
Nepal – Nested Data-Parallelism in Haskell

Manuel M. T. Chakravarty
University of New South Wales

School of Computer Science & Engineering
Sydney, Australia

chak@cse.unsw.edu.au

Roman Lechtchinsky
Technische Universität Berlin

Fachbereich Informatik
Berlin, Germany

rl@cs.tu-berlin.de

Gabriele Keller
University of Technology, Sydney
Faculty of Information Technology

Sydney, Australia

keller@it.uts.edu.au

Wolf Pfannenstiel
Technische Universität Berlin

Fachbereich Informatik
Berlin, Germany

wolfp@cs.tu-berlin.de

ABSTRACTThis paper dis
usses an extension of Haskell by support fornested data-parallel programming in the style of the spe
ial-purpose language Nesl. More pre
isely, the extension
on-sists of a parallel array type, array
omprehensions, anda set of primitive parallel array operations. This extensionbrings a hitherto unsupported style of parallel programmingto Haskell. Moreover, nested data parallelism should re
eivewider attention when available in a standardised languagelike Haskell. This paper outlines the language extension anddemonstrates its usefulness with two
ase studies.Keywords: Data parallelism;
attening; irregular paral-lelism; Haskell
1. INTRODUCTIONMost extensions of Haskell that are aimed at parallel pro-gramming fo
us on
ontrol parallelism [1; 32; 31; 8; 10℄,where arbitrary independent subexpressions may be evalu-ated in parallel. These extensions vary in their sele
tionstrategy of parallel subexpressions and asso
iated exe
u-tion me
hanisms, but generally maximise
exibility as
om-pletely unrelated expressions
an be evaluated in parallel.As a result, most of them require multi-threaded implemen-tations and/or suÆ
iently
ourse-grained parallelism, andthey make it hard for both the programmer and the
om-piler to predi
t
ommuni
ation patterns.There are, however, also a few data parallel extensions ofHaskell [20; 18; 15℄. They restri
t parallelism to the si-multaneous appli
ation of a single fun
tion to all elementsof
olle
tive stru
tures, su
h as lists or arrays. This re-stri
tion might be regarded as a burden on the program-

mer, but it allows both the programmer as well as the
om-piler to better predi
t the parallel behaviour of a program,whi
h ultimately allows for a �ner granularity of parallelismand more radi
al
ompiler optimisations. Furthermore, thesingle-threaded programming model is
loser to sequentialprogramming, and thus, arguably easier to understand.Ultimately, the
hoi
e between
ontrol and data parallelismis a trade o� between
exibility and stati
 knowledge aboutthe parallelism
ontained within a program. The program-ming model of nested data parallelism (NDP) [6℄ is an at-tempt at maximising
exibility while preserving as mu
hstati
 knowledge as possible. It extends
at data paral-lelism as present in languages like High Performan
e For-tran (HPF) [19℄ and Sisal [9℄ su
h that it
an easily ex-press
omputations over highly irregular stru
tures, su
h assparse matri
es and adaptive grids. NDP has been popu-larised in the language Nesl [5℄, whi
h severely restri
ts therange of available data stru
tures|in fa
t, Nesl supportsonly tuples in addition to parallel arrays (
alled ve
tors inNesl). In parti
ular, neither user-de�ned re
ursive nor sumtypes are supported. This is largely due to a short
omingin the most su

essful implementation te
hnique for NDP|the
attening transformation [7; 29℄, whi
h maps nested to
at parallelism. Re
ently, we lifted these restri
tions on
attening [23; 12℄ and demonstrated that the
ombinationof
attening with fusion te
hniques leads to good
ode fordistributed-memory ma
hines [22; 24℄.These results allow us to support NDP in Haskell and toapply
attening for its implementation. In the resultingsystem|whi
h we
all Nepal (NEsted PArallel Language),for short|a wide range of important parallel algorithms (1)
an be formulated elegantly and (2)
an be
ompiled to ef-�
ient
ode on a range of parallel ar
hite
tures. This paperwill illustrate the �rst point by des
ribing the implemen-tation of the Barnes-Hut hierar
hi
al n-body algorithm [2℄and Wang's algorithm for solving tridiagonal equations [33℄.It will provide only a rough sket
h of the
attening-based im-plementation method, but details
an be found elsewhere [12;11℄. A similar
ombination of the Nesl parallel programmingmodel with Standard ML [25℄ is investigated in the PS
iCoproje
t [3℄.Our extension of Haskell is
onservative in that it does not

alter the semanti
s of existing Haskell
onstru
ts. We merelyadd a new data type, namely parallel arrays, parallel array
omprehensions, and a set of parallel operations on thesearrays. Parallel arrays
ombine properties of the standardHaskell list and array data types; furthermore, their parti
u-lar semanti
 properties make them ideally suited for parallelpro
essing. A parti
ularly interesting
onsequen
e of expli
-itly designating
ertain data stru
tures as parallel and othersas sequential is a type-based spe
i�
ation of data distribu-tions. We will demonstrate this during the presentation ofthe example algorithms in Se
tions 4 and 5.When
ompared to Nesl, NDP in Haskell bene�ts from thestandardised language, wider range of data types, more ex-pressive type system, better support for higher-order fun
-tions, referential transparen
y, module system and separate
ompilation, and the
lean I/O framework.In this paper, we will not present any new ben
hmark �g-ures. In previous work [23; 11℄, we have provided exper-imental data that supports the feasibility of our approa
hfrom a performan
e point of view; we will summarise someof the results when dis
ussing the n-body
ode (Se
tion 4).In short, this paper makes the following main
ontributions:� We show how Nesl's notion of nested data parallelism
an be integrated into Haskell by adding parallel ar-rays.� We show how the
ombination of parallel and sequen-tial types leads to a de
larative spe
i�
ation of datadistributions.� We demonstrate the feasibility of our approa
h by dis-
ussing two well-known parallel algorithms.The remainder of this paper is stru
tured as follows: Se
-tion 2 provides more detail on nested data prallelism andgives a brief overview over our extension of Haskell. Se
-tion 3 details our integration of parallel arrays into Haskelland brie
y outlines the
attening-based implementation.Se
tion 4 dis
usses the implementation of the Barnes-Huthierar
hi
al n-body
ode and Se
tion 5 studies Wang's par-allel algorithm for solving tridiagonal systems of linear equa-tions. Se
tion 6 dis
usses related work. Finally, Se
tion 7
on
ludes.
2. NESTED DATA PARALLELISMIn this se
tion, we brie
y introdu
e the parallel program-ming model of nested data parallelism (NDP) together withour extension of Haskell by parallel arrays|for more detailson NDP, see [6℄.
2.1 A New Data Structure: Parallel ArraysA parallel array is an ordered, homogeneous sequen
e of val-ues that
omes with a set of parallel
olle
tive operations.We require parallel arrays to be distributed a
ross pro
essingnodes if they o

ur in a program exe
uted on a distributedmemory ma
hine. It is the responsibility of the exe
utionme
hanism to sele
t a distribution whi
h realises a good
ompromise between optimal load balan
e and minimal datare-distribution|see [22℄ for the
orresponding implementa-tion te
hniques. The type of a parallel array
ontainingelements of type � is denoted by [:� :℄. This notation is sim-ilar to the list syntax and, in fa
t, parallel arrays enjoy thesame level of synta
ti
 support as lists where the bra
kets [j

and j℄ denote array expressions. For instan
e, [:a1; : : : ; an :℄
onstru
ts a parallel array with n elements. Furthermore,most list fun
tions, su
h as map and repli
ate , have parallel
ounterparts distinguished by the suÆx P , i.e., the stan-dard prelude
ontains de�nitions for fun
tions su
h as thefollowing:mapP :: (�! �)! [:�:℄! [:�:℄| map a fun
tion over a parallel arrayrepli
ateP :: Int ! �! [:�:℄|
reate an array
ontaining n
opies of a valueThe in�x operators (!:) and (+:+) are used to denote index-ing and
on
atenation of parallel arrays.In
ontrast to sequential list operations,
olle
tive opera-tions on parallel arrays exe
ute in parallel. Thus,mapP (+1) [:1; 2; 3; 4; 5; 6:℄in
rements all numbers in the array in a single parallel step.The nesting level of parallel elementwise operations does nota�e
t the degree of parallelism available in a
omputationso that if xss = [:[:1; 2:℄; [:3; 4; 5:℄; [::℄; [:6:℄:℄;mapP (mapP (+1)) xssexe
utes in one parallel step as well. The same holds forexpressions su
h as[:sumP xs j xs xss :℄(the behaviour of array
omprehensions
orresponds to thatof list
omprehensions)|ea
h appli
ation of sumP uses par-allel redu
tion and all of these appli
ations are exe
uted si-multaneously. The standard fun
tion sumP is des
ribed inse
tion 3.1.4.In other words, the key property of nested data parallelismis that all parallelism
an be exploited independent of thedepth of nesting of data-parallel
onstru
ts. In fa
t, as wewill see in the next subse
tion, this holds even for re
ursivelynested divide&
onquer algorithms, where the nesting is noteven stati
ally bound. As a result, the implementation ofparallel algorithms is often straightforward, as illustrated bythe following examples.
2.2 Using Nested Data ParallelismBlello
h [6℄ introdu
ed an elegant formulation of the multi-pli
ation of a sparse matrix with a dense ve
tor, resulting inanother dense ve
tor. It is based on a well-known represen-tation of general sparse matri
es, the so-
alled
ompressedrow format. Here, only non-zero elements of a matrix roware stored in an array of
olumn-index/value pairs; a sparsematrix is represented by an array of su
h rows:type SparseRow = [:(Int ; Float):℄ | index, valuetype SparseMatrix = [:SparseRow :℄The multipli
ation of a sparse matrix with a ve
tor
an thenbe expressed by nesting three levels of parallel operations:smvm :: SparseMatrix ! [:Float :℄! [:Float :℄smvm sm ve
 =[:sumP [:x � (ve
 !:
ol) j (
ol; x) row:℄| {z }produ
ts of one row j row sm:℄The inner array
omprehension
omputes all produ
ts ofa single row of the matrix by indexing the input ve
torwith the
olumn index of the
orresponding matrix element;

sumP adds the produ
ts in a parallel redu
tion; and theouter
omprehension spe
i�es that the produ
ts and sumsfor all rows should be
omputed in parallel. Sin
e the al-gorithm makes full use of the parallelism inherent in theproblem, its parallel depth
omplexity is proportional tothe logarithm of the length of the longest row (
f. [6℄ fordetails). Moreover, a
attening-based implementation ex-ploits all three levels of parallelism (the inner
omprehen-sion, sumP , and the outer
omprehension)
ontained in thede�nition of smvm. While it is possible to a
hieve the samebehaviour in a
at language, the
ode is signi�
antly moreinvolved.The above program looks strikingly similar to the sequen-tial list-based implementation of this algorithm. This isnot surprising sin
e our approa
h seamlessly supports theusual fun
tional programming style and integrates well intoHaskell. This is mainly due to (1) the use of
olle
tion-based operations whi
h are ubiquitous in sequential Haskellprograms as well and (2) the absen
e of state in parallel
omputations.Still,
are has to be taken, so that
omputations that
ouldbe exe
uted in parallel are not inadvertently sequentialised.The following de�nition of parallel qui
ksort is again verysimilar to the list-based version:qsort :: Ord �) [:�:℄! [:�:℄qsort [::℄ = [::℄qsort xs = letm = xs !: (lengthP xs `div ` 2)ss = [:s j s xs ; s < m:℄ms = [:s j s xs ; s == m:℄gs = [:s j s xs ; s > m:℄sorted = [:qsort xs 0 j xs 0 [:ss; gs:℄:℄in(sorted !: 0) +:+ms +:+ (sorted !: 1)Note, however, that the re
ursive
alls to qsort are per-formed in an array
omprehension ranging over a nested ar-ray stru
ture and are thus exe
uted in parallel. This wouldnot be the
ase if we wrote qsort ss +:+ms +:+ qsort gs!The parallelism in qsort is obviously highly irregular anddepends on the initial ordering of the array elements. More-over, the nesting depth of parallelism is stati
ally unboundedand depends on the input given to qsort at runtime. Despitethese properties, the
attening transformation
an rewritethe above de�nition of qsort into a
at data parallel pro-gram, while preserving all parallelism
ontained in the def-inition. Thus, in prin
iple, it would be possible to a
hievethe same parallel behaviour in Fortran|it is, however, as-tonishingly tedious.
3. PARALLEL ARRAYS IN HASKELLWe like to emphasise on
e more that we only add parallelarrays and asso
iated operations to Haskell, but we leavethe semanti
s of standard Haskell programs entirely inta
t.Consequently, we
an make full use of existing sour
e
ode,implementation te
hniques, and tools. In the following, weshall �rst dis
uss the details of our extensions, i.e, of par-allel arrays, array
omprehensions, and parallel array oper-ations. Afterwards, we will brie
y outline our implementa-tion method.

3.1 The Details of the ExtensionWe merely introdu
e a single new polymorphi
 type, de-noted [:�:℄, whi
h represents parallel arrays
ontaining ele-ments of type �.
3.1.1 Construction and MatchingConstru
tion of parallel arrays is de�ned analogous to thespe
ial bra
ket syntax supported in Haskell for lists. In par-ti
ular, we have[::℄ :: [:�:℄| nullary array, i.e., an array without any elements[:e1; : : : ; en :℄ :: [:� :℄| an array with n elements, where ei :: � for all i[:e1::e2:℄ :: Enum �) [:�:℄| an array enumerating the values between e1 and e2[:e1; e2::e3:℄ :: Enum �) [:�:℄| enumerating from e1 to e3 with step e2 � e1Moreover, we introdu
e [:p1; : : : ; pn :℄ as a new form of pat-terns, whi
h mat
h arrays that (1)
ontain exa
tly n ele-ments and (2) for whi
h the ith element
an be bound tothe pattern pi .In
ontrast to lists, parallel arrays are not de�ned indu
-tively, and thus, there is no
onstru
tor
orresponding to(:). From the user's point of view, parallel arrays are anabstra
t data type that
an only be manipulated by array
omprehensions and the primitive fun
tions de�ned in thefollowing. An indu
tive view upon parallel arrays, whilete
hni
ally possible, would en
ourage ineÆ
ient sequentialpro
essing of arrays. Usually, lists are a better
hoi
e forthis task. Note, how we distinguish between sequential types(e.g., lists) and parallel types (in our
ase, parallel arrays)here. We will reinfor
e the parallel
avour of values from[:�:℄ by requiring a parti
ular evaluation strategy.
3.1.2 Evaluation StrategyTo guarantee the full exposure of nested parallelism and inorder for the
ompiler to a

urately predi
t the distribu-tion of parallel stru
tures and the entailed
ommuni
ationrequirements, we impose some requirements on the evalua-tion of expressions resulting in a parallel array. In essen
e,these requirements guarantee that we
an employ the
at-tening transformation for the implementation of all nesteddata parallelism
ontained in a Nepal program.We require that the
onstru
tion of a parallel is stri
t inso far as all elements are evaluated to weak head-normalform, i.e., [:e1; : : : ; ei�1; ?; ei+1; : : : ; en :℄ = ?. Moreover,parallel arrays are always �nite, i.e., an attempt to
onstru
tan in�nite array likelet xs = [:1:℄ +:+ xs in xsdiverges.As a result, the exe
ution me
hanism
an evaluate all ele-ments of an array in parallel as soon as the array itself isdemanded. Moreover, elements of primitive type (like Int)
an always be stored unboxed in parallel arrays; in otherwords, we
an implement a value of type [:Int :℄ as a
at
olle
tion of whatever binary representation the target ma-
hine supports for �xed-pre
ision integral values. This is
ertainly mu
h more eÆ
ient than having to heap-allo
ateea
h individual Int element, and thus, bene�
ial for mostnumeri
al appli
ations. These properties of parallel arraysare what prevents us from using the Array type provided byHaskell's standard library for expressing NDP.

3.1.3 Array ComprehensionsExperien
e with Nesl suggests that array
omprehensions(
alled apply-to-ea
h
onstru
ts in Nesl) are a
entral lan-guage
onstru
t for NDP programs. Parallel array
ompre-hensions are similar to list
omprehensions, but again use [jand j℄ as bra
kets. However, we extend the
omprehensionsyntax with the new separator & that simpli�es the elemen-twise lo
kstep pro
essing of multiple arrays. For instan
e,the expression[:x + y j x [:1; 2; 3:℄ j y [:4; 5; 6:℄:℄evaluates to [:5; 7; 9:℄, and thus, is equivalent to[:x + y j (x ; y) zipP [:1; 2; 3:℄ [:4; 5; 6:℄:℄Therefore, the introdu
tion of j is stri
tly speaking redun-dant. However, in
ontrast to the typi
al list pro
essingusage of list
omprehensions, experien
e with NDP
odesuggests that lo
kstep pro
essing of two and more parallelarrays o

urs rather frequently|moreover, the appli
ationof these
omprehensions tends to be nested. For the sake oforthogonality, we also allow j to be used in list
omprehen-sions.The semanti
s of array
omprehensions is de�ned as follows(in
orresponden
e to [28, Se
tion 3.11℄):[:e j :℄ = [:e:℄[:e j b;Q :℄ = if b then [:e j Q :℄ else [::℄[:e j p l ;Q :℄ = letok p = [:e j Q :℄ok = [::℄in
on
atMapP ok l[je j p1 l1 jp2 l2 j Q1; Q2j℄ = [je j (p1; p2) zipP l1 l2 jQ1; Q2j℄[:e j letde
ls;Q :℄ = let de
ls in [:e j Q :℄As with list
omprehensions, the above merely de�nes thede
larative semanti
s of array
omprehensions. An imple-mentation is free to
hoose any optimising implementationthat preserves this semanti
s.
3.1.4 Standard Operations on Parallel ArraysBesides supporting the entire Haskell prelude, Nepal alsoprovides a
omprehensive set of fun
tions for manipulatingarrays. Most of these, su
h as mapP ; �lterP ; zipP ; and
on
atMapP ; have sequential list-based
ounterparts withnearly identi
al denotational semanti
s. However, the def-initions of some list fun
tions, most notably of redu
tionsand s
ans, pre
lude an eÆ
ient or even meaningful parallelimplementation of their semanti
s. Consequently, no paral-lel versions of fun
tions su
h as foldr are provided. Instead,the Nepal prelude
ontains de�nitions of parallel redu
tionand s
an fun
tions, su
h asfoldP :: (� ! � ! �) ! � ! [:�:℄ ! �s
anP :: (� ! � ! �) ! � ! [:�:℄ ! [:�:℄The order in whi
h individual array elements are pro
essedis unspe
i�ed and the binary operation is required to beasso
iative, thus permitting a tree-like evaluation strategywith logarithmi
 depth (
f. [4℄). Other parallel redu
tionsare de�ned in terms of these basi
 operations, e.g.,

Haskell & Parallel ArraysFront EndNested Core FlatteningFlat Core Unfolding PrimitivesSimpli�er (Fusion)Flat Core & Distributed TypesCode GenerationC & library operationsFigure 1: GHC with NDP extensionssumP :: Num �) [:�:℄ ! �sumP = foldP (+) 0For these spe
ialized redu
tions, the semanti
al di�eren
esbetween the parallel and the
orresponding list-based ver-sions, su
h as sum, are minimal and re
e
ted in the de�-nition of the more primitive operations (foldP in the above
ase).
3.1.5 Open ProblemsCurrently, there are two open, but from a pra
ti
al point ofview not very serious, problems in the outlined design:1. The pattern-mat
hing suggested for arrays might be
onsidered ad ho
, as it essentially allows to mat
honly arrays of �xed sizes.2. Expressions like [:f a j f [:foo; bar :℄:℄ essentially de-note
ontrol parallelism, as the two unrelated fun
tionsfoo and bar would|by what we have said so far|haveto be evaluated in parallel.The �rst problem is a
onsequen
e of not having an indu
-tive de�nition for arrays. Thus, it
ould be argued thatwe should omit pattern-mat
hing on arrays entirely. Whilethis would
ertainly be feasible, it is often
onvenient to beable to test for parallel arrays
ontaining zero, one, or twoelements in a pattern.The se
ond problem is more serious. An obvious solutionwould be to forbid having fun
tions as elements of paral-lel arrays. This is not so mu
h of a restri
tion, as it mightseem at �rst, as parallel arrays are for the expression ofdata parallelism only and there are not many meaningfuldata-parallel operations that
an be de�ned on fun
tions|all other uses of fun
tions would, of
ourse, not be restri
tedin any way. The main problem is that the obvious attemptof requiring all elements of parallel arrays to be part of atype
lass NonFun would lead to a proliferation of (rathertrivial)
ontexts on all type de
larations involving parallel
omputations. An alternative solution is to allow fun
tionsin parallel arrays, but to spe
ify that expressions as the onestated above will lead to a sequential evaluation of the fun
-tion appli
ations. This, however, introdu
es a fair amount of
ompli
ations into the formalisation of the
attening trans-formation, as dis
ussed in [12℄.

3.2 Implementation of Nested Data-ParallelismLet us now have a look at the implementation of Nepal,whi
h we realise by extending an existing Haskell system:the Glasgow Haskell Compiler (GHC), whi
h is known toprodu
e fast sequential
ode. The
ompilation pro
ess rough-ly
onsists of four major phases, whi
h are depi
ted in Fig-ure 1. The present paper only provides a sket
h of ea
h ofthe phases and of the te
hniques involved. More details
anbe found in [22; 24; 11; 12℄.The �rst phase, the front end, simply
onverts Haskell
odein
luding parallel arrays into an intermediate language
alledNested Core, i.e., the input is type
he
ked and all synta
ti
sugar removed.The se
ond phase, the
attening transformation maps allnested
omputations to
at parallel
omputations, preserv-ing the degree of parallelism spe
i�ed in the sour
e program.Furthermore, all nested parallel data stru
tures are trans-formed into isomorphi

at data stru
tures. This is done bypartially separating information about the stru
ture fromthe data. Arrays with re
ursive element types are mappedonto re
ursive stru
tures
ontaining arrays with only simpleelement type. As, at some level, re
ursive stru
tures haveto be modelled using pointers, this step
orresponds to
on-verting an array of pointers into a pointer to an array. As a
onsequen
e of the type transformation, polymorphi
 opera-tions on parallel arrays have to be repla
ed by
orrespondingoperations on the new data stru
ture.The
attening step itself is similar to the te
hnique de-s
ribed, for example, in [7; 29℄. However, as already men-tioned, due to the presen
e of re
ursive data types in a par-allel
ontext, the type transformation, as well as the instan-tiation of polymorphi
 fun
tions on arrays, requires spe
ial
onsideration|we present the
omplete transformation in aform suitable for the Haskell Kernel in [12℄.In the third step (Unfolding Primitives) all the data par-allel primitives are de
omposed into their purely pro
essorlo
al and their global
omponents|the latter are those re-quiring
ommuni
ation. The intermediate language "FlatCore & Distributed Types", whi
h is the target language ofthis step, distinguishes between lo
al and global values bythe type system. In this representation, we apply GHC'ssimpli�er, whi
h has been extended with rules for array and
ommuni
ation fusion to optimise lo
al
omputations and
ommuni
ation operations for the target ar
hite
ture. Thisstep transforms �ne-grained ve
tor loops into deep
ompu-tations: This lo
alises memory a

ess, redu
es syn
hroni-sation, and allows one to trade load balan
e for data re-distribution.Finally, the
ode-generation phase produ
es C or native
ode
ode that uses our
olle
tive-
ommuni
ation library to main-tain distributed data stru
tures and to spe
ify
ommuni
a-tion. The library internally maps all
olle
tive
ommuni
a-tion to a small set of one-sided
ommuni
ation operations,whi
h makes it highly portable [11℄.The
ombination of
attening with array fusion and the
ommuni
ation library that
ontains only a small
ore ofma
hine-dependent fun
tions allows us to target a wide rangeof high-performan
e ar
hite
tures. Furthermore, the
ompo-nents that are marked by use of an itali
 font in Figure 1 be-have di�erently in dependen
e on the targeted ar
hite
ture|we
all them target-dependent
omponents. However, the
attening transformation, while being essential for our ap-proa
h to portability, operates in the same way for all kinds

p6p7 p4 p5p2p3p8p9
p1

Figure 2: Hierar
hi
al division of an area into subareas
p6 p7 p8 p9
4
5 p2 p3 p4 p5
1
2
3 p1
0

Figure 3: Example of a Barnes-Hut tree.of target ar
hite
tures; it does not spe
ialise the
ode for anar
hite
ture, but generally brings it into a form that makesit easier for subsequent phases to generate good
ode. In
ontrast, the appli
ation of
al
ulational fusion, the
odegeneration, and our library have to be parametrised withinformation about the target ar
hite
ture to generate good
ode.
4. A SOLUTION TO THE N-BODY PROB-

LEMThis se
tion presents a Nepal implementation of a simpleversion of the Barnes-Hut n-body algorithm[2℄, whi
h is arepresentative of an important
lass of parallel algorithms
overing appli
ations like simulation and radio
ity
ompu-tations. These algorithms
onsist of two main steps: �rst,the data is
lustered in a hierar
hi
al tree stru
ture; then,the data is traversed a

ording to the hierar
hi
al stru
ture
omputed in the �rst step. In general, we have the situationthat the
omputations that have to be applied to data onthe same level of the tree
an be exe
uted in parallel.The remainder of this se
tion brie
y des
ribes the Barnes-Hut algorithm, the data stru
tures that are required, andthe Nepal
ode. It addresses some implementation issuesand dis
usses ben
hmarking results.An n-body algorithm determines the intera
tion between aset of parti
les by
omputing the for
es whi
h a
t betweenea
h pair of parti
les. A pre
ise solution therefore requiresthe
omputations of n2 for
es, whi
h is not feasible for largenumbers of parti
les. The Barnes-Hut algorithm minimizesthe number of for
e
al
ulations by grouping parti
les hier-ar
hi
ally into
ells a

ording to their spatial position. Thehierar
hy is represented by a tree. This allows approximat-ing the a

elerations indu
ed by a group of parti
les on dis-tant parti
les by using the
entroid of that group's
ell. Thealgorithm has two phases: (1) The tree is
onstru
ted froma parti
le set, and (2) the a

eleration for ea
h parti
le is
omputed in a down-sweep over the tree. Ea
h parti
le isrepresented by a value of type MassPoint , a pair of positionin the two dimensional spa
e and mass:

typeVe
 = (Double; Double)typeArea = (Ve
; Ve
)typeMass = DoubletypeMassPoint = (Ve
; Mass)We represent the tree as a node whi
h
ontains the
entroidand a parallel array of subtrees:data Tree = Node MassPoint [:Tree:℄Ea
h iteration of bhTree takes the
urrent parti
le set andthe area in whi
h the parti
les are lo
ated as parameters. It�rst splits the area into four subareas subAs of equal size.It then subdivides the parti
les into four subsets a

ordingto the subarea they are lo
ated in. Then, bhTree is
alledre
ursively for ea
h subset and subarea. The resulting fourtrees are the subtrees of the tree representing the parti
les ofthe area, and the
entroid of their roots is the
entroid of the
omplete area. On
e an area
ontains only one parti
le, there
ursion terminates. Figure 2 shows su
h a de
ompositionof an area for a given set of parti
les, and Figure 3 displaysthe resulting tree stru
ture.bhTree :: [:MassPnt :℄! Area ! TreebhTree [:p:℄area = Node p [::℄bhTree ps area =letsubAs = splitArea areapgs = splitParti
les ps subAssubts = [:bhTree pg aj pg pgs; a subAs:℄
d =
entroid [:mp jNode mp subts:℄inNode
d subtsThe tree
omputed by bhTree is then used to
ompute thefor
es that a
t on ea
h parti
le by a fun
tion a

els . It�rst splits the set of parti
les into two subsets: fMps, whi
h
ontains the parti
les far away (a

ording to a given
rite-ria), and
Mps , whi
h
ontains those
lose to the
entroidstored in the root of the tree. For all parti
les in fMps, thea

eleration is approximated by
omputing the intera
tionbetween the parti
le and the
entroid. Then, a

els is
alledre
ursively for with
Mps and ea
h of the subtrees. The
omputation terminates on
e there are no parti
les left inthe set.a

els :: Tree ! [:MassPoint :℄! [:Ve
:℄a

els [::℄ = [::℄a

els (Node
d subts) mps =let(fMps;
Mps) = splitMps mpsfA
s = [:a

el
d mp jmp fMps:℄| for
es for parti
les far from
urrent p.
A
s = [:a

els t
Mps j t subts:℄in
ombine farA
s
loseA
sa

el :: MassPoint ! MassPoint ! Ve
| given two parti
les, the fun
tion a

el|
omputes the a

eleration that one parti
le| exerts on the otherThe tree is both built and traversed level by level, i.e., allnodes in one level of the tree are pro
essed in a single par-allel step, one level after the other. This information is im-portant for the
ompiler to a
hieve good data lo
ality and

0

1

2

3

4

5

6

7

8

9

5 10 15 20 25

R
un

tim
e

[s
]

Number of Processors

24 000 particles, plummer distribution
32 000 particles, homm. distribution
16 000 particles, homm. distribution

16 000 particles, plummer distribution

Figure 4: Runtime of the Barnes-Hut NBody algorithm onthe Cray T3E

0

1

2

3

4

5

6

7

8

5 10 15 20 25

Sp
ee

du
p

(n
or

m
al

iz
ed

 to
 3

 p
ro

ce
ss

or
s)

Number of Processors

16 000 particles, plummer distribution
24 000 particles, plummer distribution

16 000 particles, hom. distribution
32 000 particles, homm. distribution

theoretic optimum

Figure 5: Speedup of the Barnes-Hut NBody algorithm onthe Cray T3Eload balan
e, be
ause it implies that ea
h pro
essor shouldhave approximately the same number of masspoints of ea
hlevel. We
an see the tree as having a sequential dimen-sion to it, its depth, and a parallel dimension, the breadth,neither of whi
h
an be predi
ted stati
ally. The program-mer
onveys this information to the
ompiler by the
hoi
ethe data stru
ture: By putting all subtrees into a parallelarray in the type de�nition, the
ompiler assumes that allsubtrees are going to be pro
essed in parallel. The depth ofthe tree is modelled by the re
ursion in the type, whi
h isinherently sequential. The type transformation in the
om-pilation phase, then, transforms the tree into a list of ar-rays
onne
ted by global pointers, where ea
h of the arraysis distributed over the pro
essors involved in the
omputa-tion. The lo
al portions of the arrays (on for ea
h level ofthe tree) are inter
onne
ted on ea
h pro
essor in the form ofa linked list. In [23℄, we dis
ussed why the above en
odingbased on re
ursive types is not possible in Nesl and what itsadvantages are
ompared to a possible Nesl implementation

of the algorithm.To get a feeling for the behaviour of our implementationte
hnique, we tested hand-
ompiled
ode produ
ed a

ord-ing to the
ompilation rules presented in [22; 23℄. We ranben
hmarks for two di�erent types of parti
le sets: a ho-mogeneous distributed set, where the parti
les are spreadevenly over the area, and a so-
alled plummer distribution,where the parti
les
enter around one point of the area. TheBarnes-Hut algorithm requires less
omputation steps for ahomogeneous distribution, as the tree that stores the parti-
les has depth of about log n for n parti
les. Roughly speak-ing, the algorithm has to
ompute twi
e as mu
h parti
le-parti
le intera
tions for a set with plummer distributionthan for a homogeneously distributed parti
le set with thesame number of elements. The runtimes for parti
le sets of16 000, 24 000, and 32 000 elements, whi
h are displayedin Figure 4, show the higher absolute runtime of the plum-mer distribution. The diagram in Figure 5 reveals anothere�e
t: Not only is the absolute runtime of the regular
asebetter, but we also obtain better speed up. On �rst sight,this might be surprising, as a higher number of
omputa-tions often leads to programs with better relative speed up.In this
ase, though, we not only have more
omputations,but we also have more
ommuni
ation due to the high degreeof irregularity. However, the diagram also shows that for 24pro
essors the speedup for the plummer set is still linear,while it already slows down slightly for the homogeneoussets.
5. SOLVING TRIDIAGONAL SYSTEMS OF

LINEAR EQUATIONSIn addition to the obvious uses of sum types, the extension of
attening to the full range of Haskell types allows a de
lar-ative type-based
ontrol of data distribution. Consider theoperational impli
ations for an array of arrays [:[:Int :℄:℄ ver-sus an array of (sequential) lists [:[Int ℄:℄. On a distributedmemory ma
hine, values of the former will be evenly dis-tributed over the available pro
essing elements; in parti
u-lar, if the subarrays vary substantially in size, they may besplit up a
ross pro
essor boundaries to fa
ilitate parallel op-erations over all elements of the nested array simultaneously.In
ontrast, arrays of lists are optimised for sequential oper-ations over the sublists; although, the sequential pro
essingof all the sublists is expe
ted to pro
eed in parallel. Oneappli
ation where the distin
tion of parallel and sequentialdata-stru
tures is useful is the parallel solution of tridiago-nal systems of linear equations as proposed by Wang [33℄.Tridiagonal systems of linear equations are a spe
ial formof sparse linear systems o

uring in numerous s
ienti�
 ap-pli
ations. Su
h system
an be solved sequentially in lineartime by �rst eliminating the elements of the lower diago-nal by a top-down traversal, and then eliminating the upperdiagonal by traversing the matrix from bottom to top. Un-fortunately, in ea
h step a pivot row is needed that is
om-puted just in the step before, so the algorithm is
ompletelysequential.In the parallel solution proposed by Wang, the matrix is sub-divided into blo
ks of
onse
utive rows, whi
h are then pro-
essed simultaneously. The algorithm runs in three phases.First, all rows of a blo
k are traversed top-down and thenbottom-up to eliminate the lower and upper diagonal, re-spe
tively. However, sin
e the �rst row in ea
h but the �rst

blo
k still
ontains the lower diagonal element, a verti
al
hain of �ll-in elements appears in this
olumn. As the ma-trix is symmetri
, a
hain of �ll-ins also o

urs on the rightin all but the last blo
k in the bottom-up traversal. The non-zero elements of the matrix after the �rst phase are shown inFig. 6. To diagonalise the matrix, the left and right
hains
Figure 6: Situation with 3 blo
ks after �rst parallel phasein Wang's algorithmof �ll-ins must be eliminated.The �rst blo
k's last row
ontains non-zeros suitable forelimination of all left �ll-ins in the se
ond blo
k. On
e theleft
hain element of the se
ond blo
k's last row has beeneliminated, this updated row
an be used as a pivot forthe elimination of the left �ll-in
hain in the third blo
ket
. Thus, a pipelining phase is ne
essary over all blo
ksto propagate suitable pivot rows for the elimination of theleft
hains of �ll-ins. Analogously, pivots
an be propagatedupwards starting with the last blo
k to eliminate the right
hains of extra non-zeros.In ea
h blo
k, on
e the pivot row from the pre
eding blo
k isavailable, the �ll-in elements may be eliminated in any order.There are no sequential inner-blo
k dependen
ies. However,as des
ribed above, there is a sequential dependen
y amongthe blo
ks. Elimination of the left
hain
an start only afterthe pivot row from the previous blo
k is available, but this isthe
ase only after the left �ll-in of the previous blo
k's lastrow has been eliminated already. Thus, it is important thatduring pipelining, only the �rst and last rows of ea
h blo
kare tou
hed, be
ause eliminating all �ll-ins �rst before prop-agating pivots to the next blo
k would mean a
ompletelysequential traversal of the matrix.After the pipelining phase, there are pivot rows for ea
hblo
k that
an be used to eliminate both the left and theright
hains of �ll-ins. Like in the �rst phase, all blo
ks
an be pro
essed in parallel. Again, one top-down and onebottom-up traversal are ne
essary to obtain the desired di-agonal stru
ture.
5.1 Encoding Wang’s Algorithm in NepalIn Nepal, we model an equation with a tuple-type TriRow
ontaining the three diagonal elements, the two potential
hain elements, and the right-hand side.type TriRow = (Float ;Float ;Float ;Float ;Float ;Float)| left, lower, main, upper, right, rhsA row blo
k is a list of rows, i.e., of type [TriRow ℄. Thewhole matrix is a parallel array of row blo
ks, abbreviatedby the type Matrix .typeMatrix = [: [TriRow ℄ :℄| a parallel array of lists of rows

The following en
odes the top-level fun
tion of Wang's al-gorithm.solve :: Matrix ! [:[Float℄:℄solve m =letres = [:elimLowerUpper x j x m:℄ | Phase 1frv = [:f j (; f ;) res:℄lrv = [:l j (; ; l) res:℄rowv = [:r j (r ; ;) res:℄(fpl ; lpl) = pipeline (pArrayToList frv)(pArrayToList lrv) | Phase 2(fpv ; lpv) = (listTopArray fpl ; listTopArray lpl)dm = [:elimLeftRight r fp lp j r rowv &fp fpv & lp lpv :℄ | Phase 3inmapP (map (� (TriRow maine rhs) ! rhs=maine))The fun
tions elimLowerUpper and elimLeftRight are ordi-nary, re
ursive list-traversals, eliminating elements on ea
hrow both in the des
ending and as
ending phase of re
ur-sion|we omit the details of their de�nition here, as they donot use parallelism. However, these traversals are exe
utedin parallel for all blo
ks. The fun
tion elimLowerUpper is oftype [TriRow ℄ ! ([TriRow ℄;TriRow ; TriRow). It returnsthe updated row blo
k plus the two rows needed for thepipelining phase. As the pipelining is sequential, lists areused and so the arrays with the �rst and last pivot rowsare
onverted by the primitive pArrayToList . The fun
-tion pipeline is again an ordinary list traversal, realizingthe desired pivot generation and propagation. The lists ofnew pivot rows are transformed into parallel arrays usinglistTopArray , so that the third phase
an work in parallelon all blo
ks to eliminate the �ll-in values.
5.2 Controlling the degree of parallelismThe parallelism available in the algorithm depends on thenumber of blo
ks as these are pro
essed in parallel in Phases1 and 3. In the pipelining phase, however, pivot rows mustbe propagated sequentially a
ross all blo
ks, making thedepth of this phase proportional to the number of blo
ks.Consequently, parallelising the �rst and the third phases
ompletely by setting the blo
k size to 1 leads to a pipelin-ing phase that needs linear time, whi
h implies no speedupagainst the sequential version. Obviously, the best solutionis to
reate one blo
k per pro
essor, thus minimising the
osts of pipelining while still fully utilising the target ma-
hine.While it is possible to implement this algorithm in Nesl, thetrade-o� between the
omputational depth of pipelining andthe parallelism available in the other phases
annot be ex-pressed
leanly in that language due to its la
k of sequentialtypes. Nepal's ri
her type system, on the other hand, al-lows us to make an expli
it distin
tion between parallel andsequential
omputations. In the above example, we repre-sent individual blo
ks by sequential lists whi
h, in turn, arestored in a parallel array. Thus, the stru
ture of the algo-rithm is re
e
ted in the stru
ture of the data it operatesupon. This makes the
ode more readable and allows the
ompiler to optimize more aggressively sin
e more stati
 in-formation is available.
6. RELATED WORKThe relative merits of NDP when
ompared to other parallelprogramming models have already been
overed elsewhere|e.g., [6℄. Hen
e, in the following, we will
on
entrate on

parallel fun
tional languages and, in parti
ular, on paral-lel extensions of Haskell|instead of dis
ussing parallel pro-gramming languages in general. Generally, we
an
ate-gorise the extensions of Haskell as either data or
ontrolparallel as well as either preserving the semanti
s of exist-ing Haskell programs or altering it. Interestingly, it seems asif all data-parallel extensions maintain Haskell's original se-manti
s, whereas
ontrol-parallel extensions tend to modifyit|if only in a subtle way.
6.1 Data Parallel ExtensionsNepal does not a�e
t the semanti
s of standard Haskell pro-grams, i.e., only the newly introdu
ed types and operationshave a parallel semanti
s. This guarantees maximal
ompat-ibility to existing Haskell
ode. An approa
h that follows thesame goal and is probably the one
loset related to Nepal isJonathan Hill's data-parallel extension of Haskell [20℄. Themain di�eren
e between his and our approa
h is that hemaintains the laziness of the
olle
tive type that is evaluatedin parallel. The trade o� here is, on
e more, one between
exibility of the programming model and stati
 informationthat
an be used for optimisations. We
hose to maximisestati
 information, he emphasised
exibility.Two other approa
hes that do not alter the Haskell seman-ti
s and do, in fa
t, not extend the language at all are[18; 15℄. In both approa
hes,
ertain patterns in Haskellprograms are re
ognised and treated spe
ially|i.e., theyare being given a parallel implementation. In the �rst ap-proa
h, these patterns have to be spe
i�ed expli
itly bymeans of
oding parallel algorithms using spe
ialised di-vide&
onquer skeletons. Both approa
hes
hoose to max-imise stati
 knowledge and are only appli
able to regularparallelism, where the spa
e-time mapping
an be deter-mined at
ompile time. This allows a maximum of optimi-sation by the
ompiler, but prevents the implementation ofirregular parallelism. In fa
t, it is not entirely
lear, whetherthese two approa
hes should be
ategorised as data or
on-trol parallel. They do not expli
itly restri
t the range of par-allelised expressions, but due to their fo
us on array-basedalgorithms, they
ertainly operate in the realm of data par-allelism.
6.2 Control Parallel ExtensionsParallel Haskell (pH) [1℄ is an impli
itly parallel approa
hthat makes a fundamental
hange to Haskell's semanti
s: In-stead of lazy evaluation, it requires lenient (non-stri
t, buteager) evaluation. Moreover, it introdu
es additional
on-stru
ts that ultimately
ompromise referential transparen
y,but allow the programmer to maximise the available paral-lelism. The most interesting feature of pH is probably that,despite being a
ontrol-parallel language, it allows very �ne-grained parallelism|to a degree that is usually reserved fordata parallel languages.Glasgow Parallel Haskell (GPH) and the asso
iated evalua-tion strategies [32; 31℄ extend standard Haskell by a prim-itive par
ombinator that allows the programmer to des-ignate pairs of expressions that may be evaluated in par-allel. Based on this primitive, evaluation strategies allowto spe
ify patterns of parallelism in the form of meaning-preserving annotations to normal (sequential) Haskell
ode.There is, however, a slight modi�
ation of Haskell's originalsemanti
s hidden in these strategies. They
an in
rease thestri
tness of fun
tions, and thus, lead to non-termination

of programs that do terminate under the purely sequentialexe
ution model.Two more radi
al
ontrol-parallel extensions of Haskell areEden [8℄ and GoÆn [10℄. Both follow the idea of the seper-ation of
omputation and
o-ordination, where the latterdes
ribes the parallel behaviour of a given program. Edenspe
i�es
o-ordination as a set of stream pro
essors and in-trodu
es a notion of pro
ess abstra
tions, whereas GoÆnuses a small set of
onstraint-logi

ombinators and
on-straint abstra
tions for the same purpose. Eden ultimatelybreaks referential transparen
y, and thus, Haskell's origi-nal semanti
s, whereas GoÆn does not alter the standardHaskell portion of the language at all.
6.3 Other Parallel Functional LanguagesGenerally, there exists a wide range of parallel languagesthat are based on the model of fun
tional programming|as,for example, witnessed in [17℄. Ranging from languages thatjust support purely regular
omputations, su
h as Sisal [16℄and SAC [30℄, over languages based on the idea of skele-tons [13℄, su
h as [14℄, to
ontrol-parallel languages, su
h asCon
urrent Clean [26℄.The one parallel language that is
losest to Nepal in termsof the parallel programming model is
ertainly Nesl [5℄, whi
hhas been the starting point of our resear
h. In essen
e, ithas been our aim to take the novel fun
tionality of Nesland develop it to a point where it
ould be integrated in astandard fun
tional language like Haskell. As a result, we
ould improve on the range of data types and the supportfor higher-order fun
tions, and moreover, Nepal has inher-ited from Haskell a module system with support for separate
ompilation and a
lean I/O framework. This has only beenpossible due to the progress that we re
ently made in ex-tending the s
ope of the
attening transformation [12℄.
7. CONCLUSIONWe have presented Nepal, a
onservative extension of thestandard fun
tional language Haskell, whi
h allows the ex-pression of nested data-parallel programs. Parallel arraysare introdu
ed as the sole parallel datatype together withdata-parallel array
omprehensions and parallel array
om-binators. In
ontrast to some other approa
hes, the paralleloperational semanti
s of Nepal does not
ompromise ref-erential transparen
y. Nepal is intended as a step towardsbridging the gap between high-level parallel programmingmodels and high performan
e, and it is our feeling thatnested data-parallelism in Haskell together with the
at-tening transformation and appropriate optimisations bear apotential to a
hieve this goal.Among smaller examples, we have presented two parallelappli
ations that demonstrate the expressiveness of nesteddata-parallel programming based on Haskell. Other thanNesl, Nepal supports the full range of both sequential andparallel data-types and
omputations, enlarging the
lass ofalgorithms suitable for a nested data-parallel programmingstyle and allowing a de
larative, type-based spe
i�
ation ofdata-distribution. In the
ontext of NDP, Nepal is the �rst
attening-based language that allows separate
ompilationin the presen
e of polymorphi
 fun
tions on parallel arrays.We are
urrently implementing a full
ompiler, whi
h usesa transformation-based approa
h. We will integrate sev-eral optimisation te
hniques in the
ompiler that have beendeveloped and investigated for nested data-parallelism [22;

27℄. There are several hand-
ompiled examples su
h as theBarnes-Hut
ode or sparse-matrix ve
tor multipli
ation de-livering promising performan
e [23; 11℄. As we do not
hangeHaskell as the sequential part of Nepal, existing implemen-tation te
hniques and
ompiler
ode for Haskell
an be re-used.
7.1 Future WorkAs an important pie
e of future work, we will develop alanguage-based
ost model based on the
ommon measureswork and depth. The
ore rules of Nesl's
ost model willbe re-used for Nepal as far as possible. However, the adap-tation to Haskell's powerful type system requires signi�
antextensions to the
ost model. Using Hinze's approa
h togeneri
 fun
tional programming as a starting point, we willdevelop a
ost measure for polymorphi
 primitives [21℄.In addition to the standard prelude, we will de�ne a setof library fun
tions for parallel arrays. Where useful, wewill adapt the fun
tions from the list and array libraries.New fun
tions will probably be introdu
ed for the interplaybetween parallel arrays and sequential
olle
tion types.
8. REFERENCES[1℄ S. Aditya, Arvind, L. Augustsson, J.-W. Maessen, andR. S. Nikhil. Semanti
s of pH: A parallel diale
t ofHaskell. In P. Hudak, editor, Pro
. Haskell Workshop,La Jolla, CA USA, YALEU/DCS/RR-1075, pages 35{49, June 1995.[2℄ J. Barnes and P. Hut. A hierar
hi
al O(n log n) for
e
al
ulation algorithm. Nature, 324, De
ember 1986.[3℄ G. Blello
h et al. The PS
iCo proje
t.http://www.
s.
mu.edu/~ps
i
o/.[4℄ G. E. Blello
h. Pre�x sums and their appli
ations.Te
hni
al Report CMU-CS-90-190, S
hool of ComputerS
ien
e, Carnegie Mellon University, Nov. 1990.[5℄ G. E. Blello
h. NESL: A nested data-parallel lan-guage (version 2.6). Te
hni
al Report CMU-CS-93-129,S
hool of Computer S
ien
e, Carnegie Mellon Univer-sity, April 1993.[6℄ G. E. Blello
h. Programming parallel algorithms. Com-muni
ations of the ACM, 39(3):85{97, 1996.[7℄ G. E. Blello
h and G. W. Sabot. Compiling
olle
tion-oriented languages onto massively parallel
omputers.Journal of Parallel and Distributed Computing, 8:119{134, 1990.[8℄ S. Breitinger, U. Klusik, and R. Loogen. From (se-quential) Haskell to (parallel) Eden: An implementa-tion point of view. Le
ture Notes in Computer S
ien
e,1490:318{??, 1998.[9℄ D. Cann. Retire fortran? A debate rekindled. Commu-ni
ations of the ACM, 35(8):81, Aug. 1992.[10℄ M. M. T. Chakravarty, Y. Guo, M. K�ohler, and H. C. R.Lo
k. GoÆn: Higher-order fun
tions meet
on
urrent
onstraints. S
ien
e of Computer Programming, 30(1{2):157{199, 1998.

[11℄ M. M. T. Chakravarty and G. Keller. How portableis nested data parallelism? In Pro
. of 6th AnnualAustralasian Conf. on Parallel And Real-Time Systems,pages 284{299. Springer-Verlag, 1999.[12℄ M. M. T. Chakravarty and G. Keller. More types fornested data parallel programming. In P. Wadler, editor,Pro
eedings of the ACM SIGPLAN International Con-feren
e on Fun
tional Programming (ICFP '00), pages94{105. ACM Press, 2000.[13℄ M. Cole. Algorithmi
 Skeletons: Stru
tured Manage-ment of Parallel Computation. The MIT Press, 1989.[14℄ J. Darlington, A. J. Field, P. G. Harrison, P. H. J.Kelly, D. W. N. Sharp, Q. Wu, and R. L. While. Paral-lel programming using skeleton fun
tions. In A. Bode,M. Reeve, and G. Wolf, editors, PARLE '93: Paral-lel Ar
hite
tures and Languages Europe, number 694in Le
ture Notes in Computer S
ien
e, pages 146{160,Berlin, Germany, 1993. Springer-Verlag.[15℄ N. Ellmenrei
h, C. Lengauer, and M. Griebl. Ap-pli
ation of the polytope model to fun
tional pro-grams. In J. Ferrante, editor, Pro
. 12th Int. Work-shop on Languages and Compilers for Parallel Com-puting (LCPC'99). Computer S
ien
e and EngineeringDepartment, UC San Diego, 1999.[16℄ J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A reporton the Sisal language proje
t. Journal of Parallel andDistributed Computing, De
ember 1990.[17℄ K. Hammond and G. Mi
haelson, editors. Resear
h Di-re
tions in Parallel Fun
tional Programming. Springer-Verlag, 1999.[18℄ C. A. Herrmann and C. Lengauer. Parallelizationof divide-and-
onquer by translation to nested loops.Journal of Fun
tional Programming, 9(3):279{310, May1999.[19℄ High Performan
e Fortran Forum. High Performan
eFortran language spe
i�
ation. Te
hni
al report, Ri
eUniversity, 1993. Version 1.0.[20℄ J. M. D. Hill. Data-parallel lazy fun
tional program-ming. PhD thesis, Department of Computer S
ien
e,Queen Mary and West�eld College, London, 1994.[21℄ R. Hinze. A new approa
h to generi
 fun
tional pro-gramming. In Pro
eedings of the 27th Annual ACMSIGPLAN-SIGACT Symposium on Prin
iples of Pro-gramming Language. ACM Press, 2000.[22℄ G. Keller. Transformation-based Implementation ofNested Data Parallelism for Distributed Memory Ma-
hines. PhD thesis, Te
hnis
he Universit�at Berlin,Fa
hberei
h Informatik, 1999.[23℄ G. Keller and M. M. T. Chakravarty. Flattening trees.In D. Prit
hard and J. Reeve, editors, Euro-Par'98,Parallel Pro
essing, number 1470 in Le
ture Notesin Computer S
ien
e, pages 709{719, Berlin, 1998.Springer-Verlag.

[24℄ G. Keller and M. M. T. Chakravarty. On the distributedimplementation of aggregate data stru
tures by pro-gram transformation. In J. Rolim et al., editors, Par-allel and Distributed Pro
essing, Fourth InternationalWorkshop on High-Level Parallel Programming Modelsand Supportive Environments (HIPS'99), number 1586in Le
ture Notes in Computer S
ien
e, pages 108{122,Berlin, Germany, 1999. Springer-Verlag.[25℄ R. Milner, M. Tofte, and R. Harper. The De�nition ofStandard ML. The MIT Press, 1990.[26℄ E. G. J. M. H. N�o
ker, J. E. W. Smetsers, M. C.J. D. van Eekelen, and M. J. Plasmeijer. Con
urrentClean. In Pro
eedings of PARLE '91, number 505/506in Le
ture Notes in Computer S
ien
e, pages 202{220.Springer-Verlag, 1991.[27℄ W. Pfannenstiel. Combining fusion optimizations andpie
ewise exe
ution of nested data-parallel programs.In J. R. et al., editor, IPDPS 2000 Workshops (HIPS),Le
ture Notes in Computer S
ien
e 1800, pages 324{331. Springer-Verlag, 2000.[28℄ Haskell 98: A non-stri
t, purely fun
tional language.http://haskell.org/definition/, February 1999.[29℄ J. Prins and D. Palmer. Transforming high-level data-parallel programs into ve
tor operations. In Pro
eedingsof the Fourth ACM SIGPLAN Symposium on Prin
i-ples and Pra
ti
e of Parallel Programming, pages 119{128, San Diego, CA., May 19-22, 1993. ACM.[30℄ S.-B. S
holz. On de�ning appli
ation-spe
i�
 high-levelarray operations by means of shape-invariant program-ming fa
ilities. In Pro
eedings of APL'98, pages 40{45.ACM Press, 1998.[31℄ P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L.Peyton Jones. Algorithm + strategy = parallelism.Journal of Fun
tional Programming, 1998.[32℄ P. W. Trinder, K. Hammond, J. S. Mattson Jr, A. S.Partridge, and S. L. Peyton Jones. GUM: a portableparallel implementation of Haskell. In Pro
eedings ofProgramming Languages Design and Implementation,1996.[33℄ H. H. Wang. A parallel method for tridiagonal equa-tions. ACM Transa
tions on Mathemati
al Software,7(2):170{183, June 1981.

