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Abstract

We describe the design and current status of our effort tdemp
ment the programming model of nested data parallelism iméo t
Glasgow Haskell Compiler. We extended the original progreang
model and its implementation, both of which were first popatd

by the NESL language, in terms of expressiveness as wellfias ef
ciency. Our current aim is to provide a convenient prograngan-
vironment for SMP parallelism, and especially multicorehdtrec-
tures. Preliminary benchmarks show that we are, at leastdiore
programs, able to achieve good absolute performance aedlexic
speedups.

1. Introduction

One of the most promising approaches to making efficient ise o
parallel hardware iglata parallelism in which a single computa-
tion is performed in parallel across a large number of daeehts.
For example, High-Performance Fortran (HPF) and OpenMP ex-
ploit data parallelism by employing many processors to @ssc
different parts of a single array; and SMPD programming WitRl
extends the same idea to a distributed setting.

Typically, the arrays are required to Hat (arrays of floats, for
example), but that is often quite inconvenient for the paogmer.
In ground-breaking work in the 90’s, the NESL language asd it
implementation offered data-parallel operations owested data
structures(such as arrays of variably-sized subarrays), and allowed
all subarrays to be simultaneously computed in data-p{all 1].

This paper describes our progress in taking NESL's goodsidea
and incorporating them in Haskell, a widely-used, purehctional
programming language. Doing so required us to generalisgyma
aspects of NESL's design, and the project we describe here-re
sents the culmination of a ten-year research programme. & m
several significant contributions:

¢ We are building support for nested data parallelism in Hihske
a fully-fledged programming language; and we are doing so for
the world’s leading Haskell compiler, GHC. GHC's implemen-
tation of Haskell already supports two different paradigors
parallel programming: (a) explicit control parallelismgardi-
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nated with transactional memory [20, 10], and (b) semi-igifpl
concurrency, based on annotations [28]. Our goal is to add a
third paradigm, data parallelism; we believe that thereisme
silver bullet for expressing parallelism.

The crucial breakthrough in NESL was tfiatteningor vec-
torisationtransformation, which transforms the nested program
such that it manipulates only flat arrays. We have extendsd th
transformation in several directions: we support not onlilth

in types, product, and array types (like NESL), but also han-
dle user-defined, sum, and function types [5, 14]—the |after
particularly challenging (Sections 4 and 5).

Data parallel programs typically generate many internmtedia
rays. We improved on the implementation of NESL by develop-
ing fusion techniquethat completely eliminate many of these
intermediates, which dramatically reduces the constacinf
overhead [6, 7] (Section 6.3).

When fusingparallel computations, we need to be careful not
to reduce opportunities for parallel execution too muctlal ae
need to minimise communication operations where possible.
To guide fusion in the presence of parallelism and to strectu
the mapping of array operations onto concurrent threads, we
developed type-directed data distribution [11] (Secti®risand
Section 6.2).

Our entire implementation is strongly typed, including tioen-
piler intermediate language. This is a real challenge, lmea
the representation of data-parallel arraysés-parametric for
example, an array of pairs is represented as a pair of avegs.
have developed an extension to Haskell's type system cadled
sociated types [4, 3], and a hew extension of the typed irderm
diate language [26] that together solve this problem (8aet).

Our implementation is carefully structured so that most @ i
presented as a stack of HasKébraries, rather than as perva-
sive madifications to a Haskatbmpiler. The only aspects that
must be built into the compiler itself are the support foragrr
comprehensions (syntax, type checking, desugaring; @e2}i
and the vectorisation transformation (Section 5).

In combination, these innovations lead to a very efficienplen
mentation of a highly expressive form of data parallelisro.be
fair, this claim remains to be tested. We are currently im@at-
ing a fully-fledged version of Data Parallel Haskell in thea&l
gow Haskell Compiler (GHC) — a state of the art implementatio
of Haskell — but the implementation is still incomplete.

This paper describes the current state of play: it sketches o
main contributions, gives some details of the implemeotatand



presents some first benchmatkis does not attempt to describe the
various program transformations employed in our impleraton

in technical, or even, formal detail—a comprehensive tresgit is
well beyond the scope of a workshop paper. Instead, we riditest

all major components of our approach by example and provide
references to publications focusing on particular sulblams,
where such publications are already available.

2. What the programmer sees

In Data Parallel Haskell, parallelism is expressed imfilicby op-
erations over a built-in type gdarallel arrays denoted byl : . :].
For example,[:Float:] is the type of (dense) vectors of floating
point values:

type Vector = [: Float :]

As another example, a sparse vector can be efficiently repred
by a (dense) array of (index,value) pairs:

type SparseVector = [:(Int, Float):]

The dot product of a sparse and a dense vector is easily cenput

dotp :: SparseVector -> Vector -> Float
dotp sv v = sumP [: x % (v!:i) | (i,x) <- sv :]

Here, the subexpressidnx * (v!:i) | (i,x) <- sv:]isan
array comprehensiqrof type [:Float:]. Its value is obtained by
computing, for each elemertti,x) of the sparse vectaogv, the
product ofx with the element of the dense vectoat positioni,
where (i :) denotes indexing. Finally, we compute the sum of the
intermediate vector of products, using the functiamp?

sumP :: [:Float:] -> Float

The operational intuition is thadotp is executed by aang
of threads, one per processing element. Each thread in thg, ga
a gang memberis responsible for a chunk of the sparse vector;
the gang member computes the appropriate part of the intbatee
vector, adds it up, and the sub-totals are combined to givdirial
result. By using a tree-like reduction algoritheumP ensures that
the parallel step complexity d@otp is logarithmic in the size of the
sparse vector. (Of course, it is essential that additiossseiative.)

It is also essential that, unlike Haskell's normal arrayatafiel
arrays are head-strict; that is, if the array is computed aten all
of its elements are computed. This property allows us to adgenp
the whole array at once, in data-parallel.

A crucial advantage of our approach is the abilitynstpar-
allel arrays and computations without restricting the ke par-
allelism or introducing undue inefficiencies. For instanaesparse
matrix can be represented naturally as an array of rows wexh
row is a sparse vector:

type SparseMatrix = [:SparseVector:]

To multiply such a matrix with a dense vector, we simply cobtepu
the dot product for each row (this formulation of the algomit is
due to [1]):

smvm
smvm sm VvV =

SparseMatrix -> Vector -> Vector
[: dotp row v | row <- sm :]

This is a nested parallel computation: we appdyp to each row of
the matrix in parallel, bufiotp is already a parallel operation. This

1All code of our system is publicly available. For detailseqie refer to
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell

2|n reality, sumP is overloaded using type classes, to have type a =>
[:a:] -> a. In this paper, though not in the implementation, we ignore
that complication.
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kind of parallelism is notoriously difficult to deal with. Iparticu-
lar, it would be naive to divide the work among the gang by $ymp
giving an equal number of rows to each gang member, since the
number of elements in each row may vary greatly. However, by
combining a specialised representation of nested arraysaside
vectorisation as we describe in Section 4, we are able taraatto
ically translate the above program into code containing diat
parallelism that can be executed efficiently on stock hardwa

The rest of this paper uséstp as a running example to explain
the successive steps through which the program is compileght
efficiently on parallel shared-memory machines. The exanigpl
small enough that it can be understood, and the techniqads tec
real programs, as NESL has shown.

3. Thebigpicture

The translation of high-level nested data parallel prograas de-
scribed in the previous section, into efficient low-leveldeoin-
volves a large number of source-to-source program tramsfoer
tions. Many of these transformations have been part of Gla@'s
timiser for a long time, in particular a sophisticated ielinworker-
wrapper unboxing, and constructor specialisation [19,242,18].
In the course of the Data Parallel Haskell project, we areradd
more, array-specific transformations. Due to GHC's gensuig-
port for program transformations — specifically, the inlirend
rewrite rules [22, 18] — we can implement most of these new
transformations as library code, as opposed to extendmgadm-
piler itself. The exception being the vectorisation tramsfation
described in Section 5.

Figure 1 illustrates the anatomy of the array-specific fi@ns
mations. The three major components arefldfteningthat trans-
forms nested into flat data parallelism; (Rjsionthat eliminates
redundant synchronisation points and intermediate aremgthus
drastically improves locality of reference; and (#ng parallelism
that maps parallel operations to a gang of threads. All foamsa-
tions apply to both data types (labelled “— Data —") and opena
on these data types (labelled “— Control ). The figure nathese
data types and operations and lists the sections in whigtatiesin-
troduced and explained.

The basic idea is that, after flattening has eliminated adt-ne
ing, we use a notion dfistributed typeso explicitly distinguish by
type the sequential and the parallel components of a datdlglar
program. Both components are subjected to their own fusiechm
anism; i.e. stream fusiorand communication fusigrrespectively.
Finally, we distribute the fused parallel components as@gang
of threads, each of which operates on a chunk of each array.

4. Non-parametric array representation

Standard arrays in Haskell are parametric; i.e., the agpyesenta-
tion is independent of the type of array elements. This isexell

by using arrays of pointers refereeing to the actual elerdatd.
Such aboxedrepresentation is very flexible, but it is also detrimen-
tal to performance. The indirections consume additionainory,
increase memory traffic, and decrease locality of memorgss.c
The resulting runtime penalty can be of two orders of magt@tu

Consequently, GHC already offers non-standardoxedarrays
for applications where array performance matters. Howdhese
unboxed variants are only available for arrays of basic typee
want efficiency and convenience for parallel arrays, we ribed
performance of unboxed arrays for arrays of arbitrary uksfined
algebraic datatypes.

Hence, a key aspect of our compilation strategy iscm-
parametric representation of parallel arrays- for each array,
we select an efficient representation based on the type @f-its
ements [5]. For instance, a value of tyfieInt:] is held as a
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Parallel component Sequential component

Figure 1. Structure of program transformations

contiguous memory area containing unboxed 32-bit integkres
— not as a block of pointers ttnt-valued thunks, as is the case in
vanilla Haskell. In our notation adssociated typejgl], we declare

a type whose representation varies in dependence on a type ar
ment as part of a Haskell type class that also contains el@myen
operations on that type; for arrays we have

class ArrElem e where
data [:e:]
(r:) [:e:]

Our concrete implementation is more complex with more opera
tions, but the code shown here conveys the basic idea. The cla
instance for integers takes the following form:

=> Int -> e

class ArrElem Int where
data [:Int:] = ArrInt ByteArray
(ArrInt ba) !: i = indexIntArray ba i

We represent the array by a contiguous region of bytes (aka

ByteArray) with an indexing primitiveindexIntArray that ex-
tracts a single 32-bit integer fromByteArray. (The code again
abstracts over the concrete implementation by omittinguse of
unboxed types.)

TheArrElem instance foFloat, and other primitive types, fol-
lows the same pattern. But what about more complex data-struc
tures, such aSparseVector, which is a parallel array opairs?

It is quite unacceptable to represent it by an array of pointe
(heap-allocated) pairs, because the indirection costddalmel too
heavy. Instead, we represent it bpair of arrays

class (ArrElem a, ArrElem b) => ArrElem (a, b) where
data [: (a,b) :] = ArrPair [:a:] [:b:]
(arrl, arr2) !': i = (arrl !': i, arr2 !': i)

Thus, aSparseVector is represented by two unboxed arrays, one

storing the indexes of non-zero elements and one the actat fl

ing point values of those elements. Crucially, the two arnaust

have the same length, a constraint which cannot be expréssed
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Haskell's type system but is maintained by our implemeatati
Notice that the representation éempositiongl that is, the repre-
sentation of an array of pairs is given by combining the repne
tations of an array of the first and second elements of the fgair
spectively. This representation also allows us to combhimedrrays
elementwise into an array of pairs in constant time.

More interesting is the representation of nested arraysceSi
ultimately, our goal is to eliminate nested parallelismjsitnot
surprising that we also want to represent nested arraysrimstef
flat ones. Indeed, a nested arrizy{:a:1:] can be encoded by

¢ aflatdata array [:a:] which contains the data elements and

e a segment descriptoof type [: (Int, Int):] which stores
the starting position and length of the subarrays embedded i
the flat data array.

This is captured by the following instance:

class ArrElem a => ArrElem [:a:] where
data [:[:a:]:] = ArrArr [:a:] [:(Int, Int):]
(ArrArr arr segd) !: i = sliceP arr (segd !: i)

wheresliceP extracts a subarray from a larger array in constant
time. Thus, the sparse matrix

[:[:(0,15),(2,9),(3,20):1, [::1, [:(3,46):]1:]
will be represented as
ArrArr (ArrPair [:0,2,3,3:] -- data
[:15,9,20,46:])
(ArrPair [:0,3,3:] -- segment
[:3,0,1:1) -- descriptor

where the first array contains all the column indexes, thersdc
one all theFloats, and the third and fourth the start indexes and
lengths of the segments, respectively. Since all four arvaiyl be
unboxed, programs which process such matrices can be aanpil
to highly efficient code.

12



5. Vectorisation

It is important to understand that the programmer does ned te
be concerned with how parallel arrays are represented.graaly
simplifies the programmer’s task, at the expense of inctbasm-
plexity in the compiler, which has to generate code workindiat,
unboxed arrays from nested programs written under the gasom
of a parametric, boxed representation. This is the jobasfe vec-
torisation(also calledlattening, a compiler transformation which
eliminates nested parallelism.

In the literature, vectorisation is often performed on theg
comprehension syntax directly, but we break it into two stéjost
we desugar the comprehension syntax into ordinary functjppli-
cations, and then we vectorise the latter. For us this isiakuoe-
cause otherwise vectorisation would have to treaetitee Haskell
language (before desugaring), whereas with our approacbawe
defer vectorisation until the Haskell program has been gesd
into GHC'’s small intermediate lambda-calculus languadg.[2

For thedotp example of Section 2, the desugared form is as
follows:

dotp ::
dotp sv v

SparseVector -> Vector -> Float
sumP (mapP (\(x,i) -> x * (v!:i)) sv)

The main idea of the vectorisation step is to generate fon eac
function in the program &fted version which works on arrays in-
stead of individual values. For instance, whepalar multiplica-
tion, (x), computes the product of twiloats, lifted multiplica-
tion computes the element-wise products of two array&lohts:

(*7)

Whenever a function is used in a parallel context, code viseto
tion replaces it by its lifted version. Vectorisation turthe desug-
ared definition oflotp into this:

[:Float:] -> [:Float:] -> [:Float:]

dotp :: SparseVector -> Vector -> Float
dotp (ArrPair is xs) v = sumP (xs *~ bpermuteP v is)

Here we can see that tisealar multiplication and array indexing,
clearly visible in the desugared version @dtp, are replaced by
lifted multiplication and backwards permutatiddhermuteP:

[:a:] => [:Int:] -> [:a:]
[: v!:1 | i <= is :]

Moreover, notice that since the first argumenidetp is a vector
of pairs — recall the definition ofparseVector in Section 2 —
its representation is a pair of vectofsrrPair is xs), anddotp
works directly on this representation. The indicesare used to
perform a back permute on the dense vector, extracting tledges
for which the corresponding elements in the sparse vectonan-
zero. The result is then multiplied elementwise withand, finally,
the sum of the array of products is computed.

Strictly speaking, we should have used lifted indexifg; =),
instead of back permute in the above code. The use of back per-
mute is an optimisation, which may be realised by a speeidlis
transformation rule triggered bybeing free in the lambda abstrac-
tion passed tamapP. However, in our implementation, it is effec-
tively realised by the fusion transformation describedtia hext
section. We can't discuss fusion in sufficient detail to destrate
the bpermute optimisation in this paper, though — which is why
we take the liberty to introduce back permute here.

Sincedotp appears in the sparse-matrix vector multiplication
smvm inside another array comprehension, we also need a lifted
version,dotp™~, of dotp. We omitdotp~ here for space reasons.
More details are in [14], which discusses vectorisationrbiteary
nestings in a higher-order language. Ultimately, we neesicba
operations, such a&) andsumP, in their original and their lifted

bpermuteP ::
bpermuteP v is
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form. Everything else can be broken down to those two vasiaht
the basic operations.

6. Fusion

Code that uses vector operations suffers from a major sanirce
inefficiency: it introduces too many intermediate arrayd aonse-
quently thread synchronisation points. The vectorisatiansfor-
mation makes matters worse, by introducing yet more intdime
ate arrays. For instance, the vectorised versiofoabp creates two
temporary arrays containing the results of the back perrantk
the elementwise multiplication, respectively. On patdierdware,
where all array operations are executed by a gang of thrélaekse
threads must synchronise to signal the completion of eanbae
rary. Both the temporary arrays and the resulting threadsymi-
sation are unnecessary: ideally, we would like each gareathto
traverse its local chunk of the sparse vector, extractitigesfrom
the dense vector, multiplying and adding in one go.

The process of collapsing a pipeline of collective operatio
into a single loop is callefusion and has been extensively stud-
ied (e.g. [30, 23, 16, 12, 15]). It is much easier to achieve in
purely-functional context, where most prior work concefasion
of list operations, often calledeforestation(e.g. [29, 9, 27, 24]).
In our approach, however, we have to deal with arrays, with th
substantial additional complication of having to fysmeallel oper-
ations. Our runninglotp example demonstrates the latter tension:
on a sequential machine one would fuse the ewiep algorithm
into a single sequential loop, but that would obviously bpdiess
on a parallel machine. What we must do insteafirs to split the
computation into chunks, one chunk for each gang threadtteemd
to perform aggressive fusion. In turn, that requires us fress the
“chunking” strategy explicitly in the intermediate langéa rather
than hide it in the runtime system, so that the post-chunirg
gram is exposed to fusion transformations.

Our mechanism for exposing the chunking is caliéstributed
types[11], which we discuss next in Subsection 6.1, followed by
removal of synchronisation points by fusing phases of pelral
computations in Subsection 6.2, and finally removal of terapo
arrays by array fusion in Subsection 6.3.

6.1 Distributed types

Our main vehicle for distinguishing between synchronmatnd
computation is the typkist a of distributed values. For instance,
Dist Int, pronounced “distributednt”, denotes a collection of
local integers, such that there is one local integer value per gang
member. Arrays can be distributed, tobist [:Float:] is a
collection of local arraghunks again one per gang member, which
together make up the array. Arrays are distributed acrosg ga
members and joined back together by the following functions

splitD :: [:a:] -> Dist [:a:]
joinD :: Dist [:a:] -> [:a:]

Distributed values support a number of operations, mosbimp
tantly mapping:

mapD :: (a -> b) -> Dist a -> Dist b

While splitD and joinD denote synchronisatiomapD is the
main means of implementing parallel computation phasegyamg
members concurrently apply the (purely sequential) fuomctio
their respective local values.

The above is sufficient to express a wide range of parallel
operations. For instancepermuteP can be implemented as

bpermuteP :: [:a:] -> [:Int:] -> [:a:]
bpermuteP xs is
joinD (mapD (bpermuteS xs) (splitD is))
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Here, we distribute the index array across the gang, thety app
sequential backpermutegermuteS) concurrently to each chunk,
and join the results back together. Analogously, elemesgwiul-
tiplication is defined as

(*7) [:Float:] -> [:Float:] -> [:Float:]

xs *7 ys =
joinD (mapD mult (zipD (splitD xs) (splitD ys)))
where mult (1lxs, lys) = zipWithS (*) lxs lys

The argument arrays are distributed with1itD and then chunk-
wise combined byipD:3

zipD :: Dist a -> Dist b -> Dist (a, b)

Thus, each gang member processes a pair of local chunksutomp
ing the local products, which are then joined together.

Note that while (x~) distributes both arrays, in the case of
bpermuteP, the data arrays is not distributed because the entire
array is required for each local computation. Distributggets
permit us to make explicit the distinction between localues,
which are accessible only by a particular thread, and glohas,
which are available to all threads.

By now, the definition ofsumP in terms of distributed types
should hold no surprises:

sumP :: [:Float:] -> a
sumP xs = sumD (mapD sumS (splitD xs))

It distributes the argument array, has each gang member sum its
local portion sequentially witBumS, and finally sums up the local
results withsumD :: Dist Float -> Float.

In this exposition, we only discuss distributed types arsidi
for operations on flat arrays. However, the presented approa
scales to nested arrays, using the representation basestjorest
descriptors outlined in Section 4.

6.2 Removing synchronisation points

Distributed types make the structure of parallel compatetiquite
explicit, but how can they be used for fusing pipelines ofhsuc
computations? Let us revisit the vectorised codedotp from
Section 5. By inlining the definitions of(x~) andsunP, it can be
rewritten as follows. (In Haskelk . ) denotes function composition
and($) is function application with very low operator precedeice.

dotp (ArrPair is xs) v =
sumD . mapD sumS . splitD . joinD . mapD mult
$ zipD (splitD xs) (splitD (bpermuteP v is))

Ignoring the call tobpermuteP for the moment, the above con-
tains two parallel computation phases (the twapD) with a
join/distribute phase (theplitD . joinD) in between. Itis easy
to see that the latter is unnecessary — instead of first jgiaimd
then again distributing the result of the elementwise mlittation,

it can be used directly to compute the sum. Thus, we can replac
the subexpressiosplitD . joinD by the identity.

In this examplesplitD . joinD has no effect at all. In gen-
eral, asplitD/joinD combination may perform load balancing
(e.g., after filtering a distributed array). However, to jgewatters
simple, we ignore load balancing for the moment and assuate th
we want to apply the following rewrite rule whenever it magsh

"splitD/joinD" forall xs. splitD (joinD xs) = xs

3We could write this slightly more concisely withipWithD, but the given
form is more useful for the following fusion discussion.

4Much of what follows depends crucially on inlining libraryode into
user-written programs. Fortunately, GHC supports crosshite inlining,
allowing the libraries to be pre-compiled while still retaig the high-level
form for later inlining by the library’s clients.
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GHC has support for specifying such rewrite rules directiylii

braries in the form of source code pragmas [18], and thisus\ie

implement the various rewrite rules that we need for fusion.
Applying thesplitD/joinD rule todotp, we get

dotp (ArrPair is xs) v =
sumD . mapD sumS . mapD mult
$ zipD (splitD xs) (splitD (bpermuteP v is))

This code still contains a superfluous synchronisatiapD mult
causes each gang thread to compute its share of elementwise p
ucts and then to synchronise with the rest of the gang. Haweve
there is no need for this, as the next operatiapD sumS is also
purely thread-local. Hence, we want to apply a distributgukes
version of the well known map fusion law:

"mapD/mapD" forall f g xs.
mapD f (mapD g xs) = mapD (f .

Operationally, this means that two adjacent computatioaseh
with no global operations in between can be combined intoglesi
one. Applying thenapD/mapD rule, we get

g) xs

dotp (ArrPair is xs) v =
sumD . mapD (sumS . mult)
$ zipD (splitD xs) (splitD (bpermuteP v is))

Now, we are left with a synchronisation betweespD and sumD.
This is genuinely required, since the global reduction setd
access all local sums.

Let us now consider the subexpression to the right of($e
When we inlinebpermuteP, we notice that its outermogtoinD
cancels the enclosirgp1itD by thesplitD/joinD rule discussed
previously; hence we get (for just tlze pD subexpression)

zipD (splitD xs) (mapD (bpermuteS v) (splitD is))
Applying the rewrite rule

"zipD/mapD" forall xs f ys.
zipD xs (mapD f ys) =
mapD (\(x, y) -> (x, £ y)) (zipD xs ys)

followed by themapD/mapD rule, inlining mult, and performing
two standard simplifications, we end up with the followingiop
mised code for the dot product:

dotp (ArrPair is xs) v =
sumD
. mapD (\(1xs, lis) ->
sumS . zipWithS (%) 1lxs (bpermuteS v lis))
$ zipD (splitD xs) (splitD is)

Assuming constant-time implementations of the distridute
types primitivessplitD andzipD® all that is missing for an ef-
ficient, parallel implementation adotp is to fuse the purely se-
quential array operationsumS, zipWithS, andbpermuteS. After
sequential array fusion, which we discuss in the followingsec-
tion, each gang member essentially forms and sums up thé loca
products, and thensumD combines the individual contributions
into the final result.

6.3 Removingtemporary arrays

We implement sequential array fusion using the same mesimani
for rewrite rules that we employ to remove synchronisatiomfs.
However, given the plethora of collective array operatjams need
to reduce those to a very small set of elementary fusablesiveu

5Zipping of distributed values is a constant-time operasorce, similarly

to parallel arrays, @ist of pairs is internally represented as a pair of
Dists; splitD is implemented in terms of constant-time array slicing (cf.
Section 4).
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array operations — not unlike foldr/build or destroy/umfofusion

for lists. The crucial point here is that we minimise the nemb
of different recursivefunctions that partake in fusion. There is no

problem in having a wide range of non-recursive interfacefions
on top of the small set of fusable, recursive ones. Startiog four
earlier work on equational array fusion [6], we recently eleped
a new fusion framework, which we caltream fusionas it models
array traversals as a stream of array elements.

of streams is beyond this paper, but the results of streaiorfdier
byte strings [7] and our preliminary results for arrays ircten 8
support the claim of the efficiency of streams.

7. Gangparallelism

In the previous section, we discussed how we decompose data-
parallel array operations into genuinely parallel operagi(such as

Here, we can only sketch the basic ideas behind stream fu- SP1itD, joinD, mapD) and purely sequential operations (such as

sion. However, we previously presented a particular ircgaof
stream fusion, namely stream fusion for byte strings, whiek
been highly successful and produces code competitive witH.C
Nevertheless, fully fledged array fusion presents addifiamal-
lenges; in particular, streaming of segmented arrays amdtteam-
based implementation of permutation operations. We amnpig
to explain the details in a forthcoming paper.

The essential abstraction behind stream fusion is the mofia
lazy streamgtreanm e, oOf array elements:

data Stream e = forall s. -- existential type
Stream (s -> Step s e) !s Int
data Step s e = Done
| Skip s
| Yield l!e !s
Such a stream consists ofsaedof type s, a stepping functiorof

type (s -> Step s e), and asize hintof type Int. The stepping
function incrementally produces the stream of elements ftoe

seed. The size hint bounds the number of elements that may be
produced, which is useful to optimise memory allocationeTh
stream contains three types of elemebtsie flags the end of the

stream Skip indicates dropped array elements, arié1d gives a
single array element of type

We move between arrays and streams with the two functions

[:e:] -> Stream e
Stream e -> [:e:]

streamS
unstreamS ::

which give rise to the following maistream fusion rule

"streamS/unstreamS" forall s.
streamS (unstreamS s) = s

We manipulate streams with stream operators, including

mapT :: (a -> b) -> Stream a -> Stream b
foldT (b ->a->b) ->b -> Stream a -> b
zipWithT :: (a -> b -> ¢)

-> Stream a -> Stream b -> Stream c

that enable us to express array processing as stream pragess

For example, the sequential array operations used in ourimgn
exampledotp are implemented as follows:

sumS = foldT (+) O . streamS
bpermuteS a unstreamS . mapT (a!:)
zipWithS f al a2

unstreamS (zipWithT f (streamS al) (streamS a2))

. streamS

After inlining these definitions into the optimised definiti of

dotp given at the end of the previous subsection, the streamrfusio
rule can be applied twice to eliminate the two temporaryyara

and so turn the lambda abstraction into

\(1xs, 1lis) -> foldT (+) O
$ zipWithT (*) (streamS 1lxs)
(mapT (a!:) (streamS 1lis))

All temporary arrays are gone. We are left with streams oty
is this better? Its better as the stream processors are aunisige
and so easily optimised by inlining. The optimised impletagion
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map$S, zipWithS, bpermuteS) which are executed simultaneously
by all members of a thread gang. Overall, this leaves us \nitet
kinds of code: (1) non-array Haskell code, (2) parallel aiens on
distributed types, and (3) sequential array code distedbutcross
a gang. The first category, non-array Haskell code, can declu
explicit concurrency operators, suchfaskI0, which implies that
we may get data parallelism in multiple, explicitly forkeade¢ads.

We deal with this situation by mapping both array paralfalis
and GHC'’s explicit parallelism to the same set of thread gmd s
chronisation primitives provided by the runtime. In pautar, the
thread gangs executing data-parallel operations corfsisandard
GHC threads. This allows us to delegate the problem of sdimedu
multiple gangs which compete with each other and with namgga
threads for a limited numbers of processing elements to GHC’
scheduler. It remains to be seen how the scheduler must be im-
proved to efficiently handle advanced scenarios involvingtiple
gangs and user-created threads.

7.1 Distributed state

Parallel arrays are two phase data structures: they aralisdtd by
destructive updates, but are restricted to read-only acassoon
as initialisation is complete. Thus, while parallel arrgyssent the
user with a purely functional interface, their initialigat is stateful
behind the scenes. Haskell provides support for such stest
in the form of thestate transformer monadT which captures
stateful computations in a referentially transparent neariii3].
A computation of typeST s a transforms a state indexed by the
type s and produces a value of type The ST monad provides
operations for allocating and updating mutable arrayscivitare
finally frozen which is when they become immutable and can
be used outside of their state transformer. The implemientatf
unstream$ follows this pattern: it fills a newly allocated mutable
array with elements produced by the stream and then freezes i
While this is sufficient for sequential code, parallel asaye
initialisedsimultaneouslyy several gang members, each of which
initialises its local chunk. In other words, the gang thie&@ns-
form the samalistributedstate in parallel. We capture this idea in
the form of adistributed state transformer monad stST, which
we embedded intST by the following operation:

distST :: DistST s a -> ST s (Dist a)

Given a stateful distributed computation of typestST s a,
distST executes it concurrently once with each gang thread. The
local results (of typen) of the gang threads are collected in a dis-
tributed valueDist a. The semantics is quite similar to that of
mapD which executes pure computation on each gang thread and,
indeedmapD is implemented in terms afistST:

mapD :: (a -> b) -> Dist a -> Dist b
mapD f d = runST $
distST (do {x <- myD d; return (f x)})

The functionrunST :: (forall s. ST s a) -> a encapsu-
lates the execution of a state transformer in a purely foneti con-
text, in a safe manner. MoreoveiyD extracts the current thread’s
local value of the distributed value

myD :: Dist a -> DistST s a
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Figure2. Speedup of smvm on Intel Xeon and Sun Fire (UMA)

The functionmyD is stateful, because conceptually, the identity of
the thread it is executed on forms part of the distributetesta
7.2 Gangthreads

Like parallel arrays, distributed values are two phase déatac-
tures, which are initialised destructively. ThdsstST itself is im-
plemented in terms of more primitive combinators:

distST p = do

d <- newMD g
distST_ (do { x <- p

; writeMyMD d x})
freezeMD d

alloc dist val
run gang thread
write result
make immutable

Here, a new mutable distributed value is allocatesk{D), filled

by the gang members{iteMyMD), and then frozenf{reezeMD) to

be consumed by pure code. The workhorse of the implementatio
is distST_: it passes a computation to each gang thread and then
blocks until all threads have completed. Its signature is

distST_ :: DistST s () -> ST s ()

In our set up, a gang thread goes through the following simple
loop: (1) it waits for aDistST s () computation, to be issued
by a call todistST_ in a vanilla Haskell thread; (2) executes the
computation, (3) signals its completion, and (4) then kdogktil
the next computation arrives.

This simple work distribution scheme is possible due to a&ben
ficial interaction between code vectorisation and gang|iedisam:
vectorisation eliminates nested parallelism, thus engutat the
computations executed by gang threads never need to peptarm
allel operations themselves. This crucial property rersdfie need
for a work queue which would be necessary if parallel opersti
could be nested at this lowest level.

8. Preliminary results

Data Parallel Haskell is very much work in progress. Foransg,
the syntactic sugar and the compiler transformations destiin

Figure3. Run time of smvm on Intex Xeon and Sun Fire (UMA)
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Figure4. Speedup of smvm on AMD Opteron (NUMA)

different architectures: (1) an Intel-based SMP with twaleltore
Xeon CPUs running under Linux with a 2.6.15 kernel, (2) a Sun
Fire E6900 with 32 Sparc processors running under Solati@ 5.
(but due to system resource allocation policies, we werg able

to use 16 of the 32 PEs at a time), and (3) an AMD64 machine
(using a HyperTransport bus) with eight dual-core Opter&tU€
running under Linux with a 2.6.19 kernel. All Haskell codeswva
compiled with GHC 6.7 and the sequential C reference impteme
tation was compiled with gcc 4.1.

Figure 2 shows the speedups of vectorisedn with a10, 000 x
10,000 sparse matrix with approximately 1 million non-zero
Double elements on the Intel Xeon and Sun Fire machines. The
speedups are linear as expected, since after fusion thethigo
runs almost entirely in parallel. Moreover, again due toftison
framework, our library does not introduce any significargffin
ciencies — the difference between the running times of thalleh

Sections 2 and 5 have not been implemented yet. Moreover, thealgorithm on one PE and a purely sequential version arg/fsiniall

creation and scheduling of gangs is, so far, rather ad hoe. Th
library of parallel arrays and algorithms, however, is athe quite
usable, including automatic fusion of both sequential amclel
computations. This allows us to validate our approacmiyually
vectorising our running example and measuring its perfocea
Since our implementation is entirely based on concurrency
primitives provided by the production version of GHC, it &rfy

(912 vs. 830ms on the Sun Fire and 252 vs. 249 ms on Intel).
Even more importantly, we did not only achieve good speedup,

but the absolute running time of our implementation is nofriam

hand-coded C. Figure 3 shows absolute running times of time sa

benchmark including the running time of a sequential C mfee

implementation. On the Sun Fire, a sequential C implemiemtaff

the benchmark runs in approximately 660ms; the parallekelas

portable and we were able to run the benchmarks on three quiteversion requires 920ms on one PE and is already faster with tw
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PEs, where it takes 476ms. These results are for using gemofthr

Haskell program with a standard compiler onto a range ofeshar

compiling the C program and as a backend for GHC. Sun’s cc runs memory multiprocessors such that (a) it is competitive ischie

our C implementation of the algorithm four times faster tigan on

performance, and (b) it scales with adding processors. Oat ig

the Sun Fire, but we cannot use it as a backend for GHC, as GHCto extend this result to a much wider variety of programs.

uses some gcc-specific language extensions. On the Intel tkeo
parallel Haskell program runs in 252ms on one core, comptred

70ms needed by the C version, and needs four PEs to outperform

the sequential C code. The performance difference betweet
and Haskell code is largely due to inadequacies of GHC'sdratk
code generator, which has never been optimised for nuniigrica
intensive code; in particular, it uses the fairly few registavailable
on IA32 very ineffectively Register pressure is less of an issue on
the Sparc architecture, which we believe is the main reagothé
better relative performance of GHC on that architectures gbod
news is that we believe that this performance gap can bedlose
at least strongly reduced, by adding some well understookivel
optimisations to GHC — a task that is largely independentwf o
approach to compiling nested data parallelism.

Related Wor k

We have drawn our inspiration from the seminal work on NESL
and its implementation by program transformation [1, 2].tfis
groundbreaking work, we added (a) the integration of NE®EE
allel programming model into a fully-fledged functional ¢arage,
(b) the generalisation of vectorisation to Haskell's fyibé struc-
ture including functionals, (c) a comprehensive fusiomfeavork
for distributed arrays, (d) the lifting of compiler magictinli-
brary code with associated types and rewrite rules, and (@&
preserving translation.

Prins et al. worked on various aspects of the vectorisatfon o

The two machines discussed so far have a uniform memory ac- nested data parallel programs; see, e.g., [17]. Most of theik

cess (UMA) architecture, whose memory latency is uniformoss
the whole address space. Furthermore, the Sun Fire progdes
very high memory bandwidth, which is particularly importan
smvm Since only few arithmetic operations are performed for gver
load and store. In contrast, the AMD Opteron machine hasra
uniform memory acccess (NUMA) architecture, so that actess
memory “near” to (i.e. physically adjacent to) a processdaster
than access to “distant” memory (i.e. memory attached terqito-

was also in the context of a functional language, but one that
like NESL lacks many of Haskell’s features. Their work isgely
orthogonal to ours.

So et al. [25] developed a parallel library of immutable ar-
rays for C/C++ supporting what they callib-primitive fusionThe
goals and ideas behind this fusion framework are rathedairto
those discussed in Section 6. However, So et al. do not equir
lining of user-defined functions for fusion and they alseadtice a

cessors). The effect of NUMA becomes apparent in the speedup|ight-weight synchronisation mechanism. Like us, theyalsive

graph for for the Opteron, which is is displayed in Figure 4réi
we use a40,000 x 20,000 sparse matrix with approximately 8
million non-zero elements. We run this benchmark in fourasats
by varying it along two dimensions: (a) we UBEoat Or Double

for a seamless integration of data parallelism and exptimitcur-
rency within a single program.

Fluet et al. [8] recently started the manticore project, rghe
they combines CML-style explicit concurrency with nestexdad

and (b) we use one or two cores per CPU. As long as we use only parajlelism. They introduce an approach to support metiehedul-

one core per CPU, the speedup is not far from that achievelleon t

ing disciplines in one runtime system, much like the schadule

Sun Fire. However, if we use both cores of every CPU, we see a yjj| also need to efficiently combine explicit concurrencyitiw

significantly reduced speedup. After some experiments srithll
kernels, we believe that we can attribute this behaviountogrop-
erties of the hardware: (1) the main problem is that the mgmor
bandwidth of the HyperTransport-based bus is simply ndicieit

to saturate the arithmetic capacity of two cores daxm and, (2)

to a lesser extent, we see some reduced performance duergea la
proportion of the memory traffic being to “distant” memorye\&h-
sured load balancing of memory traffic by using the Linux NUMA
utility numactl to set a memory interleave policy. However, if
memory allocation in GHC were NUMA-aware (which it currgntl
is not), we could optimise memory allocation for arrays by se
ting suitable memory affinity. This would surely improve neas,
but probably not dramatically, because the main limitatbamvm

on this hardware is simply the available memory bandwiditert
estingly, the absolute performance of the parallel Hastedle is
1298ms, on one core, and 900ms for the purely sequential-C ref
erence code, which is much closer than on the Intel Xeon. We st
need to investigate the reason for this in detail. It is moly
due to differences between the x86-64 and 1A32 architectire
ther gcc's backend for the x86-64 is less optimised, or tHe 68
architecture is an easier target for GHC, especially asseégahe
register pressure compared to 1A32.

Finally, we would like to emphasise that the results present
here are preliminary. Small changes, be it to our librarylengen-
tation, to GHC, or to the compilation strategy, can have gsip
ingly large effects. Nevertheless, our results constitut®nstruc-
tive proof that it is possible to compile at least one dateaibel

6This is even the case when using gcc as the backend, as GHSS fgec
to reserve some registers for global use.
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nested data parallelism. We expect to to be able to direethefit
from the results of that project.

There is a rich body of work on parallel programming models
and implementation techniques for functional languageth(data
parallel and task parallel). However, a comprehensiveudsion of
this work is beyond the present paper.

10. Conclusions

We described the design and implementation status of oueraiur
effort to support nested data parallelism in the highly jging
Glasgow Haskell Compiler, such that it co-exists elegantti ex-
isting support for two forms of more explicit parallel pregnming.
Our implementation is partial, but we chose a bottom up aggito
to implementation, where we can conduct rigorous perfogaan
tests of more low-level components of our implementatiofotee
moving further up. Currently, we have a parallel library aftfand
segmented arrays, including automatic fusion of both setiple
and parallel computations. For a sparse-matrix vector iplida-
tion benchmark, this library achieves good absolute peréorce
and excellent speedups on Intel IA32, Sun Sparc, and AMD x86-
64 SMP machines.

We still have a lot of work ahead of us before we have a com-
plete system, but the current results indicate that we arfarsim
good shape. Our current focus is on SMP, and especiallyjcordt
machines. However, nested data parallelism, and we bediksee
our implementation strategy, extend to both distributeztmary
parallel systems as well as to SIMD and stream processoch (su
as GPUs) — or even to heterogeneous systems combing them.
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