
05/12/11
10:39:08 1linux-processor-caches-linux-journal-2004.txt

 [7105aa.png]

 Feature

 Understanding Caching

 Architectures that support Linux differ in how they handle caching at
 the hardware level.

 by James Bottomley

 Since the earliest days of microprocessors, system designers have been
 plagued by a problem in which the speed of the CPU’s operation
 exceeded the bandwidth of the memory subsystem to which it was
 connected. To avoid wasting CPU cycles while waiting for the memory to
 fetch the requested data, the universally adopted solution was to use
 an area of faster (and thus more expensive) memory to cache main
 memory data. This solution allowed the CPU to operate at its natural
 speed as long as the data it required was available in the cache.

 The purpose of this article is to explain caching from the point of
 view of a kernel programmer. I also explain some of the common terms
 used to describe caches. This article is divided into sections whose
 kernel programming relevance is indicated; that is, some sections
 explain that cache properties are irrelevant to understanding the
 essentials of how the kernel handles caching. If you’re coming from an
 Intel IA32 background, caching is practically transparent to you. In
 order to write kernel code that operates correctly on all the
 architectures Linux supports, however, you need to know the essentials
 of how caching works in general.

A Cache and Its Properties

 Simply put, a cache is a place that buffers memory accesses and may
 have a copy of the data you are requesting. Usually one thinks of
 caches (there may be more than one) as being stacked; the CPU is at
 the top, followed by layers of one or more caches and then the main
 memory. In this hierarchy, caches are quantified by their level. The
 cache closest to the CPU is called level one, L1 for short, and caches
 increase in level until the main memory is reached.

 A cache line is the smallest unit of memory that can be transferred to
 or from a cache. The essential elements that quantify a cache are
 called the read and write line widths. These signify the minimum
 amount of data the cache must read or write from the memory or cache
 below it. Frequently, these quantities are the same, so caches often
 are quantified simply by the line width. Even if they differ, the
 longest width usually is called the line width.

 The next property that quantifies a cache is its size. This number is
 an indication of how much data could be stored in the cache. Often,
 the performance rule of thumb is the bigger the cache, the better the
 benchmarks.

 A multilevel cache can be either inclusive or exclusive. Exclusive
 means a particular cache line may be present in exactly one of the
 cache levels and no more than one. Inclusive means the line may be
 present simultaneously in more than one level of cache. Nothing
 prevents the line widths from being different in differing cache
 levels.

 Finally, a particular cache can be either write through or write back.
 Write through means the cache may store a copy of the data, but the
 write must be completed at the next level down before it can be
 signaled as complete to the layer above. Write back means a write may
 be considered complete as soon as the data is stored in the cache. For
 a write back cache, as long as the written data is not transmitted,

05/12/11
10:39:08 2linux-processor-caches-linux-journal-2004.txt

 the cache line is considered dirty, because it ultimately must be
 written out to the level below.

Cache Management and Coherency

 One of the most basic problems with caches is coherency. A cache line
 is termed coherent when the data in the line is identical to the data
 stored in the main memory being cached. If this is not true, the cache
 line is termed incoherent. Lack of coherency can cause two particular
 problems. The first problem, which may occur for all caches, is stale
 data. In this situation, data has changed in main memory but the cache
 hasn’t been updated to reflect the change. This usually manifests
 itself as an incorrect read, as illustrated in Figure 1. This is a
 transient error, because the correct data is sitting in main memory;
 the cache simply needs to be told to bring it in.
 [7105f1.png]

 Figure 1. Stale Data Problem

 The second problem, which occurs only with write back caches, can
 cause actual destruction of data and is much more insidious. As
 illustrated in Figure 2, the data has been changed in memory, and it
 also has been changed separately by a CPU write to the cache. Because
 the cache must write out one line at a time, there now is no way to
 reconcile the changes--either the cache line must be purged without
 being written, losing the CPU’s change, or the line must be written
 out, thus losing the changes made to main memory. All programmers must
 avoid reaching the point where data destruction becomes inevitable;
 they can do this through the judicious use of the various cache
 management APIs.
 [7105f2.png]

 Figure 2. Data Destruction by Dirty Cache Lines

Cache-Line Interference

 The situation where two sets of independent data lie in the same cache
 line, potentially leading to the data destruction detailed above, is
 termed cache-line interference. If you are laying out data structures
 in memory, the general rule to avoid this situation is never, ever
 have data that can be modified outside of the caches mixed with data
 the CPU may ordinarily use. If you absolutely have to violate this
 rule, make sure all externally modifiable elements of the structure
 are aligned L1_CACHE_BYTES, a value set at compile time to the largest
 possible cache width value for all the processors on which your code
 may run. The best thing to do is use kmalloc to allocate two separate
 regions. kmalloc never allocates two regions that overlap in a cache
 line.

Cache Management Instructions

 The most basic instruction, called an invalidate, simply ejects the
 nominated line from all caches. Any reference to data in that line
 causes it to be re-fetched from main memory. Thus, the stale data
 problem may be resolved by invalidating the cache line before reading
 the data. In Linux, such an invalidation is done with:
void
dma_cache_inv(unsigned long address
 unsigned long size);

 where address is the virtual address on which to begin, and size is
 the length of data to invalidate. Note that size is rounded up
 automatically to a multiple of the cache line width.

 For write back caches, any dirty cache line may be written out, or
 flushed, to main memory using:
void
dma_cache_wback(unsigned long address,

05/12/11
10:39:08 3linux-processor-caches-linux-journal-2004.txt

 unsigned long size);

 This flushing must be done before anything changes the main memory
 under the dirty cache line. You therefore must issue the flush before
 an external entity (such as a PCI card) modifies main memory and issue
 an invalidate after this flush but before the CPU accesses any data
 that has changed.

 In theory, for write back caches an invalidate kills the cache line
 without actually writing the data out, thus destroying the data in the
 cache. A safer thing to do in this case is issue a flush and
 invalidate instruction:
void
dma_cache_wback_inv(unsigned long address,
 unsigned long size);

 This flushes the cache lines to main memory and then invalidates them
 from the cache.

Types of Caches

 This section explains how a cache actually works. The only vital piece
 of information you need from this section is a property called
 aliasing, which means that the same physical address in memory may be
 cached in multiple distinct cache lines. How the kernel actually
 manages the aliases is discussed in the following section.

 In a directly mapped cache, as shown in Figure 3, the cache is divided
 up into cache lines of known width (four in the example). Each line in
 the cache is characterized by a unique index, so every byte in the
 cache is addressed by the index of the line and offset into the line.
 Each index of the cache also possesses a hidden number called the tag.
 [7105f3.png]

 Figure 3. A Directly Mapped Cache

 Every address in the system is divided into three pieces--tag, index
 and offset--along a power of two boundary (Figure 4). When a line is
 brought into the cache, the tag and index are extracted from the
 address. The line is stored in the cache at the required index, and
 the hidden tag is stored along with the line data. When the CPU makes
 reference to a particular address, the cache is consulted at the given
 index. If the tags match, the offset into the line is fetched to
 satisfy the address reference. If the tags do not match, the current
 line may be flushed back to main memory and the correct line brought
 into the cache.

 Every cache-able address has one and only one corresponding index
 line, which can cause problems. For instance, if the processor reads a
 sequence of addresses that accidentally happen to correspond to the
 same cache index, the cache line must be evicted and re-fetched on
 each read. Such a situation easily can happen in, say, a for loop
 reading elements of a structure that happens to be about the same size
 as the cache. For directly mapped caches, the index sometimes is
 called the cache color, and this problem is called the cache-line
 coloring problem.

 To get around the coloring problem of directly mapped caches, cache
 circuitry sometimes is arranged so that a cache lookup can compare
 tags simultaneously in more than one cache line. In an N-way
 associative cache, each index corresponds to N cache lines (and tags);
 thus, we can have up to N addresses with the same index simultaneously
 in the cache. The added parallel cache lookup circuitry tends to
 increase the cost of associativity somewhat, so it usually is found
 only in higher-end CPUs.

 At the very top of the range, you might find a fully associative
 cache. This type of cache has no index at all, and all lines are

05/12/11
10:39:08 4linux-processor-caches-linux-journal-2004.txt

 consulted at once when looking for a particular tag.

 All modern CPUs handle address translation, which means the virtual
 address used by the kernel or application to refer to memory isn’t the
 same as the physical address where the data actually resides. The
 caches can be placed before or after address translation, and
 sometimes in a hierarchical cache there is a mixture of placements.
 Each of these placements has different properties and features as
 described below.

 In physically indexed, physically tagged (PIPT) caches, the tag and
 index of the cache are both in physical memory, that is, after virtual
 address translation has been done. This process is nice and simple,
 but the disadvantage of PIPT caches is that a valid address
 translation must be in the TLB (translation lookaside buffer) of the
 CPU. If such a TLB entry needs to be fetched from memory before the
 address translation can be done, the advantage of caching the data is
 lost. Even if a TLB entry is present, the TLB lookup and the cache
 lookup must be done sequentially, making these caches slow.

 In virtually indexed, virtually tagged (VIVT) caches, on the other
 hand, both the index and tag are in the virtual address space in which
 the CPU currently is operating. Although this makes cache lookups much
 faster (no address translation needs to be done before the lookup or
 after, if the cache lookup is successful), they suffer from several
 other problems:
 1. Virtual address translations usually are changed as part of normal
 kernel operation, so the cache must pay careful attention to
 changes in TLB entries (and changes in address space) and flush
 cache lines whose translations have changed.
 2. Even in a single address space, multiple virtual addresses may
 exist for the same physical address. Each of these virtual
 addresses would be cached separately, even though they represent
 the same data. This is called the cache-line aliasing problem.

 Generally, though, the added lookup speed of a VIVT cache outweighs
 its disadvantages, making it the predominant cache type for non-x86
 CPUs.

 A type of hybrid cache designed to overcome some of the shortcomings
 of the VIVT cache without sacrificing too much of its speed advantage
 is virtually indexed, physically tagged (VIPT) caching. The index is
 on the virtual address, but the tag is on the physical address, so the
 combination (tag, offset) must specify the full physical address. This
 requirement causes the tags to be larger than the tags for other cache
 types.

 The VIPT cache gains its speed advantage over PIPT because the address
 translation and the cache lookup now can be done in parallel. The CPU
 doesn’t know if the cache line is valid (the tags match), however,
 until the address translation has completed.

 The disadvantages of VIVT are overcome because the tag is physical,
 thus the VIPT cache automatically detects aliasing when it sees that
 two tags are identical in the cache. Thus, a VIPT cache may be
 constructed in such a fashion that cache-line aliasing never occurs.

 This fourth theoretical type of cache, physically indexed, virtually
 tagged (PIVT), is basically useless and is not discussed further.

The Aliasing Problem

 Any time the kernel sets up more than one virtual mapping for the same
 physical page, cache line aliasing may occur. The kernel is careful to
 avoid aliasing, so it usually occurs only in one particular instance:
 when the user mmaps a file. Here, the kernel has one virtual address
 for pages of the file in the page cache, and the user may have one or
 more different virtual addresses. This is possible because nothing

05/12/11
10:39:08 5linux-processor-caches-linux-journal-2004.txt

 prevents the user from mmaping the file at multiple locations.

 When a file is mmaped, the kernel adds the mapping to one of the
 inode’s lists: i_mmap, for maps that cannot change the underlying
 data, or i_mmap_shared, for maps that can change the file’s data. The
 API for bringing the cache aliases of a page into sync is:
void flush_dcache_page(struct page *page);

 This API must be called every time data on the page is altered by the
 kernel, and it should be called before reading data from the page if
 page->mapping->i_mmap_shared is not empty. In architecture-specific
 code, flush_dcache_page loops over the i_mmap_shared list and flushes
 the cache data. It then loops over the i_mmap list and invalidates it,
 thus bringing all the aliases into sync.

Separate Instruction and Data Caches

 In their quest for efficiency, processors often have separate caches
 for the instructions they execute and the data on which they operate.
 Often, these caches are separate mechanisms, and a data write may not
 be seen by the instruction cache. This causes problems if you are
 trying to execute instructions you just wrote into memory, for
 example, during module loading or when using a trampoline. You must
 use the following API:
void
flush_icache_range(unsigned long start,
 unsigned long end);

 to ensure that the instructions are seen by the instruction cache
 prior to execution. start and end are the starting and ending
 addresses, respectively, of the block of memory you modified to
 contain your instructions.

General Cache Flushing

 Two APIs globally flush the CPU caches:
void flush_cache_all(void);

 and
void flush_cache_mm(struct mm_struct *mm);

 These flush all the caches in the system and only the lines in the
 cache belonging to the particular process address space mm. Both of
 these are extremely expensive operations and should be used only when
 absolutely necessary.

Caching in SMP Environments

 When more than one CPU is in the system, a level of caching usually
 exists that is unique to each CPU. Depending on the architecture, it
 may be the responsibility of the kernel to ensure that changes in the
 cache of one CPU become visible to the other CPUs. Fortunately, most
 CPUs handle this type of coherency problem in hardware. Even if they
 don’t, as long as you follow the APIs listed in this article, you can
 maintain coherency across all the CPUs.

Conclusion

 I hope I’ve given you a brief overview of how caches work and how the
 kernel manages them. The contents of this article should be sufficient
 for you to understand caching in most kernel programming situations
 you’re likely to encounter. Be aware, however, that if you get deeply
 into the guts of kernel cache management (particularly in the
 architecture-specific code), you likely will come across concepts and
 APIs not discussed here.

 James Bottomley is the software architect for SteelEye. He maintains
 the SCSI subsystem, the Linux Voyager port and the 53c700 driver. He

05/12/11
10:39:08 6linux-processor-caches-linux-journal-2004.txt

 also has made contributions to PA-RISC Linux development in the area
 of DMA/device model abstraction.
