05/12/11
10:39:08 linux-processor-caches-linux-journal -2004.txt

[7105aa. png]
Feature
Under st andi ng Cachi ng

Architectures that support Linux differ in how they handl e caching at
the hardware | evel

by Janes Bottoml ey

Since the earliest days of mcroprocessors, system designers have been
pl agued by a problemin which the speed of the CPU s operation
exceeded the bandw dth of the nenory subsystemto which it was
connected. To avoid wasting CPU cycles while waiting for the nenory to
fetch the requested data, the universally adopted solution was to use
an area of faster (and thus nore expensive) nenory to cache main
menory data. This solution allowed the CPU to operate at its natura
speed as long as the data it required was available in the cache.

The purpose of this article is to explain caching fromthe point of
view of a kernel programmer. | also explain some of the conmon terns
used to describe caches. This article is divided into sections whose
kernel programming rel evance is indicated; that is, sonme sections
explain that cache properties are irrelevant to understanding the
essentials of how the kernel handles caching. If you' re comng from an
Intel 1A32 background, caching is practically transparent to you. In
order to wite kernel code that operates correctly on all the
architectures Linux supports, however, you need to know the essentials
of how cachi ng works in general

A Cache and Its Properties

Sinply put, a cache is a place that buffers nmenory accesses and nay
have a copy of the data you are requesting. Usually one thinks of
caches (there may be nore than one) as being stacked; the CPU is at
the top, followed by |ayers of one or nmore caches and then the nain
menory. In this hierarchy, caches are quantified by their |evel. The
cache closest to the CPUis called I evel one, L1 for short, and caches
increase in level until the main nmenory is reached.

A cache line is the smallest unit of nenory that can be transferred to
or froma cache. The essential elements that quantify a cache are
called the read and wite line widths. These signify the m ni mum
amount of data the cache nust read or wite fromthe nenory or cache
below it. Frequently, these quantities are the sane, so caches often
are quantified sinply by the line width. Even if they differ, the

l ongest width usually is called the |ine wdth.

The next property that quantifies a cache is its size. This nunber is
an indication of how nuch data could be stored in the cache. Oten,
the performance rule of thunb is the bigger the cache, the better the
benchmar ks.

A multilevel cache can be either inclusive or exclusive. Exclusive
means a particular cache line may be present in exactly one of the
cache levels and no nore than one. Inclusive neans the |ine may be
present sinmultaneously in nore than one | evel of cache. Nothing
prevents the line widths frombeing different in differing cache

| evel s.

Finally, a particular cache can be either wite through or wite back.
Wite through means the cache may store a copy of the data, but the
wite nust be conpleted at the next |evel down before it can be
signal ed as conplete to the | ayer above. Wite back nmeans a wite nay
be consi dered conplete as soon as the data is stored in the cache. For
a wite back cache, as long as the witten data is not transmtted,

05/12/11
10:39:08 linux-processor-caches-linux-journal -2004.txt

the cache line is considered dirty, because it ultimtely nust be
written out to the | evel bel ow

Cache Managenent and Coherency

One of the nost basic problems with caches is coherency. A cache line
is termed coherent when the data in the line is identical to the data
stored in the main nenory being cached. If this is not true, the cache
line is termed incoherent. Lack of coherency can cause two particul ar
probl ens. The first problem which may occur for all caches, is stale
data. In this situation, data has changed in main nenory but the cache
hasn’t been updated to reflect the change. This usually manifests
itself as an incorrect read, as illustrated in Figure 1. This is a
transient error, because the correct data is sitting in main nenory,;
the cache sinply needs to be told to bring it in.

[7105f 1. png]

Figure 1. Stale Data Problem

The second probl em which occurs only with wite back caches, can
cause actual destruction of data and is rmuch nore insidious. As
illustrated in Figure 2, the data has been changed in nmenory, and it
al so has been changed separately by a CPU wite to the cache. Because
the cache must wite out one line at a tinme, there nowis no way to
reconcil e the changes--either the cache |ine must be purged wi thout
being witten, losing the CPU s change, or the line nust be witten
out, thus losing the changes made to main menory. All programrers nust
avoi d reaching the point where data destructi on becones inevitable;
they can do this through the judicious use of the various cache
management APl s.

[7105f 2. png]

Figure 2. Data Destruction by Dirty Cache Lines
Cache-Line Interference

The situation where two sets of independent data lie in the same cache
line, potentially leading to the data destruction detail ed above, is
ternmed cache-line interference. If you are |laying out data structures
in menory, the general rule to avoid this situation is never, ever
have data that can be nodified outside of the caches mixed with data
the CPU may ordinarily use. |If you absolutely have to violate this
rule, make sure all externally nodifiable elements of the structure
are aligned L1 _CACHE BYTES, a value set at conpile time to the |argest
possi bl e cache width value for all the processors on which your code
may run. The best thing to do is use kmalloc to allocate two separate
regi ons. kmalloc never allocates two regions that overlap in a cache
line.

Cache Managenent Instructions

The nost basic instruction, called an invalidate, sinply ejects the
nom nated line fromall caches. Any reference to data in that |ine
causes it to be re-fetched frommain nmenory. Thus, the stale data
probl em may be resol ved by invalidating the cache Iine before reading
the data. In Linux, such an invalidation is done wth:

voi d

dma_cache_i nv(unsi gned | ong address

unsi gned | ong size);

where address is the virtual address on which to begin, and size is
the length of data to invalidate. Note that size is rounded up
automatically to a multiple of the cache |ine wdth.

For wite back caches, any dirty cache |ine may be witten out, or
flushed, to main nmenory using:

voi d

dma_cache_wback(unsi gned | ong address,

05/12/11
10:39:08 linux-processor-caches-linux-journal -2004.txt

unsi gned | ong size);

This flushing nust be done before anything changes the main nmenory
under the dirty cache line. You therefore nust issue the flush before
an external entity (such as a PCl card) nodifies nain nenory and issue
an invalidate after this flush but before the CPU accesses any data
that has changed.

In theory, for wite back caches an invalidate kills the cache |ine
wi thout actually witing the data out, thus destroying the data in the
cache. A safer thing to do in this case is issue a flush and
inval i date instruction:
voi d
dma_cache_wback_i nv(unsi gned | ong address,
unsi gned | ong size);

This flushes the cache lines to main nenory and then invalidates them
fromthe cache.

Types of Caches

This section explains how a cache actually works. The only vital piece
of information you need fromthis section is a property called

al i asi ng, which neans that the sane physical address in nenory may be
cached in nultiple distinct cache lines. How the kernel actually
manages the aliases is discussed in the follow ng section

In a directly mapped cache, as shown in Figure 3, the cache is divided
up into cache lines of known width (four in the exanple). Each line in
the cache is characterized by a unique index, so every byte in the
cache is addressed by the index of the line and offset into the |ine.
Each i ndex of the cache al so possesses a hidden nunber called the tag.
[7105f 3. png]

Figure 3. A Directly Mapped Cache

Every address in the systemis divided into three pieces--tag, index
and offset--along a power of two boundary (Figure 4). Wen a line is
brought into the cache, the tag and index are extracted fromthe
address. The line is stored in the cache at the required index, and
the hidden tag is stored along with the Iine data. Wen the CPU nakes
reference to a particular address, the cache is consulted at the given
index. If the tags match, the offset into the line is fetched to
satisfy the address reference. If the tags do not match, the current
line may be flushed back to main nmenory and the correct |ine brought
into the cache.

Every cache-abl e address has one and only one correspondi ng i ndex
[ine, which can cause problens. For instance, if the processor reads a
sequence of addresses that accidentally happen to correspond to the
same cache index, the cache |ine nust be evicted and re-fetched on
each read. Such a situation easily can happen in, say, a for |oop
readi ng el ements of a structure that happens to be about the sane size
as the cache. For directly mapped caches, the index sonetines is

call ed the cache color, and this problemis called the cache-line

col ori ng problem

To get around the coloring problemof directly mapped caches, cache
circuitry sonetines is arranged so that a cache | ookup can comnpare
tags simultaneously in nore than one cache line. In an N-way

associ ative cache, each index corresponds to N cache lines (and tags);
thus, we can have up to N addresses with the sane index sinultaneously
in the cache. The added parallel cache |ookup circuitry tends to

i ncrease the cost of associativity somewhat, so it usually is found
only in higher-end CPUs.

At the very top of the range, you mght find a fully associative
cache. This type of cache has no index at all, and all lines are

05/12/11
10:39:08 linux-processor-caches-linux-journal -2004.txt

consulted at once when looking for a particular tag.

Al'l modern CPUs handl e address translation, which neans the virtua
address used by the kernel or application to refer to nenory isn't the
sanme as the physical address where the data actually resides. The
caches can be placed before or after address translation, and
sonetines in a hierarchical cache there is a mixture of placenents.
Each of these placements has different properties and features as
descri bed bel ow.

I n physically indexed, physically tagged (PIPT) caches, the tag and

i ndex of the cache are both in physical nmenory, that is, after virtua
address transl ati on has been done. This process is nice and sinple,
but the di sadvantage of PIPT caches is that a valid address
translation nmust be in the TLB (transl ation | ookasi de buffer) of the
CPU. If such a TLB entry needs to be fetched fromnmenory before the
address transl ation can be done, the advantage of caching the data is
lost. Even if a TLB entry is present, the TLB | ookup and the cache

| ookup nust be done sequentially, making these caches sl ow

In virtually indexed, virtually tagged (VIVT) caches, on the other
hand, both the index and tag are in the virtual address space in which
the CPU currently is operating. Al though this makes cache | ookups much
faster (no address translation needs to be done before the | ookup or
after, if the cache | ookup is successful), they suffer fromsevera

ot her probl ens:

1. Virtual address translations usually are changed as part of norma
kernel operation, so the cache nust pay careful attention to
changes in TLB entries (and changes in address space) and flush
cache |ines whose translations have changed.

2. Even in a single address space, multiple virtual addresses nay
exi st for the same physical address. Each of these virtual
addresses woul d be cached separately, even though they represent
the sanme data. This is called the cache-line aliasing problem

CGeneral |y, though, the added | ookup speed of a VIVT cache outwei ghs
its disadvantages, making it the predom nant cache type for non-x86
CPUs.

A type of hybrid cache designed to overcone sone of the shortconi ngs
of the VIVT cache without sacrificing too nuch of its speed advantage
is virtually indexed, physically tagged (VIPT) caching. The index is
on the virtual address, but the tag is on the physical address, so the
conbi nati on (tag, offset) must specify the full physical address. This
requi rement causes the tags to be larger than the tags for other cache
types.

The VI PT cache gains its speed advantage over PlIPT because the address
transl ation and the cache | ookup now can be done in parallel. The CPU
doesn’t know if the cache line is valid (the tags match), however,
until the address transl ation has conpl et ed.

The di sadvantages of VIVT are overcone because the tag i s physical
thus the VIPT cache automatically detects aliasing when it sees that
two tags are identical in the cache. Thus, a VIPT cache may be
constructed in such a fashion that cache-line aliasing never occurs.

This fourth theoretical type of cache, physically indexed, virtually
tagged (PIVT), is basically useless and is not discussed further

The Aliasing Probl em

Any tinme the kernel sets up nore than one virtual nmapping for the sane
physi cal page, cache line aliasing may occur. The kernel is careful to
avoid aliasing, so it usually occurs only in one particular instance:
when the user mmaps a file. Here, the kernel has one virtual address
for pages of the file in the page cache, and the user may have one or
nore different virtual addresses. This is possible because nothing

05/12/11
10:39:08 linux-processor-caches-linux-journal -2004.txt

prevents the user frommmraping the file at multiple |ocations.

VWen a file is mmaped, the kernel adds the mapping to one of the
inode’s lists: i _mmp, for maps that cannot change the underlying
data, or i_mmap_shared, for naps that can change the file's data. The
APl for bringing the cache aliases of a page into sync is:

d flush_dcache_page(struct page *page);

VO

This APl nust be called every tine data on the page is altered by the
kernel, and it should be called before reading data fromthe page if
page- >nmappi ng->i _mmap_shared is not enpty. In architecture-specific
code, flush_dcache_page | oops over the i_nmap _shared list and flushes
the cache data. It then [oops over the i _mmp list and invalidates it,
thus bringing all the aliases into sync.

Separate Instruction and Data Caches

In their quest for efficiency, processors often have separate caches
for the instructions they execute and the data on which they operate.
O'ten, these caches are separate nechani sns, and a data wite nay not
be seen by the instruction cache. This causes problens if you are
trying to execute instructions you just wote into nmenory, for
exanpl e, during nodul e | oadi ng or when using a tranpoline. You nust
use the follow ng API:

voi d

flush_i cache_range(unsi gned | ong start,

unsi gned | ong end);

to ensure that the instructions are seen by the instruction cache
prior to execution. start and end are the starting and ending
addresses, respectively, of the block of nenory you nodified to
contain your instructions.

General Cache Fl ushing

Two APIs globally flush the CPU caches:
voi d flush_cache_all (void);

and
void flush _cache_mm(struct nmmstruct *mm;

These flush all the caches in the systemand only the lines in the
cache belonging to the particul ar process address space nm Both of
these are extrenely expensive operations and should be used only when
absol utely necessary.

Caching in SMP Environnents

When nore than one CPUis in the system a level of caching usually
exists that is unique to each CPU. Depending on the architecture, it
may be the responsibility of the kernel to ensure that changes in the
cache of one CPU becone visible to the other CPUs. Fortunately, nost
CPUs handl e this type of coherency problemin hardware. Even if they
don't, as long as you followthe APIs listed in this article, you can
mai ntai n coherency across all the CPUs.

Concl usi on

| hope |’'ve given you a brief overview of how caches work and how t he
kernel manages them The contents of this article should be sufficient
for you to understand caching in nost kernel progranmm ng situations
you're likely to encounter. Be aware, however, that if you get deeply
into the guts of kernel cache managenent (particularly in the
architecture-specific code), you likely will come across concepts and
APl s not discussed here.

Janes Bottomey is the software architect for Steel Eye. He maintains
the SCSI subsystem the Linux Voyager port and the 53c700 driver. He

05/12/11
10:39:08 linux-processor-caches-linux-journal -2004.txt

al so has made contributions to PA-RI SC Li nux devel opnent in the area
of DMA/ devi ce npodel abstraction.

