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Benchmarking Crimes

When reviewing systems papers (and sometimes even when reading published papers) I
frequently come across highly misleading use of benchmarks. I'm not saying that the
authors intend to mislead the reader, it's just as likely incompetence. But that isn't an
excuse.



I call such cases benchmarking crimes. Not because you can go to jail for them (but
probably should?) but because they undermine the integrity of the scientific process.
Rest assured, if I'm a reviewer of your paper, and you commit one of those, you're
already most of the way into rejection territory. The rest of the work must be pretty
damn good to be forgiven a benchmarking crime (and even then you'll be asked to fix it
up in the final version).

The following list is work in progress, I'll keep adding to it as I come across (or
remember) more systems benchmarking crimes...

A. Selective benchmarking

This is the mother of all benchmarking crimes: using a biased set of benchmarks
to (seemingly) prove a point, which might be contradicted by a broader coverage
of the evaluation space. It's a clear indication of at best gross incompetence or at
worst an active attempt to deceive.

There are several variants of this crime, I list the most prominent ones. Obviously,
not all instances of this are equally bad, in some cases it may just be a matter of
degree of thoroughness, but in its most blatant form, this is a truly hideous crime.

1. Not evaluating potential performance degradation

A fair evaluation of a technique/design/implementation that is supposed to
improve performance must actually demonstrate two things:

Progressive criterion: Performance actually does improve
significantly in the area of interest
Conservative criterion: Performance does not significantly degrade
elsewhere

Both are important! You cannot easily argue that you've gained something if
you improve performance at one end and degrade it at another.

Reality is that techniques that improve performance generally require some
degree of extra work: extra bookkeeping, caching, etc. These things always
have a cost, and it is dishonest to pretend otherwise. This is really at the
heart of systems: it's all about picking the right trade-offs. A new technique
will therefore almost always introduce some overheads, and you need to
demonstrate that they are acceptable.

If you innovation does lead to a degree of degradation, then you need to
analyse it, and build a case that it is acceptable given the other benefits. If,



however, you only evaluate the scenarios where your approach is beneficial,
you are being deceptive. No ifs, no buts.

2. Benchmark sub-setting without strong justification

I see this variant (which can actually be an instance of the previous one)
frequently with SPEC benchmarks. These suites have been designed as
suites for a reason: to be representative of a wide range of workloads, and to
stress various aspects of a system.

However, it is also true that it is often not possible to run all of SPEC on an
experimental system. Some SPEC programs require large memories (they
are designed to stress the memory subsystem!) and it may be simply
impossible to run them on a particular platform, particularly an embedded
system. Others are FORTRAN programs, and a compiler may not be
available.

Under such circumstances, it is unavoidable to pick a subset of the suite.
However, it must then be clearly understood that the results are of limited
value. In particular, it is totally unacceptable to quote an overall figure of
merit (such as average speedup) for SPEC if a subset is used!

If a subset is used, it must be well justified. There must be convincing
explanation for each missing program. And the discussion must be careful
not to read too much into the results, keeping in mind that it is conceivable
that any trend observed by the subset used could be reverted by programs
not in the subset.

Where the above rules are violated, the reader is bound to suspect that the
authors are trying to hide something. I am particularly allergic to
formulations like “we picked a representative subset” or “typical results are
shown”. There is no such thing as a “representative” subset of SPEC, and
the ”typical” results are most likely cherry-picked to look most favourable.
Expect no mercy for such a crime!

Lmbench is a bit of a special case. Its license actually forbids reporting
partial results, but a complete lmbench run produces so many results that it
is impossible to report in a conference paper. On the other hand, as this is a
collection of micro-benchmarks which are probing various aspects of the
OS, one generally understands what each measures, and may only be
interested in a subset for good reasons. In that case, running the particular
lmbench test has the advantage of measuring a particular system aspect in a
well-defined, standardised way. This is probably OK, as long as not too



much is being read into the results (and Larry McVoy doesn't sue you for
license violation...)

A variant of this crime is arbitrarily picking benchmarks from a huge
set. For example, when describing an approach to debug or optimise Linux
drivers, there are obviously thousands of candidates. It may be infeasible to
use them all, and you have to pick a subset. However, I want to understand
why you picked the particular subset. Note that arbitrary is not the same as
random, so a random pick would be fine. However, if your selection
contains many obscure or outdated devices, or is heavily biased towards
serial and LED drivers, then I suspect that you have something to hide.

3. Selective data set hiding deficiencies

This variant can again be
viewed as an example of the
first. Here the range of the
input parameter is picked to
make the system look good,
but the range is not
representative of a real
workload. For example, the
diagram on the right shows
pretty good scalability of
throughput as a function of load, and without any further details this looks
like a nice result.

Things look a bit different when we put the graph into context. Say this is
showing the throughput (number of transactions per second) of a database
system with a varying number of clients. So far so good.

Is it still so good if I'm telling you that this was measured on a 32-core
machine? What we see then is that the throughput scales almost linearly as
long as there is at most one client per core. Now that is not exactly a typical
load for a database. A single transaction is normally insufficient for keeping
a core busy. In order to get the best of your hardware, you'll want to run the
database so that there are in average multiple clients per core.

So, the interesting data range starts where the graph ends! What happens if
we increase the load into the really interesting range is shown in the graph
on the left. Clearly, things no longer look so rosy, in fact, scalability is
appalling!



Note that, while somewhat
abstracted and simplified, this is
not a made-up example, it is
taken from a real system, and the
first diagram is equivalent to
what was in a real publication.
And the second diagram is
essentially what was measured
independently on the same
system. Based on a true story, as
they say...

B. Improper handling of benchmark results
1. Pretending micro-benchmarks represent overall performance

Micro-benchmarks specifically probe a particular aspect of a system. Even
if they are very comprehensive, they will not be representative of overall
system performance. Macro-benchmarks (representing real-world
workloads) must be used to provide a realistic picture of overall
performance.

In rare cases, there is a particular operation which is generally accepted to
be critical, and where significant improvements are reasonably taken as an
indication of real progress. An example is microkernel IPC, which was long
known to be a bottleneck, and reducing cost by an order of magnitude can
therefore be an important result. And for a new microkernel, showing that it
matches the best published IPC performance can indicate that it is
competitive.

Such exceptions are rare, and in most cases it is unacceptable to make
arguments on system performance based only on micro-benchmarks.

2. Throughput degraded by x% ⇒⇒ overhead is x%

This vicious crime is committed by probably 10% of papers I get to review.
If the throughput of a system is degraded by a certain percentage, it does
not at all follow that the same percentage represents the overhead that was
added. Quite to the contrary, in many cases the overhead is much higher.
Why?

Assume you have a network stack which under certain circumstances
achieves a certain throughput, and a modified network stack achieves 10%
less throughput. What's the overhead introduced by the modification?



Without further information, it is impossible to answer that question. Why
is throughput degraded? In order to answer that question, we need to
understand what determines throughput in the first place. Assuming that
there's more than enough incoming data to process, the amount of data the
stack can handle depends mostly on two factors: processing (CPU) cost and
latency.

Changes to the implementation (not protocols!) will affect processing cost
as well as latency, but their effect on throughput is quite different. As long
as CPU cycles are available, processing cost should have negligible effect
on throughput, while latency may (packets will be dropped if not processed
quickly enough). On the other hand, if the CPU is fully loaded, increasing
processing cost will directly translate into latency.

Networks are actually designed to tolerate a fair amount of latency, so they
shouldn't really be very sensitive to it. So, what's going on when throughput
drops?

The answer is that either latency has grown substantially to show up in
reduced throughput (likely much more than the observed degradation in
throughput), or the CPU has maxed out. And if a doubling of latency results
in a 10% drop of throughput, calling that “10% overhead” is probably not
quite honest, is it?

If throughput was originally limited by CPU power (fully-loaded processor)
then a 10% throughput degradation can be reasonably interpreted as 10%
increased CPU cost, and that can be fairly called “10% overhead”.
However, what if on the original system the CPU was 60% loaded, and on
the modified system it's maxed out at 100% (and that leading to the
performance degradation)? Is that still “10% overhead”?

Clearly not. A fair way to calculate overhead in this case would be to look
at the processing cost per bit, which is proportional to CPU load divided by
throughput. And on that measure, cost has gone up by 85%. Consequently, I
would call that an 85% overhead!

A variant of this is to off-load some processing on a “free” core, and not
including the load on that extra core in the processing cost. That's just
cheating.

The bottom line is that incomplete information is presented which
prevented us from really assessing the overhead/cost, and lead to a huge
under-estimation. Throughput comparisons must always be accompanied by



a comparison of complete CPU load. For I/O throughput, the proper way to
compare is in terms of processing time per bit!

3. Downplaying overheads

There are several ways people use to try to make their overheads look
smaller than they are.

i. 6% →→ 13% overhead is a 7% increase

This one is confusing percentage with percentage points, regularly
practiced (out of incompetence) by the media. That doesn't excuse
doing the same in technical publications.

So the authors' modified system increases processing overheads from
6% (for the original system) to 13% (for theirs) and they sheepishly
claim they only added 7% overhead. Of course, that's complete
bullocks! They more than doubled the overhead, their system is less
than half as good as the original!

Similarly, if your baseline system has a CPU utilisation of 26%, and
your changes result in a utilisation of 46%, you haven't increased load
by 20%, you almost doubled it! The dishonesty in the 20% claim
becomes obvious if you consider what would happen if the same
experiments were run on a machine exactly half as powerful: load
would go from 52% to 92%, clearly not a 20% increase!

ii. Incorrect reference point

This is an all-too-frequent approach to cheating with relative
overheads: Authors pick the denominator to suit their purposes. For
example, the baseline latency is 60s, and the authors' improved
system reduces this to 45s. The authors then claim “the original
system was 33% slower” (60/45-1 = 0.33). Or, the author's (improved
in some way, e.g. more secure) system suffers some performance
degradation, extending execution latency to 80s, making the authors
claim “performance is degraded by only 25%” (1-60/80 = 0.25).

This is clearly dishonest. The original system is the baseline, and
therefore must occur in the denominator when calculating relative
performance. Meaning in the first case, the correct value is 1-45/60 =
25% improvement, while in the second case it is 80/60-1 = 33%
degradation.

http://imgs.xkcd.com/comics/percentage_points.png


Thanks to Dan Tsafrir for reminding me of this annoyance.

iii. Other creative overhead accounting

A particularly clear example of incorrect calculation of overheads is
in this paper (published in Usenix ATC, a reputable conference). In
Table 3, the latency of the stat system call goes up from 0.39μs to
2.28μs, almost a six-fold increase. Yet the authors call it an “82.89%
slowdown”! (Also note the pseudo accuracy; this is not a crime, but
an indication of incorrect understanding of numbers.)

To their credit, the authors of the paper recognised the mistake and
submitted an errata slip, which corrects the overhead figures. Still, it's
stunning that this went past the reviewers.

4. No indication of significance of data

Raw averages, without any indication of variance, can be highly
misleading, as there is no indication of the significance of the results. Any
difference between results from different systems might be just random.

In order to indicate significance, it is essential that at least standard
deviations are quoted. Systems often behave in a highly deterministic
fashion, in which case the standard deviation of repeated measurements
may be very small. In such a case it might be sufficient to state that, for
example, “all standard deviations were below 1%”. In such a case, if the
effect we are looking at is, say, 10%, the reader can be reasonably
comfortable with the significance of the results.

If in doubt use Student's t-test to check the significance.

Also, if you fit a line to data, quote at least a regression oefficient (unless it's
obvious that there are lots of points nd the line passes right through all of
them).

5. Arithmetic mean for averaging across benchmark scores

The arithmetic mean is generally not suitable for deriving an overall score
from a set of different benchmarks (except where the absolute execution
times of the various benchmarks have real significance). In particular the
arithmetic mean has no meaning if individual benchmark scores are
normalised (eg against a baseline system).

https://www.cs.technion.ac.il/~dan/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/fu
http://gernot-heiser.org/style-guide.html#pseudoacc
https://www.usenix.org/system/files/atc14_errata_slip2.pdf


The proper way to average (i.e. arrive at a single figure of merit) is to use
the geometric mean of scores [Fleming & Wallace, CACM (29), p 218].

6. Misleading presentation of results

Presenting correct numbers in a way that fools the reader into drawing the
wrong conclusions is at best gross incompetence and more likely an attempt
to deceive. Most of these cases fall into what Martin Gardner called “chart
abuse”, a term I really like.

Chat abuse usually
involves being
manipulative with scales,
typically in order to
exaggerate an effect, like
in the graph on the right.
Whatever the quantity on
the abscissa is, you're
likely to have the
impression that varying
that value has a dramatic impact on whatever the ordinate quantity is, after
all, it goes from almost full to almost empty, right? Of course, if you
actually look at the units, you see that the dependent quantity varies by only
21%. This may or may not be significant, but it isn't anywhere near the
rough order-of-magnitude change the graph seems to show on a cursory
glance.

However, the opposite can also be
true, where scales are used to hide
significant variation. An awesome
example (thanks Baris Kasikci for
the pointer) is on the left: The daily
update of COVID-19 cases of the
Dept of Public Health of the US
State of Georgia skillfully adjusts
the scales so that the amount of red
(indicating counties with a high
number of infections) does not
change much. The two charts here
are from 2020-07-02 (leftmost) and
2020-07-17.

The web page states: “This chart is meant to aid understanding whether the

http://dl.acm.org/citation.cfm?id=5673
https://en.wikipedia.org/wiki/Martin_Gardner
https://twitter.com/bariskasikci
https://dph.georgia.gov/


outbreak is growing, leveling
off, or declining [...]” Clearly,
rather than aiding understanding
the growth, it obscures the 50%
increase in cases over 15 days.
In fact, looking at the curiously
non-round numbers deliminating
the colour buckets, it is hard to
believe that there's anything
accidental about this. For
example, in the older graph, the
upper end of the red range is
1.57 times the lower end, while
on the newer graph the ratio is
only 1.37. It looks very much

like the scales were chosen to keep the number of “hot” counties constant.
It's hard to believe that this is anything but an intentional attempt to deceive.

C. Using the wrong benchmarks
1. Benchmarking of simplified simulated system

It is sometimes unavoidable to base an evaluation on a simulated system.
However, this is extremely dangerous, as a simulation is always a model,
and contains a set of assumptions.

It is therefore essential to ensure that the simulation model does not make
any simplifying assumption which will impact the performance aspect you
are looking for. And, it is equally important to make it clear to the
reader/reviewer that you really have made sure that the model is truly
representative with respect to your benchmarks.

It is difficult to give general advice on how to do this. My best advice is to
put yourself into the shoes of the reader, and even better to get an outsider
to read your paper and check whether you have really made a convincing
case.

2. Inappropriate and misleading benchmarks

I see people using benchmarks that are supposed to prove the point, when in
fact they say almost nothing (and the only thing they could possibly show is
truly aweful performance). Examples:

Using uniprocessor benchmarks for multiprocessor scalability



This one seems outright childish, but that doesn't mean you don't see
it in papers submitted by (supposedly) adults. Someone is trying to
demonstrate the multiprocessor scalability of their system by running
many copies of SPEC CPU benchmarks.

Of course, these are uniprocessor programs which do not
communicate. Further more, they perform very few system calls, and
thus do not exercise the OS or underlying communication
infrastructure. They should scale perfectly (at least for low processor
counts). If not, there's serious brokenness in the OS or hardware. Real
scalability tests would run workloads which actually communicate
across processors and use system calls.

Using a CPU-intensive benchmark to show networking overheads

Again, this seems idiotic (or rather, is idiotic) but I've seen it
nevertheless. People trying to demonstrate that their changes to a NIC
driver or networking stack has low performance impact, by
measuring the performance degradation of a CPU-intensive
benchmark. Again, the only thing this can possibly prove is that
performance sux, namely if there is any degradation at all!

3. Same dataset for calibration and validation

This is a fairly widespread crime, and it's frankly an embarrassment for our
discipline.

Systems work frequently uses models which have to be calibrated to
operating conditions (eg. platform, workloads, etc). This is done with some
calibration workloads. Then the system is evaluated, running an evaluation
workload, to show how accurate the model is.

It should go without saying, but apparently doesn't, that the calibration and
evaluation workloads must be different! In fact, they must be totally
disjoint. It's incredible how many authors blatantly violate this simple rule.

Of course, the results of using the same data for calibration and validation
are likely that the model appears accurate, after all, it's been designed to fit
the experimental results. But all such an experiment can show is how well
the model fits the existing data. It implies nothing about the predictive
power of the model, yet prediction of future measurements is what models
are all about!



D. Improper comparison of benchmark results
1. No proper baseline

This crime is related to the above. A typical case is comparing different
virtualization approaches by only showing the performance of the two
virtualized systems, without showing the real baseline case, which
obviously is the native system. It's comparison against native which
determines what's good or bad, not comparison against an arbitrary
virtualization solution!

Consider the baseline carefully. Often it is the state-of-the-art solution.
Often it is the optimal (or theoreticaly best) solution or a hardware limit
(assuming zero software overhead). The optimal solution is usually
impossible to implement in a system, because it requires knowledge of the
future or magic zero-cost software, but it can often be computed “outside”
the system and is an excellent base for comparison. In other cases the
correct baseline it is in some sense an unperturbed system (as in the
virtualization example above).

2. Only evaluate against yourself

This is a variant of the above crime, but that doesn't make it rare. It might
be exciting to you that you have improved the performance of your system
over last year's paper, but I find it much less exciting. I want to see the
significance, and that means comparing against some accepted standard.

At least this crime is less harmful that others in that it is pretty obvious, and
rarely will a reviewer fall for it.

There's a variant of this crime which is more subtle: evaluating a model
against itself. Someone builds a model of a system, making a number of
simplifying assumptions, not all of them obviously valid. They build a
solution for that problem, and then evaluate that solution on a simulated
system that contains the exact same assumptions. The results look nice, of
course, but they are also totally worthless, as there they are lacking the most
basic reality check. This one I find a lot in papers which are already
published. Depressing...

3. Unfair benchmarking of competitors

Doing benchmarks on your competitors yourself is tricky, and you must go
out of your way to ensure that you do not treat them unfairly. I'm sure you
tweaked your system as well as you could, but did you really go through the



same effort with the alternative?

In order to reassure the reader/reviewer that you have been fair, describe
clearly what you have done with the competitor system, e.g. fully describe
all configuration parameters, etc. Be particularly circumspect if your results
do not match any published data about the competitor system. If in doubt,
contact the authors of that system to confirm that your measurements are
fair.

Again, I have seen a case of this case of benchmarking abuse in a published
paper, in that case the “competitor” system was mine. The authors of the
paper failed to present any data on how they ran my system, and I strongly
suspect that they got it wrong. For example, the default configuration of our
open-source release had debugging enabled. Turning off that option (which,
of course, you would in any production setting and any serious performance
evaluation) improves performance massively.

The bottom line is that extreme care must be taken when doing your own
benchmarking of a competitor system. It is easy to run someone else's
system sub-optimally, and using sub-optimal results as a basis for
comparison is highly unethical and probably constitutes scientific
misconduct. And sloppiness is no excuse in such a case!

E. Missing information
1. Missing specification of evaluation platform

For reproducibility it is essential that the evaluation platform is well-
specified, including all characteristics that may influence the results.
Platform incorporates hardware and software.

Details depend a fair bit on what is being evaluated, but at the very least I
expect to see the processor architecture, number of cores and clock rate, and
memory sizes. For benchmarks involving networking the throughput
supported by the NIC and switches if any. For benchmarks that exercise the
memory system it is generally important to specify sizes and associativities
of all levels of cache. In generaal it is good practice the list the model
number of the CPU, core type and microarchitecture.

The same holds for the software. Specify the operating system and (where
used) hypervisor are you running on, including release number. Compiler
versions are often also relevant, as may be the version of other tools.

2. Missing sub-benchmark results



When running a benchmarking suite (such as SPEC) it is generally not
sufficient to just quote the overall figure of merit of that suite. Instead, it is
essential to show performance of the individual sub-benchmarks. Suites are
designed to cover a range of load conditions, and some may benefit from
your work while others are degraded. Only providing the overall score can
at worst hide problems, and at best reduces the insights that can be obtained
from the evaluation.

3. Relative numbers only

Always give complete result, not just ratios (unless the denominator is a
standard figure). At best, seeing only relative numbers leaves me with a
doubt as to whether the figures make sense at all, I'm robbed of a simple
way to perform a sanity check. At worst, it can cover up that a result is
really bad, or really irrelevant.

One of the worst instances I've seen of this crime was not in a paper I was
reviewing, but one that was actually published. It compared the
performance of two systems by showing the ratio of overheads: a ratio of
two relative differences. This is too much relativity to read anything out of
the numbers.

For example, assume that the overhead of one system is twice that of
another. By itself, that tells us very little. Maybe we are comparing a tenfold
with a twentyfold overhead. If so, who cares? Both are most likely
unusable. Or maybe the overhead of one system is 0.1%, who cares if the
other one has 0.2% overhead? The bottom line is we have no idea how
significant the result is, yet the representation implies that it is highly
significant.

Exercise for the Reader

Count the number of benchmarking crimes in this paper (published in IEEE CCNC'09).

Benchmarking Best Practice

The below benchmarking rules is what I tell my students. It's somewhat OS-oriented,
but the basic principles apply generally.

General rules

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4784874&tag=1


Make sure that the system is really quiescent when starting an experiment, leave
enough time to ensure all previous data is flushed out.
Make your benchmarking rig part of our regression testing suite.
Document what you're doing.

Test data and results

Always verify the data you are transferring. When writing something to disk or
network, read it back and compare to what you've written. When reading, check
that what you're reading is correct.
There are cases where this would unreasonably lengthen the time a benchmark
takes. If that's the case, then at make sure that you least check the data for one
complete run, before continuing. Also, prior to collecting final numbers, check
again!
Never use the same data over and over. Make sure that each run uses different
data. For example, have a timestamp or other unique identifier (like the coordinate
and label in the graph) in the data. This is to ensure that you're actually reading
the correct data, not some stale cache contents, wrong block, etc.
Use a combination of successive and separate runs for the same data point. E.g.,
do the same point at least twice in a row (helps to identify caching effects that
shouldn't be there) and twice more after some other points were taken (to identify
cases of caching where there shouldn't be any). Have a good look at the standard
deviations.
Invert the order of measurements. This helps to identify interference between
measurements. This and the previous point can together be achieved by traversing
the set of data points in both directions.
Don't only use regular strides or powers of two. You may be hitting pathological
cases without noticing it. Throwing in some random points might be a good idea.
However, don't use only random points, you might be missing pathological cases.
Good candidates for pathological cases are 2n, 2n-1, 2n+1.
When comparing measurements of different configurations (which is what you
normally do) make sure you use exactly the same points, don't just compare
graphs over the same interval.
When getting funny results, check that you are comparing apples with apples. For
example, make sure that the system is in as much as possible the same state
between runs you want to compare. For example, we had cases where benchmark
results on Linux were affected by where the OS allocated them in physical
memory, which differed between successive runs (and had massive effects on
conflict misses in physically-addressed caches).

Statistics



Always do several runs, and check the standard deviation. Watch out for abnormal
variance. In the sort of measurements we do, standard deviations are normally
expected to be less than 0.1%. If you see >1% this should ring alarm bells.
In some cases it is reasonable to ignore the highest or lowest point (but this really
should only be done after a proper statistical outlayer-detection procedure) or only
look at the floor of the points. However, only use such selective use of data if you
really know what you are doing, and also state it explicitly in your paper/report.

Timing

Use lots of iterations in order to improve statistics and remove clock granularity.
Run sufficient warm-up iterations which aren't timed.
Isolate the thing you want to time into a function (already done if you're timing
system calls).
Eliminate loop overhead (don't just rely on it being small, eliminate it). The most
reliable way of doing this is two run two versions of the benchmark, identical
except for replacing the actual invocation (function or system call) by a noop. Run
the loop without any compiler optimisations (which is why it's important to have
the thing you want to time in a function, which however may require you to
separately deal with function overhead).
Perform static analysis of the syscall loop above and verify that the timing
numbers match your predictions.
Use proper statistics, even if they are not used in the final paper, checking for
variance is an important sanity check.

Further Information

With colleagues at VU Amsterdam I recently published a (non peer-reviewed) study of
benchmarking crimes in the system security literature, with interesting results. It
contains a further category that is not relevant to most systems work, but definitely to
security work.

In my Advanced Operating Systems course I have a lecture on performance evaluation,
which discusses many of these benchmarking crimes, and gives other useful hints on
benchmarking and performance analysis.

If you are a student or early-career researcher, you might also be interested in my style
guide for papers and theses.

https://arxiv.org/abs/1801.02381
http://www.cse.unsw.edu.au/~cs9242/
http://www.cse.unsw.edu.au/~cs9242/current/lectures/
https://www.cse.unsw.edu.au/~gernot/style-guide.html
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