Nepal — Nested Data-Parallelism in Haskell

Manuel M. T. Chakravarty
University of New South Wales
School of Computer Science & Engineering
Sydney, Australia

chak@cse.unsw.edu.au

Roman Lechtchinsky
Technische Universitat Berlin
Fachbereich Informatik
Berlin, Germany

rli@cs.tu-berlin.de

ABSTRACT

This paper discusses an extension of Haskell by support for
nested data-parallel programming in the style of the special-
purpose language Nesl. More precisely, the extension con-
sists of a parallel array type, array comprehensions, and
a set of primitive parallel array operations. This extension
brings a hitherto unsupported style of parallel programming
to Haskell. Moreover, nested data parallelism should receive
wider attention when available in a standardised language
like Haskell. This paper outlines the language extension and
demonstrates its usefulness with two case studies.

Keywords: Data parallelism; flattening; irregular paral-
lelism; Haskell

1. INTRODUCTION

Most extensions of Haskell that are aimed at parallel pro-
gramming focus on control parallelism [1; 32; 31; 8; 10],
where arbitrary independent subexpressions may be evalu-
ated in parallel. These extensions vary in their selection
strategy of parallel subexpressions and associated execu-
tion mechanisms, but generally maximise flexibility as com-
pletely unrelated expressions can be evaluated in parallel.
As a result, most of them require multi-threaded implemen-
tations and/or sufficiently course-grained parallelism, and
they make it hard for both the programmer and the com-
piler to predict communication patterns.

There are, however, also a few data parallel extensions of
Haskell [20; 18; 15]. They restrict parallelism to the si-
multaneous application of a single function to all elements
of collective structures, such as lists or arrays. This re-
striction might be regarded as a burden on the program-

Gabriele Keller
University of Technology, Sydney
Faculty of Information Technology

Sydney, Australia

keller@it.uts.edu.au

Wolf Pfannenstiel
Technische Universitat Berlin
Fachbereich Informatik
Berlin, Germany

wolfp@cs.tu-berlin.de

mer, but it allows both the programmer as well as the com-
piler to better predict the parallel behaviour of a program,
which ultimately allows for a finer granularity of parallelism
and more radical compiler optimisations. Furthermore, the
single-threaded programming model is closer to sequential
programming, and thus, arguably easier to understand.

Ultimately, the choice between control and data parallelism
is a trade off between flexibility and static knowledge about
the parallelism contained within a program. The program-
ming model of nested data parallelism (NDP) [6] is an at-
tempt at maximising flexibility while preserving as much
static knowledge as possible. It extends flat data paral-
lelism as present in languages like High Performance For-
tran (HPF) [19] and Sisal [9] such that it can easily ex-
press computations over highly irregular structures, such as
sparse matrices and adaptive grids. NDP has been popu-
larised in the language NESL [5], which severely restricts the
range of available data structures—in fact, NESL supports
only tuples in addition to parallel arrays (called vectors in
NEsL). In particular, neither user-defined recursive nor sum
types are supported. This is largely due to a shortcoming
in the most successful implementation technique for NDP—
the flattening transformation [7; 29], which maps nested to
flat parallelism. Recently, we lifted these restrictions on
flattening [23; 12] and demonstrated that the combination
of flattening with fusion techniques leads to good code for
distributed-memory machines [22; 24].

These results allow us to support NDP in Haskell and to
apply flattening for its implementation. In the resulting
system—which we call NEPAL (NEsted PArallel Language),
for short—a wide range of important parallel algorithms (1)
can be formulated elegantly and (2) can be compiled to ef-
ficient code on a range of parallel architectures. This paper
will illustrate the first point by describing the implemen-
tation of the Barnes-Hut hierarchical n-body algorithm [2]
and Wang’s algorithm for solving tridiagonal equations [33].
It will provide only a rough sketch of the flattening-based im-
plementation method, but details can be found elsewhere [12;
11]. A similar combination of the Nesl parallel programming
model with Standard ML [25] is investigated in the PSciCo
project [3].

Our extension of Haskell is conservative in that it does not

alter the semantics of existing Haskell constructs. We merely
add a new data type, namely parallel arrays, parallel array
comprehensions, and a set of parallel operations on these
arrays. Parallel arrays combine properties of the standard
Haskell list and array data types; furthermore, their particu-
lar semantic properties make them ideally suited for parallel
processing. A particularly interesting consequence of explic-
itly designating certain data structures as parallel and others
as sequential is a type-based specification of data distribu-
tions. We will demonstrate this during the presentation of
the example algorithms in Sections 4 and 5.

When compared to NEsL, NDP in Haskell benefits from the
standardised language, wider range of data types, more ex-
pressive type system, better support for higher-order func-
tions, referential transparency, module system and separate
compilation, and the clean I/O framework.

In this paper, we will not present any new benchmark fig-
ures. In previous work [23; 11], we have provided exper-
imental data that supports the feasibility of our approach
from a performance point of view; we will summarise some
of the results when discussing the n-body code (Section 4).
In short, this paper makes the following main contributions:

o We show how NESL’s notion of nested data parallelism
can be integrated into Haskell by adding parallel ar-
rays.

e We show how the combination of parallel and sequen-
tial types leads to a declarative specification of data
distributions.

e We demonstrate the feasibility of our approach by dis-
cussing two well-known parallel algorithms.

The remainder of this paper is structured as follows: Sec-
tion 2 provides more detail on nested data prallelism and
gives a brief overview over our extension of Haskell. Sec-
tion 3 details our integration of parallel arrays into Haskell
and briefly outlines the flattening-based implementation.
Section 4 discusses the implementation of the Barnes-Hut
hierarchical n-body code and Section 5 studies Wang’s par-
allel algorithm for solving tridiagonal systems of linear equa-
tions. Section 6 discusses related work. Finally, Section 7
concludes.

2. NESTED DATA PARALLELISM

In this section, we briefly introduce the parallel program-
ming model of nested data parallelism (NDP) together with
our extension of Haskell by parallel arrays—for more details
on NDP, see [6].

2.1 A New Data Structure: Parallel Arrays

A parallel array is an ordered, homogeneous sequence of val-
ues that comes with a set of parallel collective operations.
We require parallel arrays to be distributed across processing
nodes if they occur in a program executed on a distributed
memory machine. It is the responsibility of the execution
mechanism to select a distribution which realises a good
compromise between optimal load balance and minimal data
re-distribution—see [22] for the corresponding implementa-
tion techniques. The type of a parallel array containing
elements of type 7 is denoted by [:7:]. This notation is sim-
ilar to the list syntax and, in fact, parallel arrays enjoy the
same level of syntactic support as lists where the brackets ||

and |] denote array expressions. For instance, [:a1,..., i
constructs a parallel array with n elements. Furthermore,
most list functions, such as map and replicate, have parallel
counterparts distinguished by the suffix P, i.e., the stan-
dard prelude contains definitions for functions such as the
following:

mapP i (a— B) = o] = [5]

— map a function over a parallel array
replicateP :: Int — o — [:ar]]

— create an array containing n copies of a value

The infix operators (!:) and (4:4) are used to denote index-
ing and concatenation of parallel arrays.

In contrast to sequential list operations, collective opera-
tions on parallel arrays execute in parallel. Thus,

mapP (+1) [:1,2, 3,4, 5, 6]

increments all numbers in the array in a single parallel step.
The nesting level of parallel elementwise operations does not
affect the degree of parallelism available in a computation
so that if zss = [:[:1,2:], [:3,4, 5], [:], [:6]],

mapP (mapP (+1)) zss

executes in one parallel step as well. The same holds for
expressions such as

[[sumP xs | zs < xss;

(the behaviour of array comprehensions corresponds to that
of list comprehensions)—each application of sumP uses par-
allel reduction and all of these applications are executed si-
multaneously. The standard function sumP is described in
section 3.1.4.

In other words, the key property of nested data parallelism
is that all parallelism can be exploited independent of the
depth of nesting of data-parallel constructs. In fact, as we
will see in the next subsection, this holds even for recursively
nested divide&conquer algorithms, where the nesting is not
even statically bound. As a result, the implementation of
parallel algorithms is often straightforward, as illustrated by
the following examples.

2.2 Using Nested Data Parallelism

Blelloch [6] introduced an elegant formulation of the multi-
plication of a sparse matrix with a dense vector, resulting in
another dense vector. It is based on a well-known represen-
tation of general sparse matrices, the so-called compressed
row format. Here, only non-zero elements of a matrix row
are stored in an array of column-index/value pairs; a sparse
matrix is represented by an array of such rows:

type SparseRow = [:(Int, Float):] — index, value
type SparseMatriz = [:SparseRow:|

The multiplication of a sparse matrix with a vector can then
be expressed by nesting three levels of parallel operations:

smom :: SparseMatriz — [:Float:] — [:Float:]
smum sm vec =
[[sumP [:z * (vec!: col) | (col, z) < row:] | row < sm

~
products of one row

The inner array comprehension computes all products of
a single row of the matrix by indexing the input vector
with the column index of the corresponding matrix element;

sumP adds the products in a parallel reduction; and the
outer comprehension specifies that the products and sums
for all rows should be computed in parallel. Since the al-
gorithm makes full use of the parallelism inherent in the
problem, its parallel depth complexity is proportional to
the logarithm of the length of the longest row (cf. [6] for
details). Moreover, a flattening-based implementation ex-
ploits all three levels of parallelism (the inner comprehen-
sion, sumP, and the outer comprehension) contained in the
definition of smvm. While it is possible to achieve the same
behaviour in a flat language, the code is significantly more
involved.

The above program looks strikingly similar to the sequen-
tial list-based implementation of this algorithm. This is
not surprising since our approach seamlessly supports the
usual functional programming style and integrates well into
Haskell. This is mainly due to (1) the use of collection-
based operations which are ubiquitous in sequential Haskell
programs as well and (2) the absence of state in parallel
computations.

Still, care has to be taken, so that computations that could
be executed in parallel are not inadvertently sequentialised.
The following definition of parallel quicksort is again very
similar to the list-based version:

gsort u Ord a =[] = [:a]

gsort [:}] = [:]

gsort zs = let
m = a5 : (lengthP zs ‘div‘ 2)
58 = [s| s+ xs, s <m
ms = [:s]| s xs, s == m]
gs = [:s] s+ zs, s > m]
sorted = [:gsort zs' | xs’ + [:ss, gsi]i]

in
(sorted !: 0) +:4+ ms +:+ (sorted !: 1)

Note, however, that the recursive calls to gsort are per-
formed in an array comprehension ranging over a nested ar-
ray structure and are thus executed in parallel. This would
not be the case if we wrote gsort ss +:4+ ms +:+ gsort gs!

The parallelism in gsort is obviously highly irregular and
depends on the initial ordering of the array elements. More-
over, the nesting depth of parallelism is statically unbounded
and depends on the input given to gsort at runtime. Despite
these properties, the flattening transformation can rewrite
the above definition of ¢sort into a flat data parallel pro-
gram, while preserving all parallelism contained in the def-
inition. Thus, in principle, it would be possible to achieve
the same parallel behaviour in Fortran—it is, however, as-
tonishingly tedious.

3. PARALLEL ARRAYS IN HASKELL

We like to emphasise once more that we only add parallel
arrays and associated operations to Haskell, but we leave
the semantics of standard Haskell programs entirely intact.
Consequently, we can make full use of existing source code,
implementation techniques, and tools. In the following, we
shall first discuss the details of our extensions, i.e, of par-
allel arrays, array comprehensions, and parallel array oper-
ations. Afterwards, we will briefly outline our implementa-
tion method.

3.1 The Details of the Extension

We merely introduce a single new polymorphic type, de-
noted [:«:], which represents parallel arrays containing ele-
ments of type a.

3.1.1 Construction and Matching

Construction of parallel arrays is defined analogous to the
special bracket syntax supported in Haskell for lists. In par-
ticular, we have

[:7] u [
— nullary array, i.e., an array without any elements
[e1, ---, en:] it [17]

— an array with n elements, where e; :: 7 for all ¢
[e1..e2] : Enum o = [o]

— an array enumerating the values between e; and e
[e1, ez..es:] 1 Enuma = [«

— enumerating from e; to e3 with step e — e1

Moreover, we introduce [:p1,...,pn:] as a new form of pat-
terns, which match arrays that (1) contain exactly n ele-
ments and (2) for which the ith element can be bound to
the pattern p;.

In contrast to lists, parallel arrays are not defined induc-
tively, and thus, there is no constructor corresponding to
(:). From the user’s point of view, parallel arrays are an
abstract data type that can only be manipulated by array
comprehensions and the primitive functions defined in the
following. An inductive view upon parallel arrays, while
technically possible, would encourage inefficient sequential
processing of arrays. Usually, lists are a better choice for
this task. Note, how we distinguish between sequential types
(e.g., lists) and parallel types (in our case, parallel arrays)
here. We will reinforce the parallel flavour of values from
[;a:] by requiring a particular evaluation strategy.

3.1.2 Evaluation Strategy

To guarantee the full exposure of nested parallelism and in
order for the compiler to accurately predict the distribu-
tion of parallel structures and the entailed communication
requirements, we impose some requirements on the evalua-
tion of expressions resulting in a parallel array. In essence,
these requirements guarantee that we can employ the flat-
tening transformation for the implementation of all nested
data parallelism contained in a NEPAL program.

We require that the construction of a parallel is strict in
so far as all elements are evaluated to weak head-normal
form, i.e., [-e1, ..., €ei—1, L, €it1, ..., en:] = L. Moreover,
parallel arrays are always finite, i.e., an attempt to construct
an infinite array like

let s = [:1}] +:+ zsin zs

diverges.

As a result, the execution mechanism can evaluate all ele-
ments of an array in parallel as soon as the array itself is
demanded. Moreover, elements of primitive type (like Int)
can always be stored unboxed in parallel arrays; in other
words, we can implement a value of type [:Int:] as a flat
collection of whatever binary representation the target ma-
chine supports for fixed-precision integral values. This is
certainly much more efficient than having to heap-allocate
each individual Int element, and thus, beneficial for most
numerical applications. These properties of parallel arrays
are what prevents us from using the Array type provided by
Haskell’s standard library for expressing NDP.

3.1.3 Array Comprehensions

Experience with Nesl suggests that array comprehensions
(called apply-to-each constructs in Nesl) are a central lan-
guage construct for NDP programs. Parallel array compre-
hensions are similar to list comprehensions, but again use ||
and || as brackets. However, we extend the comprehension
syntax with the new separator & that simplifies the elemen-
twise lockstep processing of multiple arrays. For instance,
the expression

[z+y]|z+« [1,2,3]]|y « [4,5,6]]
evaluates to [:5,7,9:], and thus, is equivalent to
[z+y | (z,y) < zipP [:1,2,3:] [4, 5, 6]

Therefore, the introduction of | is strictly speaking redun-
dant. However, in contrast to the typical list processing
usage of list comprehensions, experience with NDP code
suggests that lockstep processing of two and more parallel
arrays occurs rather frequently—moreover, the application
of these comprehensions tends to be nested. For the sake of
orthogonality, we also allow | to be used in list comprehen-
sions.

The semantics of array comprehensions is defined as follows
(in correspondence to [28, Section 3.11]):

[e]] = [e]
[e] b, Q] = if bthen[e | Q] else[]
[e|p <+ [,Q = let
okp = [e | Q]
ook = [¢]
concatMapP ok |
lle | pr < & |
p2 ¢ b | @, Q=€ | (p1,p2) < 2zipP Ll |
Qla Q2|]
[:e | letdecls, Q] = let declsin[:e | Q]

As with list comprehensions, the above merely defines the
declarative semantics of array comprehensions. An imple-
mentation is free to choose any optimising implementation
that preserves this semantics.

3.1.4 Sandard Operationson Parallel Arrays

Besides supporting the entire Haskell prelude, NEPAL also
provides a comprehensive set of functions for manipulating
arrays. Most of these, such as mapP, filterP, zipP, and
concatMapP, have sequential list-based counterparts with
nearly identical denotational semantics. However, the def-
initions of some list functions, most notably of reductions
and scans, preclude an efficient or even meaningful parallel
implementation of their semantics. Consequently, no paral-
lel versions of functions such as foldr are provided. Instead,
the NEPAL prelude contains definitions of parallel reduction
and scan functions, such as

foldP :: (a - a = a) & a = [a] = «
scanP :: (@ - a - a) = a — [a] = [

The order in which individual array elements are processed
is unspecified and the binary operation is required to be
associative, thus permitting a tree-like evaluation strategy
with logarithmic depth (cf. [4]). Other parallel reductions
are defined in terms of these basic operations, e.g.,

l F'1doRCTIl 6L T didlitl Alldyos I

l Front End

l Flattening

1 Unfolding Primitives

I Flat Core & Distributed Types I

Simplifier (Fusion)
Code Generation

I C & library operations I

Figure 1: GHC with NDP extensions

sumP :: Numa = [a] = «
sumP = foldP (+) 0

For these specialized reductions, the semantical differences
between the parallel and the corresponding list-based ver-
sions, such as sum, are minimal and reflected in the defi-
nition of the more primitive operations (foldP in the above
case).

3.1.5 Open Problems

Currently, there are two open, but from a practical point of
view not very serious, problems in the outlined design:

1. The pattern-matching suggested for arrays might be
considered ad hoc, as it essentially allows to match
only arrays of fixed sizes.

2. Expressions like [:f a | f < [:foo, bar:]:] essentially de-
note control parallelism, as the two unrelated functions
foo and bar would—by what we have said so far—have
to be evaluated in parallel.

The first problem is a consequence of not having an induc-
tive definition for arrays. Thus, it could be argued that
we should omit pattern-matching on arrays entirely. While
this would certainly be feasible, it is often convenient to be
able to test for parallel arrays containing zero, one, or two
elements in a pattern.

The second problem is more serious. An obvious solution
would be to forbid having functions as elements of paral-
lel arrays. This is not so much of a restriction, as it might
seem at first, as parallel arrays are for the expression of
data parallelism only and there are not many meaningful
data-parallel operations that can be defined on functions—
all other uses of functions would, of course, not be restricted
in any way. The main problem is that the obvious attempt
of requiring all elements of parallel arrays to be part of a
type class NonFun would lead to a proliferation of (rather
trivial) contexts on all type declarations involving parallel
computations. An alternative solution is to allow functions
in parallel arrays, but to specify that expressions as the one
stated above will lead to a sequential evaluation of the func-
tion applications. This, however, introduces a fair amount of
complications into the formalisation of the flattening trans-
formation, as discussed in [12].

3.2 Implementation of Nested Data-Parallelism

Let us now have a look at the implementation of NEPAL,
which we realise by extending an existing Haskell system:
the Glasgow Haskell Compiler (GHC), which is known to
produce fast sequential code. The compilation process rough-
ly consists of four major phases, which are depicted in Fig-
ure 1. The present paper only provides a sketch of each of
the phases and of the techniques involved. More details can
be found in [22; 24; 11; 12].

The first phase, the front end, simply converts Haskell code
including parallel arrays into an intermediate language called
Nested Core, i.e., the input is type checked and all syntactic
sugar removed.

The second phase, the flattening transformation maps all
nested computations to flat parallel computations, preserv-
ing the degree of parallelism specified in the source program.
Furthermore, all nested parallel data structures are trans-
formed into isomorphic flat data structures. This is done by
partially separating information about the structure from
the data. Arrays with recursive element types are mapped
onto recursive structures containing arrays with only simple
element type. As, at some level, recursive structures have
to be modelled using pointers, this step corresponds to con-
verting an array of pointers into a pointer to an array. As a
consequence of the type transformation, polymorphic opera-
tions on parallel arrays have to be replaced by corresponding
operations on the new data structure.

The flattening step itself is similar to the technique de-
scribed, for example, in [7; 29]. However, as already men-
tioned, due to the presence of recursive data types in a par-
allel context, the type transformation, as well as the instan-
tiation of polymorphic functions on arrays, requires special
consideration—we present the complete transformation in a
form suitable for the Haskell Kernel in [12].

In the third step (Unfolding Primitives) all the data par-
allel primitives are decomposed into their purely processor
local and their global components—the latter are those re-
quiring communication. The intermediate language ”Flat
Core & Distributed Types”, which is the target language of
this step, distinguishes between local and global values by
the type system. In this representation, we apply GHC’s
simplifier, which has been extended with rules for array and
communication fusion to optimise local computations and
communication operations for the target architecture. This
step transforms fine-grained vector loops into deep compu-
tations: This localises memory access, reduces synchroni-
sation, and allows one to trade load balance for data re-
distribution.

Finally, the code-generation phase produces C or native code
code that uses our collective-communication library to main-
tain distributed data structures and to specify communica-
tion. The library internally maps all collective communica-
tion to a small set of one-sided communication operations,
which makes it highly portable [11].

The combination of flattening with array fusion and the
communication library that contains only a small core of
machine-dependent functions allows us to target a wide range
of high-performance architectures. Furthermore, the compo-
nents that are marked by use of an italic font in Figure 1 be-
have differently in dependence on the targeted architecture—
we call them target-dependent components. However, the
flattening transformation, while being essential for our ap-
proach to portability, operates in the same way for all kinds

ps3
D1
p2
p7 | Pe P4
Ds
Po pe

Figure 2: Hierarchical division of an area into subareas

01/62/C0¥p1
Y
AR

be P P8 Po

Figure 3: Example of a Barnes-Hut tree.

of target architectures; it does not specialise the code for an
architecture, but generally brings it into a form that makes
it easier for subsequent phases to generate good code. In
contrast, the application of calculational fusion, the code
generation, and our library have to be parametrised with
information about the target architecture to generate good
code.

4. A SOLUTION TO THE N-BODY PROB-
LEM

This section presents a Nepal implementation of a simple
version of the Barnes-Hut n-body algorithm|[2], which is a
representative of an important class of parallel algorithms
covering applications like simulation and radiocity compu-
tations. These algorithms consist of two main steps: first,
the data is clustered in a hierarchical tree structure; then,
the data is traversed according to the hierarchical structure
computed in the first step. In general, we have the situation
that the computations that have to be applied to data on
the same level of the tree can be executed in parallel.

The remainder of this section briefly describes the Barnes-
Hut algorithm, the data structures that are required, and
the NEPAL code. It addresses some implementation issues
and discusses benchmarking results.

An n-body algorithm determines the interaction between a
set of particles by computing the forces which act between
each pair of particles. A precise solution therefore requires
the computations of n? forces, which is not feasible for large
numbers of particles. The Barnes-Hut algorithm minimizes
the number of force calculations by grouping particles hier-
archically into cells according to their spatial position. The
hierarchy is represented by a tree. This allows approximat-
ing the accelerations induced by a group of particles on dis-
tant particles by using the centroid of that group’s cell. The
algorithm has two phases: (1) The tree is constructed from
a particle set, and (2) the acceleration for each particle is
computed in a down-sweep over the tree. Each particle is
represented by a value of type MassPoint, a pair of position
in the two dimensional space and mass:

type Vec = (Double, Double)
type Area = (Vec, Vec)

type Mass = Double

type MassPoint = (Vec, Mass)

We represent the tree as a node which contains the centroid
and a parallel array of subtrees:

data Tree = Node MassPoint [: Tree:]

Each iteration of bhTree takes the current particle set and
the area in which the particles are located as parameters. It
first splits the area into four subareas subAs of equal size.
It then subdivides the particles into four subsets according
to the subarea they are located in. Then, bhTree is called
recursively for each subset and subarea. The resulting four
trees are the subtrees of the tree representing the particles of
the area, and the centroid of their roots is the centroid of the
complete area. Once an area contains only one particle, the
recursion terminates. Figure 2 shows such a decomposition
of an area for a given set of particles, and Figure 3 displays
the resulting tree structure.

bhTree :: [MassPnt:] — Area — Tree
bhTree [:p:larea = Node p [:1]
bhTree ps area =

let
subAs = splitArea area
pgs = splitParticles ps subAs
subts = [:bhTree pg a| pg <+ pgs, a < subAs:]
cd = centroid :mp | Node mp _ < subts;|
in

Node cd subts

The tree computed by bhTree is then used to compute the
forces that act on each particle by a function accels. It
first splits the set of particles into two subsets: fMps, which
contains the particles far away (according to a given crite-
ria), and c¢Mps, which contains those close to the centroid
stored in the root of the tree. For all particles in fMps, the
acceleration is approximated by computing the interaction
between the particle and the centroid. Then, accels is called
recursively for with ¢Mps and each of the subtrees. The
computation terminates once there are no particles left in
the set.

accels :: Tree — [:MassPoint:] — [: Vec:]
accels _] =[]
accels (Node cd subts) mps =
let
(fMps, cMps) = splitMps mps
fAcs = [raccel ed mp | mp < fMps;]
— forces for particles far from current p.
cAcs = [raccels t cMps | t + subts:]
in
combine farAcs closeAcs
accel :: MassPoint — MassPoint — Vec
— given two particles, the function accel
— computes the acceleration that one particle
— exerts on the other

The tree is both built and traversed level by level, i.e., all
nodes in one level of the tree are processed in a single par-
allel step, one level after the other. This information is im-
portant for the compiler to achieve good data locality and

9 -
24 000 particles, plummer distribution
8 32 000 particles, homm. distribution -----------
16 000 particles, homm. distribution -
7r 16 000 particles, plummer distribution
6 L
@,
o 5}
£
S 4¢
m L
3 L
2 L
1 L
0 ! . . .)

5 10 15 20 25
Number of Processors

Figure 4: Runtime of the Barnes-Hut NBody algorithm on
the Cray T3E

16 000 particles, plummer distribution -
L 24 000 particles, plummer distribution<--------
16 000 particles, hom. distribution -
32 000 particles, homm. distrjbution
theoretic.optimum -------

N w B [¢)] (o)) ~ [ee]
T

Speedup (normalized to 3 processors)

O Il Il Il Il Il
5 10 15 20 25
Number of Processors

Figure 5: Speedup of the Barnes-Hut NBody algorithm on
the Cray T3E

load balance, because it implies that each processor should
have approximately the same number of masspoints of each
level. We can see the tree as having a sequential dimen-
sion to it, its depth, and a parallel dimension, the breadth,
neither of which can be predicted statically. The program-
mer conveys this information to the compiler by the choice
the data structure: By putting all subtrees into a parallel
array in the type definition, the compiler assumes that all
subtrees are going to be processed in parallel. The depth of
the tree is modelled by the recursion in the type, which is
inherently sequential. The type transformation in the com-
pilation phase, then, transforms the tree into a list of ar-
rays connected by global pointers, where each of the arrays
is distributed over the processors involved in the computa-
tion. The local portions of the arrays (on for each level of
the tree) are interconnected on each processor in the form of
a linked list. In [23], we discussed why the above encoding
based on recursive types is not possible in Nesl and what its
advantages are compared to a possible Nesl implementation

of the algorithm.

To get a feeling for the behaviour of our implementation
technique, we tested hand-compiled code produced accord-
ing to the compilation rules presented in [22; 23]. We ran
benchmarks for two different types of particle sets: a ho-
mogeneous distributed set, where the particles are spread
evenly over the area, and a so-called plummer distribution,
where the particles center around one point of the area. The
Barnes-Hut algorithm requires less computation steps for a
homogeneous distribution, as the tree that stores the parti-
cles has depth of about log n for n particles. Roughly speak-
ing, the algorithm has to compute twice as much particle-
particle interactions for a set with plummer distribution
than for a homogeneously distributed particle set with the
same number of elements. The runtimes for particle sets of
16 000, 24 000, and 32 000 elements, which are displayed
in Figure 4, show the higher absolute runtime of the plum-
mer distribution. The diagram in Figure 5 reveals another
effect: Not only is the absolute runtime of the regular case
better, but we also obtain better speed up. On first sight,
this might be surprising, as a higher number of computa-
tions often leads to programs with better relative speed up.
In this case, though, we not only have more computations,
but we also have more communication due to the high degree
of irregularity. However, the diagram also shows that for 24
processors the speedup for the plummer set is still linear,
while it already slows down slightly for the homogeneous
sets.

5. SOLVING TRIDIAGONAL SYSTEMS OF
LINEAR EQUATIONS

In addition to the obvious uses of sum types, the extension of
flattening to the full range of Haskell types allows a declar-
ative type-based control of data distribution. Consider the
operational implications for an array of arrays [:[:Int:]:] ver-
sus an array of (sequential) lists [:[Int]:]. On a distributed
memory machine, values of the former will be evenly dis-
tributed over the available processing elements; in particu-
lar, if the subarrays vary substantially in size, they may be
split up across processor boundaries to facilitate parallel op-
erations over all elements of the nested array simultaneously.
In contrast, arrays of lists are optimised for sequential oper-
ations over the sublists; although, the sequential processing
of all the sublists is expected to proceed in parallel. One
application where the distinction of parallel and sequential
data-structures is useful is the parallel solution of tridiago-
nal systems of linear equations as proposed by Wang [33].
Tridiagonal systems of linear equations are a special form
of sparse linear systems occuring in numerous scientific ap-
plications. Such system can be solved sequentially in linear
time by first eliminating the elements of the lower diago-
nal by a top-down traversal, and then eliminating the upper
diagonal by traversing the matrix from bottom to top. Un-
fortunately, in each step a pivot row is needed that is com-
puted just in the step before, so the algorithm is completely
sequential.

In the parallel solution proposed by Wang, the matrix is sub-
divided into blocks of consecutive rows, which are then pro-
cessed simultaneously. The algorithm runs in three phases.
First, all rows of a block are traversed top-down and then
bottom-up to eliminate the lower and upper diagonal, re-
spectively. However, since the first row in each but the first

block still contains the lower diagonal element, a vertical
chain of fill-in elements appears in this column. As the ma-
trix is symmetric, a chain of fill-ins also occurs on the right
in all but the last block in the bottom-up traversal. The non-
zero elements of the matrix after the first phase are shown in
Fig. 6. To diagonalise the matrix, the left and right chains

Figure 6: Situation with 3 blocks after first parallel phase
in Wang’s algorithm

of fill-ins must be eliminated.

The first block’s last row contains non-zeros suitable for
elimination of all left fill-ins in the second block. Once the
left chain element of the second block’s last row has been
eliminated, this updated row can be used as a pivot for
the elimination of the left fill-in chain in the third block
etc. Thus, a pipelining phase is necessary over all blocks
to propagate suitable pivot rows for the elimination of the
left chains of fill-ins. Analogously, pivots can be propagated
upwards starting with the last block to eliminate the right
chains of extra non-zeros.

In each block, once the pivot row from the preceding block is
available, the fill-in elements may be eliminated in any order.
There are no sequential inner-block dependencies. However,
as described above, there is a sequential dependency among
the blocks. Elimination of the left chain can start only after
the pivot row from the previous block is available, but this is
the case only after the left fill-in of the previous block’s last
row has been eliminated already. Thus, it is important that
during pipelining, only the first and last rows of each block
are touched, because eliminating all fill-ins first before prop-
agating pivots to the next block would mean a completely
sequential traversal of the matrix.

After the pipelining phase, there are pivot rows for each
block that can be used to eliminate both the left and the
right chains of fill-ins. Like in the first phase, all blocks
can be processed in parallel. Again, one top-down and one
bottom-up traversal are necessary to obtain the desired di-
agonal structure.

5.1 Encoding Wang’s Algorithm in NepaL

In NEPAL, we model an equation with a tuple-type TriRow
containing the three diagonal elements, the two potential
chain elements, and the right-hand side.

type TriRow = (Float, Float, Float, Float, Float, Float)
— left, lower, main, upper, right, rhs

A row block is a list of rows, i.e., of type [TriRow]. The
whole matrix is a parallel array of row blocks, abbreviated
by the type Matriz.

type Matriz = [: [TriRow] {|
— a parallel array of lists of rows

The following encodes the top-level function of Wang’s al-
gorithm.

solve 1 Matriz — [:[Float]:]
solve m =
let
res = [:elimLowerUpper z |z < m: — Phase 1
frv = [f[(-f,-) + resy]
lrv = [l\(_, 1)+ resi)
rowv = [ir|(r,,,-) < res]
(fpl,Ipl) = pipeline (pArrayToList frv)
(pArrayToList lrv) — Phase 2
(fpv, Ipv) = (listTopArray fpl, listTopArray Ipl)
dm = [relimLeftRight r fp lp | r < rowv &
fo < fov&lip < Ipv — Phase 3
in

mapP (map (A (TriRow _ _ maine _ _rhs) — rhs/maine))

The functions elimLowerUpper and elimLeftRight are ordi-

nary, recursive list-traversals, eliminating elements on each
row both in the descending and ascending phase of recur-
sion—we omit the details of their definition here, as they do
not use parallelism. However, these traversals are executed
in parallel for all blocks. The function elimLowerUpper is of
type [TriRow] — ([TriRow], TriRow, TriRow). It returns
the updated row block plus the two rows needed for the
pipelining phase. As the pipelining is sequential, lists are
used and so the arrays with the first and last pivot rows
are converted by the primitive pArrayToList. The func-
tion pipeline is again an ordinary list traversal, realizing
the desired pivot generation and propagation. The lists of
new pivot rows are transformed into parallel arrays using
list TopArray, so that the third phase can work in parallel
on all blocks to eliminate the fill-in values.

5.2 Controlling the degree of parallelism

The parallelism available in the algorithm depends on the
number of blocks as these are processed in parallel in Phases
1 and 3. In the pipelining phase, however, pivot rows must
be propagated sequentially across all blocks, making the
depth of this phase proportional to the number of blocks.
Consequently, parallelising the first and the third phases
completely by setting the block size to 1 leads to a pipelin-
ing phase that needs linear time, which implies no speedup
against the sequential version. Obviously, the best solution
is to create one block per processor, thus minimising the
costs of pipelining while still fully utilising the target ma-
chine.

While it is possible to implement this algorithm in Nesl, the
trade-off between the computational depth of pipelining and
the parallelism available in the other phases cannot be ex-
pressed cleanly in that language due to its lack of sequential
types. Nepal’s richer type system, on the other hand, al-
lows us to make an explicit distinction between parallel and
sequential computations. In the above example, we repre-
sent individual blocks by sequential lists which, in turn, are
stored in a parallel array. Thus, the structure of the algo-
rithm is reflected in the structure of the data it operates
upon. This makes the code more readable and allows the
compiler to optimize more aggressively since more static in-
formation is available.

6. RELATED WORK

The relative merits of NDP when compared to other parallel
programming models have already been covered elsewhere—
, [6]. Hence, in the following, we will concentrate on

parallel functional languages and, in particular, on paral-
lel extensions of Haskell—instead of discussing parallel pro-
gramming languages in general. Generally, we can cate-
gorise the extensions of Haskell as either data or control
parallel as well as either preserving the semantics of exist-
ing Haskell programs or altering it. Interestingly, it seems as
if all data-parallel extensions maintain Haskell’s original se-
mantics, whereas control-parallel extensions tend to modify
it—if only in a subtle way.

6.1 Data Parallel Extensions

NEPAL does not affect the semantics of standard Haskell pro-
grams, i.e., only the newly introduced types and operations
have a parallel semantics. This guarantees maximal compat-
ibility to existing Haskell code. An approach that follows the
same goal and is probably the one closet related to NEPAL is
Jonathan Hill’s data-parallel extension of Haskell [20]. The
main difference between his and our approach is that he
maintains the laziness of the collective type that is evaluated
in parallel. The trade off here is, once more, one between
flexibility of the programming model and static information
that can be used for optimisations. We chose to maximise
static information, he emphasised flexibility.

Two other approaches that do not alter the Haskell seman-
tics and do, in fact, not extend the language at all are
[18; 15]. In both approaches, certain patterns in Haskell
programs are recognised and treated specially—i.e., they
are being given a parallel implementation. In the first ap-
proach, these patterns have to be specified explicitly by
means of coding parallel algorithms using specialised di-
vide&conquer skeletons. Both approaches choose to max-
imise static knowledge and are only applicable to regular
parallelism, where the space-time mapping can be deter-
mined at compile time. This allows a maximum of optimi-
sation by the compiler, but prevents the implementation of
irregular parallelism. In fact, it is not entirely clear, whether
these two approaches should be categorised as data or con-
trol parallel. They do not explicitly restrict the range of par-
allelised expressions, but due to their focus on array-based
algorithms, they certainly operate in the realm of data par-
allelism.

6.2 Control Parallel Extensions

Parallel Haskell (pH) [1] is an implicitly parallel approach
that makes a fundamental change to Haskell’s semantics: In-
stead of lazy evaluation, it requires lenient (non-strict, but
eager) evaluation. Moreover, it introduces additional con-
structs that ultimately compromise referential transparency,
but allow the programmer to maximise the available paral-
lelism. The most interesting feature of pH is probably that,
despite being a control-parallel language, it allows very fine-
grained parallelism—to a degree that is usually reserved for
data parallel languages.

Glasgow Parallel Haskell (GPH) and the associated evalua-
tion strategies [32; 31] extend standard Haskell by a prim-
itive par combinator that allows the programmer to des-
ignate pairs of expressions that may be evaluated in par-
allel. Based on this primitive, evaluation strategies allow
to specify patterns of parallelism in the form of meaning-
preserving annotations to normal (sequential) Haskell code.
There is, however, a slight modification of Haskell’s original
semantics hidden in these strategies. They can increase the
strictness of functions, and thus, lead to non-termination

of programs that do terminate under the purely sequential
execution model.

Two more radical control-parallel extensions of Haskell are
Eden [8] and Goffin [10]. Both follow the idea of the seper-
ation of computation and co-ordination, where the latter
describes the parallel behaviour of a given program. Eden
specifies co-ordination as a set of stream processors and in-
troduces a notion of process abstractions, whereas Goffin
uses a small set of constraint-logic combinators and con-
straint abstractions for the same purpose. Eden ultimately
breaks referential transparency, and thus, Haskell’s origi-
nal semantics, whereas Goffin does not alter the standard
Haskell portion of the language at all.

6.3 Other Parallel Functional Languages
Generally, there exists a wide range of parallel languages
that are based on the model of functional programming—as,
for example, witnessed in [17]. Ranging from languages that
just support purely regular computations, such as Sisal [16]
and SAC [30], over languages based on the idea of skele-
tons [13], such as [14], to control-parallel languages, such as
Concurrent Clean [26].

The one parallel language that is closest to NEPAL in terms
of the parallel programming model is certainly Nesl [5], which
has been the starting point of our research. In essence, it
has been our aim to take the novel functionality of Nesl
and develop it to a point where it could be integrated in a
standard functional language like Haskell. As a result, we
could improve on the range of data types and the support
for higher-order functions, and moreover, NEPAL has inher-
ited from Haskell a module system with support for separate
compilation and a clean I/O framework. This has only been
possible due to the progress that we recently made in ex-
tending the scope of the flattening transformation [12].

7. CONCLUSION

We have presented NEPAL, a conservative extension of the
standard functional language Haskell, which allows the ex-
pression of nested data-parallel programs. Parallel arrays
are introduced as the sole parallel datatype together with
data-parallel array comprehensions and parallel array com-
binators. In contrast to some other approaches, the parallel
operational semantics of NEPAL does not compromise ref-
erential transparency. NEPAL is intended as a step towards
bridging the gap between high-level parallel programming
models and high performance, and it is our feeling that
nested data-parallelism in Haskell together with the flat-
tening transformation and appropriate optimisations bear a
potential to achieve this goal.

Among smaller examples, we have presented two parallel
applications that demonstrate the expressiveness of nested
data-parallel programming based on Haskell. Other than
NEsL, NEPAL supports the full range of both sequential and
parallel data-types and computations, enlarging the class of
algorithms suitable for a nested data-parallel programming
style and allowing a declarative, type-based specification of
data-distribution. In the context of NDP, NEPAL is the first
flattening-based language that allows separate compilation
in the presence of polymorphic functions on parallel arrays.
We are currently implementing a full compiler, which uses
a transformation-based approach. We will integrate sev-
eral optimisation techniques in the compiler that have been
developed and investigated for nested data-parallelism [22;

27]. There are several hand-compiled examples such as the
Barnes-Hut code or sparse-matrix vector multiplication de-
livering promising performance [23; 11]. As we do not change
Haskell as the sequential part of NEPAL, existing implemen-
tation techniques and compiler code for Haskell can be re-
used.

7.1 Future Work

As an important piece of future work, we will develop a
language-based cost model based on the common measures
work and depth. The core rules of NESL’s cost model will
be re-used for NEPAL as far as possible. However, the adap-
tation to Haskell’s powerful type system requires significant
extensions to the cost model. Using Hinze’s approach to
generic functional programming as a starting point, we will
develop a cost measure for polymorphic primitives [21].

In addition to the standard prelude, we will define a set
of library functions for parallel arrays. Where useful, we
will adapt the functions from the list and array libraries.
New functions will probably be introduced for the interplay
between parallel arrays and sequential collection types.

8. REFERENCES

[1] S. Aditya, Arvind, L. Augustsson, J.-W. Maessen, and
R. S. Nikhil. Semantics of pH: A parallel dialect of
Haskell. In P. Hudak, editor, Proc. Haskell Workshop,
La Jolla, CA USA, YALEU/DCS/RR-1075, pages 35—
49, June 1995.

[2] J. Barnes and P. Hut. A hierarchical O(nlogn) force
calculation algorithm. Nature, 324, December 1986.

[3] G. Blelloch et al. The PSciCo

http://www.cs.cmu.edu/~pscico/.

project.

[4] G. E. Blelloch. Prefix sums and their applications.
Technical Report CMU-CS-90-190, School of Computer
Science, Carnegie Mellon University, Nov. 1990.

[6] G. E. Blelloch. NESL: A nested data-parallel lan-
guage (version 2.6). Technical Report CMU-CS-93-129,
School of Computer Science, Carnegie Mellon Univer-
sity, April 1993.

[6] G.E. Blelloch. Programming parallel algorithms. Com-
munications of the ACM, 39(3):85-97, 1996.

[7] G. E. Blelloch and G. W. Sabot. Compiling collection-
oriented languages onto massively parallel computers.
Journal of Parallel and Distributed Computing, 8:119—
134, 1990.

[8] S. Breitinger, U. Klusik, and R. Loogen. From (se-
quential) Haskell to (parallel) Eden: An implementa-
tion point of view. Lecture Notes in Computer Science,
1490:318-77, 1998.

[9] D. Cann. Retire fortran? A debate rekindled. Commu-
nications of the ACM, 35(8):81, Aug. 1992.

[10] M. M. T. Chakravarty, Y. Guo, M. Kéhler, and H. C. R.
Lock. Goffin: Higher-order functions meet concurrent
constraints. Science of Computer Programming, 30(1-
2):157-199, 1998.

[11]

[12]

[13]

[14]

[16]

[17]

18]

[19]

[20]

[21]

[22]

M. M. T. Chakravarty and G. Keller. How portable
is nested data parallelism? In Proc. of 6th Annual
Australasian Conf. on Parallel And Real-Time Systems,
pages 284-299. Springer-Verlag, 1999.

M. M. T. Chakravarty and G. Keller. More types for
nested data parallel programming. In P. Wadler, editor,
Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’00), pages
94-105. ACM Press, 2000.

M. Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. The MIT Press, 1989.

J. Darlington, A. J. Field, P. G. Harrison, P. H. J.
Kelly, D. W. N. Sharp, Q. Wu, and R. L. While. Paral-
lel programming using skeleton functions. In A. Bode,
M. Reeve, and G. Wolf, editors, PARLE ’93: Paral-
lel Architectures and Languages Europe, number 694
in Lecture Notes in Computer Science, pages 146-160,
Berlin, Germany, 1993. Springer-Verlag.

N. Ellmenreich, C. Lengauer, and M. Griebl. Ap-
plication of the polytope model to functional pro-
grams. In J. Ferrante, editor, Proc. 12th Int. Work-
shop on Languages and Compilers for Parallel Com-
puting (LCP(C’99). Computer Science and Engineering
Department, UC San Diego, 1999.

J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report
on the Sisal language project. Journal of Parallel and
Distributed Computing, December 1990.

K. Hammond and G. Michaelson, editors. Research Di-
rections in Parallel Functional Programming. Springer-
Verlag, 1999.

C. A. Herrmann and C. Lengauer. Parallelization
of divide-and-conquer by translation to nested loops.
Journal of Functional Programming, 9(3):279-310, May
1999.

High Performance Fortran Forum. High Performance
Fortran language specification. Technical report, Rice
University, 1993. Version 1.0.

J. M. D. Hill. Data-parallel lazy functional program-
ming. PhD thesis, Department of Computer Science,
Queen Mary and Westfield College, London, 1994.

R. Hinze. A new approach to generic functional pro-
gramming. In Proceedings of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Language. ACM Press, 2000.

G. Keller. Transformation-based Implementation of
Nested Data Parallelism for Distributed Memory Ma-
chines. PhD thesis, Technische Universitdt Berlin,
Fachbereich Informatik, 1999.

G. Keller and M. M. T. Chakravarty. Flattening trees.
In D. Pritchard and J. Reeve, editors, Euro-Par’98,
Parallel Processing, number 1470 in Lecture Notes
in Computer Science, pages 709-719, Berlin, 1998.
Springer- Verlag.

24]

[27]

[28]

[29]

[30]

G. Keller and M. M. T. Chakravarty. On the distributed
implementation of aggregate data structures by pro-
gram transformation. In J. Rolim et al., editors, Par-
allel and Distributed Processing, Fourth International
Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS’99), number 1586
in Lecture Notes in Computer Science, pages 108-122,
Berlin, Germany, 1999. Springer-Verlag.

R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. The MIT Press, 1990.

E. G. J. M. H. Nocker, J. E. W. Smetsers, M. C.
J. D. van Eekelen, and M. J. Plasmeijer. Concurrent
Clean. In Proceedings of PARLE ’91, number 505/506
in Lecture Notes in Computer Science, pages 202—220.
Springer-Verlag, 1991.

W. Pfannenstiel. Combining fusion optimizations and
piecewise execution of nested data-parallel programs.
In J. R. et al., editor, IPDPS 2000 Workshops (HIPS),
Lecture Notes in Computer Science 1800, pages 324—
331. Springer-Verlag, 2000.

Haskell 98: A non-strict, purely functional language.
http://haskell.org/definition/, February 1999.

J. Prins and D. Palmer. Transforming high-level data-
parallel programs into vector operations. In Proceedings
of the Fourth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pages 119—
128, San Diego, CA., May 19-22, 1993. ACM.

S.-B. Scholz. On defining application-specific high-level
array operations by means of shape-invariant program-
ming facilities. In Proceedings of APL’98, pages 40-45.
ACM Press, 1998.

P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L.
Peyton Jones. Algorithm + strategy = parallelism.
Journal of Functional Programming, 1998.

P. W. Trinder, K. Hammond, J. S. Mattson Jr, A. S.
Partridge, and S. L. Peyton Jones. GUM: a portable
parallel implementation of Haskell. In Proceedings of
Programming Languages Design and Implementation,
1996.

H. H. Wang. A parallel method for tridiagonal equa-
tions. ACM Transactions on Mathematical Software,
7(2):170-183, June 1981.

