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Abstract

Single-threaded programming is already considered a
complicated task. The move to multi-threaded programming
only increases the complexity and cost involved in software
development due to rewriting legacy code, training of the
programmer, increased debugging of the program, and ef-
forts to avoid race conditions, deadlocks, and other prob-
lems associated with parallel programming. To address
these costs, other approaches, such as automatic thread ex-
traction, have been explored. Unfortunately, the amount of
parallelism that has been automatically extracted is gener-
ally insufficient to keep many cores busy.

This paper argues that this lack of parallelism is not an
intrinsic limitation of the sequential programming model,
but rather occurs for two reasons. First, there exists no
framework for automatic thread extraction that brings to-
gether key existing state-of-the-art compiler and hardware
techniques. This paper shows that such a framework can
yield scalable parallelization on several SPEC CINT2000
benchmarks. Second, existing sequential programming lan-
guages force programmers to define a single legal program
outcome, rather than allowing for a range of legal out-
comes. This paper shows that natural extensions to the se-
quential programming model enable parallelization for the
remainder of the SPEC CINT2000 suite. Our experience
demonstrates that, by changing only 60 source code lines,
all of the C benchmarks in the SPEC CINT2000 suite were
parallelizable by automatic thread extraction. This process,
constrained by the limits of modern optimizing compilers,
yielded a speedup of 454% on these applications.

1 Introduction
Until recently, increasing uniprocessor clock speed and

microarchitectural improvements could be counted upon to
provide performance improvement for all programs. To-
day, this is no longer true. Instead, processor manufacturers
now use the continuing growth in transistor count to place
multiple cores on a processor die. Machines with four or
more cores are already shipping, and tomorrow’s machines
promise still more cores. However, these additional cores

only improve the performance of multi-threaded applica-
tions. The prevalence of single-threaded applications means
that these cores often provide no benefit.

To encourage development of multi-threaded applica-
tions, many new languages have been proposed to ease the
burden of writing parallel programs [4, 9, 11]. While these
languages make parallel programming easier than in the
past, the effort involved in creating correct and efficient par-
allel programs is still far more than that of writing the equiv-
alent single-threaded version. Developers must be trained
to program and debug with parallel concerns in mind (i.e.
deadlock, livelock, race conditions). Converting an exist-
ing single-threaded application is often worse, as it was not
developed to be easily parallelized in the first place.

Automatic parallelization techniques that extract threads
from single-threaded programs without programmer inter-
vention do not suffer from this cost. Because of this, these
techniques should be preferred over manual paralleliza-
tion. Unfortunately, except in the scientific domain, auto-
matic parallelization techniques have not proven successful
enough for broad adoption.

This paper argues that this lack of success has occurred
for two reasons. First, no existing framework has brought
together the many techniques in compiler analysis, com-
piler optimization, and hardware support to allow for ex-
traction of parallelism. As this paper shows, many applica-
tions can be parallelized through the integration of these ex-
isting techniques in a modern compiler with whole-program
scope. Second, for the many applications which are not
parallelized by these existing techniques, the problem with
automatic extraction of threads comes from artificial con-
straints imposed by sequential execution models. In partic-
ular, the programmer is often unable to specify that multiple
legal outcomes of the program exist. Because of this, the
compiler is forced to maintain the single correct output that
a sequential program specifies, even when others are more
desirable. By expressing multiple correct execution orders,
a parallelization can often be achieved automatically with-
out the cost of moving to a multi-threaded programming
model. Interestingly, the extensions to the sequential model
are simple and natural, minimizing the burden on program-
mers.
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To illustrate this position, this paper explores as a case
study the manual parallelization of the SPEC CINT2000
benchmarks. Where possible, the parallelization was per-
formed, by compiler writers familiar with the technology,
as a modern parallelizing compiler could be expected to
perform. Many of the methods used have been explored
in the compiler and architecture community, but have not
been combined. This combination of existing methods with
simple and natural program changes empowered automatic
thread extraction to find a high degree of parallelism.

In summary, the contributions of this paper are:
• A description of the necessary compiler and hardware

techniques to facilitate automatic parallelization.
• An extension to the existing sequential programming

model that allows the programmer to communicate legal
alternate program outcomes to the compiler.

• A characterization of changes to each program along
with a performance analysis of the resulting effect for
the SPEC CINT2000 suite.

Section 2 provides an overview of existing techniques
and augmentations to the sequential programming model
that can be brought together to parallelize applications. A
description of the parallelization and simulation methodol-
ogy is given in Section 3. Section 4 shows how the frame-
work and extensions from Section 2 allow for the paral-
lelization of the applications in the SPEC CINT2000 suite.
Related work in parallelization is presented in Section 5.
Section 6 concludes the paper.

2 Framework for Automatic Parallelization
This section describes the framework proposed for auto-

matic parallelization. This framework includes a compiler
infrastructure to identify parallelism in sequential code,
hardware to efficiently execute the parallelized code, and
extensions to a sequential programming model to expose
additional parallelism. Using the SPEC CINT2000 bench-
mark suite as case studies, Section 4 will show how this
framework enables the automatic extraction of parallelism.

2.1 Compiler and Hardware Support
To extract parallelism from sequential code, two promis-

ing methodologies have been presented in the literature,
Thread-Level Speculation (TLS) [13, 30] and Decoupled
Software Pipelining (DSWP) [20, 26]. TLS techniques
speculatively execute subsequent iterations of a loop before
the current iteration finishes, attempting to extract DOALL
parallelism. Instead of executing loop iterations in parallel,
DSWP partitions each loop iteration into a series of stages,
and then executes the stages in parallel, with stages poten-
tially executing code from different iterations of the loop
concurrently.

However, for successful parallelization, neither tech-
nique is very effective in its original form. For example,

with TLS, some dependences must be synchronized, rather
than speculated, to avoid excessive misspeculation [30].
Likewise, to maximize parallelism using TLS, cores should
not stall waiting to commit a completed speculative itera-
tion, but should be provided with sufficient buffering re-
sources to begin executing subsequent iterations.

Likewise, DSWP must also be extended. In particular,
it must support speculation and leverage TLS-like mem-
ory subsystems to privatize memory [33]. To leverage
additional cores and handle imbalanced pipeline stages,
DSWP must replicate stages that contain no loop-carried
dependences. This allows DSWP to extract more scalable
DOALL parallelism by allowing different iterations to run
in parallel on the same static code, similar to TLS.

Both TLS and DSWP require judicious use of specula-
tion to break infrequent or easily predictable dependences
inhibiting parallelization. This involves not only alias spec-
ulation, but also value speculation [18, 25] and control spec-
ulation. The hardware substrate should ensure that misspec-
ulation is avoided if at all possible. For example, silent
stores [15] should avoid triggering alias misspeculation,
and, similarly, stored values should be eagerly forwarded
to later threads to avoid misspeculation [10].

Finally, the compiler should leverage modern transfor-
mations and analyses to avoid over-estimating dependences.
These techniques range from traditional techniques like re-
duction expansions [19, 21] to more modern techniques,
such as aggressive alias analysis [5], speculative pointer
analysis [28], or variable value analysis [22]. Proving two
memory operations do not conflict or proving that a vari-
able holds a constant value at a certain program point can
be invaluable in unlocking parallelism.

2.2 Compilation Scope

The compiler and hardware support described in the
previous section is often sufficient to parallelize portions
of an application. Our experience parallelizing the SPEC
CINT2000 suite, however, showed that significant paral-
lelism existed at or close to the outermost application loop.
Consequently, it is important that the parallelization frame-
work is powerful enough to identify and leverage paral-
lelism that occurs at any loop level in the code.

The ability to find, analyze, and optimize a loop without
regard to its position in the code is non-trivial. The scale of
the problem at the outer loop level introduces compile-time
concerns. Applying transformations (e.g. inserting synchro-
nization) that touch code deeply nested within function calls
introduces another degree of complexity. By using whole
program optimization [32], procedure boundaries can be re-
moved, giving the compiler the ability to both see and mod-
ify code, regardless of location in the program. Addition-
ally, through region formation, the compiler can control the
amount of code to analyze and optimize.



2.3 Extending the Sequential Programming
Model

Even with the framework described thus far, some ap-
plications will defy automatic parallelization. For many
of these applications, there is no single required order of
execution or even a single correct output. Rather, a mul-
titude of execution orders and outputs are correct, though
syntactically or semantically different. This subsection in-
troduces two extensions to a sequential programming model
to present this information to the compiler, allowing the ex-
traction of parallelism.

2.3.1 Y-branch

Of those applications with many correct outputs, a large
subset of these have outputs where some are more prefer-
able than others. When parallelized by hand, the developer
must make a choice that trades off parallel performance for
optimality of output. Instead, this flexibility should be given
to the compiler, as it is often better at targeting the unique
features of the machine it is compiling for. To this end, we
propose the use of a Y-branch in the source code. The se-
mantics of the Y-branch is that for all dynamic instances,
the true path can be taken regardless of the condition of the
branch [35]. The compiler is then free to generate code that
pursues this path when it is profitable to due so. In partic-
ular, this allows the compiler to balance the quality of the
output with the parallelism achieved.

dict = start_dictionary();
while ((char = read(1)) != EOF) {

profitable = compress(char, dict)

@YBRANCH(probability=.00001)
if (!profitable)

dict = restart_dictionary(dict);
}
finish_dictionary(dict);

(a) Y-branch

#define CUTOFF 100000
dict = start_dictionary();
int count = 0;
while ((char = read(1)) != EOF) {

profitable = compress(char, dict)

if (!profitable) {
dict = restart_dictionary(dict);

} else if (count == CUTOFF) {
dict = restart_dictionary(dict);
count = 0;

}
count++;

}
finish_dictionary(dict);

(b) Manual Choice of Parallelism

Figure 1. Motivating Example for Y-branch

Figure 1a illustrates a case where the Y-branch can be
used. The code is a simplified version of a compression al-
gorithm that uses a dictionary. Heuristics are used to restart
the dictionary at arbitrary intervals. Rather than inserting
code to split the input up into multiple blocks, as is done in
Figure 1b, the Y-branch communicates to the compiler that
it can control when a new dictionary is started, allowing it
to choose an appropriate block size. This gives the com-
piler the ability to break dependences related to the dictio-
nary, and extract multiple threads. A probability argument
informs the compiler of the relative importance of compres-
sion to performance. In the case of Figure 1a, a probabil-
ity of .00001 was chosen to indicate the dictionary should
not be reset until at least 100000 characters have been com-
pressed. Determination of the proper probability is left to a
profiling pass or the programmer. Simple metrics, such as
the minimum number of characters, are often sufficient.

2.3.2 Commutative

Many functions have the property that multiple calls to
them are interchangeable even though they maintain inter-
nal state. Figure 2 is the code for the random number gen-
erator, Yacm random, from 300.twolf, which contains
an internal dependences recurrence on the seed variable.
Multiple calls to this function will be forced to execute se-
rially due to this dependence. The Commutative annotation
informs the compiler that the calls to Yacm random can
occur in any order.

static int seed;

@Commutative
int Yacm_random() {

int temp = seed / 127773L;
seed = 16807L * (seed - temp * 127773L)

- (temp * 2836L);
if( seed < 0 )

seed += 2147483647L;
return seed;

}

Figure 2. Motivating Example for Commutative

In general, the Commutative annotation allows the devel-
oper to leverage the notion of a commutative mathematical
operator, which can facilitate parallelism by allowing func-
tion calls to execute in any order. This annotation is similar
to commutativity analysis [27]: both have the goal of facili-
tating parallelization. However, calls to Commutative func-
tions are generally not commutative in the way that com-
mutativity analysis requires. Commutativity analysis looks
for sets of operations whose order can be changed, but that
result in the same data in the same location. Commutative
functions can be executed in an order that leads to differ-
ent values than the sequential version. The differences that
result are only relevant inside the function and not in the
application as a whole. Finally, the programmer annotates



Commutative based on the definition of a function and not
the many call sites it may have, making it easy to apply.

The semantics of the Commutative annotation is that,
outside of the function, the outputs of the function call are
only dependent upon its inputs. This allows the compiler to
reorder calls to a Commutative function without the inter-
nal dependence getting in the way. The Commutative func-
tion itself executes atomically when called and, inside the
function, dependences that are local to the function are re-
spected. This ensures that a well-defined sequence of calls
to the Commutative function exists.

The Commutative annotation can also take an argument
which communicates that groups of functions share inter-
nal state. When parallelizing, any function in the group
must execute atomically with respect to every function in
the group. For example, malloc and free would all use
the same argument since they share internal state.

The use of Commutative in a speculative execution en-
vironment requires additional care. There must always be
a well-defined sequential sequence of calls to the Commu-
tative function, particularly in the face of rollback of state
or versioning of memory. For the purposes of this paper,
a well-defined ordering was maintained by ensuring that
Commutative functions executed in non-transactional mem-
ory and that a rollback function existed to undo the effects
of calls to the Commutative function. For example, the roll-
back function for malloc was free.

3 Obtaining and Measuring Parallelism
This work explores how single-threaded applications can

be parallelized to leverage tomorrow’s many-core proces-
sors. Additionally, much of the parallelism discussed in the
paper is obtained by parallelizing loops close to the outer-
most program loop. Unfortunately, parallelizing large frag-
ments of an application and targeting many cores renders
traditional simulation techniques impractical. This section
will discuss how parallel performance was measured. Sub-
sequent section will describe in detail the techniques neces-
sary to parallelize the applications studied in this work.

3.1 Measuring Parallel Performance
To efficiently measure parallel performance, a combi-

nation of native execution and simulation was used. Each
single-threaded application was decomposed into a set of
tasks. Each task corresponds to a region of a single loop it-
eration and was statically marked in the application’s code.
These regions were selected to maximize parallelism and
were not constrained to be contiguous regions of the static
code, similar to existing algorithms [20]. Once the regions
were selected, the code was instrumented to use hardware
performance counters to measure the time spent execut-
ing each dynamic task, a dynamic instance of the statically
marked region. For clarity, phases refer to statically se-
lected regions and tasks refer dynamic instances of a phase.

The native runtimes were obtained by compiling the ap-
plication using ‘-O3’ optimizations with the gcc compiler
version 3.4. The resulting binary was run on a HP worksta-
tion zx2000 with a 900Mhz Intel Itanium 2 processor and
2GB of memory, running CentOS release 4.4. Execution
times were obtained using the performance counters of the
IPF architecture and the pfmon 3.0 tool [8].

For each application, an execution plan was devised de-
scribing which core(s) would be responsible for executing
tasks from a particular phase. The execution plan (described
in Section 3.2), along with the task execution times, a task
dependence graph, and a simulator was then used to esti-
mate the total execution time of the parallel application. The
model assumes that tasks communicate via shared memory
and core-to-core communication queues. It further assumes
a versioned memory hardware subsystem [33], allowing for
privatization of data and memory alias speculation. In this
paper, studies were conducted for machines ranging from 1
to 32 cores, and the simulator accurately modeled full and
empty conditions on 256 32-entry queues.

Task dependences were obtained via static analysis for
register dependences and memory dependences [5]. The
parallelizations assume various dependences could be spec-
ulated. The speculation was modeled by informing the sim-
ulator of the dynamic dependences that actually occurred,
which were obtained from a memory profiling pass run prior
to simulation. This effectively models serialization (loss of
benefit for speculative execution) due to misspeculation, but
imposes no additional cost to misspeculation.

Finally the simulator does not model microarchitectural
effects, such as bandwidth limitations or cache coherence.
However, our results are on par with existing manual par-
allel results for several applications [7, 25, 31], when the
same number of threads, usually 4, are used. This suggests
that this methodology at least captures all first-order effects.

3.2 Parallelization Paradigm

All application loops studied in this paper were decom-
posed into three phases, with each phase manifesting a dif-
ferent dependence pattern. Ignoring dependences that were
speculated, the tasks from the first phase of each application
depended only on prior tasks from the first phase. Tasks
from the second phase depended on the corresponding task
(from the same original loop iteration) from the first phase.
Finally, tasks from the third phase depended on the corre-
sponding task from the second phase as well as prior tasks
from the third phase. Figure 3b illustrates this static phase
dependence graph for a simple code example in Figure 3a.

This dependence pattern naturally leads to an execution
plan where tasks from the first phase were executed serially
on a single core. Tasks from the second phase were then ex-
ecuted in parallel with one another through dynamic assign-
ment to the core with the least amount of work enqueued.



while (condition) {
A: line = read();
B: result = work(line);
C: printf(result);

}
(a) Example Code

A B C

(b) Static Stage Dependences
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Figure 3. Parallelization Diagram

Finally, like the first phase, tasks from the third phase ex-
ecuted serially on a single core. Figure 3c illustrates this
execution for the code example.

This pattern is a generalization of Decoupled Software
Pipelining (DSWP) [20, 26], augmenting it with specula-
tion and the ability to run many parallel versions of a sin-
gle pipeline stage. Note that while a DSWP-style execution
plan was used in the experiments in this paper, similar par-
allelizations and results could be obtained with execution
plans that more closely resemble TLS.

4 Case Studies
To illustrate the applicability of the framework and aug-

mented sequential programming model, this section de-
scribes the manual application of the techniques from Sec-
tion 2 to the C applications in the SPEC CINT2000 bench-
mark suite. In particular, for each benchmark, the loop and
its parallelization are described. Particularly problematic
dependences in each application and the solution to over-
coming them are also described.

4.1 Parallelizable by the Framework
Several benchmarks can be parallelized using just an

aggressive parallelization framework, including 181.mcf,
153.perlbmk, 155.vortex, and 156.bzip2, whose
speedups on up to 32 threads are shown in Figure 4.

4.1.1 256.bzip2

256.bzip2 is an application to compress and decompress
a file using the Burrows-Wheeler transform and Huffman
encoding. This paper focuses only on the compression por-
tion of the benchmark. Each file is compressed, using the
compressStream function, in independent blocks of the
same size. The block size itself is dependent upon the com-
pression level and varies between 100KB (lowest compres-
sion) and 900KB (highest compression).

Versions of the bzip2 algorithm that compress indepen-
dent blocks in parallel have been implemented in parallel-
programming paradigms [23]. The parallelization for
256.bzip2 is effectively the same as these hand par-
allelized versions, but can be extracted automatically us-
ing the DSWP parallelization rather than manually with
mutexes and locks. The phase A thread reads in each

block. Effectively, this means that for each iteration,
the block variable, which holds the data for each itera-
tion to compress, is privatized by the TLS memory sub-
system. Each block is then compressed in parallel by
executing the doReversibleTransformation and
moveToFrontCodeAndSend functions in one of sev-
eral phase B threads. Writes into the output stream are
buffered until the position of the writes are known in phase
C. The only limitation to performance is the input file’s size,
which is only a few megabtyes. Combined with a high
level of compression, only a few independent blocks exist
to compress in parallel.

4.1.2 255.vortex

255.vortex is a derivative of a single-user object-
oriented database transaction benchmark. The high-level
loop in the BMT Test function tests the database with
a series of commands. In particular, the inner loop of
BMT Test calls the Lookup, Delete, and Create functions
in that order. Each call to these functions will lookup,
delete, or create a number of database items as specified
by an input file. The actual part to lookup, delete, or create
is based on a random number(s).

The parallelization for this application executes the
iterations of the loops in BMT CreateParts and
BMT DeleteParts in parallel. To achieve this, both
value speculation and alias speculation are necessary.

Value speculation is needed for the STATUS variable.
255.vortex relies heavily on the usage of this variable
that is passed as an argument to almost every function.
Each function will appropriately update STATUS to indi-
cate NORMAL execution or one of many failure condi-
tions. Most function calls in the benchmark are written as
if func(STATUS), where func will return false only if STA-
TUS is not NORMAL. Speculating a value of NORMAL for
STATUS around the backedge is essential to breaking sev-
eral loop-carried dependences.

Alias speculation is used to deal with the rare case that an
update to the database is dependent on a previous update’s
modification of the internal representation. Specifically, the
internal structure of the database is a B-tree, which is only
rarely rebalanced during calls to create and delete. Alias
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(a) 256.bzip2
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(b) 255.vortex
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(c) 253.perlbmk
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Figure 4. Speedup of multi-threaded (MT) execution over single-threaded (ST) execution.

speculation also removes dependences that occur from the
expansion of memory blocks, effectively a realloc on
the internal memory manager, in calls to ExpandChunk.
Alias misspeculation on these dependences, though rare, is
the limiting factor in the speedup obtained.

4.1.3 253.perlbmk

253.perlbmk is an interpreter for the Perl language. The
loop in the Perl runops standard function executes
a sequence of operations, including the high-level opera-
tions derived from the input file. Parallelization of this loop
speculatively executes statements from this input in paral-
lel, taking advantage of data-independent Perl statements in
the source file to achieve speedup.

Unfortunately, it is not easy to find these statements in
the code. In particular, the Perl runops standard
loop simply executes the current operation. This execu-
tion returns the next operation to execute or null to indicate
that the loop should exit. Perl source-level statements are
composed of operations demarcated by NEXTSTATE oper-
ations. Many dependences exist among these sequences of
operations that are not directly related to the input. In partic-
ular, operations are evaluated using a virtual stack machine,
which leads to many memory dependences.

Fortunately, when a NEXTSTATE operation is executed,

it is likely that many global variables in this virtual machine
will have the same values as they did just after the pre-
vious NEXTSTATE operation. In particular, value profil-
ing reveals that the PL stack sp and PL temp ixs variables
will often have the same value every time a NEXTSTATE
operation finishes. A compiler can introduce a loop to
precompute the next NEXTSTATE operation by specula-
tively chasing the next op. Combined with value specula-
tion to break the dependences by asserting and checking that
the PL stack sp and PL temp ixs variables have this prop-
erty around the backedge, series of operations represent-
ing statements can execute in parallel. The parallelization
is limited by misspeculation that occurs because the input
statements are truly data dependent.

4.1.4 181.mcf

181.mcf is an application that solves the single-depot ve-
hicle scheduling problem in public mass transportation, es-
sentially a combinatorial optimization problem solved using
a network simplex algorithm. The high-level loop occurs in
global opt which calls both the price out impl and
primal net simplex functions.

Parallelizing 181.mcf is non-trivial and requires
parallelizing several loops. primal net simplex
takes approximately 65-75% of the execution



time and can first be parallelized by allowing
refresh potential to execute in parallel with
the rest of primal net simplex. This is accomplished
by speculating that refresh potential will not
change the actual potential of any node in the tree, which
is almost always the case [33]. The performance of the
remaining primal net simplex can also be improved
by a parallelization of the two loops in primal bea mpp,
as performed in prior work [25].

The remaining 25-35% of the runtime occurs in
price out impl, which consists of an outer and inner
loop. With alias speculation, the outerloop can be par-
allelized, though it is important that the arcout->head-
>firstout->head->mark update be placed in phase A to
avoid almost constant misspeculation. Additionally, the in-
ner loop can also be parallelized, as in previous work [25].

After all these loops are optimized, perfor-
mance is limited mostly by misspeculation in
price out impl and the lack of scalable parallelism in
the primal net simplex parallelization.

4.2 Specifying Alternate Outcomes
Though existing techniques can parallelize the applica-

tions in Section 4.1, many are still left unparallelized by this
framework. In particular, the dependences that prevent par-
allelization or lead to excessive misspeculation are often a
result of artificial constraints imposed by the sequential pro-
gramming model. This section shows how the Commutative
extension to the sequential programming model discussed
in Section 2.3 allows the framework to extract parallelism.
Figure 5 shows the speedups for the benchmarks described
as the number of threads is increased.

4.2.1 176.gcc

176.gcc is an application that compiles C programs down
to MIPS assembly and can process only one C file per
run. The outermost loop is the parse loop, which is gen-
erated from a pair of lex and yacc files. When the last
token of a function is read in, the grammar action calls
finish function. Eventually, this function will call
rest of compilation, which optimizes the function
in a single pass of optimizations, though some optimiza-
tions are applied multiple times, and then prints the function
to the assembly file. The optimization sequence dominates
the runtime of the benchmark, accounting for 80-90% of the
runtime, which is not surprising as reading and printing are
roughly linear in the number of lines of code, while many
compiler analysis and optimizations are O(n2) or worse.
Since no interprocedural analysis or optimization is applied
in the optimization sequence, the sequence can run in par-
allel on each function, though several dependences must be
dealt with first.

Alias speculation can be used to remove dependences
that occur in the global symbol table, implemented as a
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Figure 5. Speedup over ST Execution.

hash table. The problematic dependence occurs because
the table is updated with local symbols just before they are
printed. Unfortunately, a large amount of misspeculation
results, which, combined with a small number of functions
to optimize, severely limits performance. Instead, the sym-
bol table lookup and insert function is annotated as Com-
mutative, which prevents the symbol table from causing
misspeculation. Additionally, Commutative is also used
to mark the memory allocation functions for the perma-
nent obstack. There are several other obstacks, which are
essentially pointers into memory pools, that are value pre-
dicted to have the same value after phase B as they did be-
fore.

To avoid other unnecessary misspeculation, several bit
flags were expanded to take entire bytes. In particular, this
avoids misspeculation that occurs due to a read of the com-
mon.public flag variable in the IR structure that appears to
be fed by an update of the common.static flag because they
are contained in the same byte. If compiler analysis can de-
termine that these loads and stores do not overlap based on
field, the fields can be split into multiple locations. If this is
not possible, then special loads and stores [14] can be used
to communicate this to the alias conflict detection system.

Another problematic dependence exists on the global
counter for labels, called label num. This counter is up-



dated as labels are created for each function, and labels are
created throughout the processing of a function, while read-
ing in, optimizing, and even when printing. Besides be-
ing printed, label num is also used to malloc structures with
size equal to the number of labels in a function and to test if
a label is in the current function or a parent function when
nested functions are used. This dependence is effectively
impossible to speculate away.

Fortunately, from a programmer standpoint, it is legal to
make label num a two dimensional structure that is (func-
tion, number) instead of just (number). At the start of a
function, the label num variable is updated to point to the
new function, and the number is reset to 0. This breaks
the label num dependence across functions, allowing paral-
lelization. However, the output of the program is different
in that the actual strings used for local labels have changed.
Since the actual string used for these labels are irrelevant, so
long as it is unique, the output is still semantically, though
not syntactically, equivalent.

4.2.2 254.gap

254.gap is an interpreter for a computational discrete al-
gebra programming language. The high-level loop in main
follows the standard Read, Evaluate, Print structure
of most interpreters. While there are many loops that ac-
count for small portions of the runtime, obtaining signifi-
cant speedup requires that the parallelization attempt to run
statements of the input program in parallel. Since state-
ments can be dependent upon one another, alias speculation
is used to obtain the parallelism. In particular, alias specula-
tion must break the dependence on the Last variable, which
stores the result of the last statement. This parallelization
essentially speculates that the statements in the input file are
data independent. For the parallelization to be extracted, the
memory allocator that the application uses must be marked
as Commutative .

For the input sets of 254.gap, this parallelization ob-
tains a speedup of almost 2x before misspeculation becomes
a factor. Besides alias misspeculation due to true data de-
pendences in the input statements, misspeculation also oc-
curs because 254.gap performs its own garbage collec-
tion. Not surprisingly, the copy garbage collection causes a
large amount of the misspeculation because it touches all
“memory”, moving around objects to compact the space
used. The use of a mark-and-sweep garbage collector would
likely reduce the amount of misspeculation.

4.3 Improving Parallelizations

Annotations can be used not only to enable paralleliza-
tions, but to improve existing parallelizations. In particular,
this fact can be leveraged to reduce the misspeculation of
existing parallelizations, achieving the speedups shown in
Figure 6.

4.3.1 186.crafty

186.crafty is an application that plays chess. The high-
level loop reads in a chess board and a search depth n. For
each iteration of this loop, the Iterate function is called,
which executes repeated searches from a depth of 1 to n.
To perform this, Iterate calls the SearchRoot func-
tion, which calls the recursive Search function to perform
an alpha-beta search. For each level of the search, several
moves are computed, each of which is recursively searched
and evaluated to determine the most profitable path. The
most profitable move is stored and its alpha value returned.

The most obvious parallelization is to search each of the
root moves in SearchRoot independently, similar to the
way the application has been parallelized by hand [6]. This
parallelization requires that the search variable, which con-
tains many fields related to the current search, be value pre-
dicted to be the same after each iteration as it was at the
beginning of the iteration. This is always true, but is very
hard for the compiler to predict as it requires understand-
ing that the UnMakeMove function undoes the effects of
MakeMove function. Additionally, control speculation is
needed to prevent the presence of certain cutoff metrics re-
lated to timing and number of nodes searched from prevent-
ing parallelization. In particular, the next time check vari-
able branch in Search must be speculated not taken.

Additional dependences manifest themselves on the
many caches (ex. pawn hash table and trans ref ) that are
used to prune the search space and improve single-threaded
performance. Unfortunately, these caches prevent paral-
lelism, as the dependence from the store into the cache to a
load from the cache is hard to predict. Alias speculation can
break these dependences, but the sheer amount of misspecu-
lation limits performance. Instead, we rely on the program-
mer to mark each cache lookup function as Commutative,
which removes dependences on the cache. The resulting
speedup barely breaks 2x on 32 threads because the amount
of time it takes to search a particular move is highly variable
due to the aggressive pruning performed during the search.

To obtain more performance, the Search function is
also parallelized. Search has a behavior which is almost
the same as SearchRoot, with the addition of more con-
ditions to prune the search space. Additionally, Search
is recursive, a problem that has hindered previous work
in parallelization [25]. However, the Search function is
small and the recursion can be “unrolled” by repeatedly spe-
cializing the function to a particular depth in the recursion.
This was performed on Search to unroll the recursion one
level, effectively parallelizing both the SearchRoot loop
and the loop in the first call to Search. With this paral-
lelization, the performance obtained scales with the number
of threads.
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Figure 6. Speedup over ST Execution.

4.3.2 197.parser

197.parser is an application that parses a series of sen-
tences, analyzing them to see if they are grammatically cor-
rect. The loop in the batch process function is the out-
ermost loop, of which the parse function call dominates
the runtime of each iteration. As each sentence is gram-
matically independent of every other sentence, parsing can
occur in parallel for each sentence.

While previous manual parallelization [7] has used alias
speculation to break dependences between iterations, it is
not necessary so long as certain dependences are synchro-
nized. In particular, a sentence may be a command for the
parser rather than a sentence to parse, turning on or off echo
mode, for example. However, speculation is not required
for this application if these operations are placed into the
phase A thread. The loss in parallelization is limited, as a
majority of the time is taken up by the parse call.

To achieve a parallelization that parses each sentence
in parallel, dependences arising from the memory alloca-
tor must be removed. Upon startup, 197.parser allo-
cates 60MB of memory, regardless of input, which it then
manages internally. To avoid dependences from the mem-
ory allocator interfering with parallelization, it is marked
with Commutative annotation, as in 254.gap. The mem-

ory manager does not perform garbage collection, thus the
parallelism achieved scales well with the number of cores,
limited only by the time it takes to parse the longest sen-
tence.

4.3.3 300.twolf

300.twolf is an application that performs place and route
simulation. The loop that comprises most of the execution
time is in the uloop function, which contains many calls
to ucxx2. The ucxx2 function takes up approximately
75% of the execution time. Previous work has executed por-
tions of the ucxx2 code in parallel via speculative pipelin-
ing [25]. This paper instead parallelizes calls to ucxx2 by
parallelizing iterations of the loop in uloop.

Predicting which iterations can execute in parallel a pri-
ori is hard, so value and alias speculation are used to achieve
the parallelization. However, misspeculation greatly limits
the amount of parallelism extracted [25]. This misspecula-
tion comes from two sources, misprediction of the number
of calls to the pseudo-random number generator and mem-
ory alias violation on the block and network structures.

The value misspeculation for the random-number gen-
erator occurs because of the variable number of calls to
the random number generator. In previous work [25], this
dependence has been broken by manually speculating the



number of calls to the generator and predicting the next it-
eration’s seed. However, it seems counterintuitive for paral-
lelism to be limited by the generation of random numbers.
To avoid the misspeculation and allow the compiler to see
the parallelism, this paper proposes that the random num-
ber generator be marked as Commutative by the program-
mer. For the pseudo-random number generator, this allows
the calls to the generator to occur in any order, and, in par-
ticular, breaks the dependence that the generator has across
iterations on the randVarS variable. Though output changes
as a result of this, the benchmark still runs as intended.

4.3.4 175.vpr

175.vpr is an application that performs FPGA place and
route calculations. As in previous work [25], this paper
focuses on the placement portion of the algorithm, which
is distinct from the routing portion. Placement consists of
repeated calls to try swap in the try place function.
try swap, as its name implies, attempts to switch a block
to a random position, also swapping the block at that po-
sition if one is already there. A pseudo-random number
generator is used to choose a block and an (x, y) position
to move the block. Like 300.twolf, if the coordinates
chosen are the same as the block’s x and y value, then a new
random coordinate pair is generated until they are distinct.
The block’s coordinates are then updated and the cost of up-
dating the connecting networks is calculated. If the cost is
below a certain threshold, the swap is kept; otherwise, the
block’s coordinates are reverted to their previous values.

As in previous work [25], the calls to try swap can
often be speculatively executed in parallel. Predicting de-
pendences among these iterations a priori is hard, so value
and alias speculation are used to achieve the paralleliza-
tion. However, the amount of parallelism extracted is lim-
ited by misspeculation, particularly in early iterations of
the try place loop. This misspeculation comes from
two sources, misprediction of the number of calls to the
pseudo-random number generator and memory alias viola-
tion on the block coordinates and network structures. As
in 300.twolf, the random number generator is marked
as Commutative, to avoid misspeculating on it. The alias
misspeculation on block structures can be reduced by value
speculating that the loads of the block coordinates and net-
work structures will not change.

Additionally, good parallel performance requires many
threads, as the misspeculation rate of the iterations in
try place varies greatly. In the earlier outer loop itera-
tions, the speculation fails more than 80% of the time, while
in the later iterations, the speculation succeeds more than
80% of the time. This occurs because later outerloop itera-
tions impose more stringent conditions on acceptable swap-
ping. Because of this, the amount of parallelism obtained is
largely dependent upon the number of threads used in later

outer loop iterations.

4.4 Varying output with performance
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(a) 164.gzip

Figure 7. Speedup over ST Execution.

4.4.1 164.gzip

164.gzip is another compression and decompression ap-
plication, which uses the Lempel-Ziv 1977 algorithm. As
with 256.bzip2, this paper focuses on the compression
portion of the benchmark. Each file is compressed in blocks
by either the deflate or deflate fast function,
which have almost the same code. Unlike 256.bzip2,
the choice of when to end compression of the current block
and begin a new block is made based on various factors re-
lated to the compression achieved on the current block. This
dependence makes it impossible to compress blocks in par-
allel as it is very hard to predict the point at which a new
block will begin.

Manually parallelized versions of the gzip algorithm in-
sert code to ensure that a new block is started at fixed in-
tervals, usually 128KB [24]. To allow the benchmark to be
parallelized, a similar change was made to the source code
to always start a new block at a fixed interval. As the block
size is smaller than bzip’s, the parallelism scales to a larger
number of threads, as shown in Figure 7.

Unfortunately, this change can cause the application to
achieve a lower compression ratio than the single-threaded
version. When there are multiple processors, this tradeoff
between compression and performance is acceptable. Us-
ing the fixed-size blocking, the average compression loss
was less than 1%. In general, though, this loss of compres-
sion should only occur if parallelization was achieved. This
can be achieved through the use of the Y-branch, just as in
Figure 1a.

4.5 Summary
Table 1 summaries information about the parallelizations

performed in this section. For each application, the loop(s)
parallelized are given as the function, file, and line num-



Benchmark Loop Approx.
Exec.
Time

Lines
Changed
(All)

Lines
Changed
(Model)

Techniques Required

164.gzip

deflate fast 30%
26 2 Y-branch, TLS Memory, DSWP(deflate.c:583-655)

deflate 70%(deflate.c:664-762)

175.vpr try place 100% 1 1 Commutative, Alias, Value, & Control Speculation, TLS Memory,
DSWP(place.c:506-513)

176.gcc yyparse 95% 18 8 Commutative, Alias & Control Speculation, TLS Memory, DSWP(c-parse.c:1396-3380)

181.mcf

price out impl 25%

0 0

Alias & Control Speculation, TLS Memory, DSWP(implicit.c:228-273)
primal net simplex 75% Control & Silent Store Speculation, TLS Memory, DSWP(psimplex.c:50-138)
primal bea mpp 4% Alias Speculation, DSWP, Nested(pbeampp.c:161-172)
primal bea mpp 20% Alias Speculation, DSWP, Nested(pbeampp.c:181-195)

186.crafty

SearchRoot 100%
9 9 Commutative, TLS Memory, DSWP, Nested(searchr.c:52-153 )

Search 98%(search.c:218-368)

197.parser batch process 100% 3 3 Commutative, TLS Memory, DSWP(main.c:1522-1779)

253.perlbmk Perl runops standard 100% 0 0 Alias, Control & Value Speculation, TLS Memory, DSWP(run.c:30)

254.gap main 100% 3 3 Commutative, TLS Memory, DSWP, Alias Speculation(gap.c:191-227)

255.vortex

BMT CreateParts 20%
0 0 Alias & Value Speculation, TLS Memory, DSWP(bmt01.c:82-252)

BMT DeleteParts 70%(bmt10.c:371-393)

256.bzip2 compressStream 100% 0 0 TLS Memory, DSWP(bzip2.c:2870-2919)

300.twolf uloop 100% 1 1 Commutative, Alias & Control Speculation, TLS Memory, DSWP(uloop.c:154-361)

Table 1. Information about the loop(s) parallelized, the execution time of the loop, the number of lines
changed by the programmer, the number of lines changed by the programmer within the augmented
sequential model, and the techniques required for the parallelization.

bers it occupies. Additionally, the approximate execution
time and the number of lines changed by the programmer,
both overall and only using the Y-branch and Commutative
annotations are given. Finally, the techniques required to
parallelize each application are described.

Table 2 gives the best speedup achieved for each appli-
cation and the minimum number of threads for which that
speedup occurs. Additionally, the Moore’s Law Speedup is
given, which details the expected performance increase for
the number of transistors used. While there are no statistics
that directly relate the doubling of cores to performance im-
provement, historically, the transistors on a chip have dou-
bled every 18 months, while performance has doubled every
3 years. Assuming that all new transistors are used to place
new cores on a chip, each doubling of cores must yield ap-
proximately 1.4x speedup to maintain existing performance
trends. The numbers in this column represent the speedup
expected for the minimum number of threads used. The
final column gives the ratio of the actual performance im-
provement to that required to maintain the 1.4x speedup.
The overall performance improvement indicates that suffi-
cient parallelism can be extracted to utilize the resources of

current and future many-core processors.

5 Related Work in Parallelization
Many research techniques have focused on changes or

extensions to existing programming languages to enable
easier specification of parallelism [4, 9, 11]. Unfortunately,
these approaches do not alleviate all problems of paral-
lel programming. Traditional locking libraries, such as
pthreads, provide the programmer with the ability to ex-
press parallelism, but give little support in achieving cor-
rect or effective parallelism. More advanced systems, such
as Cilk [9] or OpenMP, provide higher level parallelization
primitives, including means to automatically schedule par-
allelism for performance, but provide little help in achiev-
ing correctness. The Cilk inlet directive, in particular, is
similar to the Commutative directive, as it ensures correct
execution of code in a non-deterministic fashion. However,
inlet is meant to serially update state upon return from a
spawned function, while Commutative is meant to facilitate
parallelism by removing serialization.

Alternative techniques, such as memory transactions [4]
have been recently proposed to help the programmer ex-



Benchmark # Threads Speedup Moore’s Speedup Ratio
164.gzip 32 29.91 5.38 5.56
175.vpr 15 3.59 3.71 0.97
176.gcc 16 5.06 3.84 1.32
181.mcf 32 2.84 5.38 0.53
186.crafty 32 25.18 5.38 4.68
197.parser 32 24.50 5.38 4.55
253.perlbmk 5 1.21 2.18 0.55
254.gap 10 1.94 3.05 0.64
255.vortex 32 4.92 5.38 0.91
256.bzip2 12 6.72 3.34 2.01
300.twolf 8 2.06 2.74 0.75
GeoMean 17 5.54 3.97 1.39
ArithMean 20 9.81 4.16 2.04

Table 2. The minimum # of threads at which
the maximum speedup occurs. Assuming
a 1.4x speedup per doubling of cores, the
Moore’s Speedup column gives the speedup
needed to maintain existing performance
trends. The final column gives the ratio of
actual speedup to expected speedup.

press parallelism in an easier manner, but suffer from cor-
rectness [12] and performance [36] issues. If the program
can be fit into a specific paradigm, specialized languages,
such StreamIt [11], can handle the correctness issues and
schedule the parallelism for good performance. Unfortu-
nately, many programs and data structures do not fit into
these paradigms, or must be rewritten from scratch to take
advantage of these languages.

The automatic extraction of scalable parallelism has
been achieved on scientific programs through the extrac-
tion of DOALL parallelism [2] from loop nests accessing
arrays [3, 17, 29]. General-purpose programs have not been
so fortunate, leading to many solutions. Beyond the tech-
niques discussed in Section 2.1 [13, 20, 26, 30], there are
several existing automatic parallelization techniques that
spawn speculative threads along multiple branch paths [34]
and procedure calls [1].

Manual parallelization of applications with the intent of
guiding automatic techniques has also been explored by
Prabhu et al. [25]. Their manual parallelization of 6 appli-
cations, including 3 SPEC CINT2000 benchmarks, is de-
signed to guide future compiler TLS work. The paralleliza-
tions described are used as inspiration in the 175.vpr
and 181.mcf applications. However, this paper is notably
different from ours in that it does not consider all SPEC
CINT2000 benchmarks, it uses TLS for parallelization, and
does not allow the programmer to aid the compiler.

Finally, several techniques in the literature advocate an
integrated approach to the extraction of parallelism, com-
bining both manual and automatic parallelization. SUIF
Explorer [16] is a tool for programmer specification of par-

allelism, which is then assisted by tools support to ensure
correctness. The Software Behavior-Oriented Paralleliza-
tion [7] system allows the programmer to specify intended
parallelism. If the intended parallelization is incorrect, the
worst case is single-threaded performance at the cost of ex-
tra execution resources. The parallelization chosen for the
164.gzip and 197.parser applications are effectively
the same as those in this paper. Concurrent work proposed
by Thies et al. [31] also extracts parallelism in conjunction
with the programmer. Through profiling of the dynamic be-
havior of the program, their system extracts pipelined par-
allelism, and produces parallelizations for 197.parser
and 256.bzip2 that are effectively the same as those de-
scribed in Section 4. However, their system relies upon the
programmer to mark the potentially parallel regions and to
often perform several transformations to make the program
amenable for parallelization, but that reduce the software-
engineering quality of the code.

6 Conclusion
Due to the large number of existing single-threaded ap-

plications, automatic parallelization techniques are neces-
sary for performance on tomorrow’s processors. Unfortu-
nately, these techniques have yet to extract sufficient par-
allelism. Parallel programming models offer the ability to
extract this performance, but at a high cost.

This paper has shown that, with the proper framework,
comprised of existing analysis and optimization techniques
along with the proper compilation scope, large amounts of
parallelism can be extracted. For those applications that are
not parallelized by this framework, simple additions to the
standard sequential programming model are proposed to al-
low the framework to parallelize them. In particular, the
SPEC CINT2000 benchmark suite was used as a case study
to show that this framework and programming model can
be applied to many applications. This allows a software de-
veloper to develop in a sequential programming model, but
still obtain performance from parallelization.
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