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a b s t r a c t

There is an impedance mismatch between message-passing concurrency and virtual
machines, such as the JVM. VMs usually map their threads to heavyweight OS processes.
Without a lightweight process abstraction, users are often forced to write parts of
concurrent applications in an event-driven stylewhich obscures control flow, and increases
the burden on the programmer.
In this paper we show how thread-based and event-based programming can be

unified under a single actor abstraction. Using advanced abstraction mechanisms of the
Scala programming language, we implement our approach on unmodified JVMs. Our
programming model integrates well with the threading model of the underlying VM.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Concurrency issues have lately received enormous interest because of two converging trends: first, multi-core processors
make concurrency an essential ingredient of efficient program execution. Second, distributed computing and web services
are inherently concurrent. Message-based concurrency is attractive because it might provide a way to address the two
challenges at the same time. It can be seen as a higher-level model for threads with the potential to generalize to distributed
computation. Many message passing systems used in practice are instantiations of the actor model [28,2]. A popular
implementation of this form of concurrency is the Erlang programming language [4]. Erlang supports massively concurrent
systems such as telephone exchanges by using a very lightweight implementation of concurrent processes [3,36].
Onmainstream platforms such as the JVM [34], an equally attractive implementationwas, as yet, missing. Their standard

concurrency constructs, shared-memory threads with locks, suffer from high memory consumption and context-switching
overhead. Therefore, the interleaving of independent computations is often modeled in an event-driven style on these
platforms. However, programming in an explicitly event-driven style is complicated and error-prone, because it involves an
inversion of control [41,13].
In previous work [24], we developed event-based actorswhich let one program event-driven systems without inversion

of control. Event-based actors support the same operations as thread-based actors, except that the receive operation cannot
return normally to the thread that invoked it. Instead the entire continuation of such an actor has to be a part of the receive
operation. This makes it possible to model a suspended actor by a continuation closure, which is usually much cheaper than
suspending a thread.
In this paper we present a unification of thread-based and event-based actors. An actor can suspend with a full thread

stack (receive) or it can suspend with just a continuation closure (react). The first form of suspension corresponds
to thread-based, the second form to event-based programming. The new system combines the benefits of both models.

I A preliminary version of the paper appears in the proceedings of COORDINATION 2007, LNCS 4467, June 2007.
∗ Corresponding address: EPFL, Station 14, 1015 Lausanne, Switzerland. Tel.: +41 21 693 6483; fax: +41 21 693 6660.
E-mail address: philipp.haller@epfl.ch (P. Haller).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.09.019

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:philipp.haller@epfl.ch
http://dx.doi.org/10.1016/j.tcs.2008.09.019


P. Haller, M. Odersky / Theoretical Computer Science 410 (2009) 202–220 203

Threads support blocking operations such as system I/O, and can be executed onmultiple processor cores in parallel. Event-
based computation, on the other hand, is more lightweight and scales to larger numbers of actors. We also present a set of
combinators that allows a flexible composition of these actors.
The presented scheme has been implemented in the Scala Actors library.1 It requires neither special syntax nor compiler

support. A library-based implementation has the advantage that it can be flexibly extended and adapted to new needs. In
fact, the presented implementation is the result of several previous iterations. However, to be easy to use, the library draws
on several of Scala’s advanced abstraction capabilities; notably partial functions and pattern matching [19].
The user experience gained so far indicates that the library makes concurrent programming in a JVM-based system

much more accessible than previous techniques. The reduced complexity of concurrent programming is influenced by the
following factors.

• Since accessing an actor’s mailbox is race-free by design, message-based concurrency is potentially more secure than
shared-memory concurrencywith locks.Webelieve thatmessage-passingwith patternmatching is alsomore convenient
in many cases.
• Actors are lightweight. On systems that support 5000 simultaneously active VM threads, over 1,200,000 actors can be
active simultaneously. Users are thus relieved from writing their own code for thread-pooling.
• Actors are fully inter-operablewith normal VM threads. Every VM thread is treated like an actor. Thismakes the advanced
communication and monitoring capabilities of actors available even for normal VM threads.

Our integration of a high-level actor-based programming model, providing strong invariants and lightweight
concurrency,with existing threadingmodels ofmainstreamVMplatforms is unique to the best of our knowledge.Webelieve
that our approach offers a qualitative improvement in the development of concurrent software for multi-core systems.
The rest of this paper is structured as follows. Section 2 introduces our programming model and explains how it can be

implemented as a Scala library. In Section 3 we present an extension to our programming model that allows us to unify
thread-based and event-based models of concurrency under a single abstraction of actors. We also provide an overview
and important details of the implementation of the Scala Actors library. Section 4 illustrates the core primitives of Scala
Actors using larger examples. Section 5 introduces channels for type-safe and private communication. By means of a case
study (Section 6) we show how our unified programmingmodel can be applied to programming advancedweb applications.
Experimental results are presented in Section 7. Section 8 discusses related and future work, and Section 9 concludes.

2. The Scala Actors library

In the following, we introduce the fundamental concepts underlying our programming model and explain how various
constructs are implemented in Scala. Section 2.1 shows how first-class message handlers support the extension of actors
with new behavior.
Actors. The Scala Actors library provides a concurrent programming model based on actors. An actor [28,2] is a concurrent
process that communicates with other actors by exchanging messages. Communication is asynchronous; messages are
buffered in an actor’smailbox. An actor may respond to an asynchronousmessage by creating new actors, sendingmessages
to known actors (including itself), or changing its behavior. The behavior specifies how the actor responds to the next
message that it receives.
Actors in Scala.Our implementation of actors in Scala adopts the basic communication primitives virtually unchanged from
Erlang [4]. The expression a ! msg sendsmessage msg to actor a (asynchronously). The receive operation has the following
form:

receive {
case msgpat1 => action1
...
case msgpatn => actionn

}

The first message which matches any of the patternsmsgpati is removed from the mailbox, and the corresponding actioni is
executed (see Fig. 1 for an example of a message pattern). If no pattern matches, the actor suspends.
New actors can be created in two ways. In the first alternative, we define a new class that extends the Actor trait.2 The

actor’s behavior is defined by its actmethod. For example, an actor executing body can be created as follows:

class MyActor extends Actor {
def act() { body } }

1 Available as part of the Scala distribution at http://www.scala-lang.org/.
2 A trait in Scala is an abstract class that can be mixin-composed with other traits.

http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
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Fig. 1. Example: orders and cancellations.

Note that after creating an instance of the MyActor class the actor has to be started by calling its startmethod. The second
alternative for creating an actor is as follows. The expression actor {body} creates a new actor which runs the code in
body. Inside body, the expression self is used to refer to the currently executing actor. This ‘‘inline’’ definition of an actor
is often more concise than defining a new class. Finally, we note that every Java thread is also an actor, so even the main
thread can execute receive.3

The example in Fig. 1 demonstrates the usage of all constructs introduced so far. First, we define an orderMngr
actor that tries to receive messages inside an infinite loop. The receive operation waits for two kinds of messages.
The Order(s, item) message handles an order for item. An object which represents the order is created and an
acknowledgment containing a reference to the order object is sent back to the sender s. The Cancel(s, o) message
cancels order o if it is still pending. In this case, an acknowledgment is sent back to the sender. Otherwise a NoAckmessage
is sent, signaling the cancellation of a non-pending order.
The last pattern x in the receive of orderMngr is a variable pattern which matches any message. Variable patterns

allow to remove messages from the mailbox that are normally not understood (‘‘junk’’). We also define a customer actor
which places an order and waits for the acknowledgment of the order manager before proceeding. Since spawning an actor
(using actor) is asynchronous, the defined actors are executed concurrently.
Note that in the above examplewe have to do some repetitivework to implement request/reply-style communication. In

particular, the sender is explicitly included in everymessage. As this is a frequently recurring pattern, our library has special
support for it. Messages always carry the identity of the sender with them. This enables the following additional operations:

• a !? msg sends msg to a, waits for a reply and returns it.
• sender refers to the actor that sent the message that was last received by self.
• reply(msg) replies with msg to sender.
• a forward msg sends msg to a, using the current sender instead of self as the sender identity.

With these additions, the example can be simplified as shown on the right-hand side of Fig. 1. In addition to the
operations above, an actor may explicitly designate another actor as the reply destination of amessage send. The expression
a.send(msg, b) sends msg to a where actor b is the reply destination. This means that when a receives msg, sender
refers to b; therefore, any reply from a is sent directly to b. This allows certain forwarding patterns to be expressed without
creating intermediate actors [45].
Looking at the examples shown above, it might seem that Scala is a language specialized for actor concurrency. In fact,

this is not true. Scala only assumes the basic thread model of the underlying host. All higher-level operations shown in the
examples are defined as classes and methods of the Scala library. In the following, we look ‘‘under the covers’’ to find out
how each construct is defined and implemented. The implementation of concurrent processing is discussed in Section 3.3.

3 Using self outside of an actor definition creates a dynamic proxy object which provides an actor identity to the current thread, thereby making it
capable of receiving messages from other actors.
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The send operation ! is used to send amessage to an actor. The syntax a ! msg is simply an abbreviation for themethod
call a.!(msg), just like x + y in Scala is an abbreviation for x.+(y). Consequently, we define ! as a method in the Actor
trait:

trait Actor {
val mailbox = new Queue[Any]
def !(msg: Any): Unit = ...
...

}

The method does two things. First, it enqueues the message argument in the receiving actor’s mailbox which is represented
as a field of type Queue[Any]. Second, if the receiving actor is currently suspended in a receive that could handle the sent
message, the execution of the actor is resumed.
The receive { ... } construct is more Interesting. In Scala, the pattern matching expression inside braces is treated

as a first-class object that is passed as an argument to the receive method. The argument’s type is an instance of
PartialFunction, which is a subclass of Function1, the class of unary functions. The two classes are defined as follows.

abstract class Function1[-a, +b] {
def apply(x: a): b }

abstract class PartialFunction[-a, +b] extends Function1[a, b] {
def isDefinedAt(x: a): Boolean }

Functions are objects which have an apply method. Partial functions are objects which have in addition a method
isDefinedAt which tests whether a function is defined for a given argument. Both classes are parameterized; the first
type parameter a indicates the function’s argument type and the second type parameter b indicates its result type.4
A pattern matching expression { case p1 => e1; ...; case pn => en } is then a partial function whose methods are

defined as follows.

• The isDefinedAtmethod returns true if one of the patterns pi matches the argument, false otherwise.
• The applymethod returns the value ei for the first pattern pi that matches its argument. If none of the patterns match,
a MatchError exception is thrown.

The receive construct is realized as a method (of the Actor trait) that takes a partial function as an argument.

def receive[R](f: PartialFunction[Any, R]): R

The implementation of receive proceeds roughly as follows. First, messages in the mailbox are scanned in the order they
appear. If receive’s argument f is defined for a message, that message is removed from the mailbox and f is applied to it.
On the other hand, if f.isDefinedAt(m) is false for every message m in the mailbox, the receiving actor is suspended.
The actor and self constructs are realized as methods defined by the Actor object. Objects have exactly one instance

at runtime, and their methods are similar to static methods in Java.

object Actor {
def self: Actor ...
def actor(body: => Unit): Actor ...
...

}

Note that Scala has different namespaces for types and terms. For instance, the name Actor is used both for the object
above (a term) and the trait which is the result type of self and actor (a type). In the definition of the actormethod, the
argument body defines the behavior of the newly created actor. It is a closure returning the unit value. The leading => in its
type indicates that it is passed by name.
There is also some other functionality in Scala’s actor library which we have not covered. For instance, there is a method

receiveWithin which can be used to specify a time span in which a message should be received allowing an actor to
timeout while waiting for a message. Upon timeout the action associated with a special TIMEOUT pattern is fired. Timeouts
can be used to suspend an actor, completely flush the mailbox, or to implement priority messages [4].

2.1. Extending actor behavior

The fact that message handlers are first-class partial function values can be used to make actors extensible with new
behaviors. A general way to do this is to have classes provide actor behavior using methods, so that subclasses can override
them.

4 Parameters can carry + or - variance annotations which specify the relationship between instantiation and subtyping. The -a, +b annotations indicate
that functions are contravariant in their argument and covariant in their result. In other words Function1[X1, Y1] is a subtype of Function1[X2, Y2]
if X2 is a subtype of X1 and Y1 is a subtype of Y2.
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Fig. 2. Extending actors with new behavior.

Fig. 2 shows an example. The Buffer class extends the Actor trait to define actors that implement bounded buffers
containing atmost N integers.We omit a discussion of the array-based implementation (using the buf array and a number of
integer variables) since it is completely standard; instead, we focus on the actor-specific parts. First, consider the definition
of the act method. Inside an infinite loop it invokes receive passing the result of the reaction method. This method
returns a partial function that defines actions associated with the Put(x) and Getmessage patterns. As a result, instances
of the Buffer class are actors that repeatedly wait for Put or Getmessages.
Assume we want to extend the behavior of buffer actors, so that they also respond to Get2messages, thereby removing

two elements at once from the buffer. The Buffer2 class below shows such an extension. It extends the Buffer class,
thereby overriding its reaction method. The new method returns a partial function which combines the behavior of the
superclass with a new action associated with the Get2message pattern. Using the orElse combinator we obtain a partial
function that is defined assuper.reaction except that it is additionally defined forGet2. The definition of theactmethod
is inherited from the superclass which results in the desired overall behavior.

3. Unified actor model and implementation

Traditionally, programming models for concurrent processes are either thread-based or event-based. We review
their complementary strengths and weaknesses in Section 3.1. Scala Actors unify both programming models, allowing
programmers to trade efficiency for flexibility in a fine-grained way. We present our unified, actor-based programming
model in Section 3.2. Section 3.3 provides an overview as well as important details of the implementation of the Scala
Actors library. Finally, Section 3.4 introduces a set of combinators that allows one to compose actors in a modular way.

3.1. Threads vs. events

Concurrent processes such as actors can be implemented using one of two implementation strategies:

• Thread-based implementation: The behavior of a concurrent process is defined by implementing a thread-specific
method. The execution state is maintained by an associated thread stack (see, e.g., [30]).
• Event-based implementation: The behavior is defined by a number of (non-nested) event handlers which are called from
inside an event loop. The execution state of a concurrent process is maintained by an associated record or object (see,
e.g., [44]).

Often, the two implementation strategies imply different programming models. Thread-based models are usually easier to
use, but less efficient (context switches,memory consumption) [37], whereas event-basedmodels are usuallymore efficient,
but very difficult to use in large designs [41].
Most event-based models introduce an inversion of control. Instead of calling blocking operations (e.g., for obtaining user

input), a programmerely registers its interest to be resumedon certain events (e.g., signaling a pressed button). In the process,
event handlers are installed in the execution environment. The program never calls these event handlers itself. Instead, the
execution environment dispatches events to the installed handlers. Thus, control over the execution of program logic is
‘‘inverted’’. Because of inversion of control, switching from a thread-based to an event-based model normally requires a
global re-write of the program [10,13].
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3.2. Unified actor model

The main idea of our programming model is to allow an actor to wait for a message using two different operations,
called receive and react, respectively. Both operations try to remove a message from the current actor’s mailbox given
a partial function that specifies a set of message patterns (see Section 2). However, the semantics of receive corresponds
to thread-based programming, whereas the semantics of react corresponds to event-based programming. In the following
we discuss the semantics of each operation in more detail.

3.2.1. The receive operation
The receive operation has the following type:

def receive[R](f: PartialFunction[Any, R]): R

If there is a message in the current actor’s mailbox that matches one of the cases specified in the partial function f, the
result of applying f to that message is returned. Otherwise, the current thread is suspended; this allows the receiving actor
to resume execution normally when receiving amatchingmessage. Note that receive retains the complete call stack of the
receiving actor; the actor’s behavior is therefore a sequential program which corresponds to thread-based programming.

3.2.2. The react operation
The react operation has the following type:

def react(f: PartialFunction[Any, Unit]): Nothing

Note that react has return type Nothing. In Scala’s type system a method has return type Nothing iff it never returns
normally. Thismeans that the action specified in f that corresponds to thematchingmessage is the last code that the current
actor executes. The semantics of react closely resembles event-based programming: the current actor registers the partial
function fwhich corresponds to a set of event handlers, and then releases the underlying thread.When receiving amatching
message the actor’s execution is resumed by invoking the registered partial function. In other words, when using react, the
argument partial function has to contain the rest of the current actor’s computation (its continuation) since calling react
never returns. In Section 3.4 we introduce a set of combinators that hide these explicit continuations.

3.3. Implementation

Before discussing the implementation it is useful to clarify some terminology. In the following Section 3.3.1 and
Section 3.3.2 we refer to an actor that is unable to continue (e.g., because it is waiting for amessage) as being suspended. Note
that this notion is independent of a specific concurrency model, such as threads. However, it is often necessary to indicate
whether an actor is suspended in an event-based or in a thread-basedway.We refer to an actor that is suspended in a react
as being detached (since in this case the actor is detached from any other thread). In contrast, an actor that is suspended in
a receive is called blocked (since in this case the underlying worker thread is blocked). More generally, we use the term
blocking as a shortcut for thread-blocking.

3.3.1. Implementation overview
In our framework, multiple actors are executed on multiple threads for two reasons:

(1) Executing concurrent code in parallel may result in speed-ups on multi-processors and multi-core processors.
(2) Executing two interacting actors on different threads allows actors to invoke blocking operations without affecting the
progress of other actors.

Certain operations provided by our library introduce concurrency, namely spawning an actor using actor, and
asynchronously sending a message using the ! operator. We call these operations asynchronous operations. Depending on
the current load of the system, asynchronous operations may be executed in parallel. Invoking an asynchronous operation
creates a task that is submitted to a thread pool for execution. More specifically, a task is generated in the following three
cases:

(1) Spawning a new actor using actor {body} generates a task that executes body.
(2) Sending a message to an actor suspended in a react that enables it to continue generates a task that processes the
message.

(3) Calling react where a message can be immediately removed from the mailbox generates a task that processes the
message.
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The basic idea of our implementation is to use a thread pool to execute actors, and to resize the thread pool whenever
it is necessary to support general thread operations. If actors use only operations of the event-based model, the size of the
thread pool can be fixed. This is different if some of the actors use blocking operations such as receive or system I/O. In the
case where every worker thread is occupied by a blocked actor and there are pending tasks, the thread pool has to grow.
For example, consider a thread pool with a single worker thread, executing a single actor a. Assume a first spawns a new

actor b, and thenwaits to receive amessage from b using the thread-based receive operation. Spawning b creates a new task
that is submitted to the thread pool for execution. Execution of the new task is delayed until a releases the worker thread.
However, when a suspends, the worker thread is blocked, thereby leaving the task unprocessed indefinitely. Consequently,
a is never resumed since the only task that could resume it (by sending it a message) is never executed. The system is
deadlocked.
In our library, system-induced deadlocks are avoided by increasing the size of the thread pool whenever necessary. It is

necessary to add another worker thread whenever there is a pending task and all worker threads are blocked. In this case,
the pending task(s) are the only computations that could possibly unblock any of the worker threads (e.g., by sending a
message to a suspended actor). To do this, a scheduler thread (which is separate from theworker threads of the thread pool)
periodically checks if there is a task in the task queue and all worker threads are blocked. In that case, a new worker thread
is added to the thread pool that processes any remaining tasks.

3.3.2. Implementation details
A detached actor (i.e., suspended in a react call) is not represented by a blocked thread but by a closure that captures the

actor’s continuation. This closure is executed once a message is sent to the actor that matches one of the message patterns
specified in the react. When an actor detaches, its continuation closure is stored in a continuation field of the Actor
trait:

trait Actor {
var continuation: PartialFunction[Any, Unit]
val mailbox = new Queue[Any]
def !(msg: Any): Unit = ...
def react(f: PartialFunction[Any, Unit]): Nothing = ...
...

}

An actor’s continuation is represented as a partial function of type PartialFunction[Any, Unit]. When invoking an
actor’s continuation we pass the message that enables the actor to resume as an argument. The idea is that an actor only
detaches when react fails to remove a matching message from the mailbox. This means that a detached actor is always
resumed by sending it amessage that it is waiting for. Thismessage is passedwhen invoking the continuation.We represent
the continuation as a partial function rather than a function to be able to test whether a message that is sent to an actor
enables it to continue. This is explained in more detail below.
The reactmethod saves the continuation closurewhenever the receiving actor has to suspend (and therefore detaches):

def react(f: PartialFunction[Any, Unit]): Nothing =
synchronized {

mailbox.dequeueFirst(f.isDefinedAt) match {
case Some(msg) =>
schedule(new Task({ () => f(msg) }))

case None =>
continuation = f
isDetached = true
waitingFor = f.isDefinedAt

}
throw new SuspendActorException

}

Recall that a partial function, such as f, is usually represented as a block with a list of patterns and associated actions. If a
message can be removed from the mailbox (tested using dequeueFirst) the action associated with the matching pattern
is scheduled for execution by calling the schedule operation. It is passed a task which contains a delayed computation that
applies f to the receivedmessage, thereby executing the associated action. Tasks and the schedule operation are discussed
in more detail below.
If nomessage can be removed from themailbox, we save f as the continuation of the receiving actor. Since f contains the

complete execution state we can resume the execution at a later point when a matching message is sent to the actor. The
instance variable isDetached is used to tell whether the actor is detached (as opposed to blocked in a receive). If it is,
the value stored in the continuation field is a valid execution state. The instance variable waitingFor stores a function
of type Any => Boolean that is used to test whether a newly sent message enables the actor to continue. It is needed in
addition to the continuation field since the latter cannot be used when the actor is blocked in a receive.
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Finally, by throwing a special exception, control is transferred to the point in the control flow where the current actor
was started or resumed. Since actors are always executed as part of tasks, the SuspendActorException is only caught
inside task bodies.
Tasks are represented as instances of the following class (simplified):

class Task(cont: () => Unit) {
def run() {
try { cont() } // invoke continuation
catch { case _: SuspendActorException =>

// do nothing }
} }

The constructor of the Task class takes a continuation of type () => Unit as its single argument. The class has a single run
method that wraps an invocation of the continuation in an exception handler. The exception handler catches exceptions
of type SuspendActorException which are thrown whenever an actor detaches. The body of the exception handler is
empty since the necessary bookkeeping, such as saving the actor’s continuation, has already been done at the point where
the exception was thrown.
Sending a message to an actor involves checking whether the actor is waiting for the message, and, if so, resuming the

actor according to the way in which it suspended (i.e., using receive or react):

def !(msg: Any): Unit = synchronized {
if (waitingFor(msg)) {
waitingFor = (x: Any) => false
if (isDetached) {
isDetached = false
schedule(new Task({ () => continuation(msg) }))

} else
resume() // thread-based resume

} else mailbox += msg
}

When sending a message to an actor that it does not wait for (i.e., the actor is not suspended or its continuation is not
defined for themessage), themessage is simply enqueued in the actor’s mailbox. Otherwise, the internal state of the actor is
changed to reflect the fact that it is no longer waiting for a message. Then, we test whether the actor is detached; in this case
we schedule a new task that applies the actor’s continuation to the newly received message. The continuation was saved
when the actor detached the last time. If the actor is not detached (which means it is blocked in a receive), it is resumed
by notifying its underlying thread which is blocked on a call to wait.
Spawning an actor using actor {body} generates a task that executes body as part of a new actor:

def actor(body: => Unit): Actor = {
val a = new Actor {
def act() = body }

schedule(new Task({ () => a.act() }))
a }

The actor function takes a delayed expression (indicated by the leading =>) that evaluates to Unit as its single argument.
After instantiating a new Actorwith the given body, we create a new task that is passed a continuation that simply executes
the actor’s body. Note that the actor may detach later on (e.g., by waiting in a react), in which case execution of the task
is finished early, and the rest of the actor’s body is run as part of a new continuation which is created when the actor is
resumed subsequently.
The schedule operation submits tasks to a thread pool for execution. A simple implementation strategywould be to put

new tasks into a global queue that all worker threads in the pool access. However, we found that a global task queue becomes
a serious bottle neck when a program creates short tasks with high frequency (especially if such a program is executed on
multiple hardware threads). To remove this bottle neck, each worker thread has its own local task queue. When a worker
thread generates a new task, e.g., when a message send enables the receiver to continue, the (sending) worker puts it into
its local queue. This means that a receiving actor is often executed on the same thread as the sender. This is not always the
case, becausework stealing balances the work load onmultiple worker threads (which ultimately leads to parallel execution
of tasks) [6]. This means that idle worker threads with empty task queues look into the queues of other workers for tasks to
execute. However, accessing the local task queue ismuch faster than accessing the global task queue thanks to sophisticated
non-blocking algorithms [31]. In our framework the global task queue is used to allow non-worker threads (any JVM thread)
to invoke asynchronous operations.
As discussed before, our thread pool has to grow whenever there is a pending task and all worker threads are blocked.

Unfortunately, on the JVM there is no safeway for library code to find out if a thread is blocked. Therefore, we implemented a
conservative heuristic that approximates the predicate ‘‘all worker threads blocked’’. The approximation uses a time-stamp
of the last ‘‘library activity’’. If the time-stamp is not recent enough (i.e., it has not changed since amultiple of scheduler runs),
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Fig. 3. Producer that generates all values in a tree in in-order.

the predicate is assumed to hold, i.e., it is assumed that all worker threads are blocked. We maintain a global time-stamp
that is updated on every call to send, receive etc.

3.4. Composing actor behavior

Without extending the unified actor model, defining an actor that executes several given functions in sequence is not
possible in a modular way.
For example, consider the two methods below:

def awaitPing = react { case Ping => }
def sendPong = sender ! Pong

It is not possible to sequentially compose awaitPing and sendPong as follows:

actor { awaitPing; sendPong }

Since awaitPing ends in a call to react which never returns, sendPong would never get executed. One way to work
around this restriction is to place the continuation into the body of awaitPing:

def awaitPing = react { case Ping => sendPong }

However, this violates modularity. Instead, our library provides an andThen combinator that allows actor behavior to be
composed sequentially. Using andThen, the body of the above actor can be expressed as follows:

awaitPing andThen sendPong

andThen is implemented by installing a hook function in the actor. This function is called whenever the actor terminates
its execution. Instead of exiting, the code of the second body is executed. Saving and restoring the previous hook function
permits chained applications of andThen.
The Actor object also provides a loop combinator. It is implemented in terms of andThen:

def loop(body: => Unit) = body andThen loop(body)

Hence, the body of loop can end in an invocation of react. Similarly, we can define a loopWhile combinator that
terminates the actor when a provided guard evaluates to false.

4. Examples

In this section we discuss two larger examples. These examples serve two purposes. First, they show how our unified
programming model can be used to make parts of a threaded program event-based with minimal changes to an initial
actor-based program. Second, they demonstrate the use of the combinators introduced in Section 3.4 to turn a complex
program using non-blocking I/O into a purely event-driven program while maintaining a clear threaded code structure.

4.1. Producers and iteration

In the first example, we are going towrite an abstraction of producers that provide a standard iterator interface to retrieve
a sequence of produced values. Producers are defined by implementing an abstract produceValues method that calls a
produce method to generate individual values. Both methods are inherited from a Producer class. For example, Fig. 3
shows the definition of a producer that generates the values contained in a tree in in-order.
Fig. 4 shows an implementation of producers in terms of two actors, a producer actor, and a coordinator actor. The

producer runs the produceValues method, thereby sending a sequence of values, wrapped in Some messages, to the
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Fig. 4. Implementation of the producer and coordinator actors.

Fig. 5. Implementation of the coordinator actor using react.

coordinator. The sequence is terminated by a Nonemessage. The coordinator synchronizes requests from clients and values
coming from the producer.
It is possible to economize one thread in the producer implementation. As shown in Fig. 5, this can be achieved by

changing the call to receive in the coordinator actor into a call to react and using the loop combinator instead of the
while loop. By calling react in its outer loop, the coordinator actor allows the scheduler to detach it from its worker
thread when waiting for a Nextmessage. This is desirable since the time between client requests might be arbitrarily long.
By detaching the coordinator, the scheduler can re-use the worker thread and avoid creating a new one.

4.2. Pipes and asynchronous I/O

In this example, a pair of processes exchanges data over a FIFO pipe. Such a pipe consists of a sink and a source channel
that are used for writing to the pipe and reading from the pipe, respectively. The two processes communicate over the pipe
as follows. One process starts out writing some data to the sink while the process at the other end reads it from the source.
Once all of the data has been transmitted, the processes exchange roles and repeat this conversation.
To make this example more realistic and interesting at the same time, we use non-blocking I/O operations. A process

that wants to write data has to register its interest in writing together with an event handler; when the I/O subsystem can
guarantee that the next write operation will not block (e.g., because of enough buffer space), it invokes this event handler.
The data should be processed concurrently; it is therefore not sufficient to put all the program logic into the event

handlers that are registered with the I/O subsystem. Moreover, we assume that a process may issue blocking calls while
processing the received data; processing the data inside an event handler could therefore block the entire I/O subsystem,
which has to be avoided. Instead, the event handlers have to either notify a thread or an actor, or submit a task to a thread
pool for execution.
In the following, we first discuss a solution that uses threads to represent the end points of a pipe. After that, we present

an event-based implementation and compare it to the threaded version. Finally, we discuss a solution that uses Scala Actors.
The solutions are compared with respect to synchronization and code structure.
We use a number of objects and methods whose definitions are omitted because they are not interesting for our

discussion. First, processes have a reference sink to an I/O channel. The channel provides a writemethod that writes the
contents of a buffer to the channel. The non-blocking I/O API is used as follows. The user implements an event handler which
is a class with a single method that executes the I/O operation (and possibly other code). This event handler is registered
with an I/O event dispatcherdisp togetherwith a channel; the dispatcher invokes an event handlerwhen the corresponding
(read or write) event occurs on the channel that the handler registered with. Each event handler is only registered until it
has been invoked. Therefore, an event handler has to be registered with the dispatcher for each event that it should handle.

4.2.1. Thread-based pipes
In the first solution that we discuss, each end point of a pipe is implemented as a thread. Fig. 6 shows the essential parts

of the implementation. The run method of the Proc class on the left-hand side shows the body of a process thread. First,
we test whether the process should start off writing or reading. The writeData and readData operations are executed
in the according order. After the writing process has written all its data, it has to synchronize with the reading process, so
that the processes can safely exchange roles. This is necessary to avoid the situation where both processes have registered a
handler for the same kind of I/O event. In this case, a process might wait indefinitely for an event because it was dispatched
to the other process. We use a simple barrier of size 2 for synchronization: a thread invoking await on the exch barrier
is blocked until a second thread invokes exch.await. The writeData method is shown on the right-hand side of Fig. 6
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Fig. 6. Thread-based pipes.

Fig. 7. Event-driven pipes.

(the readData method is analogous). First, it fills a buffer with data using the fill method. After that, it registers the
writeHnd handler for write events on the sink with the I/O event dispatcher (writeHnd is discussed below). After that,
the process enters a loop. First, it waits on the dataReady barrier until the write event handler has completed the next
write operation. When the thread resumes, it first resets the dataReady barrier to the state where it has not been invoked,
yet. The thread exits the loop when it has written 32 kB of data. Otherwise, it refills the buffer if it has been completed,
and re-registers the event handler for the next write operation. The writeHnd event handler implements a single method
handleWrite thatwrites data stored inbuf to thesink, thereby counting the number of byteswritten. After that, it notifies
the concurrently running writer thread by invoking await on the dataReady barrier.

4.2.2. Event-driven pipes
Fig. 7 shows an event-driven version that is functionally equivalent to the previous threaded program. The process

constructor which is the body of the Proc class shown on the left-hand side, again, tests whether the process starts out
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Fig. 8. Actor-based pipes.

writing or reading. However, based on this test only one of the two I/O operations is called. The reason is that each I/O
operation, such as writeData, registers an event handler with the I/O subsystem, and then returns immediately. The event
handler for the second operationmayonly be installedwhen the last handler of the previous operation has run. Therefore,we
have to decide inside the event handler of the write operation whether we want to read subsequently or not. The last field
keeps track of this decision across all event handler invocations. Iflast isfalse, we invokereadData afterwriteDatahas
finished (and vice versa); otherwise, the sequence of I/O operations is finished. The definition of an event handler for write
events is shown on the right-hand side of Fig. 7 (read events are handled in an analogous manner). As before, the writeHnd
handler implements the handleWrite method that writes data from buf to the sink, thereby counting the number of
bytes written. To do the concurrent processing the handler submits a task to a thread pool for execution. The definition of
this task is shown above. Inside the task we first test whether all data has been written; if so, the next I/O operation (in this
case, readData) is invoked depending on the field last that we discussed previously. If the complete contents of buf has
been written, it is refilled. Finally, the task re-registers the writeHnd handler to process the next event.
Compared to thread-based programming, the event-driven style obscures the control flow. For example, consider the

writeDatamethod. It does some work, and then registers an event handler. However, it is not clear what the operational
effect of writeData is. Moreover, what happens after writeData has finished its actual work? To find out, we have to
look inside the code of the registered event handler. This is still not sufficient, since also the submitted task influences the
control flow. In summary, the program logic is implicit, and has to be recovered in a tedious way. Moreover, state has to
be maintained across event handlers and tasks. In languages that do not support closures this often results in manual stack
management [1].

4.2.3. Actor-based pipes
Fig. 8 shows the same program using Scala Actors. The Proc class extends the Actor trait; its actmethod specifies the

behavior of an end point. The body of the actmethod is similar to the process body of the thread-based version. There are
two important differences. First, control flow is specified using the andThen combinator. This is necessary since writeData
(and readData) may suspend using react. Without using andThen, parts of the actor’s continuation not included in the
argument closure of the suspending reactwould be ‘‘lost’’. Basically, andThen appends the closure on its right-hand side to
whatever continuation is saved during the execution of the closure on its left-hand side. Second, end point actors exchange
messages to synchronize when switching roles from writing to reading (and vice versa). The writeDatamethod is similar
to its thread-based counterpart. The while loop is replaced by the loopWhile combinator since inside the loop the actor
may suspend using react. At the beginning of each loop iteration the actor waits for a Written message signaling the
completion of a write event handler. The number of bytes written is carried inside the message which allows us to make
bytesWritten a local variable; in the thread-based version it is shared among the event handler and the process. The
remainder of writeData is the same as in the threaded version. The writeHnd handler used in the actor-based program
is similar to the thread-based version, except that it notifies its process using an asynchronous message send. Note that, in
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general, the event handler is run on a threadwhich is different from theworker threads used by our library to execute actors
(the I/O subsystemmight use its own thread pool, for example). To make the presented scheme work, it is therefore crucial
that arbitrary threads may send messages to actors.
Conclusion. Compared to the event-driven program, the actor-based version improves on the code structure in the same
way as the thread-based version. Passing result values as part of messages makes synchronization slightly clearer and
reduces the number of global variables compared to the thread-based program. However, in Section 7 we show that an
event-based implementation of a benchmark version of the pipes example is muchmore efficient and scalable than a purely
thread-based implementation. Our unified actor model allows us to implement the pipes example in a purely event-driven
way while maintaining the clear code structure of an equivalent thread-based program.

5. Channels and selective communication

In the programmingmodel that we have described so far, actors are the only entities that can send and receivemessages.
Moreover, the receive operation ensures locality, i.e., only the owner of the mailbox can receive messages from it. Therefore,
race conditionswhen accessing themailbox are avoided by design. Types ofmessages are flexible: they are usually recovered
through patternmatching. Ill-typedmessages are ignored instead of raising compile-time or run-time errors. In this respect,
our library implements a dynamically-typed embedded domain-specific language.
However, to take advantage of Scala’s rich static type system, we need a way to permit strongly-typed communication

among actors. For this, we use channelswhich are parameterizedwith the types ofmessages that can be sent to and received
from it, respectively. Moreover, the visibility of channels can be restricted according to Scala’s scoping rules. That way,
communication between sub-components of a system can be hidden. We distinguish input channels from output channels.
Actors are then treated as a special case of output channels:

trait Actor extends OutputChannel[Any] { ... }

The possibility for an actor to have multiple input channels raises the need to selectively communicate over these
channels. Up until now, we have shown how to use receive to remove messages from an actor’s mailbox. We have not
yet shown how messages can be received from multiple input channels. Instead of adding a new construct, we generalize
receive to work over multiple channels.
For example, a model of a component of an integrated circuit can receive values from both a control and a data channel

using the following syntax:

receive {
case DataCh ! data => ...
case CtrlCh ! cmd => ...

}

6. Case study

In this sectionwe show how our unified actormodel addresses some of the challenges of programmingweb applications.
In the process, we review event- and thread-based solutions to common problems, such as blocking I/O operations. Our goal
is then to discuss potential benefits of our unified approach. Advanced web applications typically pose at least the following
challenges to the programmer:

• Blocking operations. There is almost always some functionality that is implemented using blocking operations. Possible
reasons are lack of suitable libraries (e.g., for non-blocking socket I/O), or simply the fact that the application is built on
top of a large code base that uses potentially blocking operations in some places. Typically, rewriting infrastructure code
to use non-blocking operations is not an option.
• Non-blocking operations. On platforms such as the JVM, web application servers often provide some parts (if not all) of
their functionality in the form of non-blocking APIs for efficiency. Examples are request handling, and asynchronous
HTTP requests.
• Race-free data structures. Advanced web applications typically maintain user profiles for personalization. These profiles
can be quite complex (some electronic shopping sites apparently track every item that a user visits). Moreover, a single
user may be logged in on multiple machines, and issue many requests in parallel. This is common on web sites, such
as those of electronic publishers, where single users represent whole organizations. It is therefore mandatory to ensure
race-free accesses to a user’s profile.

6.1. Thread-based approaches

VMs overlap computation and I/O by transparently switching among threads. Therefore, even if loading a user profile
from disk blocks, only the current request is delayed. Non-blocking operations can be converted to blocking operations
to support a threaded style of programming: after firing off a non-blocking operation, the current thread blocks until it is



P. Haller, M. Odersky / Theoretical Computer Science 410 (2009) 202–220 215

notified by a completion event. However, threads do not come for free. On most mainstream VMs, the overhead of a large
number of threads – including context switching and lock contention – can lead to serious performance degradation [44,
18]. Overuse of threads can be avoided by using bounded thread pools [30]. Shared resources such as user profiles have to be
protected using synchronization operations. This is known to be particularly hard using shared-memory locks [32]. We also
note that alternatives such as transactional memory [25,26], even though a clear improvement over locks, do not provide
seamless support for I/O operations as of yet. Instead, most approaches require the use of compensation actions to revert
the effects of I/O operations, which further complicate the code.

6.2. Event-based approaches

In an event-based model, the web application server generates events (network and I/O readiness, completion
notifications etc.) that are processed by event handlers. A small number of threads (typically one per CPU) loop continuously
removing events from a queue and dispatching them to registered handlers. Event handlers are required not to block since
otherwise the event-dispatch loop could be blocked, which would freeze the whole application. Therefore, all operations
that could potentially block, such as the user profile look-up, have to be transformed into non-blocking versions. Usually,
this means executing them on a newly spawned thread, or on a thread pool, and installing an event handler that gets called
when the operation is completed [38]. Usually, this style of programming entails an inversion of control that causes the code
to lose its structure and maintainability [10,13].

6.3. Scala Actors

In our unified model, event-driven code can easily be wrapped to provide a more convenient interface that avoids
inversion of control without spending an extra thread [24]. The basic idea is to decouple the thread that signals an event
from the thread that handles it by sending a message that is buffered in an actor’s mailbox. Messages sent to the same
actor are processed atomically with respect to each other. Moreover, the programmer may explicitly specify in which order
messages should be removed from itsmailbox. Like threads, actors support blocking operations using implicit thread pooling
as discussed in Section 3.3. Compared to a purely event-based approach, users are relieved from writing their own ad hoc
thread pooling code. Since the internal thread pool can be global to theweb application server, the thread pool controller can
leverage more information for its decisions [44]. Finally, accesses to an actor’s mailbox are race-free. Therefore, resources
such as user profiles can be protected by modeling them as (thread-less) actors.

7. Experimental results

Optimizing performance across threads and events involves a number of non-trivial trade-offs. Therefore, we do notwant
to argue that our framework is better than event-based systems or thread-based systems or both. Instead, the following basic
experiments show that the performance of our framework is comparable to those of both thread-based and event-based
systems.

7.1. Message passing

In the first benchmark we measure throughput of blocking operations in a queue-based application. The application is
structured as a ring of n producers/consumers (in the following called processes) with a shared queue between each of them.
Initially, k of these queues contain tokens and the others are empty. Each process loops removing an item from the queue
on its right and placing it in the queue on its left.
The following tests were run on a 3.00 GHz Intel Pentium 4 processor with 2048MBmemory, running Sun’s Java HotSpot

VM 1.5.0 under Linux 2.6.15 (SMP configuration). We set the JVM’s maximum heap size to 1024MB to provide for sufficient
physical memory to avoid any disk activity. In each case we took the median of 5 runs. The execution times of three
equivalent implementations written using (1) our actor library, (2) pure Java threads, and (3) SALSA (version 1.1.1), a Java-
based actor language [40], respectively, are compared. We run the actor-based version using three different configurations.
The first and second configurations fix the number of pool threads to 4 and 1, respectively. The third configuration runs
without a thread pool; it is not equivalent with event-based actors, though, since we still create tasks that are put into a
queue which is processed by a single thread. Therefore, the third configuration avoids the overhead of work stealing and
thread pool resizing.
Fig. 9 shows the number of token passes per second (throughput) depending on the ring size. Note that both scales are

logarithmic. For less than 1500 processes, pure Java threads are on average 3 times faster than actors that manage a pool
with 4 threads. The overhead that stems from managing the thread pool contributes a factor of 2.6 (threads are on average
14% faster than actors without the runtime system overhead). Usingmore than a single pool thread increases throughput by
about 18%; This performance gain is due to the two hyper threads of the CPU. For 1500 or more processes, the throughput
of threads breaks in and reaches a minimum of about 23,000 tokens per second at 4500 processes. At this point, and up
until 20,000 processes, throughput of the default actor configuration with 4 pool threads remains constant at about 39,000
tokens per seconds. The VM is unable to create a ring with 5500 threads as it runs out of heap memory. In contrast, using
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Fig. 9. Throughput (number of token passes per second) for a fixed number of 10 tokens.

Fig. 10. Speed-up for Fibonacci and Integration benchmarks.

Scala Actors the ring can be operated with as many as 600,000 processes (since every queue is also an actor this amounts to
1,200,000 simultaneously active actors). Throughput of Scala Actors is on average over 20 times higher than that of SALSA.
When creating 2500 processes using SALSA, the VM runs out of heap memory.
Conclusion. Purely event-based actors are competitive with native Java threads, even for a small number of processes.
However, the overhead of our runtime system that involves work stealing and thread-pool monitoring/resizing can
be significant when the number of processes is small. When running with only 10 processes, (multi-threaded) actors
are 3.4 times slower than pure Java threads. In this benchmark threads use simple monitor-style synchronization, i.e.,
synchronized methods where signaling is done between threads accessing the same monitor. Apparently, this style of
synchronization is well-supported on modern JVMs. Only for a relatively large number of threads (>= 1000) the overhead
of context switching becomes significant (contention is low since each monitor is accessed by only two threads).

7.2. Multi-core scalability

In the second experiment, we are interested in the speed-up that is gained by adding processor cores to a system. The
following tests were run on a multi-processor with 4 dual-core AMD Opteron 64-Bit processors (2.8 GHz each) with 16
GB memory, running Sun’s Java HotSpot 64-Bit Server VM 1.5.0 under Linux 2.6.16. In each case we took the median of
5 runs. We ran direct translations of the Fibonacci (Fib) and Gaussian integration (Integ) programs distributed with Lea’s
high-performance fork/join framework for Java (FJ) [31]. The speed-ups as shown in Fig. 10 are linear as expected since the
programs run almost entirely in parallel.

7.3. I/O performance

The following benchmark scenario is similar to those used in the evaluation of other thread implementations [42,33].We
aim to simulate the effects of a large number of mostly-idle client connections. For this purpose, we create a large number
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Fig. 11. Network scalability benchmark on single-processor.

Fig. 12. Network scalability benchmark on multi-processor.

of FIFO pipes andmeasure the throughput of concurrently passing a number of tokens through them. If the number of pipes
is less than 128, the number of tokens is one quarter of the number of pipes; otherwise, exactly 128 tokens are passed
concurrently. The idle end points are used to model slow client links. After a token has been passed from one process to
another, the processes at the two end points of the pipe exchange roles, and repeat this conversation.
Fig. 11 shows the performance of implementations based on events, threads, and actors under load. The programs used

to obtain these results are slightly extended versions of those discussed in Section 4.2. They were run on a 1.60 GHz
Intel Pentium M with 512 MB memory, running Sun’s Java HotSpot Server VM 1.5.0 under Linux 2.6.17. In each case,
we took the average of 5 runs. In the first version, end points are implemented as actors that are run on a single thread
without the overhead of the runtime system that we discussed in Section 3.3. The second version uses a purely event-
based implementation; concurrent tasks are run on a lightweight fork/join execution environment [31]. The third program
is basically the same as the first one, except that actors run in ‘‘unified mode’’ using the runtime system which manages 4
pool threads by default. The overhead of unified actors compared to purely event-based actors ranges between 8% (4 pipes)
and 70% (256 pipes). In the last version, end points are implemented as standard JVM threads. In this example, events are
on average 120% faster than threads, unified actors are on average 66% faster.
Fig. 12 shows the performance of the actor-based and thread-based programs when run on a multi-processor machine

with 4 hardware threads (2 hyper-threaded Intel Xeon 3.06 GHz with 2 GB memory, running Linux 2.6.11 SMP). When the
number of non-idle threads increases from 2 to 4 in the thread-based version, throughput increases by about 26%. After that
the additional threads basically induce only additional overhead. In the version that uses our unified model, growing the
thread pool from 2 to 4 workers increases throughput on average by 74%. Even though the overhead of the runtime system
for our unified actor model can be as high as 70% on a single CPU, this overhead is quickly amortized when the program is
run on a multi-processor system.
Conclusion. The synchronization patterns found in the network scalability benchmark are more likely to be found in real-
world programs than those of the previous benchmarks. Simple monitor-style synchronization is not sufficient; instead,
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barriers and blocking queues are used to synchronize end points and event handlers. Moreover, threads are likely to be
blocked more often, waiting for I/O events. This situation enables actors to amortize their overhead and to reverse the
result of the message passing benchmark. For 64 pipes or less, the throughput of actors is on average 69% higher than the
throughput of threads. Presumably, thread notification (notify on the JVM) is relatively expensive. On a multi-processor
system with 4 hardware threads, only actors enable a significant speed-up in this benchmark.

8. Related and future work

Lauer and Needham [29] note in their seminal work that threads and events are dual to each other. They suggest that any
choice of either one of them should therefore be based on the underlying platform. Almost two decades later, Ousterhout
[37] argues that threads are a bad idea not only because they often perform poorly, but also because they are hard to use.
More recently, von Behren and others [41] point out that even though event-driven programs often outperform equivalent
threaded programs, they are too difficult to write. The two main reasons are: first, the interactive logic of a program is
fragmented across multiple event handlers (or classes, as in the state design pattern [21]). Second, control flow among
handlers is expressed implicitly through manipulation of shared state [10]. In the Capriccio system [42], static analysis and
compiler techniques are employed to transform a threaded program into a cooperatively-scheduled event-driven program
with the same behavior.
There are several other approaches that avoid the above control inversion. However, they have either limited scalability,5

or they lack support of blocking operations. Termite Scheme [23] integrates Erlang’s programming model into Scheme.
Scheme’s first-class continuations are exploited to express process migration. However, their system apparently does not
support multiple processor cores. All published benchmarks were run in a single-core setting. Responders [10] provide
an event-loop abstraction as a Java language extension. Since their implementation spends a VM thread per event-loop,
scalability is limited on standard JVMs. SALSA [40] is a Java-based actor language that has a similar limitation (each actor
runs on its own thread). In addition, message passing performance suffers from the overhead of reflective method calls.
Timber [5] is an object-oriented and functional programming language designed for real-time embedded systems. It offers
message passing primitives for both synchronous and asynchronous communication between concurrent reactive objects. In
contrast to our programming model, reactive objects are not allowed to call operations that might block indefinitely. Frugal
objects [22] (FROBs) are distributed reactive objects that communicate through typed events. FROBs are basically actors
with an event-based computation model. Similar to reactive objects in Timber, FROBs may not call blocking operations.
In languages like Haskell and Scala, the continuationmonad can also be used to implement lightweight concurrency [11].

In fact, it is possible to define amonadic interface for the actors thatwe present in this paper; however, a thorough discussion
is beyond the scope of this paper. Li and Zdancewic [33] use the continuation monad to combine events and threads in
a Haskell-based system for writing high-performance network services. However, they require blocking system calls to
be wrapped in non-blocking operations. In our library actors subsume threads, which makes this wrapping unnecessary;
essentially, the programmer is relieved from writing custom thread-pooling code.
The actor model has also been integrated into various Smalltalk systems. Actalk [7] is an actor library for Smalltalk-80

that does not support multiple processor cores. Actra [39] extends the Smalltalk/V VM to provide lightweight processes. In
contrast, we implement lightweight actors on unmodified VMs.
Other concurrent programming languages and systems also use actors or actor-like abstractions. ProActive [8] is

a middleware for programming distributed Grid applications. Its main abstractions are a form of deterministic active
objects [9] that communicate using asynchronous method calls and futures. ProActive allows distributing active objects
on a large number of machines in a Grid. In contrast, Scala Actors address the trade-off between threads and events for
achieving highly scalable multithreading on a single machine. AmbientTalk [16] provides actors based on communicating
event loops [35]. AmbientTalk implements a protocol mapping [15] that allows native (Java) threads to interact with actors
while preserving non-blocking communication among event-loops. However, the mapping relies on the fact that each actor
is always associated with its own VM thread, whereas Scala’s actors can be thread-less. While AmbientTalk offers a bridge
between two distinct concurrency models, Scala Actors provide a single unified concurrency model.
In Section 7 we show that our actor implementation scales to a number of actors that is two orders of magnitude larger

than what purely thread-based systems such as SALSA support. Moreover, results suggest that our model scales with the
number of processor cores in a system.Our unified actormodel provides seamless support for blocking operations. Therefore,
existing thread-blocking APIs do not have to be wrapped in non-blocking operations. Unlike approaches such as Actra our
implementation provides lightweight actor abstractions on unmodified (Java) VMs.
Our library was inspired to a large extent by Erlang’s elegant programming model. Erlang [4] is a dynamically-typed

functional programming language designed for programming real-time control systems. The combination of lightweight
isolated processes, asynchronousmessage passingwith patternmatching, and controlled error propagation has been proven
to be very effective [3,36]. One of our main contributions lies in the integration of Erlang’s programming model into a
full-fledged object-oriented and functional language. Moreover, by lifting compiler magic into library code we achieve

5 We use the term scalability to refer to the number of concurrent processes; in some related domains, e.g., distributed programming, scalability is often
measured in number of machines.
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compatibility with standard, unmodified JVMs. To Erlang’s programming model we add new forms of composition as well
as channels, which permit strongly-typed and secure inter-actor communication.
The idea to implement lightweight concurrent processes using continuations has been explored many times [43,27,12].

However, none of the existing techniques are applicable to VMs such as the JVM because (1) the security model restricts
accessing the run-time stack, and (2) heap-based stacks break interoperability with existing code.
The approach used to implement thread management in the Mach 3.0 kernel [17] is at least conceptually similar to ours.

When a thread blocks in the kernel, either it preserves its register state and stack and resumes by restoring this state, or it
preserves a pointer to a continuation function that is called when the thread is resumed. Instead of function pointers we use
closures that automatically lift referenced stack variables on the heap avoiding explicit state management in many cases.
Moreover, we save a richer continuation in form of a partial function. A partial function allows testing whether it is defined
for a given value. We use this test to decide whether an actor should be resumed upon receiving a message.
There is a rich body ofwork onbuilding fastweb servers, using events or a combination of events and threads (for example

SEDA [44]). However, a comprehensive discussion of this work is beyond the scope of this paper.
Ongoing and future work. The Scala Actors library includes a runtime system that provides basic support for remote
(i.e., inter-VM) actor communication. In ongoing work we are extending the framework with remote actor references
that support volatile connections, similar to ambient references [14]. Integrating abstractions for fault-tolerant distributed
programming (e.g., [20,46]) into Scala Actors is an interesting area for future work.

9. Conclusion

In this paper we have shown how thread-based and event-based models of concurrency can be unified. The main idea
of our unified programming model is an actor abstraction that provides two kinds of operations for receiving messages.
The receive operation retains the complete call stack of the receiver while waiting for a message, while the react
operation retains only a continuation closure. The first form of suspension corresponds to thread-based, the second form to
event-based programming. As a result, our unified concurrency model combines the benefits of threads and events while
abstracting commonalities. The presented ideas have been implemented in the Scala Actors library which provides actor-
based concurrency supporting high-level communication throughmessages andpatternmatching.Webelieve that ourwork
closes an important gap between message-passing concurrency and popular VM platforms.
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