responsible for 

bringing the missing pa.ge into physical mem- 

ory (through system calls ba,ck into the oper- 

a.ting system). 

l If all of the process’s physical pages have been 

allocated, the pager is responsible for choos- 
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ing a page to replace. The user-level pager 

polls the operating syst,em to obtain informa- 

tion (for example. hardlvare page usage and 

modified bits) regarding a process’s page ac- 

cess patterns. This information is then used 

to choose t,lie page to replace. 

l If the page chosen for replacement ha,s been 

modified. it must be writ,ten to the backing 

store. This is done through system calls into 

the operating system. 

l If an application needs to cha.nge its virtual 

memory policy during its execution, or if it 

needs to knon It-hich of its pages are ma,pped. 

a communica.tion channel is established be- 

tween the user-level pager and the application 

to conmlunicat~e such needs. 

l The operating y&em ma.kes an upcall to the 

pager to inform it of changes in the number 

of available physical pages. A syst,em call is 

added to inform the kernel that the applica- 

tion needs more/fewer pa.ges of physical mem- 

ory [Hart.y h- Cherit.on 19931. 

l The user-level pa.ger can request that the ker- 

nel unmap a pa.ge but not remove it from mem- 

ory, causing the applica.tion to trap on read 

or write references to selected pages. For in- 

stance. this capability ca.n be used to collect 



more detailed page usage information [Levy k 

Lipman 19S2] or to provide other features such 

as distributed virtual memory. transactional 

memory. or automatic checkpointing [-Appel k 

Li 19911. 

Moreover. there is not a one-to-one mapping be- 

tv.een applications and paging policies. The same 

default user-level pager can be used by the majorit) 

of applications that perform acceptably n-e11 with 

an LRI- paging poliq-. BJ- contra.st. a single ap- 

plicat ion might have multiple policies. one for each 

segment of memor>- and/or one for each phase of 

its execution. 

4 An Extensible User-Level 

Pager 

In this section. n:e describe our extensible user-level 

paging sJ.stem. 11-e had two goals. First,, we wa.nted 

to provide the standard parts of a virtual memor!- 

system that lvere unlikely to change for different 

policies. ;1 fair amount of the code for traditional 

virtual memor!- systems is taken up with bookkeep- 

ing and other infrastructure. Second. we wanted to 

expose the key element,s of the system’s policy deci- 

sions to user change. We did this by structuring the 

system in an object-orient,ed fashion, allowing pro- 

grammers to tweak our code b\- building derived 

oh ject s that cha.nge onl!- the parts of our imple- 

ment,ation that truly needed to be changed [Ber- 

shad et al. 19881. In addition. by using an object- 

oriented approach. we can allow multiple policies 

to exist for the snnzt application. for instance. for 

different areas of memory and for different phases 

of the program’s execution. 

In the interest, of brevity. we focus on the part.s of 

our system that an application progra.mmer might 

need to underst,and in order to implement, a custom 

page replacement policy. We leave out those details 

needed to deal with sharing of memory segments. 

sparse address spa.ces: portability, page coloring. 

etc. LVe refer readers to [Young et al. 19871 for a 

more complete description of the issues in building 

a robust,. general-purpose virtual memory system. 

The simplified protocol we discuss here allows for 

memory management on a per process basis: this 

can be easil!- extended to allow paging policy to 

be set on a per memory segment basis. Xt a high 

level. the protocol consists of the following classes 

and methods: 

l -% ResidentPageTable object is a.ssociated 

Ivith each process. It encapsulates informa- 

tion about the physical pages assigned to the 

process by the kernel, for instance, the vir- 

tual page contained in the physical page. if 

an!-. By default physical pages are divided into 

three lists: a free list of all unallocated pages, a 

list of all deallocated pages which have not yet, 

been unmapped (providing a sort, of “second- 

chance” cache [Levy h- Lipman 19821). and 

a list of all mapped pages. The rela.ti\-e size 

of these lists can be controlled by the user, 

1vherea.s the total number of pages a.ssigned to 

the process is controlled by the kernel. 

l An AddressMap object also is associated with 

each process. It encapsulates information 

a,bout the process’ virtual pages. for instance. 

the physical page conta,ining the virtual page. 

if the page is in memory. and any hardware 

reference information. In ot.her words, the ad- 

dress map is simi1a.r to a kaditional page table. 

l The method HandlePageFault 011 

AddressMap is called through an upcall from 

the kernel whenever a page fault occurs. 

l The method FindPageToReplace is called by 

HandlePageFault to select a page for removal. 

l The method PollKernel is called to retrieve 

the state informat,ion (most oft,en, page usage 

bits) necessary to implement the desired pag- 

ing policy. 

The following C-t t 3 classes outline t,he interfa,ce t,o 

our implement.a.tion: 

“For brevity‘s sake, we do not include accessor functions, 
constructors, or destructors. 
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class RPTE c // Resident 

public: 

int physicalFrame; 

// Address Map Entry 

AME *virtualPage; 

Boo1 free; 

3; 

Page Table Entry 

class ResidentPageTable c 

public: 

// Upcalls from the kernel 

void AddPageToAllocation(int pagelum); 

void RemovePageFromAllocation(int pgNum); 

// Calls FindPageToReplace if none avail 

int FindFreePageo; 

int GetNumFreePageso; 

private: 

int tablesize; 

// Following are lists of RPTE 

List *allocatedPages; 

List *unmappedPages; 

List *freePages; 

3; 

There is an instauce of RPTE (resident page table 

entry) for each physical page allocated to a pro- 

cess. The member physicalFrame is the uum- 

ber of the page in system memory: it is used as 

a tag for comnlunication between the pager and 

the kernel. The ResidentPageTable class is a 

list of physical pages allotted to a particular pro- 

cess. The list of pages ava,ilable to a. process may 

chauge dynamically: AddPageToAllocation aud 

RemovePageFromAllocation are called by t,he ker- 

lie1 (\ia an upcall) to notify the user-level system 

of these cha,uges. 

class AME ( // Address Map Entry 

public: 

RPTE *physicalFrame; 

Boo1 valid; 

Boo1 modified; 

Boo1 used; 

3; 

class AddressMap < 

public: 

virtual int FindPageToReplaceo; 

virtual void Ha.ndlePageFault(int faultPg); 

virtual void 

FetchPage(int targPage, int faultpage); 

// Get page usage information 

virtual void PollKernel(...); 

private: 

AME *pageTable; 

int pageTableSize; 

ResidentPageTable coremap; 

int LRUClockHand; 

3; 

Xu AddressMap eucapsulates both a process’s \.ir- 

tual memory aud stat,e information for its page 

replacement policy. Each pa.ge of virtual mem- 

ory has a ;\1IE (-Address Nap Entry). The pager 

periodically calls PollKernel to retrieve the pro- 

cess’s receut page access patterns. PageIn reads 

faultPage from the backing st.ore and stores it 

in pageToReplace. writ.iug pageToReplace to the 

backing store if modified. 

Iii the simplest case. the user-level \-irtual mem- 

ory manager consists of iust,auces of au AddressMap 

and a ResidentPageTable object. -4 programmer 

cau create a new paging policy by changing the 

methods for these objects. compiling a new mem- 

ory manager aud asking the keruel to use the ue\\ 

maiiager for the applica.tion. hlultiple policies cau 

also be coded into the same maua.ger so that ap- 

plicatious cau chauge their page replacement, pol- 

icy “on the fl?” (as their memory access patterns 

cha.uge). The following methods are provided with 

the memory managers aud implement t,he default 

approximation to LRI’. 

void 
AddressMap::HandlePageFault(int faultpage) 

c 
int pageToReplace; 

if (coremap.GetNumFreePages() == 0) 

pageToSwap = FindPageToSwapOut(); 

else 

pageToSwap = coremap.FindFreePage(); 

PageIn(pageToSwap, faultpage); 

3 

// Implementation of a one-bit clock 

// algorithm approximating LRU 

int 

AddressMap::FindPageToReplace() 

c 
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while (1) { // loop until page is found 

LRUClockHand++; 

if (pageTable[LRUClockHand].valid) 

if (!pageTable[LRUClockHand].used) 

return LRUClockHand; 

else 

pageTable[LRUClockHand] *used = FALSE; 

if (LRUClockHand == pageTableSize) 

LRUClockHand = 0; 

3 

\,\P iio\v demonstrate 1ioJv our implementation 

can be specialized. If a programmer decides t,hat 

a Most Recently I-sed (AIRP) page replacement 

policy is more appropriate for his application. as 

might be the case if the application scanns linearl! 

through a large data structure. the follo\ving defi- 

nitions could be added to the default pager: 

ition 

class MRUAddressMap 

: public AddressMap { 

public: 

// Override base class defin 

void FindPageToReplaceo; 

private: 

int MRUClockHand; 

3; 

// Assumes at least one page referenced since 

// last fault. One bit approximation of MRU. 

int 

MRUAddressMap::FindPageToReplace() 

c 
while (1) { // loop until page is found 

MRUClockHandtt; 

if (pageTable[MRUClockHand] .valid) 

if (pageTable[MRUClockHand].used) { 

for (int i=O; i<pageTableSize;i++) 

pageTable[i].used = FALSE; 

return MRUClockHand; 

3 
if (MRUClockHand == pageTableSize) 

MRUClockHand = 0; 

3 

The new method on FindPageToReplace is now 

called when a, page fault occurs in a process run- 

ning in an MRUAddressSpace. In order to imple- 

ment an MRP policy t,hrough the protocol, the pro- 

grammer simpl!- created one ne\v class and modi- 

fied one documented function. The details of other 

functions and classes lvere unchangecl. In a similar 

vein. HandlePageFault could be modified to allon 

for pinning and pre-fetching of pages. 

In order to provide multiple page replacement 

policies for different memory segments of a pro- 

cess (as is necessary for databases: a different pol- 

ic!. is needed to manage the code as opposed to 

the data). the user would simply create a sub- 

class of the ResidentPageTable which breaks up 

the allocated physical pa.ges into lists correspond- 

ing to the process’s different logical segments. 

Then. HandlePageFault determines which seg- 

ment caused the fault and calls an appropriate spe- 

cialization of FindPageToReplace. For databases, 

an LRI: policy might be used for the code segment. 

while an MRP-like policy might be optimal for the 

data segment if the process is scanning through 

large amount,s of data. Thus. the user-level men- 

or? manager provides very fine-grained control over 

the desired page replacement policy based both the 

faulting segment and the process’s current access 

patterns. 

5 VMprof - The Virtual Mem- 

ory Profiler 

Given the complex tradeoffs involved with the vir- 

tual memory system. it is not enough to sim- 

ply gi1.e the user control over the iniplement,a- 

t,ion. Tools must also be provided to identify 

performance problems with the particula,r applica- 

tion/policy combina,tion, to help ident,ify ways to 

improve performance. Further. the user needs to 

be able to quickly evaluate the performance effect 

of changes t,o the application and/or the paging 

policy. 

To address this. we have designed a. visua,l per- 

forma,nce tool. k%Iprof. to allow the programmer 

to easily identify problems 1vit.h virtual memory 

performance by displaying the dynamic behavior 

of t.he paging system. The user-extensible virtual 

memory manager and VMprof complement each 
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other by decreasing the time needed to tune vir- 

t ual memory- performance. 

\-hlprof supplements other program perfor- 

mance analysis tools such as ‘I:Tl-X gprof [Graham 

et al. 19821 and MemSpy [hlartonosi et al. 19921. 

Given a trace of page faults. J7Mprof allows the 

user to analyze both spatial and temporal aspects 

of virtual memory management. \Nprof’s graphs 

may be used to identify regions of the address space 

v,ith high page fault rates. By adjusting the time 

frame. a user may also investigate how fault be- 

havior develops n-it11 respect to time. The graphi- 

cal nature of \‘Alprof facilitates quick analysis and 

improvement of virtual memory- performance. 

Figure 2 shows the output of the \:LIprof virtual 

memory profiler. The top graph is a histogram of 

page faults in virtual memory. The horizontal di- 

mension reflect,s sections of lirtual memory. from 

lo\v memory on the left to high memory on the 

right. The vertical dimension represents the fre- 

quency of page faults for each section of virtual 

memory. Because there can be a large number 

of virtual pages under consideration. each point 

on the gra.ph refers to the aggregate number of 

faults for a contiguous range of pages. The bottom 

graph displays fault behavior at a (configurable) 

finer level of detail than the global view of the top 

graph. If a user notices that t,liere is an interesting 

pattern in the global display. the scroll bar may 

be moved t,o focus the local display on the desired 

region. 

Behavior with respect to time may be displayed 

by moving a pair of sliders: btgi~-tinrt and t/r&- 

timt. Only the page faults occurring in this time 

frame are displayed in the two graphs. Program- 

mers use this feature to isolat,e port,ions of the pro- 

gram and judge whether they would benefit from 

modifications t.o the paging policy. The time slid- 

ers may be used to move slowly through time to see 

how page-fault patterns develop. The spatial and 

temporal aspects of memory access patterns may 

be evaluated by adjust,ing the local view of page 

fault behavior and the time frame under consider- 

a,tion. 

Based on experience using VMprof, we have 

identified improvements that w:ould make it more 

useful. Oue would be to more closely connect the 

application’s symbolic program constructs and the 

output of the virtual memory profiler. C’urrentl!~. 

1,~Uprof’s displa). offers enough informat,ion for a 

rough lien of memory access pat t ems. -1 more use- 

ful t-001 vrould allow the user to select the particular 

memory objects to observe and to place “break- 

points” in the program code that vj.ould separate 

segments of the code that exhibit different mem- 

ory access pat,terns. 

In addition. the user should be able to easily se- 

lect memory objects to observe. using their s~.n- 

bolic uames or icons. and associate a virtual men- 

or? policy with each one. -11~0. it should be pos- 

sible to see how multiple programs interact when 

sharing t,lie same physical memor\~ resources. for 

t,hose programs that adjust their memory usage 

ba.sed on run-time conditions. For instance. [Hart! 

k Cheriton 19931 suggest that programs ‘*bid” for 

physical memory: the kernel can then use a market 

approach to svst.em memory alloca.tion. I‘sing L-M- 

Prof. experiments may be performed int,eract ivel! 

with the profiler to see how different virtual mem- 

ory policies perform in isolation and in tandem. 

with different memory allocation arbitra.tion. 

6 SOR - A Case Study 

LYe now describe a, case st.udy of how our techniques 

were used to tune the virtual memory performance 

of an implementation of successive over-relaxat,ion 

(SOR). M’e genera.ted memory reference traces for 

a basic implement.ation of t,he SOR applica.tion for 

several different problem sizes: we t,hen determined 

t.he applica.tion’s pagin, s behavior by feeding these 

traces through a simulator which invoked the user- 

level policy module on ea.& page fault. The re- 

sulting page fa,ult sequence was fed to VSlprof to 

allow us to quickly identify problems with the ap- 

plication’s virtual memory performance. 

In successive over-relaxation, each element of a 

matrix is averaged with its four immediate neigh- 

bors (called a “relaxation st.ep” ). This opera.tion is 

repea.t.ed on the matrix until a steady sta.te for the 
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Figure 2: The Vhlprof Graphical Display 

ma.tris’s values is reached. The following code frag- 

ment is a simplified (ignoring boundary conditions ) 

version of SOR: 

while (!converged) // Outer loop 
for (r = 

for (c 

matri 

0; r < matrixRows; r+t) 
= 0; c < matrixcols; c++) 
x Crl Ccl = (matrix Cr-II Ccl + 

matrix[r1 Cc+11 t 
matrix [r+il Ccl + 
matrixCr1 [c-l]) / 4; 

taGon with an L,RP page replacement policy.” The 

matris size was chosen to be lI< by 1Ii. with each 

element being a double precision floating point 

number: in other words. the matrix consumed 8 

megabytes of \-irtual memory. To illustrate pag- - - 
ing behavior, \ve assumed there I{:ere 8 mega.byt,es 

(2048 41iByte pages) of physical memory available. 

Since the application code takes a small but non- 

zero amount of space. the program barely does not 

fit in physical memory. 

-4s shown in Figure 3, t,he cyclic a,ccess pattern of 

‘To illustrate t,he process of tuning virtual mem- 

ory behavior, Figure 3 displays the output of the 

\‘Mprof tool. profiling our initial SOR implemen- 

SOR, combined with LRIT, resu1t.s in a large num- 

4X l-bit clock algorithm was used to approximate LRU. 
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Figure 3: SOR wit,h a LRU Page Replacement Policy 

ber of faults. The row labeled fclrrlts indicates t.hat 

page fa.ults are frequent: there is one fault per it- 

eration of the loop per page of data whenever the 

size of virtual memory is larger than the amount 

of physical memory. X user wa.tching the number 

of page fa.ults updated with respect to time sees 

a continuous left-to-right ca.scading of fa,ults. ‘This 

suggests that thrashing is occurring. 

The performance of LRT; is much worse than op- 

timal in this situa.tion. The access patt,ern for SOR 

can be seen graphically in Figure 4. On t,he first. 

iterat.ion of the outer loop. t.here are 2K compul- 

sory page faults. since none of the pages have been 

previously accessed: this is independent of the page 

replacement policy, unless pre-fetching techniques 

are employed. 

On subsequent iterations of the outer loop, how- 

ever. the number of pa.ge faults does depend on 

the virtual memory policy. If calculating the value 

for matrixCr1 Ccl causes a page fault in reading 

matrix [r+ll Ccl. then an LRV policy will choose 

t,he physical page which has not been used for the 

longest period of t,ime (page n + 6 in Figure 4, as- 

suming each row of the matrix takes 2 pa.ges of 

memory ). Iinfortuna.tely, given the cyclic sequen- 

tial access to memory. this will be the very nest 

page accessed in the matrix. and this a.ccess will 

once a.gain ca.use a page fault.. As indicated b> 

VMprof, LRU results in a page fault. on every pa.ge 

of the matrix for each iteration through the outer 

loop. 

An ideal pa.ge replacement policy replaces the 

page which will not be needed for the longest time 

in t,he future. If reading matrixCr+ll Ccl causes 
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a page fault. then the page nhich will not be ref- 

erenced for the longest time is the first full page 

immediately before matrix [r-l] [cl. Thus. a cus- 

tom page handler should choose virtual page II 

from Figure 1 for repla,cement.. -4 custom pa,ge 

replacement policy to effect this algorithm ma!- 

be quickly crea.ted by writing a new version of 

FindPageToReplace. The custom policy has to be 

tailored to the size of the array and the machine’s 

page size. In this esample. if a pa.ge fault occurs 

in accessing virtual page I’. then the ideal page to 

replace is the physical pa.ge containing virtual pa.ge 

r* - 5 (since there a.re 2 pages per row). The cus- 

tom policy has the flavor of the most-recently-used 

( 51 RI’ ) page replacement policy: however. hl R.I 

does not perform well in this case because the MRU 

page is almost cerkn to still be needed. 

i1-e implement,ed this custom replacement polic> 

by slight,ly modifying the implement,ation of MRI! 

described in Section 1. We then re-ran the address 

trace through our simulator, invoking the new pag- 

ing policy. The resulting iv?rfprof output is dis- 

played in Figure 3. I-sing this policy. after the ini- 

tial start-up costs of faulting the arra,y into maiu 

memory. there is oiil~, one fault per iterat,ion of the 

outer loop (as opposed to oue fault per page per 

iterat,ion). The result is a large reduction in the 

number of page faults. 

However. the amount of the advantage of our 

custom paging policy relative to LRT’ depends on 

the difference betlveen the virtual memory ueeded 

and the available physica. memory. r9’ith LRP. 

u-e thrash as soon as we need more virtual thau 

physical memory. R-it11 our custom policy. perfor- 

mance degrades more gracefully, but eventually if 

the matrix size is much larger thau will fit in vir- 

tual memory. even our custom policy will perform 

poorly. Figure 6 shons the number of page faults 

incurred by SOR (z-axis) as a. function of the uum- 

ber of iterations of the outer loop (x-axis) and the 

difference between available physical memory and 

required virtual memory (p-axis). From the plot. 
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Figure 5: SOR with a C’ustomized Page Replacement. Poliq 
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ne see that the uumber of page faults for the cus- 

tom policy is dependent on the relative amount of 

physical and virtual memory-. The performance of 

the LRI’ policy is uniformly poor. independent of 

the number of available physical pages. LRIi pro- 

vides an upper bound for the uumber of page fa,ults: 

as the number of available physical pages decrea.ses. 

the customized policy’s performance begins to ap- 

proach that of LRP. 

Modifying the paging policy by it,self does uot 

help when the matrix is very large with respect to 

the amount of physical memory: instead. in order 

t,o have good performance in this case. we need to 

modify the application implementation to exhibit 

more spat.ial and temporal locality. Our original 

implemeut~at,ion scanned the entire matrix from be- 

ginning to end for every relaxation step. For exam- 

ple, if it took 10 relasa.tion steps for the ma.tris to 

converge. each page of memory would be crossed 

10 times using the original code. 

Instead, we can use a ‘Dblocked” implementation 

of SOR. where several relasa,tion steps are per- 

formed during a single sweep through the array. 

For instance, once we have computed the relax- 

ation for rows 1 to I’ duriug iteration i. we call 

immediately compute the uext iteratiou for rovvs 

1 to I’ - 1. without changing the original data de- 

pendency ordering of the application. -1s loug as 

w-e choose r to be smaller than the size of physi- 

cal memory. we ca.n compute more relaxation steps 

for the same number of page faults relative to the 

original implementation. 

Even the blocked version of SOR can benefit 

from a custom page replacement. policy in some 

cases. The blocked implementation must still scau 

multiple times through the entire arra,y to com- 

plete the relaxa.tioii. -4s with the origiiial version 

of SOR. if the size of the matrix is slight,lv big- 

ger t.han the amount of physical memory. LRP 

will tend to throw out pages that are about to be 

scanned. while a custom policy can be easily de- 

vised to t,hroIv out pages that. are not ueeded for 

the longest time intjo t.he future. 

Pre-fetching can further improve t.he perfor- 

mance of the SOR a.pplication. Pre-fetching is most 

useful when an application accesses a la.rge number 

of pages in sequence. Rather t.1la.u having to fault 

each new page in turn, pages can be brought into 
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Figure 6: Sumber of Page Faults with SOR 

physical memory before they are needed. The ap- 

plication would still be limited by disk bandwidth. 

but it w;ould incur less overhead waiting for faults 

to be serviced. 

In summary. the following steps are typically 

ueeded to tuue a program to decrease the number 

of page faults: 

l Identify and isolate phase transitions in the 

program using the \-isual cues provided by the 

Vhlprof performance tool. 

l Experiment with different page-replacement 

policies by modifying the extensible user-level 

pagiug system. Use \Xprof to determine the 

policy most a.ppropriate for the observed ac- 

cess patt.ern for each phase of the pr0gra.m. 

l If performance is still not good enough, write a 

blocked version of the program. ITse VMprof 

t,o determine whet,her it performs well using 

LRIT or still requires a custom policy. 

Delta (y) 

7 Discussion 

.1pplication-specific virtual memory is an instance 

of a larger trend towards structuring system soft- 

it-are to allon- application control over policy de- 

cisions. Other examples include thread schedul- 

ing [Anderson et al. 19921, interprocess commu- 

nication [Bershad et al. 19911. compiler opti- 

mizations [Steele Jr. 19901, database access rou- 

tines [De\T’it.t 5_ Carey 1984. Stonebraker 19871. 

and desktop publishing [Ald 1992. Clark 1992. 

Dyson 19921. I n all of these ca.ses. an application- 

specific structure offers the potential for more flex- 

ibility and better performance, in part because it is 

difficult to design a complex system to be optimal 

for all users of t,he system. In our view. a key in- 

gredient to exploiting the poteutial of this general 

approach is to provide tools to simplify the job of 

developing application-specific system software. 

One way of viewing t.his trend is in terms of 

meta prot,ocols [Kiczales et al. 1991, Kiczales et al. 
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1992. Vahdat 199131. I -sing virtual memory as a.11 

esample, there is a very simple ba.w protocol: reads 

and n-rites of the process’s t:irt,ual address space. 

As we have argued. the choice of implementation 

of this abstraction (the virtual memory system) 

sometimes has a large impact on t.lie performance 

seeu by the user of the abstraction (the a.pplica- 

tion). One approach is to leave the original inter- 

face alone. and instead to define a r,~rtcr protocol. 

by which the user of the interface can select an im- 

plementation more suited to its needs. 

Prior t,o our work. a number of systems al- 

ready provided a meta protocol for virtual memory. 

Mach. I-++. and ;Ipertos all allow applications to 

select their own virtual memory managers. with no 

cha.nge to a.pplication code. Our work is aimed a,t 

making it easy for applicatiou programmers to es- 

ploit this flexibility, essentially by defining a hi&r 

leexl meta. protocol. -\pplication programmers still 

have the flesibilit!. to completely re-write the vir- 

tual memory system. but usually it will be the case 

that they only need to modify a few lines of code of 

our extensible virtual memory system to adjust the 

paging policy. In this. we are essentially providing 

a nl~tcl object protocol. a meta protocol built using 

object-oriented techniques. 

Prior work has identified four desirable charac- 

teristics for meta protocols [Iiiczales et al. 19911: 

l 112cr~mmtality - making a small change to an 

implementation should require the user of the 

implementation to write only a small amount 

of code [Iiiczales b: Lamping 19921. In the vir- 

tual memory domain. cha.nging from an LRI- 

to au MRI: policy should only require writing 

new policy code - the actual mechanism for 

swapping pages in a.nd out of main memory 

should be able to be reused. 

l SCORN C’o,zfrol - the effect of policy changes 

should be local to the a.pplication nmking the 

changes. This is a.utomatically the case with 

applicabion-specific virtual memory. Ideally, 

the scope of changes ca,n be furt’her restricted 

t.o applying to only the relevant parts of the 

application. 

0 Jnffropt.rabibify - if an application chooses to 

use its own implementation of an interface. it 

should be able to freely interact with other 

applications (or other parts of the same appli- 

ca.t.ion) using the original implementation. 

0 Robust/~t.w - the behavior of the system 

should be graceful in the face of bugs in the 

application-specific code. 

In our worli. incrementalit!, and interoperability 

are provided by our object-oriented extensible de- 

sign. Scope control and robust,ness result simpl> 

from moving virtual memory management polic: 

to the user level. 

It is also important to note the limitations as- 

sociated with meta protocols: one cannot a1waJ.s 

turn to t,he meta protocol to modify implemeu- 

t,ation decisions in the face of inadequate perfor- 

mance. \Vith virtual memory. there are instances 

w-hen lack of available memor,v causes very poor 

performance of an application irrespective of the 

paging policy (even the oyfiwcrl pa,ge replacement 

policy for a given application results in poor perfor- 

mance), In these cases. it is necc.ssnry to rejvrite the 

application to use a smaller working set. Tools such 

as \:T\Iprof can be used to identif)- such inst,ances 

and to suggest ways in which the application can 

be rewritten to improve performance. 

In work related t,o our 01~11 are several research 

efforts in the operat,ing system community which 

have looked at making various pieces of the oper- 

ating syst.em customizable. -\pertos [Yokote 19921 

is designed to be entirel!- reflective to allow ever) 

part, of the operating system to be under applica- 

tion control. Perhaps most a.nalogous to our work. 

Presto [Bershad et al. 1988] is a. user-level thread 

system linked int,o parallel a.pplications as a run- 

time library. Because different applications might 

need different threa.d scheduling policies, Presto 

was structured to make scheduling easy for users 

to change. 
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8 Conclusions 

In conclusion. \ve have described an extensible user- 

level virtual memory system and a graphical tool 

to help programmers tune virtual meiiior~. perfor- 

mance. Together. these allow users to easily esper- 

iment ivit 11 various page replacement policies and 

to get immediate feedback from the user interface. 

This feedback may be used to de\:elop a paging pol- 

ic!- that hett,er meets the application’s demands. or 

sometimes to modify the a.pplica.tion to exhibit het- 

ter paging behavior. Our structured virtual menl- 

or!- implementation allows users t,o easil!? modify a 

complex system. and the wer interface provides a 

facility to eI.a.luate the different, tradeoffs involved 

Lvitli modifying operating system policy. 
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