Low-Overhead Core Swapping for Thermal
Management

Eren Kursun', Glenn Reinman!, Suleyman Sair?, Anahita Shayesteh®,
and Tim Sherwood?

1 Computer Science Department, University of California, Los Angeles
2 Department of Electrical and Computer Engineering,
North Carolina State University

3 Department of Computer Science, University of California, Santa Barbara

Abstract. Technology scaling trends and the limitations of packaging
and cooling have intensified the need for thermally efficient architectures
and architecture-level temperature management techniques. To combat
these trends, we evaluate the thermal efficiency of the microcore architec-
ture, a deeply decoupled processor core with larger structures factored
out as helper engines. We further investigate activity migration (core
swapping) as a means of controlling the thermal profile of the chip in
this study. Specifically, the microcore architecture presents an ideal plat-
form for core swapping thanks to helper engines that maintain the state
of each process in a shared fabric surrounding the cores. This results in
significantly reduced migration overhead, enabling seamless swapping of
cores. Our results show that our thermal mechanisms outperform tra-
ditional Dynamic Thermal Management (DTM) techniques by reducing
the performance hit caused by slowing/swapping of cores. Our experi-
mental results show that the microcore architecture has 86% fewer ther-
mally critical cycles compared to a conventional monolithic core.

1 Introduction and Motivation

Thermal characteristics of contemporary processors are creating significant chal-
lenges to microprocessor design. Various trends threaten to make things even
worse: the number of on-chip transistors is quickly approaching one billion, clock
frequencies are dramatically increasing, feature sizes are dropping to deep submi-
cron levels, and supply voltage reduction is expected to slow down as it approaches
noise margin barriers. As a result, power densities and on-chip temperatures are
expected to increase even faster for the next generation of processors.

Thermal issues have gained significant importance in the past few years.
Processor heating raises number of problems that threaten vital aspects of the
microprocessor design, such as proper functionality, reliability, cost, and perfor-
mance. Reliability of an electronic circuit is exponentially proportional to the
junction temperature. A 10°C increase in temperature usually translates to ~2X
difference in the lifespan of the device [16]. At higher operating temperatures
the microprocessor operates at relatively lower speeds [23].

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2004, LNCS 3471, pp. 46-B0] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Low-Overhead Core Swapping for Thermal Management 47

Furthermore, temperatures are not constant across the chip. 30— 40°C ther-
mal gradients are quite common, which causes potential timing and data er-
rors [2]. There is a non-linear relationship between cooling capabilities and the
cost of a cooling solution. The cost of cooling increases at a higher (almost
exponential) rate for higher temperatures [10].

In recent years, dynamic thermal management (DTM) [4,8, 14,25, 15] has
become an integral part of microprocessor design to adapt to increasing on-chip
temperatures. The disparity between the maximum possible power dissipation
and typical power dissipation has become more pronounced. This, along with
the exponential increase in cooling device costs, has created a new trend where
cooling systems are designed for the typical worst case power dissipation instead
of the maximum possible power dissipation. Therefore, dynamic thermal man-
agement has become essential to ensure that processor temperature does not
reach or exceed the maximum tolerable temperature.

Many power optimization techniques do not seem to address problems caused
by processor heating, as they are targeting relatively cooler parts of the chip, such
as caches. With the expected increases in power consumption and temperature,
there is no doubt that more DTM techniques specific to microprocessor designs
are needed.

DTM usually targets the removal of excessive heat from the processor af-
ter a certain temperature threshold is reached. Thermal management can cause
performance degradation, as a result of reduced clock frequency, voltage or tem-
porarily shutting down the entire chip. Therefore, thermal efficient architectures
with less overall heating are extremely desirable, as they do not require very
aggressive DTM.

In this paper we explore the thermal efficiency of the microcore architec-
ture [18]. The microcore architecture features a small, fast pipeline augmented
with helper engines [22]. All large structures are factored out of the microcore
and are relocated as helper engines, taking advantage of locality in the first level
structures. In this paper, we explore the use of swapping applications between
multiple microcores when a given core exceeds a thermal threshold. The helper
engines buffer state during core swaps and help reduce the overhead of swapping.
We compare this approach to current DTM techniques.

The rest of this paper is organized as follows. In Section 2 we discuss the
prior work, followed by an introduction of the architectures we investigate in
Section 3. Section 4 presents the methodology. We present the experimental
results in Section 5 and concluding remarks are in Section 6.

2 Related Work

The circuit design community has proposed a great deal of work on dynamic
power optimization techniques, which are also used as dynamic thermal man-
agement techniques in microprocessors in various forms. Such techniques include
dynamic voltage scaling (DVS) and dynamic frequency scaling (DFS). In this
section we will focus on the studies that are close to our own and specifically
target microprocessor power/thermal optimization.

48 E. Kursun et al.

The Pentium 4 [12] incorporates a low cost, yet reliable, thermal management
system based on processor power modulation that has been commonly used
in mobile systems. It utilizes the existing stoplock, an architectural low-power
logic mechanism that halts the clock signal to the bulk of the processor [10].
Thermal management is automatically invoked whenever any of the thermal
sensors indicates that the die is hotter than a predetermined critical temperature.
The mechanism stays active until the die temperature drops below the critical
value. The clock signal is gated at certain intervals or permanently, depending
on the thermal and power management state.

Brooks and Martonosi introduced an adaptive thermal management system
through speculation control in [4]. They also compared commonly used DTM
techniques such as clock frequency scaling, voltage and frequency scaling, decode
throttling, speculation control and instruction cache toggling [8]. An energy-
management framework that combines energy efficiency and temperature man-
agement, DEETM, was presented by Huang et al. [25]. They propose several
power optimization techniques such as global clock gating, DVS, sub-banking,
filtered instruction cache. Although these studies provide valuable DTM tech-
niques with significant thermal alleviation, detailed resistance-capacitance ther-
mal models were not available at the time. As a result some of the overheating
blocks were not addressed.

Him, Daash and Cai introduced a dual pipeline processor, with a secondary
low-power pipeline in [15]. The power efficient single-issue, in-order pipeline only
gets activated, when the primary pipeline exceed a threshold temperature. When
the superscalar core overheats, it is flushed and the secondary pipeline is acti-
vated until the primary pipe cools down to a safe temperature. Register file, fetch
engine and the execution units are shared among the two pipelines. However, it is
important to note that this technique is mainly targeting mobile devices and ap-
plications that can tolerate low performance. There is a significant performance
penalty when the architecture transitions to the secondary pipeline.

In [11] Heo, Barr and Asanovic proposed an activity migration technique for
power density reduction. Activity migration reduces the temperature by moving
the computation between multiple replicated blocks. This thermal reduction
yields lowered leakage power values and can also be improved with a dynamic
voltage scaling technique to further reduce the power and temperature.

Heo et al. [11] analyze multiple configurations with some of the microproces-
sor units replicated or shared. The study concludes that the best configuration
has a shared Icache, Cache, rename table, and issue queue. Although, duplicated
microprocessor units reduce the on-chip temperatures, they argue that this is
dominated by the overhead due to activity migration.

HotSpot [14] provides an accurate thermal model and a corresponding soft-
ware implementation that enables more detailed and localized thermal analysis
of the microprocessor. It is based on the equivalent circuit of thermal resistance
and capacitances that model the microarchitectural blocks and other aspects
of the chip thermal package. Hotspot highlights the inaccuracy in estimating
the temperature based on the power density only. The software models can be

Low-Overhead Core Swapping for Thermal Management 49

integrated with the other cycle accurate power estimators such as WATTCH [5]
and Hotleakage [27], in order to provide a complete thermal and power analysis.
In [14] Skadron et al. also provide and analyze several DTM techniques such
as: temperature-tracking frequency scaling, localized toggling and computation
migration. We incorporate HotSpot models for an accurate RC thermal analysis
of the various architectures investigated in this study. We also make use of an
idealized version of dynamic frequency scaling as a comparison point for the our
core swapping approach.

3 Factored Architectures

Figure 1 illustrates a factored architecture as proposed in [18]. The main idea
behind factored architectures is to move a set of larger structures out of the reg-
ular processor core, resulting in a tiny core with only the necessary components
included.

While structures such as caches are fairly easy to factor, other structures
require more consideration. In [18], Shayesteh et al. looked at three different
types of factored structures, and their challenges:

— Hierarchical extensions: Caches and branch predictor (shown in light gray)
— Complete factorization: Value predictor and data prefetcher (shown in dark

gray)
— Hybrid factorization: Register file and ROB (shown with gray stripes)

In a typical factored design, the level one data and instruction caches are
moved out of the core processor pipeline and replaced with a smaller LO cache.
The LO extends the cache hierarchy, and therefore the L1 data cache is accessed
on an L0 miss.

commit
L1 Branch 1114 L1 Register
ROB i
Predictor 181 File

J___t______________ ______ L{
Allocation :
|| Lo Branch ED?EIFT LO 5L,) 'E L0 Register
S d Registe: ’
| Predictor I-Cache | & | s egsiar File |™

Rename
e e e i e R AT R

Functional
Units

LO bata
Cache

L1 :
I-Cache JRore

Fig.1. The factored p-core architecture

50 E. Kursun et al.

The architecture includes a stream buffer architecture [13] guided by a stride-
filtered markov predictor as proposed in [20]. The address predictors are moved
further away from the core pipeline in the microcore. There is also a hybrid value
predictor [24], predicting only load instructions. To factor the value predictor,
the predicted value is stored in the register allocated to the load instruction
we are predicting. If the predicted value and the actual value do not match, a
checker engine similar to the ARB [9] detects the misprediction and squashes
the mispredicted result and its dependents.

The factored architecture makes use of a basic block target buffer (BBTB) [26],
a branch address predictor that predicts an entire basic block each cycle. The
microcore design has a reduced size BBTB in the core pipeline and adds a second
level BBTB as done in [17]. Similarly the fetch target queue (FTQ) decouples
branch prediction from the instruction cache. On a first level BBTB miss, the
second level BBTB is probed and fetch stalls until a response is received from
the second level. If the second level misses, we guess a fixed fetch block size and
continue fetching until a misprediction is detected.

In the factored architecture, a multi-level register file is used similar to the one
proposed in [3]. The basic differences are that they model an inclusive register
file hierarchy where the second level register file (RF1) includes all the state
contained in the first level register file (RF0). On a branch misprediction, the
second level register file recovers the state of the first level register file. This is
a hybrid of complete factorization and hierarchical extension, as the register file
is extended with a second level structure, but the commit hardware and ROB
are completely factored, with only tag allocation in the ROB impacting the core
timing.

The results in [18] showed that the microcore architecture is able to reduce
total processor power dissipation by 20% on average, while it attains comparable
performance to a deeply pipelined monolithic design at the same clock frequency.
The inherent power efficiency of the microcore, makes it an attractive design for
temperature aware architectures. Figure 2 illustrates how different components
contribute to the overall power for monolithic and microcore architectures. Our
methodology and processor parameters are described in following sections.We

‘ OCore [DOFirst Level Helper ~ E Prefetching + Value Prediction M Second Level Data Cache

1
0.8

-
0.6

:
~ 0.4
0.2

épplﬁ 'apsir art b21p2 érzifty con’ gaigél 'gaip' mef mesa pﬁréef

Fig.2. Power breakdown for Monolithic and p-core architectures. (Normalized by
monolithic architecture power for each benchmark).

Low-Overhead Core Swapping for Thermal Management 51

use the microcore framework of Shayesteh et al. to make our contribution in the
analysis of the temperature efficiency and the examination of core swapping on
the microcore.

3.1 Core Swapping

Swapping between multiple cores has been proposed as a dynamic thermal man-
agement technique. Heo et al. [11] look at several architectural alternatives for
implementing activity migration and its overhead on processor performance. We
propose a dual pipeline version of the microcore architecture, with factored com-
ponents shared between the cores. Unlike [11], our core swaps are triggered by
thermal sensors. When one core exceeds a thermal threshold, the application
workload is swapped to the other core.

Core swapping can impact processor performance significantly. On a core
swap, we flush the pipeline similar to a branch misprediction. Register file state
is copied to the other core, and dirty cache blocks are written back to the level
one cache (the helper engine), which is shared between the cores. We assume
that copying register file state and writing back dirty blocks can be overlapped
with the startup cost of the new core.

The cold start effect of caches and predictors causes an even more severe
impact on the second core. These structures need to warm up and depending
on their size, there is an overhead involved. In a conventional monolithic ar-
chitecture, recovering from loss of data on relatively large in-core caches and
predictors can degrade performance significantly. The microcore architecture,
with less state in the core and more buffering between the cores, provides a very
tolerant framework for core swapping. We present this feature in Section 5 by
comparing the performance degradation of a monolithic core vs. a microcore in
the presence of core swapping.

“g, ' i? microcore A 3 "l microcore A microcore A

(- 4

| HE | | HE | | HE | | HE | | HE | | HE | | HE | | HE | | HE |

microcore B microcore B microcore B

. The application is
Microcore A swapped to microcore B, Execution resumes
exceeds the but state is still buffered in on microcore B.

thermal threshold. the shared helper engines
Fig. 3. Core Swapping

4 Methodology

The simulator used in this study was derived from the SimpleScalar/Alpha 3.0
tool set [6], a suite of functional and timing simulation tools for the Alpha

52 E. Kursun et al.

AXP ISA. The timing simulator executes only user-level instructions. Simulation
is execution-driven, including execution down any speculative path until the
detection of a fault, TLB miss, or branch misprediction. Our processor operates
at a 5.6 GHz clock frequency.

We used the SPEC2000 benchmark set for our experiments. Although the
results are gathered for all the benchmarks, we only show results for a randomly
selected subset of 6 integer and 6 floating point programs in the suite to conserve
space in this paper. Details for all benchmarks will be available as a technical re-
port (citation removed for blind review process). The programs were compiled on
a DEC Alpha AXP-21164 processor using the DEC C and C++4 compilers under
OSF/1 V4.0 operating system using full compiler optimization (-04 -ifo). We
simulate 100 Million instructions after fast-forwarding application-specif num-
ber of instructions as proposed by Sherwood et. al in [19]. All benchmarks were
simulated using the ref inputs.

4.1 Architectural Model

We have made significant modifications to SimpleScalar to model the various
speculative techniques and different configurations in this study. We have mod-
ified SimpleScalar to include a cycle accurate, execution driven model of micro-
core and monolithic architecture models.

Table 1. Simulation parameters for the monolithic and microcore architectures

Monolithic Microcore
Core Lo Helper Engines
Instruction Window 256 entry ROB 256 entry ROB
and Physical RF 256 entry RF1 128 entry RFO 256 entry RF1
BBTB 2048-entry 4-way set 256-entry 4-way set 2048-entry 4-way set
associative associative associative
L1 Data 64KB 4-way set associative, 8KB 4-way set associative, 16KB 64-way set associative,
Cache dual port with a 32 byte dual port with a 32 byte single port with a 32 byte
block size, 4 cycle latency block size, 3 cycle latency block size, 6 cycle latency
L1 Instruction 64KB 2-way set associative, 8KB 2-way set associative, 64KB 2-way set associative,
Cache single port with a 32 byte single port with a 32 byte single port with a 32 byte
block size, 4 cycle latency block size, 2 cycle latency block size, 5 cycle latency
Value Predictor 2K-entry stride none 2K-entry stride
(1 prediction per cycle) 8K-entry markov 8K-entry L2 markov
Address Predictor 2K-entry stride none 2K-entry stride
(1 prediction per cycle) 4K-entry markov 4K-entry markov
Stream Buffer 32-entry FA buffer none 32-entry FA buffer
Branch Misprediction 26 cycles 20 cycles
Core Width 8-way issue, 4-way decode, 4-way commit
Memory and 150 cycle memory latency, 512KB 4-way set associative unified (instruction and data)
L2 Cache cache with a 64 byte block size and 12 cycle latency
Functional Units 8 integer ALUs, 2 integer MULT/DIV, 2 FP ALU, 2 FP MULT/DIV, 2 load/store

Table 1 presents the simulation parameters for the monolithic and microcore
architectures we explore in this paper. Cache and register file access latencies
are extracted from Cacti [21] for a 70nm Technology at 5.6 GHz frequency.

Note that the difference in branch misprediction penalty is the extra latency
attributed to the larger branch predictor, register file and instruction cache in
the monolithic core.

Low-Overhead Core Swapping for Thermal Management 53

4.2 Power and Thermal Simulator

A complete analysis of the static and dynamic power consumption and resulting
temperature characteristics of different architectures is crucial to our study. Our
power /thermal simulator performs cycle-accurate analysis of investigated archi-
tectures based on the following recently developed power and thermal models.
We used process parameters for a 70nm process at 5.6GHz with 1V supply volt-
age, in order to have a better understanding of next generation submicron, low
supply voltage, aggressively clocked microprocessors.

We have incorporated Wattch [5] models for dynamic power analysis of the
microprocessor blocks. The experimental results we present are extracted with
the most aggressive conditional clocking strategy, where the dynamic power
scales linearly with access to the ports.

For submicron technologies, such as 70nm, leakage power constitutes a signif-
icant portion of the overall power. ITRS [1] predicts that leakage power is likely
to increase exponentially and make up 50% of the total power dissipation for the
next deep submicron processes. Hence, an accurate and reliable leakage power
analysis is a necessity. We adapted leakage models from Hotleakage [27] in our
power/thermal simulator. Hotleakage models are extended and improved ver-
sions of the well-known Butts and Sohi leakage equations [7]. The public version
of Hotleakage only provides a software implementation of the leakage models for
the data cache. We have extended and modified the tool significantly to accom-
modate other caches and cache-like structures in the microprocessor. We also
used leakage parameters from Hotleakage’s predetermined values specific to the
70nm process technology.

A detailed and accurate thermal analysis of the different architectures we
explore in this study is crucial. It has been shown by [14] that thermal metrics
based on power consumption or power density of individual blocks do not provide
accurate thermal estimation. We used Hotspot’s thermal resistance/capacitance
models and RC solvers for our analysis.

Dynamic and leakage power consumption for each microprocessor unit are
collected over a predetermined thermal sampling interval, as the temperatures
change over periods greater than every cycle. We experimented with various
sampling interval lengths, in order to explore the trade off between error rate
and computational overhead. Hotspot [14] proposes a 10K instruction sampling
interval for 180nm and 3.3GHz, our results showed similar error rates for 10K
sampling interval for 70nm and 5.6 GHz as well.

Our power/thermal simulator also incorporates the thermal runaway phe-
nomena enabled by Hotleakage and Hotspot models. Thermal runaway is caused
by the exponential dependency of leakage power on temperature: increased tem-
perature increases leakage power, increased leakage power causes even further
increase in temperature. The positive feedback loop between leakage power and
temperature is quite significant and can cause device failure.

Heo, Barr and Asanovic [11], argue that most heat is dissipated vertically on
the microprocessor chip, as the wafer thickness is much smaller than the chip
area. Therefore, they assume infinite lateral resistances, although it leads to the

54 E. Kursun et al.

worst case temperature gradients. We follow their example, and tune HotSpot
to only consider the vertical component of temperature. Lateral modeling, while
possible with HotSpot, is unrealistic without a more accurate floorplan of the
various architectures we consider.

Hotspot also requires a floorplan and the areas of the individual blocks of the
microprocessor. We used area values based on our analysis with Cacti [21], along
with a floorplan generated according to the minimum wirelength constraints.
(Area values for the blocks are not presented in this version because of the page
limitations.)

4.3 Dynamic Thermal Management Techniques

We assume that the critical thermal threshold is 82°C and the safety thermal
threshold is 79°C for the 70nm technology process we are investigating according
to the ITRS [1] projections and results from [14].

We have incorporated an idealized version of dynamic frequency scaling for
the experimental analysis. Our DF'S has two different frequency settings: 5.6GHz
for the normal operation and 4GHz for thermal relief, which gets activated as
soon as on-chip temperatures reach the 82°C critical thermal threshold. Usually
there is a large latency (on the order of usecs) incurred every time the frequency is
adjusted, which results in significant performance penalties in dynamic frequency
scaling schemes. Skadron et al. [14] report 10usec for the non-idealized version
of DFS. In our dynamic frequency scaling implementation there is no overhead,
delay or penalty involved with changing the frequency of the processor.

Global clock gating is commonly used in many of todays microprocessors,
such as the Pentium 4 as discussed in Section 2. We implemented a similar
global clock gating mechanism for thermal analysis. The global clock signal is
shut down, whenever on-chip temperatures exceed the critical thermal threshold
of 82°C. The processor resumes normal operation after the chip temperatures
cool down below the safety threshold of 79°C.

Our thermally-triggered core swapping mechanism gets activated as soon
as a core reaches 82°C. The runs with this architecture assume an extra core
(identical to the main core) that can be used to offload an application when one
core overheats. The computation is migrated to the cooler core until the active
core heats above the critical thermal threshold and another swap is required.
Thermally-triggered core swapping minimizes the swapping overhead relative to
approaches that swap at fixed intervals regardless of core temperature.

5 Experimental Results

In this section we evaluate the performance of the microcore architecture alone
and in the presence of different DTMs. In particular, we examine the ability
of the microcore to buffer state when core swapping, and compare this to a
conventional monolithic architecture.

Low-Overhead Core Swapping for Thermal Management 55

5.1 Thermal Characteristics of Microcore vs. Monolithic

Figure 4 compares the performance and thermal behavior of a conventional
monolithic core and the microcore architecture on some of the SPEC 2000 bench-
marks. The upper half of the figure shows performance in BIPS for different
benchmarks, and the lower half illustrates the heating behavior of the investi-
gated architectures. This latter component shows the percentage of cycles for
which at least one block exceeds the indicated temperatures: 75°C, 79°C, 82°C
and 85°C. Darker colors in the lower graphs indicate higher temperatures. The
rest of the figures in this section are similarly constructed.

For example, galgel sees comparable performance with either the microcore
or monolithic architecture, but the monolithic core sees a temperature greater
than 85°C almost 97% of the time. The microcore only exceeds 85°C around
18% of the time, and stays below 82°C around 42% of the time.

Note that for many benchmarks, and particularly in monolithic architec-
tures, temperature frequently exceeds the thermal threshold, 82°C. These re-
sults should be considered as an upper bound for performance that are not be
achievable without some form of thermal management. On-chip temperatures
for the microcore architecture are significantly lower than the monolithic core,
but it still retains good performance comparable to that of the monolithic core.
This can be attributed to the significantly smaller structures in the microcore
that are much more power efficient.

Our detailed thermal analysis considers all of the possible overheating blocks.
Although some of the hotspots were common among different benchmark, such
as the register file, load-store queue, etc, others varied across the different bench-

20 ‘ [] monolithic core Il microcore ‘

ammp art bzip2 galgel gap gzip mesa mgrid parser vortex vpr wupwise

100%
90% -
80% -
70% -
60%
50% -
40%
30% A
20%
10% A

0% w

Time at Temperature

O>750 o>790 m>820 m>85°

Fig. 4. Performance and thermal behavior of a microcore vs a monolithic core

56 E. Kursun et al.

marks and configurations. Even though the location of hotspots can provide a
level of insight, the thermal behavior of the architecture can also be captured by
the number of cycles that any of the blocks exceed a given thermal threshold.

The smaller structures of the microcore consume less power on each access
compared to larger blocks in the monolithic architecture. Moreover, the larger
helper engines are not accessed as frequently. Their inherent latency tolerance
provides opportunities for power optimization. The microcore architecture shows
performance comparable to the monolithic core, but with a 20% reduction in
power on average.

It is important to note that the ITRS projects a reduction in maximum per-
mitted junction temperatures for the future generations of process technologies.
The maximum tolerated junction temperatures are around 85°C for 130nm and
even lower for smaller process technologies.

The inherent thermal efficiency of the microcore also enhances the effective
temperature reduction when used with DTM techniques. Next, we evaluate the
performance and thermal behavior of DTM techniques, including core swapping,
on the monolithic core and microcore.

5.2 Dynamic Thermal Management on Monolithic Architecture

Figure 5 shows core swapping results compared to no DTM, global clock gat-
ing, and an idealized version of dynamic frequency scaling on the monolithic
architecture. The upper section of the graph displays performance in BIPS, the

20 | [noDTM™] GCG I DFS M Core Swap |
18 | -
16 -
14 4
0 12
2 10 4
o
8,
6,
=
2,
o U L

ammp art bzip2 galgel gap gzip mesa mgrid parser vortex vpr wupwise

Time at Temperature

o>75° o>79° m>82°

Fig. 5. DTMs on the monolithic architecture

Low-Overhead Core Swapping for Thermal Management 57

lower part is dedicated to the thermal behavior of the same benchmark and
DTMs, similar to the previous figure. Darker shades in the lower part of the
figure indicate higher temperatures as well.

Core swapping results are shown in black bars (at the top part of the Fig-
ure), idealized dynamic frequency scaling in dark gray and global clock gating are
in light gray. White bars demonstrate results without thermal management of
any kind, no-DTM. As mentioned earlier in Section 1, performance degradation
is commonly experienced with dynamic thermal management techniques. The
degradation usually comes from various sources such as frequency decrease, volt-
age reduction, clock gating. Performance degradation might be quite significant
depending on the DTM technique.

As aresult no-DTM has the best performance results in BIPS among all cases.
However, it is almost impossible to achieve comparable performance in reality
since it would require sustained operation at a temperature beyond the critical
thermal threshold, and a processor operating under such conditions would likely
have timing, data and reliability complications. Although global clock gating
seems to be more effective in reducing the temperature in most benchmarks
than DFS, it has a very significant performance penalty as a result of disabling
the global clock signal frequently.

Core swapping is extremely effective at thermal management, reducing the
temperature below 79°C at least 80% of the time for all benchmarks and well
above 95% of the time for many benchmarks. On the monolithic core, some
applications are able to tolerate the performance impact of core swapping, but
there is a pronounced degradation for many benchmarks, like bzip2 and mgrid.

For the monolithic case, temperatures were still above the threshold for many
applications with DFS, such as bzip2, gap and mgrid. This may indicate that our
DFS strategy requires an even lower frequency to provide thermal relief to these
applications, but at an even greater cost to performance. Despite a 70% drop in
performance mgrid is still above 85°C around 95% of the time with DFS. gap
operates in lower frequency mode almost 99% of the time in order to reduce the
temperature, yet it is still above the 85°C temperature threshold 97% of the time.

5.3 Dynamic Thermal Management on Microcore

Figure 6 shows the behavior of the microcore with DTM techniques. We observe
significantly improved thermal behavior compared to the monolithic architecture
(Figure 5), and see less performance degradation from core swapping.

It is important to note that state buffering provided by the shared helper
engines minimizes the core swapping overhead in the microcore architecture.
Core swapping is always able to outperform the other DTMs on a microcore
architecture, in most cases coming close to the performance of the architecture
without any DTM. It has an equally dramatic impact on temperature in the
microcore architecture. Temperatures are lower than 82°C with core swapping,
for all of the benchmarks. Even galgel, which spends over half its execution
time over 82°C is able to reduce its temperature below 79°C around 93% of the
time using core swapping, with only an 8% degradation in BIPS.

58 E. Kursun et al.

2 | [noDT™ [GCG [DFS W Core Swap

mll

ammp art bzip2 galgel gap gzip mesa mgrid parser vortex vpr wupwise

100%
90% A H] H I l
80% A H

Time at Temperature
[4))
S
X
.
I

o>75° o>79° m>82° W >85°

Fig.6. DTMs on the microcore architecture

Note that we have used an idealized DF'S implementation (see Section 4). This
behavior can cause a significant performance degradation if frequency switching
is used often. Notice that the idealized DFS is given competitive advantage
against a core swapping approach with a realistic performance penalty. Despite
this, core swapping is still able to outperform DFS.

6 Summary

In this paper, we investigated the thermal behavior of the microcore architecture,
and examined the use of core swapping as a legitimate alternative to conventional
DTMs.

We demonstrated that the microcore architecture enables lower on-chip tem-
peratures compared with a conventional monolithic architecture. Factoring large,
power-hungry units out of the core limits the number of accesses to such blocks
and prevents them from heating as much. Our experiments show that the mi-
crocore reduces number of cycles over the critical thermal threshold by 86% on
average, even without any thermal management use.

Furthermore, we have proposed a thermally-triggered core swapping mecha-
nism as a dynamic thermal management technique. Microcores enable efficient
core swapping by buffering processor state in shared helper engines that reduce
startup costs when switching to a new core. Our experimental results indicate
that a microcore is able to attain comparable IPC to a monolithic core, but with
94% fewer cycles above the critical thermal threshold.

Low-Overhead Core Swapping for Thermal Management 59

The core swapping mechanism shows promising thermal reduction ability.
It does not suffer any cycles in thermal violation for any of the benchmarks
we examined. It also has favorable performance (as measured in BIPS) when
compared to other DTM techniques such as GCG and the idealized DFS.

Future microprocessor generations have great thermal challenges awaiting
them. Thermally efficient architectures and dynamic thermal management tech-
niques are both critical to overcoming these challenges. Architectures like the
microcore can help to achieve this without sacrificing performance.

References

1. In International Technology Roadmap for Semiconductors, 2003.

2. A. Ajami, K. Banerjee, M. Pedram, and L. van Ginneken. Analysis of non-uniform
temperature-dependent interconnect performance in high performance ics. In 41st
Design Automation Conference, pages 567-572, June 2001.

3. R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the complexity
of the register file in dynamic superscalar processors. In Proceedings of the 34th
Annual International Symposium on Microarchitecture, December 2001.

4. D. Brooks and M. Martonosi. Adaptive thermal management for high-performance
microprocessors. In Workshop on Complexity Effective Design, June 2000.

5. D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-
level power analysis and optimization. In 27th Annual International Symposium
on Computer Architecture, pages 83-94, June 2000.

6. D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0. Technical
Report CS-TR-97-1342, U. of Wisconsin, Madison, June 1997.

7. J.A. Butts and G.S. Sohi. A static power model for architects. In 27th Annual
International Symposium on Computer Architecture, pages 191-201, June 2000.

8. D.Brooks and M.Martonosi. Dynamic thermal management for high-performance
microprocessors. In International Symposium on High-Performance Computer Ar-
chitecture (HPCA-7), pages 171-182, January 2001.

9. M. Franklin and G. S. Sohi. Arb: A hardware mechanism for dynamic reordering
of memory references. IEEE Transactions on Computers, 46(5), May 1996.

10. S. Gunther, F. Binns, D. Carmean, and J. Hall. Managing the impact of increasing
microprocessor power consumption. In Intel Technology Journal Q1, 2001.

11. S. Heo, K. Barr, and K. Asanovic. Reducing power density through activity migra-
tion. In International Symposium on Low Power Electronics and Design, August
2003.

12. G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel.
The microarchitecture of the pentium 4 processor. Intel Technology Journal Q1,
2001.

13. N. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully associative cache and prefetch buffers. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, May 1990.

14. K.Skadron, M.Stan, W. Huang, S.Velusamy, K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In 30th Annual International Symposium
on Computer Architecture, pages 2—13, June 2003.

15. C-H. Lim, W. Daasch, and G.Cai. A thermal-aware superscalar microprocessor.
In International Symposium on Quality Electronic Design, pages 517-522, March
2002.

60

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

E. Kursun et al.

L.T.Yeh and R.Chu. Thermal management of microelectronic equipment. In Amer-
ican Society of Mechanical Engineers - ISBN:0791801683, 2001.

G. Reinman, T. Austin, and B. Calder. A scalable front-end architecture for fast
instruction delivery. In 26th Annual International Symposium on Computer Ar-
chitecture, May 1999.

A. Shayesteh, E. Kursun, S. Sair, T. Sherwood, and G. Reinman. An evaluation
of deeply decoupled cores. In University of California Los Angeles Tech Report
CS-2004-09, 2004.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically charac-
terizing large scale program behavior. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating
Systems, October 2002.

T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers. In 33rd
International Symposium on Microarchitecture, December 2000.

P. Shivakumar and Norman P. Jouppi. Cacti 3.0: An integrated cache timing,
power, and area model. In Technical Report, 2001.

J. E. Smith. Instruction-level distributed processing. IEEE Computer, 34(4):59-65,
April 2001.

R. Viswanath, V. Wakharkar, A. Wathe, and V.Lebonheur. Thermal performance
challenges from silicon to systems. In Intel Technology Journal)3, 2000.

K. Wang and M. Franklin. Highly accurate data value prediction using hybrid
predictors. In 80th Annual International Symposium on Microarchitecture, pages
281-290, December 1997.

W.Huang, J.Renau, S-M.Yoo, and J. Torrellas. A framework for dynamic energy
effiency and temperature management. In 33rd International Symposium on Mi-
croarchitecture, pages 202-213, December 2000.

T. Yeh and Y. Patt. A comprehensive instruction fetch mechanism for a processor
supporting speculative execution. In Proceedings of the 25th Annual International
Symposium on Microarchitecture, pages 129-139, December 1992.

Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotleakage:
A temperature-aware model of subthreshold and gate leakage for architects. In
University of Virginia Dept of Computer Science Tech Report CS-2003-05, March
2003.

	Introduction and Motivation
	Related Work
	Factored Architectures
	Core Swapping

	Methodology
	Architectural Model
	Power and Thermal Simulator
	Dynamic Thermal Management Techniques

	Experimental Results
	Thermal Characteristics of Microcore vs. Monolithic
	Dynamic Thermal Management on Monolithic Architecture
	Dynamic Thermal Management on Microcore

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

