
26 September 2005 QUEUE rants: feedback@acmqueue.com

The Future of Microprocessors
KUNLE OLUKOTUN AND LANCE HAMMOND, STANFORD UNIVERSITY

 QUEUE September 2005 27 more queue: www.acmqueue.com

he performance of microprocessors that power modern
computers has continued to increase exponentially
over the years for two main reasons. First, the transis-
tors that are the heart of the circuits in all processors
and memory chips have simply become faster over
time on a course described by Moore’s law,1 and this
directly affects the performance of processors built
with those transistors. Moreover, actual processor per-
formance has increased faster than Moore’s law would
predict,2 because processor designers have been able to
harness the increasing numbers of transistors avail-
able on modern chips to extract more parallelism from

software. This is depicted in fi gure 1 for Intel’s processors.
An interesting aspect of this continual quest for more parallelism is that it has been

pursued in a way that has been virtually invisible to software programmers. Since they
were invented in the 1970s, microprocessors have continued to implement the conven-
tional von Neumann computational model, with very few exceptions or modifi cations.
To a programmer, each computer consists of a single processor executing a stream of
sequential instructions and connected to a monolithic “memory” that holds all of the
program’s data. Because the economic benefi ts of backward compatibility with earlier
generations of processors are so strong, hardware designers have essentially been limited
to enhancements that have maintained this abstraction for decades. On the memory
side, this has resulted in processors with larger cache memories, to keep frequently
accessed portions of the conceptual “memory” in small, fast memories that are physi-
cally closer to the processor, and large register fi les to hold more active data values in an

Chip multiprocessors’
promise of huge
performance gains
is now a reality.

MultiprocessorsFO
CU

S

28 September 2005 QUEUE rants: feedback@acmqueue.com

extremely small, fast, and compiler-managed region of
“memory.”

Within processors, this has resulted in a variety of
modifi cations designed to achieve one of two goals:
increasing the number of instructions from the proces-
sor’s instruction sequence that can be issued on every
cycle, or increasing the clock frequency of the processor
faster than Moore’s law would normally allow. Pipelin-
ing of individual instruction execution into a sequence
of stages has allowed designers to increase clock rates
as instructions have been sliced into larger numbers of
increasingly small steps, which are designed to reduce
the amount of logic that needs to switch during every
clock cycle. Instructions that once took a few cycles to
execute in the 1980s now often take 20 or more in today’s
leading-edge processors, allowing a nearly proportional
increase in the possible clock rate.

Meanwhile, superscalar processors were developed to
execute multiple instructions from a single, conventional
instruction stream on each
cycle. These function by
dynamically examining
sets of instructions from
the instruction stream
to fi nd ones capable of
parallel execution on each
cycle, and then executing
them, often out of order
with respect to the original
program.

Both techniques have
fl ourished because they
allow instructions to
execute more quickly while
maintaining the key illu-
sion for programmers that
all instructions are actually
being executed sequen-
tially and in order, instead
of overlapped and out of

order. Of course, this illusion is not absolute. Performance
can often be improved if programmers or compilers
adjust their instruction scheduling and data layout to
map more effi ciently to the underlying pipelined or paral-
lel architecture and cache memories, but the important
point is that old or untuned code will still execute cor-
rectly on the architecture, albeit at less-than-peak speeds.

Unfortunately, it is becoming increasingly diffi cult for
processor designers to continue using these techniques
to enhance the speed of modern processors. Typical
instruction streams have only a limited amount of usable
parallelism among instructions,3 so superscalar processors
that can issue more than about four instructions per cycle
achieve very little additional benefi t on most applica-
tions. Figure 2 shows how effective real Intel processors
have been at extracting instruction parallelism over time.
There is a fl at region before instruction-level parallelism
was pursued intensely, then a steep rise as parallelism was
utilized usefully, followed by a tapering off in recent years
as the available parallelism has become fully exploited.

Complicating matters further, building superscalar
processor cores that can exploit more than a few instruc-
tions per cycle becomes very expensive, because the
complexity of all the additional logic required to fi nd
parallel instructions dynamically is approximately pro-
portional to the square of the number of instructions that
can be issued simultaneously. Similarly, pipelining past
about 10-20 stages is diffi cult because each pipeline stage
becomes too short to perform even a minimal amount of

Intel Performance Over Time

re
la

ti
ve

 p
er

fo
rm

an
ce

year

0.10

1.00

10.00

100.00

1000.00

10000.00

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

FIG 1FIG 1

The Future of Microprocessors

MultiprocessorsFO
CU

S

 QUEUE September 2005 29 more queue: www.acmqueue.com

logic, such as adding two integers together, beyond which
the design of the pipeline is signifi cantly more complex.
In addition, the circuitry overhead from adding pipeline
registers and bypass path multiplexers to the existing
logic combines with performance losses from events that
cause pipeline state to be fl ushed, primarily branches.
This overwhelms any potential performance gain from
deeper pipelining after about 30 stages.

Further advances in both superscalar issue and pipelin-
ing are also limited by the fact that they require ever-
larger numbers of transistors to be integrated into the
high-speed central logic within each processor core—so
many, in fact, that few companies can afford to hire
enough engineers to design and verify these processor
cores in reasonable amounts of time. These trends have
slowed the advance in processor performance somewhat
and have forced many smaller vendors to forsake the
high-end processor business, as they could no longer
afford to compete effectively.

Today, however, all progress in conventional processor
core development has essentially stopped because of a
simple physical limit: power. As processors were pipe-
lined and made increasingly superscalar over the course
of the past two decades, typical high-end microprocessor
power went from less than a watt to over 100 watts. Even
though each silicon process generation promised a reduc-
tion in power, as the ever-smaller transistors required
less power to switch, this was true in practice only when
existing designs were simply “shrunk” to use the new

process technology. Processor designers, however, kept
using more transistors in their cores to add pipelining
and superscalar issue, and switching them at higher and
higher frequencies. The overall effect was that expo-
nentially more power was required by each subsequent
processor generation (as illustrated in fi gure 3).

Unfortunately, cooling technology does not scale
exponentially nearly as easily. As a result, processors went
from needing no heat sinks in the 1980s, to moderate-size
heat sinks in the 1990s, to today’s monstrous heat sinks,
often with one or more dedicated fans to increase airfl ow
over the processor. If these trends were to continue, the
next generation of microprocessors would require very
exotic cooling solutions, such as dedicated water cool-
ing, that are economically impractical in all but the most
expensive systems.

The combination of limited instruction parallelism
suitable for superscalar issue, practical limits to pipelin-
ing, and a “power ceiling” limited by practical cooling
limitations has limited future speed increases within
conventional processor cores to the basic Moore’s law
improvement rate of the underlying transistors. This
limitation is already causing major processor manufactur-
ers such as Intel and AMD to adjust their marketing focus
away from simple core clock rate.

Although larger cache memories will continue to
improve performance somewhat, by speeding access to
the single “memory” in the conventional model, the
simple fact is that without more radical changes in pro-

cessor design, microproces-
sor performance increases
will slow dramatically
in the future. Processor
designers must fi nd new
ways to effectively utilize
the increasing transis-
tor budgets in high-end
silicon chips to improve
performance in ways that
minimize both additional
power usage and design
complexity. The market
for microprocessors has
become stratifi ed into areas
with different performance
requirements, so it is useful
to examine the problem
from the point of view
of these different perfor-
mance requirements.

Intel Performance from ILP

re
la

ti
ve

 p
er

fo
rm

an
ce

/c
yc

le

year
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

FIG 2FIG 2

30 September 2005 QUEUE rants: feedback@acmqueue.com

THROUGHPUT PERFORMANCE IMPROVEMENT
With the rise of the Internet, the need for servers capable
of handling a multitude of independent requests arriving
rapidly over the network has increased dramatically. Since
individual network requests are typically completely
independent tasks, whether those requests are for Web
pages, database access, or fi le service, they are typically
spread across many separate computers built using high-
performance conventional microprocessors (fi gure 4a),
a technique that has been used at places like Google for
years to match the overall computation throughput to
the input request rate.4

As the number of requests increased over time, more
servers were added to the collection. It has also been
possible to replace some or all of the separate servers with
multiprocessors. Most existing multiprocessors consist
of two or more separate processors connected using a
common bus, switch hub, or network to shared memory
and I/O devices. The overall system can usually be physi-
cally smaller and use less
power than an equiva-
lent set of uniprocessor
systems because physically
large components such
as memory, hard drives,
and power supplies can be
shared by some or all of
the processors.

Pressure has increased
over time to achieve more
performance per unit
volume of data-center
space and per watt, since
data centers have fi nite
room for servers and their
electric bills can be stagger-
ing. In response, the server
manufacturers have tried
to save space by adopting
denser server packaging

solutions, such as blade servers and switching to mul-
tiprocessors that can share components. Some power
reduction has also occurred through the sharing of more
power-hungry components in these systems. These short-
term solutions are reaching their practical limits, how-
ever, as systems are reaching the maximum component
density that can still be effectively air-cooled. As a result,
the next stage of development for these systems involves
a new step: the CMP (chip multiprocessor).5

The fi rst CMPs targeted toward the server market
implement two or more conventional superscalar proces-
sors together on a single die.6,7,8,9 The primary motivation
for this is reduced volume—multiple processors can now
fi t in the space where formerly only one could, so overall
performance per unit volume can be increased. Some
savings in power also occurs because all of the proces-
sors on a single die can share a single connection to the
rest of the system, reducing the amount of high-speed
communication infrastructure required, in addition to
the sharing possible with a conventional multiprocessor.
Some CMPs, such as the fi rst ones announced from AMD
and Intel, share only the system interface between proces-
sor cores (illustrated in fi gure 4b), but others share one
or more levels of on-chip cache (fi gure 4c), which allows
interprocessor communication between the CMP cores
without off-chip accesses.

Further savings in power can be achieved by taking
advantage of the fact that while server workloads require
high throughput, the latency of each request is generally

Intel Power Over Time

po
w

er
 (

w
at

ts
)

year
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

0

10

100

The Future of Microprocessors

FIG 3FIG 3

MultiprocessorsFO
CU

S

 QUEUE September 2005 31 more queue: www.acmqueue.com

not as critical.10 Most users will not be bothered if their
Web pages take a fraction of a second longer to load, but
they will complain if the Web site drops page requests
because it does not have enough throughput capacity. A
CMP-based system can be designed to take advantage of
this situation.

When a two-way CMP replaces a uniprocessor, it is
possible to achieve essentially the same or better through-
put on server-oriented workloads with just half of the
original clock speed. Each request may take up to twice
as long to process because of the reduced clock rate. With
many of these applications, however, the slowdown will
be much less, because request processing time is more
often limited by memory or disk performance than by
processor performance. Since two requests can now be
processed simultaneously, however, the overall through-
put will now be the same or better, unless there is serious
contention for the same memory or disk resources.

Overall, even though performance is the same or only
a little better, this adjustment is still advantageous at the
system level. The lower clock rate allows us to design the
system with a signifi cantly lower power supply voltage,
often a nearly linear reduction. Since power is propor-
tional to the square of the voltage, however, the power
required to obtain the original performance is much
lower—usually about half (half of the voltage squared = a
quarter of the power, per processor, so the power required
for both processors together is about half), although the
potential savings could be limited by static power dis-
sipation and any minimum voltage levels required by the
underlying transistors.

For throughput-oriented workloads, even more power/
performance and performance/chip area can be achieved
by taking the “latency is unimportant” idea to its extreme
and building the CMP with many small cores instead of a
few large ones. Because typical server workloads have very

low amounts of instruc-
tion-level parallelism and
many memory stalls, most
of the hardware associated
with superscalar instruc-
tion issue is essentially
wasted for these applica-
tions. A typical server will
have tens or hundreds
of requests in fl ight at
once, however, so there is
enough work available to
keep many processors busy
simultaneously.

Therefore, replacing
each large, superscalar pro-
cessor in a CMP with sev-
eral small ones, as has been
demonstrated successfully
with the Sun Niagara,11
is a winning policy. Each
small processor will process
its request more slowly
than a larger, superscalar
processor, but this latency
slowdown is more than
compensated for by the
fact that the same chip
area can be occupied by
a much larger number of
processors—about four
times as many, in the case

CMP Implementation Options

main memory

L2 cache

CPU core 1

L1 I$ L1 D$

regs regs

regs regs

CPU core N

L1 I$ L1 D$

regs regs

regs regs

I/O

d) multithreaded, shared-cache
 chip multiprocessor

main memory

L2 cache

L2 cache

CPU core 1

L1 I$ L1 D$

registers registers

CPU core N

L1 I$ L1 D$

I/O

c) shared-cache chip multiprocessor

main memory

L2 cache L2 cache

CPU core 1

L1 I$ L1 D$

registers registers

CPU core N

L1 I$ L1 D$

I/O

b) simple chip multiprocessor

main memory

CPU core

L1 I$ L1 D$

registers

I/O

a) conventional microprocessor

FIG 4FIG 4

32 September 2005 QUEUE rants: feedback@acmqueue.com

of Niagara, which has eight single-issue SPARC processor
cores in a technology that can hold only a pair of super-
scalar UltraSPARC cores.

Taking this idea one step further, still more latency
can be traded for higher throughput with the inclusion
of multithreading logic within each of the cores.12,13,14
Because each core tends to spend a fair amount of time
waiting for memory requests to be satisfi ed, it makes
sense to assign each core several threads by including
multiple register fi les, one per thread, within each core
(fi gure 4d). While some of the threads are waiting for
memory to respond, the processor may still execute
instructions from the others.

Larger numbers of threads can also allow each proces-
sor to send more requests off to memory in parallel,
increasing the utilization of the highly pipelined memory
systems on today’s processors. Overall, threads will typi-
cally have a slightly longer latency, because there are
times when all are active and competing for the use of the
processor core. The gain from performing computation
during memory stalls and the ability to launch numerous
memory accesses simultaneously more than compensates
for this longer latency on systems such as Niagara, which
has four threads per processor or 32 for the entire chip,
and Pentium chips with Intel’s Hyperthreading, which
allows two threads to share a Pentium 4 core.

LATENCY PERFORMANCE IMPROVEMENT
The performance of many important applications is mea-
sured in terms of the execution latency of individual tasks
instead of high overall throughput of many essentially
unrelated tasks. Most desktop processor applications still
fall in this category, as users are generally more concerned
with their computers responding to their commands
as quickly as possible than they are with their comput-
ers’ ability to handle many commands simultaneously,
although this situation is changing slowly over time as
more applications are written to include many “back-
ground” tasks. Users of many other computation-bound
applications, such as most simulations and compilations,

are typically also more interested in how long the pro-
grams take to execute than in executing many in parallel.

Multiprocessors can speed up these types of applica-
tions, but it requires effort on the part of programmers
to break up each long-latency thread of execution into a
large number of smaller threads that can be executed on
many processors in parallel, since automatic paralleliza-
tion technology has typically functioned only on Fortran
programs describing dense-matrix numerical computa-
tions. Historically, communication between processors
was generally slow in relation to the speed of individual
processors, so it was critical for programmers to ensure
that threads running on separate processors required only
minimal communication with each other.

Because communication reduction is often diffi cult,
only a small minority of users bothered to invest the time
and effort required to parallelize their programs in a way
that could achieve speedup, so these techniques were
taught only in advanced, graduate-level computer science
courses. Instead, in most cases programmers found that it
was just easier to wait for the next generation of uni-
processors to appear and speed up their applications for
“free” instead of investing the effort required to parallel-
ize their programs. As a result, multiprocessors had a hard
time competing against uniprocessors except in very large
systems, where the target performance simply exceeded
the power of the fastest uniprocessors available.

With the exhaustion of essentially all performance
gains that can be achieved for “free” with technologies
such as superscalar dispatch and pipelining, we are now
entering an era where programmers must switch to more
parallel programming models in order to exploit multi-
processors effectively, if they desire improved single-pro-
gram performance. This is because there are only three
real “dimensions” to processor performance increases
beyond Moore’s law: clock frequency, superscalar instruc-
tion issue, and multiprocessing. We have pushed the
fi rst two to their logical limits and must now embrace
multiprocessing, even if it means that programmers will
be forced to change to a parallel programming model to
achieve the highest possible performance.

Conveniently, the transition from multiple-chip
systems to chip multiprocessors greatly simplifi es the
problems traditionally associated with parallel program-
ming. Previously it was necessary to minimize commu-
nication between independent threads to an extremely
low level, because each communication could require
hundreds or even thousands of processor cycles. Within
any CMP with a shared on-chip cache memory, however,
each communication event typically takes just a handful

The Future of Microprocessors

MultiprocessorsFO
CU

S

 QUEUE September 2005 33 more queue: www.acmqueue.com

of processor cycles. With latencies like these, communica-
tion delays have a much smaller impact on overall system
performance. Programmers must still divide their work
into parallel threads, but do not need to worry nearly as
much about ensuring that these threads are highly inde-
pendent, since communication is relatively cheap. This is
not a complete panacea, however, because programmers
must still structure their inter-thread synchronization
correctly, or the program may generate incorrect results or
deadlock, but at least the performance impact of commu-
nication delays is minimized.

Parallel threads can also be much smaller and still be
effective—threads that are only hundreds or a few thou-
sand cycles long can often be used to extract parallelism
with these systems, instead of the millions of cycles long
threads typically necessary with conventional parallel
machines. Researchers have shown that parallelization
of applications can be made even easier with several
schemes involving the addition of transactional hardware
to a CMP.15,16,17,18,19 These systems add buffering logic
that lets threads attempt to execute in parallel, and then
dynamically determines whether they are actually parallel
at runtime. If no inter-thread dependencies are detected
at runtime, then the threads complete normally. If depen-
dencies exist, then the buffers of some threads are cleared
and those threads are restarted, dynamically serializing
the threads in the process.

Such hardware, which is only practical on tightly cou-
pled parallel machines such as CMPs, eliminates the need
for programmers to determine whether threads are paral-
lel as they parallelize their programs—they need only
choose potentially parallel threads. Overall, the shift from
conventional processors to CMPs should be less traumatic
for programmers than the shift from conventional proces-
sors to multichip multiprocessors, because of the short
CMP communication latencies and enhancements such
as transactional memory, which should be commercially
available within the next few years. As a result, this para-
digm shift should be within the range of what is feasible
for “typical” programmers, instead of being limited to
graduate-level computer science topics.

HARDWARE ADVANTAGES
In addition to the software advantages now and in the
future, CMPs have major advantages over conventional
uniprocessors for hardware designers. CMPs require only
a fairly modest engineering effort for each generation of
processors. Each member of a family of processors just
requires the stamping down of additional copies of the
core processor and then making some modifications to

relatively slow logic connecting the processors together to
accommodate the additional processors in each genera-
tion—and not a complete redesign of the high-speed
processor core logic. Moreover, the system board design
typically needs only minor tweaks from generation to
generation, since externally a CMP looks essentially the
same from generation to generation, even as the number
of processors within it increases.

The only real difference is that the board will need
to deal with higher I/O bandwidth requirements as the
CMPs scale. Over several silicon process generations, the
savings in engineering costs can be significant, because
it is relatively easy to stamp down a few more cores each
time. Also, the same engineering effort can be amortized
across a large family of related processors. Simply vary-
ing the numbers and clock frequencies of processors can
allow essentially the same hardware to function at many
different price/performance points.

AN INEVITABLE TRANSITION
As a result of these trends, we are at a point where chip
multiprocessors are making significant inroads into the
marketplace. Throughput computing is the first and most
pressing area where CMPs are having an impact. This is
because they can improve power/performance results
right out of the box, without any software changes,
thanks to the large numbers of independent threads that
are available in these already multithreaded applications.
In the near future, CMPs should also have an impact in
the more common area of latency-critical computations.
Although it is necessary to parallelize most latency-criti-
cal software into multiple parallel threads of execution
to really take advantage of a chip multiprocessor, CMPs
make this process easier than with conventional multi-
processors, because of their short interprocessor commu-
nication latencies.

Viewed another way, the transition to CMPs is inevi-
table because past efforts to speed up processor archi-
tectures with techniques that do not modify the basic
von Neumann computing model, such as pipelining
and superscalar issue, are encountering hard limits. As a
result, the microprocessor industry is leading the way to
multicore architectures; however, the full benefit of these
architectures will not be harnessed until the software
industry fully embraces parallel programming. The art of
multiprocessor programming, currently mastered by only
a small minority of programmers, is more complex than
programming uniprocessor machines and requires an
understanding of new computational principles, algo-
rithms, and programming tools. Q

34 September 2005 QUEUE rants: feedback@acmqueue.com

REFERENCES
1. Moore, G. E. 1965. Cramming more components onto

integrated circuits. Electronics (April): 114–117.
2. Hennessy, J. L., and Patterson, D. A. 2003. Computer

Architecture: A Quantitative Approach, 3rd Edition, San
Francisco, CA: Morgan Kaufmann Publishers.

3. Wall, D. W. 1993. Limits of Instruction-Level Parallelism,
WRL Research Report 93/6, Digital Western Research
Laboratory, Palo Alto, CA.

4. Barroso, L., Dean, J., and Hoezle, U. 2003. Web search
for a planet: the architecture of the Google cluster.
IEEE Micro 23 (2): 22–28.

5. Olukotun, K., Nayfeh, B. A., Hammond, L. Wilson, K.
and Chang, K. 1996. The case for a single chip multi-
processor. Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VII): 2–11.

6. Kapil, S. 2003. UltraSPARC Gemini: Dual CPU Proces-
sor. In Hot Chips 15 (August), Stanford, CA; http://
www.hotchips.org/archives/.

7. Maruyama, T. 2003. SPARC64 VI: Fujitsu’s next gen-
eration processor. In Microprocessor Forum (October),
San Jose, CA.

8. McNairy, C., and Bhatia, R. 2004. Montecito: the
next product in the Itanium processor family. In Hot
Chips 16 (August), Stanford, CA; http://www.hotchips.
org/archives/.

9. Moore, C. 2000. POWER4 system microarchitecture.
In Microprocessor Forum (October), San Jose, CA.

10. Barroso, L. A., Gharachorloo, K., McNamara, R.,
Nowatzyk, A., Qadeer, S., Sano, B., Smith, S., Stets, R.,
and Verghese, B. 2000. Piranha: a scalable architecture
based on single-chip multiprocessing. In Proceedings of
the 27th International Symposium on Computer Architec-
ture (June): 282–293.

11. Kongetira, P., Aingaran, K., and Olukotun, K. 2005.
Niagara: a 32-way multithreaded SPARC processor.
IEEE Micro 25 (2): 21–29.

12. Alverson, R., Callahan, D., Cummings, D., Koblenz,
B., Porterfi eld, A., and Smith, B. 1990. The Tera com-

puter system. In Proceedings of the 1990 International
Conference on Supercomputing (June): 1–6.

13. Laudon, J., Gupta, A., and Horowitz, M. 1994.
Interleaving: a multithreading technique targeting
multiprocessors and workstations. Proceedings of the 6th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems: 308–316.

14. Tullsen, D. M., Eggers, S. J., and Levy, H. M. 1995.
Simultaneous multithreading: maximizing on-chip
parallelism. In Proceedings of the 22nd International Sym-
posium on Computer Architecture (June): 392–403.

15. Hammond, L., Carlstrom, B. D., Wong, V., Chen, M.,
Kozyrakis, C., and Olukotun, K. 2004. Transactional
coherence and consistency: simplifying parallel hard-
ware and software. IEEE Micro 24 (6): 92–103.

16. Hammond, L., Hubbert, B., Siu, M., Prabhu, M., Chen,
M., and Olukotun, K. 2000. The Stanford Hydra CMP.
IEEE Micro 20 (2): 71–84.

17. Krishnan, V., and Torrellas, J. 1999. A chip multipro-
cessor architecture with speculative multithreading.
IEEE Transactions on Computers 48 (9): 866–880.

18. Sohi, G., Breach, S., and Vijaykumar, T. 1995. Multi-
scalar processors. In Proceedings of the 22nd International
Symposium on Computer Architecture (June): 414–425.

19. Steffan, J. G., and Mowry, T. 1998. The potential
for using thread-level data speculation to facilitate
automatic parallelization. In Proceedings of the 4th
International Symposium on High-Performance Computer
Architecture (February): 2–13.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

KUNLE OLUKOTUN is an associate professor of electrical
engineering and computer science at Stanford University,
where he led the Stanford Hydra single-chip multiprocessor
research project, which pioneered multiple processors on a
single silicon chip. He founded Afara Websystems to develop
commercial server systems with chip multiprocessor technol-
ogy. Afara was acquired by Sun Microsystems, and the Afara
microprocessor technology is now called Niagara. Olukotun
is involved in research in computer architecture, parallel pro-
gramming environments, and scalable parallel systems.
LANCE HAMMOND is a postdoctoral fellow at Stanford Uni-
versity. As a Ph.D. student, Hammond was the lead architect
and implementer of the Hydra chip multiprocessor. The goal
of Hammond’s recent work on transactional coherence and
consistency is to make parallel programming accessible to
the average programmer.
© 2005 ACM 1542-7730/05/0900 $5.00

The Future of Microprocessors

MultiprocessorsFO
CU

S

