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Abstract- Coda is a file system for a large-scale distributed
computing environment composed of Unix workstations. It pro-
videsresiliency to server and network failures through the use of
two distinct but complementary mechanisms. One mechanism,
server replication,stores copies of a file at multiple servers. The
other mechanism, disconnected operation, is a mode of execu-
tion in which a caching site temporarily assumes the role of
a replication site. Disconnected operation is particularly use-
ful for supporting portable workstations. The design of Coda
optimizes for availability and performance, and strives to pro-
vide the highest degree of consistency attainable in the light
of these objectives. Measurements from a prototype show that
the performance cost of providing high availability in Coda is
reasonable.

Index Terms- Andrew, availability, caching, disconnected op-

eration, distributed file system, performance, portable comput-
ers, scalability, server replication.

. INTRODUCTION

seriously inconvenience many users for time periods ranging
from a few minutes to many hours. At least a few such outages
occur somewhere in our system every day.

The Coda File Systenis a descendant of AFS that is sub-
stantially more resilient to failures. The ideal that Coda strives
for is constant data availabilityallowing a user to continue
working regardless of failures elsewhere in the system. Our
goal is to provide users with the benefits of a shared data
repository, but to allow them to rely entirely on local resources
when that repository is partially or totally inaccessible.

A related goal of Coda is to gracefully integrate the use
of AFS with portable computers. At present, users manually
copy relevant files from AFS, use the machine while isolated
from the network, and manually copy updated files back to
AFS upon reconnection. These users are effectively perform-
ing manual caching of files with write-back on reconnection.
If one views the disconnection from AFS aglaliberately-
induced failure, it is clear that a mechanism for supporting

LOCATION-transparent distributed file system based dpPrtable machines in isolation is also a mecharfismfault

he Unix’ file system model is a valuable mechanism folerance.

collaboration between physically dispersed users. This is parAlthough this paper focuses on Coda, the problem of data
ticularly true in a distributed workstation environment wher@vailability is not specific to it. Growth in scale and complexity
the primary activities are education, research, and softwigVitably results in more components that can fail, and more
development. TheAndrew File System (AFS) is a highly hardware and software interactiofisat can manifest them-
successful realization of such a mechanism for a campus-sigétyes as failures. Consequently, the large-scale distributed
user community9],[15]. Positive experience with AFS hasfile systems o_f the future will have to pro_wde c_ontlnued ac-
motivated the recent work on extending it nationw{d7]. cess.to Qata in the face of temporary failures if they are to
The importance of a shared Unix file system for a distributégmain viable. _ _ _
workstation environment is further confirmed by many other IN the rest of this paper, we describe the design and imple-
efforts in industry and acaden{16]. mentation of Coda. We motivate our design choices in Section

The work described in this paper arose from our extensille Present the design in Sections III-V, and elaborate on the
experience as implementors and users of AFS over the d@f data structures and protocols in Section We de_scrlbe _
five years. On the one hand, we were pleased with the fuff¢ Status and performance of a Coda prototype in Sections
tionality, performance, and ease of administration of AFY/!l and VIIl. We conclude with an examination of related
At the same time we were concerned with its vulnerability {§S€arch in Section IX and a summary of the paper in Section

failures of servers and network components. Such failures ¢an
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. our desire to produce a highly scalable system
. the range of failures we wished to address
the need to emulate Unix file semantics.
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In the course of our design, we discovered that the constraints
imposed by these factors often conflicted with each other. The
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current design of Coda is therefore a compromise that, in ous Clients dynamically map files to servers and cache thi
judgment, best suits our usage environment. information.
o It uses token-based authentication and end-to-end enc
tion integrated with its communication mechani13].

A. Scalability

A scalabledistributed system is one that can easily cop@‘ Range of Failures
with the addition of users and sites. Growth has economic,To achieve our goal of continued client operation in the fac
performance, and administrative consequences. Our goal whfailures, we had two strategies available to us. The first we
to build a system whose growth would incur as little expende, use replication across servers to render the shared stor:
performance degradatiorgnd administrative complexity asrepository more reliable. The second wdsliberatelyo make e:
possible. Since this goal was also the major focus of Coda&pable of fully autonomous operation if the repository failed
ancestor,AFS, we tried to preserve much of its design. Each of these strategies improves availability, but neither

In AFS, a small set of trusted servers jointly provide a stoadequate alone.
age repository shared by a much larger number of untrusteEnhancing the availability of the shared storage repositor
clients. To maximize client-server ratio, most load is borne lrycreases the availability of all shared data. It protects agair
clients. Only functions essential to integrity or security are ipdividual server failures and some network failures. Unfor
formed by serversCachingis the key to scalability in AFS. tunately, it does not help if all servers fail, or if all of them
The operating system on each client intercepts open and chse inaccessible due to a total partition of the client. A spe
file systemcall? and forwards them to a cache-managemegial case of the latter is the use of a portable computer wh
process calledvenus. After a file is opened, read and writedetached from the network.
operations on it bypass Venus. Venus contacts a server onlilaking each client fully autonomous is infeasible. The disl
on a cache miss on open, or on a close after modification.starage capacity of a client is a small fraction of the tote
both cases, the file is transferred in its entirety. Cache cotsitared data. This strategy is also inconsistent with our moc
ence is maintained byaallbackmechanism, whereby servers of treating each client's disk merely as a cache. It represer
notify workstations of changes to cached files. Clients dyna@-return to the model of isolated personal computers rath
ically determine the location of tiles on servers and cache ttlign a collection of workstations sharing a file system. Th
information. advantages of mobility, and the ability of any user to use ar

The highly dynamic nature of AFS enhances its scalabitorkstation as his own, are lost. Yet temporary autonom
ity. There are very few static bindings that require atomigsgems acceptable for brief periods of time, on the order
systemwide update$or Al-5 to function correctly. A work- minutes or hours, while a user is active at a client.
station with a small disk can potentially access any file in AFSn the light of these considerations we decided to use
by name. One can move to any other workstation and effafgmbination of the two strategies to cover a broad range
lessly access one’s files frothere. Adding a new workstation failures. Coda usesrver replicationpr the storing of copies
merely involves connecting it to the network and assignirg tiles at multiple servers, to provide a shared storage repc
it an address, Workstations can be turned off or physicallgry of higher availability than AFS. A client relies on servel
relocated at any time without fear of inconveniencing othgdplication as long as it remains in contact with at least or
users. Only a small operational staff is required to monitgérver. When no server can be contacted, the client resc
and service the relatively few AFS servers. Backup is needgdisconnected operatiom, mode of execution in which the
only on the servers, since workstation disks are merely usgiént relies solely on cached data. We regard involuntary di
as caches. Files can be easily moved between servers duféithected operation as a measure of last resort and reveri

normal operation without inconveniencing users. _ normal operation at the earliest opportunity. A portable clier
Coda retains many of the features of AFS that contribuygyt is isolated from the network is effectively operating dis
to its scalability and security: connected,

Our need to handle network failures meant that we he

- It uses the model of a few trusted servers and many Yg-aqdress the difficult issue of consistency guarantees acre
trusted clients. _ _ partitions. In the terminology of Davids@tal. [3], we had to

. Clients cgche entire files on their local disks. From th&ige whether to usepessimistiaeplication strategy, pro-
perspective of Codayhole-flle transfer also offers a de- \iging strict consistency, or avptimisticstrategy, providing
gree of intrinsic resiliency. Once a tile is cached and opgfyner availability. The former class of strategies avoids uf
at a client, it is immune to server and network failuregjate conflicts by restricting modifications to at most one pal
Cachlng on local disks is also consistent with our goal gfion. The latter allows updates in every partition, but detec
supporting portable machines. and resolves conflicting updates after they occur.

« Cache coherence is maintained by the use of callbacksye chose to use an optimistic strategy for three reasor
But, as described later in the paper, the maintenancergt; and most important, such an approach provides higt
callbacks is moreomplex in Coda than in AFS. availability. Second, we saw no clean way of supportin

- ' ) o portable workstations using a pessimistic strategy. Third,

Directories are alsocached on clients, but modifications to them argg widely believed that write sharing between users is re

immediatdy propagatedt o servers.For ease of exposition we confine our ™ | : . . . .
discussion tdilesin this section. atively infrequent in academic Unix environmentsonse-
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quently, conflicting updates are likely to be rare. We guarclose successipdated(F, S)
antee detection and confinement of these conflicts, and trydese failure failure(S)
do this as soon after their occurrence as possible.

The specific replication strategy we chose is an adap
tion of that originally proposed by Locyd9]. Coda ver-
sion vector§CVV’s), similar in concept but distinct in de-

2) AFS-2 SemanticsThe second lesson we learned was
tAat the slightly weaker currency guarantees provided by the
callback mechanism of the revised AFS design (AFS-2) were

) . ) 110 acceptable. A callback is established as a side effect of file
tail cl;rom dver5|on_tvecto_[s des;:l_rlbed by_ F:j‘fir_?'al' [ﬂ ],a(;\e/ fetch or cache validation. It is a guarantee by a server that
used to detecwrite-write contlicts on individual files. We iy notify the client on the first modification of the file

did not choose the more powerful optimistic strategy Proy, any other client. If this notification happens, the server is

posed by Davidso(2], even though it is capable of deteCtingsaid to havebrokenthe callback3 Once broken, the callback
read-writeconflicts across multiple files. We were concerneﬂas to be reestablished by the client. But, as a result of a
with the complexity of the latter strategy and questioned S\ ork failure, a servers attempt to break a callback may
value in a Unix environment where multifile transactionargOt be noticed by a client. We refer to such an eventlasta
guarantees are absent. We also felt that inconsistencies fhack Because of a Ios.t callback, a client may continue to
to conflicting updates should be brought to the attention &Ie a cached copy of a file for upraeconds after the file

users rather than being rolled back by_ the.:.system. was updated elsewhern.is a parameter of the system, and
To summarize, Coda enhances availability both by the rgp&;

. £ fil I by the ability of cl /pically on the order of a few minutes.
cation of files across servers, as well as by the ability of clieRfg, oo characterize the currency guarantees of AFS with

to operate entirely_ o_ut_ of their caches. Bot.h mechanisms gﬁﬂbacks by extending our notatiolatest(F,S, t) now de-

pe nd upon an optimistic strategy for dgt'ecnon of update Cqflsieg the fact that the current valueFolt C is the same as
flicts |n_the presence of network partitions. AIthough_ thesfat at S at some instant in the Insseconds. In particular,
mechanisms are complementary, they can _be ”Seq 'nd‘?qgﬂést(F,S,O) meansF is currently identical at C and S. If
dently of each other. For example, a Coda installation mlgm indicate the loss of a callback from S to C during the
choose to exploit the benefits of disconnected operation wifllz; s saconds byostcalllmck(St), and the presence &F in

out incurring the CPU and disk storage overhead of seryef .,che prior to the current operation ingache(F), the

replication. resulting currency guarantees can be stated thus:

open successlatest(F, S, 0) v

Our ideal is to make Coda appear to be a giant, failure-proof (;\ajgii(cs;lga’c;c)(s ) A incache(F))
shared Unix file system. Unfortunately_, realizing .this idegl|I others as for AFS-1 ’
requires strict adherence ane-copy Unix semanticThis . . .
implies that every modification to every byte of a file has to 3) Coda SemantlcsInACoda, the ;mgle server _S IS re-
be immediately and permanently visible to every client. Suiced by a set of serveS. C maintains the subsétof S
a requirement is obviously in conflict with our goals of scaIH]f"‘t it was able to contact on the most recent remote oper-

bility and availability. We have therefore relaxed the accuraﬁﬂon' § Is reevaluated at least once evenseconds. When

with which we emulate Unix semantics, and have settled for> empty, C is operating disconnected. The |n.tumve cur
L . . rency guarantee offered by saccessfl Coda open is that it
an approximation that can be implemented in a scalable an

. i€lds the most recent copy &f among the set of currentl
available manner. We have drawn upon two lessons KBS y . Py . g . y
to develop this approximation, and believe that it will satis ccessible servers. If no server is accessible, the cached copy

the vast majority of users and applications in our environ érﬁ is used. A successful close indicates that the file has

1) AFS-1 SemanticsThe first lesson was that propagat: een propagate_d to the set of curreqtly accessible servers, or
. . . that no server is available and the file has been marked for
ing changes at the granularity of file opens and closes was ) . .
. ST . . ropagation at the earliest opportunity.
adequate for virtually all applications in our environment. The L L
The use of callbacks and an optimistic replication scheme

initial prototype of AFS (AFS-1) revalidated cached files on L .
eakens these intuitive currency guarantees. A more precise

each open, and propagated modified files when they were .
N - statement of the guarantees can be made by further extension
closed. A successful open implied that the resulting copy

the file was the latest in the system. of our notation.latest(F,s, ) now denotes the fact that the

. urrent value of at C was the latest across all servers at
We can precisely state the currency guarantees offered . .
. . . . some instant in the lafitseconds. It also denotes the fact that
this model by considering a client C operating on a Fle

whose custodian is server S. Latest(F,S) denote the fact there were no conflicts among the copies§ dt that instant.

that the current value df at C is the same as that at S. Leltostcallback(&t) now means that a callback from some mem-

failure(S)denote failure of the current operation by CS,n ber offtliflotcthwas Iosttm tlrl]i% I?sr(t:seconds.upda;elclj(F,s)
and updated(FS) denote a successful propagation of cgreans that the current valea was successiully prop-

copy of F to S. Then the currency guarantees provided ated to aII_ members . (_:onﬂlct_(F,s) means that t_he
. alues ofF at§ are currently in conflict. Using this notation,
open and close operations at C can be expressed as follows:
Unfortunatelthe terminology is alittle confusing. As usedin the AFS
open Su_cceSSIat,eSt(F’ S) literature,“callback” is a nourratherthan a verb, and is an abbreviation for
open failure failure(S) “callback promise.”

C. Unix Emulation
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the currency guarantees offered by Coda operationdearits members have stale replicas. As a side effect, a callback
expressed as follows: is established with the preferred server.
When a file is closed after modification it is transferred
open success (5§ # 0 A (latest(F, 5,0) v (latest(F,5, ) in parallel to all members of the AVSG. This approach is
A losteallback(3, 7) A incache(F))))  simple to implement and maximizes the probability that every

V (§ = 0 Aincache(F)) replication site has current data at all times. Server CPU load
open failure (5§ # 0 A conflict(F , 5)) is minimized because the burden of data propagation is on the
v (§= 0 A ~incache(F)) client rather than the server. This in turn improves scalability,
close success (5 # 0 A updated(F, §)) since the server CPU is the bottleneck in many distributed file
v(§=0). systems.
close failure (5 # 0 A conflict(F, 3)) Since our replication scheme is optimistic, we have to check

for conflicts on each server operation. We also require that
Although we believe thahe currency guarantees of Codaerver modifications be made in a manner that will enable
are adequate for a typical academic or research environmdnture conflicts to be detected. These issues are further dis-
they may be too weak for some applications. Databasescassed in Section VI, which describes the data structures and
a class of applications that we specifically do not attemptpootocols used in server replication.
support in Coda. Our view is that a database for a large-scal&t present, a server performs no explicit remote actions
distributed environment should be implemented as a sepatgien recovery from a crash. Rather, it depends upon clients to
system rather than being built on top of a distributed fitetify it of stale or conflicting data. Although this lazy strategy
system. does not violate our currency guarantees, it does increase the

chances of a future conflict. A better approach, which we plan

[ll. SERVER REPLICATION to adopt in the future, is for a recovering server to contact

The unit of replication in Coda isvelume a set of files Other servers to bring itself up to date.

and directories located on one server and forming a pagi
subtreeof the shared namspace# Each file and directory in B%ache Coherence . . _
Coda has a unique low-leviéle identifier (FID), a compo- The Coda currency guarantees stated in Section 1I-C require

nent of which identifies tbe parent volume. All replicas of dfiat a client recognize three kinds of events no later than
object have the same FID. seconds after their occurrence:

The set of servers with replicas of a volume constitute its enjargement of an AVSG (implying accessibility of a pre-
volume stomge groufVSG). The degree of replication and viously inaccessible server)

the identity of the replication sites are specified when a volume | sprinking of an AVSG (implying inaccessibility of a pre-

is created and are stored in@ume replicationdatabuse viously accessible server)

that is present at every server. Althc_)mmseparameters can g |ost callback event.

be changed later, we do not anticipate such changes to be _

frequent. For every volume from which it has cached day£nus detects enlargement of an AVSG by trying to con-
Venus (the client cache manager) keeps track of the subsé@@f missing members of the VSG once eresgconds. If

the VSG that is currently accessible. This subset is called @eAVSG enlarges, cached objects from the volume may no
accessible volume stomge groyA\VSG). Different clients longer be the latest copy in the new AVSG. Hence, the client
may have differenkVSG's for the same volume at a giverflrops callbacks on these objects. The next reference to any of
instant. In the notation of SectitkC3, the VSG and AVSG these objects will cause the enlarged AVSG to be contacted

correspond t& ands, respectively. and a newer copy to be fetched (if one exis'gs).'

Venus detects shrinking of an AVSG by probing its members
once every seconds. Shrinking is detected earlier if a normal
h lcati . . ¢ thad operation on the AVSG fails. If the shrinking is caused by

. erﬁp ication ﬁtr&}ﬁgy WE USE IS avarlﬁnt ot 'OIF‘e't loss of the preferred server, Venus drops its callbacks from
;N_” e-g tap}proac ; enbserv:cc_lpg:\/csaé: ealmlss, ?C IeCr; %0-otherwise, they remain valid. It is important to note that
ains data from one member of ItS calfegpreferred /o5 only probes those servers from which it has cached
server The preferred server can be chosen at random or Q- . it qoes not protmherservers, nor does it ever probe

the baslls %f performan(C::eP(EJrlterla suc,:AI”:tﬁs phﬁ/ Sd'c"t"l prox![mgyner clients. This fact, combined with the relative infrequency
Server load, or server power. ough data are tragss opeq ; being ten minutes in our current implementation),

ferred only from one server, the other servers are contacte o
; : ' : res that probes are not an obstacle to the scalability of the
the client to verify that the preferred server does indeed h P y
the latest copy of the data. If this is not the case, the mem Ay ' :
. . ' , enus were to place callbacks ait members of its
of the AVSG with the latest copy is made the preferred siley 5 the probe to detect AVSG shrinking would also de-
the data areefetchedand the AVSG is notified that some O{ect lost callback events. Since maintaining callback state at

, _ all servers is expensive, Venus only maintains a callback at
‘Codaalsosupports nonreplicated/ohtmesand volumes with read-only

replicas, a feature inherited from AFS. We restrict our discussion hereqae preferred server. The pro_be to the preferred server de-
volumes with read-write replicas. tects lost callback events from it.

A. Strategy
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But maintaining callbacks only at one server introduces aCoda therefore allows a user to specify a prioritized list
new problem. The preferred server for one client need dfiles and directories that Venus should strive to retain in
necessarily be in th&VSG of another client.” Hence, anthe cache. Objects of the highest priority level stiekyand
update of an object by the second client may not causewst be retained at all times. As long as the local disk is large
callback for the object at the first client to be broken. enough to accommodate all sticky files and directories, the

To detect updates missed by its preferred server, each praae is assured that he can always access them. Since it is often
by Venus requests the volunersion vector (volum€VV) difficult to know exactly what file references are generated
for every volume from which it has cached data. A volurbg a certain set of high-level user actions, Coda provides the
CVV is similar to a file or directory CVV, but summarizeability for a user to bracket a sequence of high-level actions
update information on the entire volume. It is updated amd for Venus to note tHie references generated during
side-effect of every operation that modifies the volume.these actions.
mismatch in the voluméVV'’s indicates that some AVSG
members missed an update. Although the missed update BaReintegration
not have been to an object in the cache, Venus conservatively, .+ qisconnected operation ends, a processirte-

drops it callbacks on all objects from the volume. gration begins. For each cachéitt or directory that has
C. Parallel Communication been created, deleted, or modified during disconnected op-
eration, Venus executes a sequence of update operations tc

Because of server replication, each remote operatlorHle AVSG replicas identical to the cached copy. Reintegra-

Coda typically Feq“"es multiple sites to be contac_ted. h th‘?on proceeds top-down, from the root of each cached volume
were done serially, latency would be degraded mtolerab[ its leaves '

Venus therefore communicates with replication sites in para "Update operations during reintegration may fail for one

lel, using theMultiRPCparallel remote procedure call mech- . y <
anism{ 14]. The original version of MUItiRPC provided logical of two reasons. First, there may be no authentication tokens

parallelism but did not use multicast capability at the me hich Venus can use to securely communicate with AVSG
level. Since we were particularly concerned about the laten gtzgi}gsA%eggnfe’ F')ﬂgggs'éti?/ Z%GSUTQIO%Z?EO)F;?S etjlrger;cihueﬂ_
and network load caused by shipping large tiles to muli an clients being dependable storage repositories, we felt that

sites, we have extended MultiRPC to use hardware multlcar%e proper approach to handling these situations was to find

algr\llggl \;fvnirpeurlr?gsft:r? daggggrpggﬁlosnt;gg%Iti?a?o?ufsugdg'temporary home on servers for the data in question and to
q ' y rely on a user to resolve the problem later.

multicastMultiRPC. . . ;
The temporary repository is realized aad umefor ev-
IV. DISCONNECTED OPERATION ery replica of every volume in Coda. Covolumes are similar
: . . . in spirit tolost 4 found directories in Unix. Having eovol-
Dlsconnected operation begms ata client when no membgy o per replica allows us to reintegrate as soon as any VSG
of a VSG is accessible. Clients view it as a temporary state al pecomes available. The storage overhead of this approach

revert to normal operation at the e_arliest opportunity. A C”e@tusually small, since a covolume is almost always empty.
may be operating disconnected with respect to some volumes,

but not others. Disconnected operation is transparent to a s%r | Di .
unless a cache miss occurs. Return to normal operation is Sts$©luntary Disconnection

transparent, unless a conflict is detected. Disconnected operation can also oceoluntarily, when
a client is deliberately disconnected from the network. This
A. Cache Misses might happen, for instance, when a user takes a portable ma-

Ii,ne with him on his travels. With a large disk cache the

In normal operation, a cache miss is transparent to the uggér can operate isolated from Coda servers for an extended

and only imposes a performance penalty. But in dlsconnectHﬁriod of time. The file name space he sees is unchanged,

operation a miss impedes computation until normal operang t he has to be careful to restrict his references to cached

is resumed or until the user aborts the corresponding file svs- ) ) ; . .

tem call. Consequently it is important to avoid cache miss::'%"s and directories. From time to time, _he may reconnect his

during disconnected operation. client to the network, thereby propagating his modifications
During brief failures, the normal LRU caching policy dP Coda servers.

Venus may be adequate to avoid cache misses to a disconnect(?griy P;}O\f'dwg éhe akr)]'::ty E{O Qwovers?_awleésg/ bﬁ\twe(ta)n Z%Te?
volume. This is most likely to be true if a user is editing. ormal a ISconnected operation, L.0da may beé able to

or programming and has been engaged in this activity lo jpplity the use of cordless _netwo'rk technologies suph as qel—
r telephone, packet radio, or infrared communication in

enough to till his cache with relevant tiles. But it is unlikel . . ;
that a client could operate disconnected for an extended pe ﬁs&rlbuteoﬁle systems. Although such technologies provide

of time without generating references to files that are not § ent mob|I|ty, they often have Intrinsic "”?'t"?‘“ons SUCh as
the cache short range, inability to operate inside buildings with steel

frames, or line-of-sight constraints. These shortcomings are

S This can happen, for example, due to nontransitivitpehfork commu- reduced in significance if clients are capable of autonomous
nication. operation.
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V. ConFLIcT RESOLUTION Thelateststoreid (LSID) in the update history of a replica

an be used to characterize its state relative to another replica.

When a conflict is detected, Coda first attempts to resolve(lz_l o replicasA andB. are said to bequalif their LSID's are
automatically. Since Unix files are untyped byte streams therg? el ' : quall ! S

is, in general, no information to automate their resolution. dg_enncal. Equality represents a situation where the most recent

rectories, on the other hand, are objects whose semanticsugpeate to both replicas was the sameB's LSID is distinct
' ' J from A’s LSID but is present ifA’s history, the replica af\

completely known. Consequently, their resolution can some- . . . 7! .
pletely g y said todominate theeplica atB. This situation may also

. T o
times be automated. If automated resolution is not possi Fé, . g L SR
Coda marks all accessible replicas of the object inconsist%] described by sayiBgs submissiveo A. In this situation,

. . - - oth sites have received a common update at some point in
This ensures damage containment since normal operations, on T ) .

. o . the past, but the submissive site has received no updates there-
these replicas will fail. A user will have to manually resolve . . : . . )
the problem using a repair tool after. The replicas are said to mconsistentif neither A’s

' LSID nor B’s LSID is present in the other's update history.
A. Automated Resolution Inconsistency represents a situation whapdateswere made
toq a replica by a client that was ignorant of updates made to
nother replica.

hn the case ofiles a submissive replica directly corre-

The semantics of a. Coda directory is that it is a list
(name, FID) pairs with two modification operations, creaté
and delete, that can act on the list. Status modifications, suc o .

onds to our intuitive notion of stale data. Hence, Coda al-

as protection changes, can also be made on the directory. . . . .

. . R ways provides access to the dominant replica of a file among a
resolution procedure for Coda directories is similar to that soet of accessible renlicas. Anconsistency amond file repli-
Locus|[6],[19]. There are three classes of conflicts invoIvin(S:rI P ' y 9 P

. . . as arises from genuine update conflicts. In such a situation,
directories that are not amenable to automated resolution. o%la immediately marks all accessible replicas in a manner
class,update/updateconflict, is exemplified by protection y . P

o L . ; that causes normal operations on them to fail.
modifications to partitioned replicas of a directory. The secon T . . .
he situation is more complex in the case of directories,

class,removelupdateconflict, involves updating an object : .
) . o . because the update history of a directory does not capture ac-
in one partition and removing it in another. The third class,

name/nameeonfiict, arises when new objects with identic tIIVIty in its children. Consequently, update histories can only

. . . . akﬁ used conservatively in characterizing the states of direc-
names are created in partitioned replicas of a directory.

other directory conflicts can be automatically resolved byFoary replicas. Replicas whose update histories are equal are

. ) indeed identical, but replicas with unequal update histories are
compensating sequence of create or delete operations. . : .
potentially in conflict.

B. Repair Tool
The Coda repair tool allows users to manually resolve cd®- State Representation

flicts. It uses a spec_ial_ inte_rface to Venus so tha_t file request%ince it would be impractical to maintain the entire update
from the tool are distinguishable from normal file requeStﬁistory of a replica, Coda maintains an approximation to it.

This enables the tool to overwrite inconsistent files and to P§he approximation consists of the current length of the update

form directory operations on inconsistent directories, subj %tory and its LSID. The LSID is composed of an identifier
to normal access restrictions. To assist the user, each re

Wﬁue to each client, concatenated with a monotonically in-

of an inconsistent object is made available in read-only fo”&easingintegerﬁ A replication site also maintains an estimate

Since thes.e read'-onl'y copies are no.t themselves inconsistgptme length of the update history of every other replica. A

nor_malt;Jnlx applications such as editors may be used to Yctor containing these length estimates constitutes the CVV at

amine them. this site. An estimate is always conservative. In other words,
VI. REPLICA MANAGEMENT a site may fail to notice an update made to a replica, but it

y never erroneously assume that the replica was updated.

: . wi
We now examine replica management at the next level Olsite’s estimate of updates to itself will be accurate as long

detail, focusing on the data structures and protocols used., i . . .
o T .~ It has the ability to make local modifications in a manner that
server replication. We begin with an abstract characterization .
IS atomic and permanent.

of replica states in Section VI-A, and then describe an ap- ~oda compares the states of replicas using th8ID’s

_rl)_qumatlon.rtT:ta.\t can be eff|C|et.ntIy reatILzetd'tln Section \{I'Band CVV’'s. When two replicasA and B, are compared the
IS approxination IS conservative, In that It may occasiony, .ome s constrained to be one of four possibilities:

ally indicate a conflict where none exists but will never fail to : i :
. . . . . strong equalitywhereLSIDp is identical toLSIDg, and
detect a genuine conflict. Finally, we describe the protocc& g ed y A B

. . . . %/VA is identical toCVVR.
that modify replicas in Section VI-C. . weak equality, where LSIDp is identical toLSIDg, but

A. State Characterization CVVpa andCVVR are not identical.
Each modification on a server can be conceptually taggfglgommjncelsuﬁm'ss'?rcgcsre ITS“:)A 'f dltf“r:erent from |
with a uniquestoreid by the client performing the operation. B, and every elemen A IS greater than or equa

If a server were to maintain a chronological sequence of ttﬁethe corresponding element 6VVp (or vice versa).

storeidsof an (.)bject it would possess the entiedate his- -, implementation thesentitiesare thelP address of a workstation
tory of the object at that server. and a logical timestamp.
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\inconsistency where LSIDp is different fromLSIDg, CVV that is identical to the client’s except for one additional
and some elements @VVp are greater than, but other eleupdate at this server.
ments are less than, the corresponding elemen@vufs. The client examines the replies from the first phase and

Strong equality corresponds to a situation where a cliefistributes a final CVV. The latter is identical to the CVV of
successfully updates A ari8l, and each replica is certain ofthe first phase except that it indicates one additional update
the other’'s update. Weak equality arises when the update satceach responding server. Servers that receive this informa-
ceeds at both sites, but this fact is not known to both replicéien replace their tentativ&€VV’'s by the finalCVV. At an
Together, strong and weak equality correspond to the moficAVSG site that crashed or was partitioned between the first
replica equality defined in terms of update histories in Sectiand second phases, the tentative CVV remains unchanged.
VI-A. The pairwise comparisons defined here can be easily Since update is frequent, it is important to optimize its per-

generalized to set comparisons. formance. The total number of messages and latency are re-
) duced by communicating with AVSG members in parallel.
C. State Transformation Latency is further reduced by having Venus return control to
There are four classes of operations in Coda that can chatfg@ user at the end of the first phase. Server throughput is in-
the state of a server replica: creased by the use of batching and piggybacking in the second
. update extends the update history by a new, hithertghase.
unused,storeid 2) Force: A force operation is a server-to-server interac-
.forcelogically replays those updates made to a dominafien, with a client playing no part except to set in motion a
site that are missing from a submissive one sequence of events that leads to the force. For example, a
. repair resembles update, but is used to return a set fofce operation may occur as a result of Venus notifying its
replicas previously marked inconsistent to normal use. AVSG that it has detected an inequality during a file fetch. It

. migrate saves copies of objects involved in unsuccessiay also occur when the system determines that a directory
ful updates resulting from disconnected operation for futug@nflict can be resolved by a sequence of forces. Force oper-
repair. ations may also arise on server crash recovery, when a server

We describe the details of these classes of operations in li@gs itself up to date.
following sections. When we refer to file or directory status A force of a file merely consists of atomically copying its
in these sections, we include the CVV &ar@lD. data and status from the dominant to the submissive site. But

1) Update: Update is, by far, the most frequent class & force of a directory is more complex. The ideal operation
mutating operation. Every common client-server interactionould be one that rendered thgbtreesrooted at the directory
that involves modification of data or status at the server faligplicas identical. Thesubtreeswould be exclusively locked
into this class. Examples include file store, file and directoffpr the entire duration of the force, and all changes would
creation and deletion, protection change, and link creatiddg atomic. Unfortunately this is impractical, especially if the
In updates to existing objects, the protocol consists of tsubtreesin question are deep. Consequently, our approach is
phases, with the client acting as initiator and coordinator. # lock, and atomically apply changes, a directory at a time.
the first phase, each AVSG site checks the LSID and CVV This approach does not violate our ability to detect genuine
presented by the client. If the check succeeds, the site perforaidlicts for two reasons. First, directories only contain infor-
the requested semantic action such as the transfer of dat&aiion about immediate descendants. Second, when creating
the case of a file store. In the second phase, each AVSG 8iteentry for a new object, we first make it point tount
records the client’s view of which sites executed the previotgplica which has a CVV that will always be submissive. A
phase successfully. In updates where a new object has tdfdikire to the forcing server could occur after the creation, but
created, these two phases are preceded by a phase whdrefaie the force, of the runt. But any subsequent attempt to
new FID is allocated by the preferred server. access the runt would result in detection of inequality.

The check at an AVSG site in the first phase succeeds foB) Repair and MigrateBoth repair and migrate are rel-
tiles if the cached and server copies are equal or if the cachtidely rare operations. A repair operation is used to fix in-
copy dominates. Cached-copy dominance is acceptable ¢@nsistency and proceeds in two phases, similar to an update.
files since an update for a submissive site is logically equié- migrate operation is used to place an object in conflict at
alent to a force that brings its replica into equality followedhe end of disconnected operation in a covolume on a server.
by the actual update. Since new file data merely overwritée server replica is marked inconsistent, and accesses to the
existing data, we omit the force. For directories, the cheekject will fail until it is repaired.
succeeds only when the two copies are equal. An unsuccess-
ful check of either type of object by any AVSG site causes the VI I MPLEMENTATION STATUS
client to pause the operation and invoke the resolution subOur goal in implementing Coda is to explore its overall
system at the AVSG. If the resolution subsystem is able feasibility and to obtain feedback on its design. The proto-
automatically fix the problem, the client restarts the pausgghe implementation runs on IBMRT’s, and is functional in
operation. Otherwise the operation is aborted and an emewst respects. One can sit down at a Coda client and ex-
is returned to the user. A successful check causes the seseete Unix applications without recompilation or relinking.
to atomically perform the semantic action, and to commitExecution continuestransparentlywhencontact is lost with
new LSID (sent by the client in the first phase) and a tentatiseserver due to a crash or network failure. In the absence
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of failures, using a Coda client feels no different from usinthree times, with careful experimental control. In no case was
an AFS client. The primary areas where our implementatidhe variance in any measured quantity more than a few percent
is incomplete are conflict resolution, the implementation of the corresponding mean.
sticky files,and certain aspects of reintegration. We expect toOur reference point is Coda replicated at three servers
complete these shortly. with Ethernet multicast enabledramdiskat each server
We use the Camelot transaction facilil8] to obtainatom- for the Camelot log, and a warm cache.” This configura-
icity and permanence of server operations. Our use of Caméln is labeled'Coda:3” in the graphs. For comparison,
is restricted to single-site, top-level transactions. We do ne also ran experiments on the same hardware and oper
use nested or distributed transactions in our implementatiating system with Coda replicated at two and one servers
To reduce the latency caused by synchronous writes to(ti@oda:2” and “Coda:l,” respectively), with Codaon-
Camelot log, we have built a battery-backeuaidiskfor each replicated“Coda:NoRep”)with the current release of AFS
of our servers. (“AFS™), and with the local Unix tile system of a client
To test the resiliency of the system we have built an em(@*Unix”).
lator that induces controlled and repeatable failures in Coda. -
It consists of an interactive front-end that runs on a singieEffect of Server Replication
machine, and emulation routines that are invoked by the comin the absence of failures, we would like Coda’s perfor-

munication package at every Venus and file server. mance to be minimally affected by its high availability mecha-
nisms. Server replication is the primary source of performance
VIII. PErFORMANCE EVALUATION degradation, since it involves a more complex protocol as well

In this section, we present measurements that reflectasndata transfer to multiple sites. Camelot is another potential
the design and implementation of the Coda prototype. Gakrce of performance degradation.

discussion focuses on four questions: Fig. 1 shows the effect of server replication. Without repli-
. L cation, Coda takes 2 1% longer than the local Unix file system
- What is the effect of server replication? to run the benchmark. This is essentially the same as that of
- How does Coda behave under load? the current production version of AFS. With replication at
- How important is multicast? one, two, and three servers Coda takes 26%, and 27%
. How useful is aamdiskfor logging? longer than Unix.

We have spent little effort until now on tuning the low-level As Tablel shows, the Copy phase of the benchmark is most
aspects of our implementation. It is likely that a refined in@ffected by replication since it benefits least from caching. On
plementation will show noticeable performance improvemerit.nonreplicated Coda volume, this phase takes 73% longer
This should be kept in mind in interpreting the results reportdéflan on Unix. On a volume replicated at one, two, and three

here. servers it take81%,109%,and 118% longer. For compari-
. _ son, AFS takes 82% longer. Tabkso shows that thg&can-
A. Methodology and Configuration Dir phase is noticeably longer in Coda than in AFS. This is

Our evaluation is based on the Andrew benchn7)x because the Coda cache manager is a user process, while tr
which operates on a collection of files constituting the sourB&S cache manager is inside the kernel. Consequently, Coda
code of a Unix application. An instance of the benchmark geificurs additional overhead in translating a pathname, even if
erates as much network and server load as five typical A¥®8id cached copies of all components of pathnamere
users. We use the tetaad to refer to the number of clients cached.
simultaneously running this benchmark. .

The input to the benchmark issabtreeof 70 filesto- C. Behavior under Load
talling 200 kbytesn size. There are five distinct phases in the How does Coda perform when multiple workstations use it
benchmarkMakeDir, which constructs a targstibtreethat ~ simultaneously? Fig. 2 and Table Il show the total elapsed time
is identical in structure to the soursiebtreeCopy, which of the benchmark as a function of load. As load is increased
copies every file from the soursabtreeto the targesub- from 1 to 10, the time for the benchmark increases from 100%
tree;ScanDir, which recursively traverses the targebtree to 170%. As mentioned earlier, one load unit roughly corre-
and examines the status of every file irRigadAll,which sponds to five typical AFS users. In contrast, the benchmark
scans every byte of every file in the targebtregwice; and time for AFS only increases from 100% to 116% as load is
Make, which compiles and links all the files in the targetncreased from 1 to 10.
subtree . The ScanDirandReadAll phases reap the most ben- Server CPU utilization is the primary contributor to the
efit from caching, and hence show the least variation in d@lifference in behavior between Coda and AFS under load.
experiments. Three factors contribute to increased server CPU utilization

The clients and servers used in our experiments wétéoda. The first factor is, of course, the overhead due to
IBM RT/APC’swith 12 megabytes of main memory and 7@plication. The second is our use of Camelot. The third is
megabyte disks, running the Mach operating system, and cdfe lack of tuning of the Coda implementation.
municating on an Ethernet witto intervening routers. Each
server had an additional 400 megabyte disk on which COdﬁOur measurements show that the main effect of a cold cache is to lengthen
volumes were stored. Each experiment was repeated at le@siime of the Copy phase by 23% at a load of one.
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Fig. 1. Effect of replication on elapsed time. This graph shows the total
elapsed time of the Andrew benchmark at a load of one as a function of
varying the degree of server replicatidh.also compares Coda #FS

and Unix. These data are presented in more detail in Table

TABLE |
ErFeCT OF REPLICATION ON ELAPsED TIME
ConB8umtion | LoadUnits| MakeDir COPY ScanDir | ReadAll Make Total
codaz3 1 5(1) 48 (11 33ttl 52(1) 248(5) 386(5)
Coda: 2 1 5(1) 46(2) 32(1) 52(1) 247(1) 384(3)
Coda: | | 5(0) 42(1) 32(1) 52(1) 242(2) 373(3)
Coda: NoRep | 4(0) 38(11 32(0) 52(1) 241(2) 368 (2)
AFS 1 7(3) 40(1) 27(2) 53(0) 242(4) 369(7)
Unix 1 5(2) 22(1) 21Q) 36(1) 221(1) 305 (1)

This table presents the elapsed time of the phases of the Andrew benchmark for a variety of
corfigurations Each timeeportedis in seconds, and is the mean of three trials. Numbers in parentheses are
standard deviations.

Fig. 3 shows the relative contributions of each of these faerver CPU utilization by these amounts in tleeségura-
tors. It presents the total number of server CPU seconds tisets. The correlationodficientis greater than 0.99 in each
in the benchmark as a function of load for four different carase, indicating that a linear model is indeed an excellent fit
figurations. The overhead due to replication is the differermger this range of load.
between the curves label&doda:3” and “CodaNoRep.”
The overhead due to Camelot is the difference between the )
curves labeled “CodadoRep” and “CodaNoCam.”The D- Effect of Multicast
latter curve corresponds to the configuration “CddRep” Early in our design we debated the importancendfi-
in which we substituted a dummy transactional virtual memoryast, perceiving both advantages and disadvantages in its use.
package for Camelot. The dummy had an interface identicalTio quantify the contribution due to multicast we repeated the
Camelot but incurred zero overhead on every Camelot opdoad experiment with multicast turned off. Clients and servers
ation other than transaction commit. For the latter operatigemmunicated via the nonmulticast versiomfltiRPC for
the dummy performed\arite system call with an amount ofthis experiment.
data corresponding to the average amount of data logged duMulticast is beneficial itwo ways. It reduces the latency
ing a Camelot transaction in Coda.” The curve thus indicatsfsstoring large files, and it reduces network load. Since the
the expected performance of Coda for nonreplicated data i\adrew benchmark does not involve very large files, we did
low-overhead transactional system were to be used in liemof observe a substantial improvement in latency duelto
Camelot. The overhead due to lack of tuning in Coda is tlieast. But we did observe substantial reduction in network
difference between the curves lab€l€dda:NoCam’and load. Fig. 4 shows the total number of bytes transmitted as
“AFS.” a function of load during the running of the benchmark. As
Linear regression fits for the four configurations indicatene would expect for a replication factor of 3, multicast re-
slopes of 36.7, 28.5, 21.7, and 18.per load unit, re- duces the number of bytes transmitted by about two-thirds.
spectively. In other words, each additional load unit increase$g. 5 shows the corresponding number of packets transmit-
 atth o . . ted. The improvement due to multicast is less dramatic than
oughaUnix write is only synchronous ith the copying Of datato . . .
akemal buffer, the comparison is fair because the Camelot log wasaon IN Fig. 4 because many small nonmulticestirol packets are
ramdiskfor our experiments. transmitted as part of the multicast file transfer protocol.
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Fig. 2. Effect of load on elapsed time. This graph shows the ¢dégised
time for the benchmark as a function of load. Tablpresents the same
information in greater detail.

TABLE II
Errec OF Loapo ELapsep 1 E
Configumtioa | 10adUnits [ MakeDir Copy ScanDir | ReadAll Make ) Total )
Coda: 3
I 5(I) 48(1) 33(1) 52(1) | 248(5) 386(5)
2 6(l) 51(1) 32(0) 52(1) 251(6) | 391(4)
3 8(2) 56(5) 32(0) 51(0) 267(5) | 414(5)
5 11 (2) 83(M 34(0) 54(0) 278(8) | 460(7)
1 15(2) 114 (5) 33 (0) 53(0) 313(4) | 529(3)
10 30()) 170 (3) 34(0) 53 (0) 369(9) | 657(8)
AFS
I 703) 40(1) 27 (2) 53(0) 242(4) | 369(7)
2 6 () 41 27(9) 54(0) 243(1) | 369(l)
3 6 (1) 46 27(1) 54(0) 247(1) | 319(2
5 6(1) 44(1) 27(0) 53(0) | 251(2) | 3822
7 8(1) 52(h 27(1) 53(1) 259(0) 399(1)
10 10(2) 65(1) 27 (0) 52(0) 275(2) | 429(3)

This table compares the running time of the phases of the Andrew benchmark for Coda replicated at three
servers toAFS.Each time reported is in seconds, and is the mean of three trials. Numbers in parentheses are
standard deviations.
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Fig. 3. Effect of load on server CPU utilization. This graph shows to-
tal number of server CPU seconds used as a function of load in run-
ning the benchmark. Theonfigurationcorresponding to the curve labeled
“Coda:NoCam”is described in the text of Section VIII-C,
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E. Contribution ofRamdisk to replica management and have therefore had little influence

The function of theamdiskis to reduce the cost of logon Coda. .
forces in Camelot, thereby reducing the latency of update opJ "€ exception is Locus, originally developed as a research

erations. Since thdakeDir and Copy phases of the benchPrototype at UCLA and now marketed by Locus Computing
mark involve the most updates, their combined running time {gorporation. T_here are significant dlfferenc_es in the resear(_:h
an indicator of the contribution of tremdisk.We measured @nd commercial versions of Locus. Most importantly, opti-
these times for twoorfigurationsone in which Camelot uses MiStic replication is only used in the research version of Lo-
a raw disk partition for a log, and the other where it use&/g A less ambitious primary-site replication scheme is used
ramdisk The data show that it take8 & in the former caseln the commercial versiom the rest of this section, the term
and 53 in the latter, a reduction of about 9%. “Locus” specifically refers to the research version.

IX. RELATED WORK Coda uses three ideas from Locus:

The system most closely related to Coda is undoubtedly it the viewthat.optimistireplication is acceptable in a Unix
ancestorAFS. Coda strives to preserve the virtues of AFS  environment
while significantly enhancing its availability. The specific de- o the use of version vectors for detecting conflicts
sign decisions inherited from AFS have been described i§ the use of Unix directory semantics to partially automate
Section II-A. resolution.

Data availability has been the topic of many research efforts
in the last decade. A few of these have been experimeBialthere are major differences between the two systems, the
projects to provide high availability in distributed file systemsmost significant of which are the following.
Examples of such projects include Vidit [5], RNFS[8]
(based on ISIf]), Saguard12], and Locug19], [lI]. All 1Scalability and security are fundamental goals in Coda,
of these, with one exception, have used a pessimistic approach but not in Locus.
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« Only Coda explicitly addresses thise of portableom- optimistic replication schemes that remains open is whether
puters. users will indeed be willing to tolerate occasional conflicts

o Coda is based on the client-servaodel, while Locus in return for higher availability. Only actual experience will
assumes a peer model. provide the answer to this.

+ Coda integrates the use of two different mechanisms,
whole-file caching and replication, while Locus relies ACKNOWLEDGMENT

solely on replication. .
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chronously update themselves from the first replicatiofi€ Camelot group for helping us use their system, and the
site. AFS group for providing us with the software base on which
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