
httperf—A Tool for Measuring
Web Server Performance

David Mosberger
HP Research Labs

davidm@hpl.hp.com, http://www.hpl.hp.com/personal/David Mosberger/

Tai Jin
HP Research Labs

tai@hpl.hp.com, http://www.hpl.hp.com/personal/Tai Jin/

Abstract

This paper describes httperf, a tool for measuring
web server performance. It provides a flexible facil-
ity for generating various HTTP workloads and for
measuring server performance. The focus of httperf
is not on implementing one particular benchmark
but on providing a robust, high-performance tool
that facilitates the construction of both micro- and
macro-level benchmarks. The three distinguishing
characteristics of httperf are its robustness, which
includes the ability to generate and sustain server
overload, support for the HTTP/1.1 protocol, and
its extensibility to new workload generators and
performance measurements. In addition to report-
ing on the design and implementation of httperf this
paper also discusses some of the experiences and
insights gained while realizing this tool.

1 Introduction

A web system consists of a web server, a number
of clients, and a network that connects the clients to
the server. The protocol used to communicate be-
tween the client and server is HTTP [2]. In order
to measure server performance in such a system it
is necessary to run a tool on the clients that gen-
erates a specific HTTP workload. Currently, web
server measurements are conducted using bench-

marks such as SPECweb or WebStone [6, 8] which
simulate a fixed number of clients. Given that the
potential user base of an Internet-based server is on
the order of hundreds of millions of users it is clear
that simulating a fixed and relatively small num-
ber of clients is often insufficient. For this rea-
son, Banga and Druschel [1] recently argued the
case for measuring web servers with tools that can
generate and sustain overload, which is effectively
equivalent to simulating an infinite user base. They
also presented a tool called “s-clients” that is ca-
pable of generating such loads. The s-clients ap-
proach is similar to httperf in that both are capa-
ble of sustaining overload but they differ signifi-
cantly in design and implementation. For example,
httperf completely separates the issue of how to per-
form HTTP calls from issues such as what kind of
workload and measurements should be used. Con-
sequently, httperf can readily be used to perform
various kinds of web-server related measurements,
including SPECweb/WebStone-like measurements,
s-client-like measurements, or new kinds of mea-
surements such as the session-based measurements
that we will discuss briefly in Section 4.

Creating httperf turned out to be a surprisingly dif-
ficult task due to factors inherent in the problem and
shortcomings of current operating systems (OSes).
The first challenge is that a web system is a dis-
tributed system and as such inherently more diffi-
cult to evaluate than a centralized system that has
little or no concurrency and a synchronized clock.

Second, HTTP in general and HTTP/1.0 in partic-
ular cause connection usage patterns that TCP was
not designed for. Some of these problems have been
fixed in response to the experience gained from run-
ning web servers. However, since tools such as
httperf run on the client-side they exercise the sys-
tem in a manner that is quite different from the way
servers do. As a consequence, there are a number of
additional issues that such a test tool needs to guard
against.

A third challenge is that the world-wide web is a
highly dynamic system. Almost every part in it—
server and client software, network infrastructure,
web content, and user access pattern—is subject to
relatively frequent and fundamental changes. For
a test tool to remain useful over a period of time
requires a design that makes it relatively easy to ex-
tend and modify as need arises.

The rest of this paper is organized as follows: the
next section gives a brief introduction on how to
use httperf. Section 3 describes the overall design
of the tool and presents the rationale for the most
important design choices. Section 4 discusses the
current state of httperf and some of the more subtle
implementation issues discovered so far. Finally,
Section 5 presents some concluding remarks.

2 An Example of Using httperf

To convey a concrete feeling of how httperf is used,
this section presents a brief example of how to mea-
sure the request throughput of a web server. The
simplest way to achieve this is to send requests to
the server at a fixed rate and to measure the rate
at which replies arrive. Running the test several
times and with monotonically increasing request
rates, one would expect to see the reply rate level
off when the server becomes saturated, i.e., when it
is operating at its full capacity.

To execute such a test, it is necessary to invoke
httperf on the client machines. Ideally, the tool
should be invoked simultaneously on all clients, but
as long as the test runs for several minutes, startup

differences in the range of seconds do not cause sig-
nificant errors in the end result. A sample command
line is shown below:

httperf --server hostname \
--port 80 --uri /test.html \
--rate 150 --num-conn 27000 \
--num-call 1 --timeout 5

This command causes httperf to use the web
server on the host with IP name hostname, run-
ning at port 80. The web page being retrieved is
“/test.html” and, in this simple test, the same
page is retrieved repeatedly. The rate at which re-
quests are issued is 150 per second. The test in-
volves initiating a total of 27,000 TCP connections
and on each connection one HTTP call is performed
(a call consists of sending a request and receiving
a reply). The timeout option selects the number of
seconds that the client is willing to wait to hear back
from the server. If this timeout expires, the tool con-
siders the corresponding call to have failed. Note
that with a total of 27,000 connections and a rate
of 150 per second, the total test duration will be ap-
proximately 180 seconds, independent of what load
the server can actually sustain.

Once a test finishes, several statistics are printed.
An example output of httperf is shown in Figure 1.
The figure shows that there are six groups of statis-
tics, separated by blank lines. The groups consist
of overall results, results pertaining to the TCP con-
nections, results for the requests that were sent, re-
sults for the replies that were received, CPU and
network utilization figures, as well as a summary of
the errors that occurred (timeout errors are common
when the server is overloaded).

A typical performance graph that can be obtained
with the statistics reported by httperf is shown in
Figure 2. For this particular example, the server
consisted of Apache 1.3b2 running on a HP Net-
Server with one 200MHz P6 processor. The server
OS was Linux v2.1.86. The network consisted of a
100baseT Ethernet and there were four client ma-
chines running HP-UX 10.20. As the top-most
graph shows, the achieved throughput increases lin-
early with offered load until the server starts to be-

Total: connections 27000 requests 26701 replies 26701 test-duration 179.996 s

Connection rate: 150.0 conn/s (6.7 ms/conn, <=47 concurrent connections)
Connection time [ms]: min 1.1 avg 5.0 max 315.0 median 2.5 stddev 13.0
Connection time [ms]: connect 0.3

Request rate: 148.3 req/s (6.7 ms/req)
Request size [B]: 72.0

Reply rate [replies/s]: min 139.8 avg 148.3 max 150.3 stddev 2.7 (36 samples)
Reply time [ms]: response 4.6 transfer 0.0
Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)
Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

CPU time [s]: user 55.31 system 124.41 (user 30.7% system 69.1% total 99.8%)
Net I/O: 190.9 KB/s (1.6*10ˆ6 bps)

Errors: total 299 client-timo 299 socket-timo 0 connrefused 0 connreset 0
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

Figure 1: Example of Basic Performance Statistics

1ms

4ms

16ms

64ms

256ms

1024ms

4096ms

0 500 1000 1500 2000
 0%

 20%

 40%

 60%

 80%

100%

100
200

300
399

497
594

672
778

792
792

788
781

780
776

772
768

768
763

761
758

Linux 100bt 1K queue=32 procs=32 clients=4 duration=180s timeout=1s CPUs=1

Reply Rate [1/s]
Errors [%]

Response time [ms]

Figure 2: Example Server Performance Graph

come saturated at a load of 800 calls per second. As
offered load is increased beyond that point, server
throughput starts to fall off slightly as an increas-
ing amount of time is spent in the kernel to handle
network packets for calls that will fail eventually
(due to client timeouts). This is also reflected in the
error graph, which shows the percentage of calls
that failed: once the server is saturated, the num-
ber of calls that fail increases quickly as more and
more calls experience excessive delays. The third
and final graph in the figure shows the average re-
sponse time for successful calls. The graph shows
that response time starts out at about 2ms and then
gradually increases until the server becomes satu-
rated. Beyond that point, response time for suc-
cessful calls remains largely constant at 43ms per
call.

3 Design

The two main design goals of httperf were (a) pre-
dictable and good performance and (b) ease of ex-
tensibility. Good performance is achieved by im-
plementing the tool in C and paying attention to the
performance critical execution paths. Predictability
is improved by relying as little as possible on the
underlying OS. For example, httperf is designed to
run as a single-threaded process using non-blocking
I/O to communicate with the server and with one
process per client machine. With this approach,
CPU scheduling is trivial for the OS which mini-
mizes the risk of excessive context switching and
poor scheduling decisions. Another example is
timeout management: rather than depending on
OS-mechanisms, httperf implements its own, spe-
cialized and light-weight timer management facil-
ity that avoids expensive system calls and POSIX
signal delivery wherever possible.

Based on experiences with an earlier test tool, it
was clear that httperf will undergo fairly exten-
sive changes during its lifetime. To accommodate
this need for change, httperf is logically divided
into three different parts: the core HTTP engine,
workload generation, and statistics collection. The

HTTP engine handles all communication with the
server and as such takes care of connection man-
agement and HTTP request generation and reply
handling. Workload generation is responsible for
initiating appropriate HTTP calls at the appropri-
ate times so a particular workload is induced on the
server. The third part, statistics collection, is re-
sponsible for measuring various quantities and pro-
ducing relevant performance statistics. Interactions
between these three parts occur through a simple
yet general event signalling mechanism. The idea
is that whenever something interesting occurs in-
side httperf, an event is signalled. Parties interested
in observing a particular event can register a handler
for the event. These handlers are invoked whenever
the event is signalled. For example, the basic statis-
tics collector measures the time it takes to estab-
lish a TCP connection by registering events handler
for the events that signal the initiation and estab-
lishment of a connection, respectively. Similarly,
a workload generator responsible for generating a
particular URL access pattern can register a han-
dler for the event indicating the creation of a new
call. Whenever this handler gets invoked, the URL
generator can insert the appropriate URL into the
call without having to concern itself with the other
aspects of call creation and handling.

3.1 Sustaining Overload

As alluded to earlier, an important design issue is
how to sustain an offered load that exceed the ca-
pacity of the web server. The problem is that once
the offered rate exceeds the server’s capacity, the
client starts building up resources at a rate that is
proportional to the difference between offered and
sustained rate. Since each client has only a finite
amount of resources available, sooner or later the
client would run out of resources and therefore be
unable to generate any new requests. For example,
suppose that each httperf process can have at most
2,000 TCP connection open at any given time. If
the difference between offered and sustained rate is
100 requests per second, a test could last at most
20 seconds. Since web server tests usually require
minutes to reach a stable state, such short test du-

rations are unacceptable. To solve this problem,
httperf times out calls that have been waiting for
a server response for too long. The length of this
timeout can be selected through command-line op-
tions.

With this timeout approach, the amount of client re-
sources used up by httperf is bounded by the time-
out value. In the worst case scenario where the
server does not respond at all, httperf will never
use more than the amount of resources consumed
while running httperf for the duration of the time-
out value. For example, if connections are initiated
at a rate of 100 per second and the timeout is 5 sec-
onds, at most 500 connections would be in use at
any given time.

3.1.1 Limits to Client-Sustainable Load

It is interesting to consider just what exactly limits
the offered load a client can sustain. Apart from the
obvious limit that the client’s CPU imposes, there
is a surprising variety of resources that can become
the first-order bottleneck. It is important to keep
these limits in mind so as to avoid the pitfall of
mistaking client performance limits as server per-
formance limits. The three most important client
bottlenecks we have identified so far are described
below.

Size of TCP port space: TCP port numbers are 16
bits wide. Of the 64K available port numbers,
1,024 are typically reserved for privileged pro-
cesses. This means that a client machine run-
ning httperf can make use of at most 64,512
port numbers. Since a given port number
cannot be reused until the TCP TIME WAIT
state expires, this can seriously limit the client
sustainable offered rate. Specifically, with a
1 minute timeout (common for BSD-derived
OSes) the maximum sustainable rate per client
is about 1,075 requests per second. With the
RFC-793 [5] recommended value of 4 min-
utes, the maximum rate would drop to just 268
requests per second.

Number of open file descriptors: Most operating
systems limit both the total and per-process
number of file descriptors that can be opened.
The system-wide number of open files is nor-
mally not a limiting factor and hence we will
focus on the latter. Typical per-process lim-
its are in the range from 256 to 2,048. Since
a file descriptor can be reused as soon as an
earlier descriptor has been closed, the TCP
TIME WAIT state plays no role here. In-
stead, the duration that is of interest here is
the httperf timeout value. Assuming a value
of 5 seconds and a limit of 2,000 open file de-
scriptors per process, a maximum rate of about
400 requests per second could be sustained.
If this becomes the first-order bottleneck in a
client, it is possible to avoid it either by tuning
the OS to allow a larger number of open file
descriptors or by decreasing the httperf time-
out value. Note that decreasing the timeout
value effectively truncates the lifetime distri-
bution of TCP connections. This effect has to
be taken into consideration when selecting an
appropriate value. Another seemingly obvious
solution would be to run multiple processes
on a single machine. However, as will be ex-
plained in Section 4.1, there are other reasons
that make this approach undesirable.

Socket buffer memory: Each TCP connection
contains a socket receive and send buffer. By
default, httperf limits send buffers to 4KB
and receive buffers to 16KB. With limits in
the kilobyte range, these buffers are typically
the dominant per-connection costs as far as
httperf memory consumption is concerned.
The offered load that a client can sustain is
therefore also limited by how much memory
is available for socket buffers. For example,
with 40MB available for socket buffers, a
client could sustain at most 2,048 concurrent
TCP connections (assuming a worst-case
scenario where all send and receive buffers are
full). This limit is rarely encountered, but for
memory-constrained clients, httperf supports
options to select smaller limits for the send-
and receive-buffers.

The above list of potential client performance bot-
tlenecks is of course by no means exhaustive. For
example, older OSes often exhibit poor perfor-
mance when faced with several hundred concurrent
TCP connections. Since it is often difficult to pre-
dict the exact rate at which a client will start to be-
come the performance bottleneck, it is essential to
empirically verify that observed performance is in-
deed a reflection of the server’s capacity and not
that of the client’s. A safe way to achieve this is to
vary the number of test clients, making sure that the
observed performance is independent of the number
of client machines that participate in the test.

3.2 Measuring Throughput

Conceptually, measuring throughput is simple: is-
sue a certain number of requests, count the number
of replies received and divide that number by the
time it took to complete the test. This approach has
unfortunately two problems: first, to get a quanti-
tative idea of the robustness of a particular mea-
surement, it is necessary to run the same test sev-
eral times. Since each test run is likely to take sev-
eral minutes, a fair amount of time has to be spent
to obtain just a single data point. Equally impor-
tant, computing only one throughput estimate for
the entire test hides variations that may occur at
time scales shorter than that of the entire test. For
these reasons, httperf samples the reply throughput
once every five seconds. The throughput samples
can optionally be printed in addition to the usual
statistics. This allows observing throughput during
all phases of a test. Also, with a sample period of
5 seconds, running a test for at least 3 minutes re-
sults in enough throughput samples that confidence
intervals can be computed without having to make
assumptions on the distribution of the samples [3].

4 Implementation

In this section, we first present the capabilities of
the current version of httperf and then we discuss
some of the more subtle implementation issues dis-

covered so far. In the third part, we mention some
possible future directions for httperf.

The HTTP core engine in httperf currently supports
both HTTP/1.0 and HTTP/1.1. Among the more
interesting features of this engine are support for:
persistent connections, request pipelining, and the
“chunked” transfer-encoding [2, 4]. Higher-level
HTTP processing is enabled by the fact that the en-
gine exposes each reply header-line and all of the
reply body to the other parts of httperf by signalling
appropriate events. For example, when one of the
workload generators required simple cookie sup-
port, the necessary changes were implemented and
tested in a matter of hours.

The current version of httperf supports two kinds of
workload generators: request generators and URL
generators.

Request Generation: Request generators initiate
HTTP calls at the appropriate times. At
present, there are two such generators: the first
one generates new connections deterministi-
cally and at a fixed rate and each connection
is used to perform a command-line specified
number of pipelined HTTP calls. By default,
the number of pipelined calls per connection
is one, which yields HTTP/1.0-like behavior
in the sense that each connection is used for a
single call and is closed afterwards.

The second request generator creates sessions
deterministically and at a fixed rate. Each ses-
sion consists of a specified number of call-
bursts that are spaced out by the command-line
specified user think-time. Each call-burst con-
sists of a fixed number of calls. Call-bursts
mimic the typical browser behavior where a
user clicks on a link which causes the browser
to first request the selected HTML page and
then the objects embedded in it.

URL Generation: URL generators create the de-
sired sequence of URLs that should be ac-
cessed on the server. The most primitive gen-
erator simply generates the same, command-
line specified URL over and over again.

The second generator walks through a fixed set
of URLs at a given rate. With this generator,
the web pages are assumed to be organized as
a 10ary directory tree (each directory contains
up to ten files or sub-directories) on the server.
This generator is useful, for example, to in-
duce a specific file buffer cache miss rate on
the server under test.

As far as statistics collectors are concerned, httperf
always collects and prints the basic information
shown in Figure 1. The only other statistics collec-
tor at this time is one that collects session-related
information. It measures similar quantities as the
basic connection statistics with the main difference
being that the unit of measurement is the session
instead of the connection.

We now proceed to discuss some of the implemen-
tation issues that conspire to raise the difficulty to
write a robust high-performance test tool.

4.1 Scheduling Granularity

The process scheduling granularity of today’s OSes
is in the millisecond range. Some support one mil-
lisecond, but most use a timer tick of around 10 mil-
liseconds. This often severely limits the accuracy
with which a given workload can be generated. For
example, with a timer tick of 10 milliseconds, de-
terministically generating a rate of 150 requests per
second would have to be implemented by sending
one request during even-numbered timer ticks and
two requests during odd-numbered ticks. While the
average rate is achieved, the bursts sent during the
odd-number ticks could cause server-queue over-
flows that in turn could severely affect the observed
behavior. This is not to say that measuring web
servers with bursty traffic is a bad idea (quite the
opposite is true), however, the problem here is that
burstiness was introduced due to the OS, not be-
cause the tester requested it.

To avoid depending on OS scheduling granularity,
httperf executes in a tight loop that checks for net-
work I/O activity via select() and keeps track of real

time via gettimeofday(). This means that httperf
consumes all available CPU cycles (on a multipro-
cessor client, only one CPU will be kept busy in
this way). This approach works fine because the
only other important activity is the asynchronous
receiving and processing of network packets. Since
this activity executes as a (soft-) interrupt handler,
no scheduling problem arises. However, executing
in a tight loop does imply that only one httperf pro-
cess can run per client machine (per client CPU, to
be more precise). It also means that care should be
taken to avoid unnecessary background tasks on the
client machine while a test is in progress.

4.2 Limited Number of Ephemeral Ports

Many TCP implementations restrict the TCP ports
available to sockets that are not bound to a spe-
cific local address to the so-called ephemeral ports
[7]. Ephemeral ports are typically in the range from
1,024 to 5,000. This has the unfortunate effect
that even moderate request rates may cause a test
client to quickly run out of port numbers. For ex-
ample, assuming a TIME WAIT state duration of
one minute, the maximum sustainable rate would
be about 66 requests per second.

To work around this problem, httperf can optionally
maintain its own bitmap of ports that it believes to
be available. This solution is not ideal because the
bitmap is not guaranteed to be accurate. In other
words, a port may not be available, even though
httperf thinks otherwise. This can cause additional
system calls that could ordinarily be avoided. It is
also suboptimal because it means that httperf dupli-
cates information that the OS kernel has to maintain
at any rate. While not optimal, the solution works
well in practice.

A subtle issue in managing the bitmap is the or-
der in which ports are allocated. In a first imple-
mentation, httperf reused the most recently freed
port number as soon as possible (in order to min-
imize the number of ports consumed by httperf).
This worked well as long as both the client and
server machines were UNIX-based. Unfortunately,

a TCP incompatibility between UNIX and NT
breaks this solution. Briefly, the problem is that
UNIX TCP implementations allow pre-empting the
TIME WAIT state if a new SYN segment arrives.
In contrast, NT disallows such pre-emption. This
has the effect that a UNIX client may consider it
legitimate to reuse a given port at a time NT con-
siders the old connection still to be in TIME WAIT
state. Thus, when the UNIX client attempts to cre-
ate a new connection with the reused port number,
NT will respond with a TCP RESET segment that
causes the connection attempt to fail. In the case of
httperf this had the effect of dramatically reducing
the apparent throughput the NT server could sustain
(half the packets failed with a “connection reset by
peer” error). This problem is avoided in the cur-
rent version of httperf by allocating ports in strict
round-robin fashion.

4.3 Slow System Calls

A final issue with implementing httperf is that even
on modern systems, some OS operations are rel-
atively slow when dealing with several thousand
TCP control blocks. The use of hash-tables to look
up TCP control blocks for incoming network traffic
is standard nowadays. However, it turns out that at
least some BSD-derived systems still perform lin-
ear control block searches for the bind() and con-
nect() system calls. This is unfortunate because in
the case of httperf, these linear searches can easily
use up eighty or more percent of its total execution
time. This, once again, can severely limit the max-
imum load that a client can generate.

Fortunately, this is an issue only when running a test
that causes httperf to close the TCP connection—as
long as the server closes the connection, no problem
occurs. Nevertheless, it would be better to avoid
the problem altogether. Short of fixing the OS, the
only workaround we have found so far is to change
httperf so it closes connections by sending a RE-
SET instead of going through the normal connec-
tion shutdown handshake. This workaround may be
acceptable for certain cases, but should not be used
in general. The reason is that closing a connection

via a RESET may cause data corruption in future
TCP connections or, more likely, can lead to need-
lessly tying up server resources. Also, a RESET
artificially lowers the cost of closing a connection,
which could lead to overestimating a server’s ca-
pacity. With these reservation in mind, we observe
in passing that at least one popular web browser
(IE 4.01) appears to be closing connections in this
manner.

4.4 Future Directions

In its current form httperf is already useful for per-
forming several web server measurement tasks but
its development has by no means come to a halt. In-
deed, there are several features that are likely to be
added. For example, we believe it would be use-
ful to add a workload generator that attempts to
mimic the real-world traffic patterns observed by
web servers. To a first degree of approximation,
this could be done by implementing a SPECweb-
like workload generator. Another obvious and use-
ful extension would be to modify httperf to allow
log file based URL generation. Both of these ex-
tensions can be realized easily thanks to the event-
oriented structure of httperf.

Another fruitful direction would be to modify
httperf to make it easier to run tests with multi-
ple clients. At present, it is the tester’s responsi-
bility to start httperf on each client machine and
to collect and summarize the per-client results. A
daemon-based approach where a single command
line would control multiple clients could be a first
step in this direction.

5 Conclusions

The experience gained from designing and imple-
menting httperf clearly suggests that realizing a ro-
bust and high-performance tool for assessing web
server performance is a non-trivial undertaking.
Given the increasing importance of the web and the
need for quantitative performance analysis, the im-

portance of such tools will continue to increase as
well. While httperf is certainly not a panacea, it has
proven useful in a number of web-related measure-
ment tasks and is believed to be flexible and per-
formant enough that it could provide a solid foun-
dation to realize macro-level benchmarks such as
SPECweb. For those cases where httperf may not
be the solution of choice, we hope that the experi-
ence and lessons reported in this paper will be help-
ful in avoiding the most common pitfalls in measur-
ing web server performance.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments. Our thanks also go to
Rick Jones, Rich Friedrich, and Gita Gopal for re-
viewing and commenting on draft versions of this
paper on extremely short notice.

Availability

The httperf tool is available in source code form and
free of charge from the following URL:

ftp://ftp.hpl.hp.com/pub/httperf/

References

[1] Gaurav Banga and Peter Druschel. Measuring
the capacity of a web server. In USENIX Sym-
posium on Internet Technologies and Systems,
pages 61–71, Monterey, CA, December 1997.
http://www.usenix.org/publications/library/proceedings/usits97/banga.html.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
and T. Berners-Lee. Hypertext Transfer Pro-
tocol – HTTP/1.1. Internet Engineering Task
Force, January 1997.
ftp://ftp.internic.net/rfc/rfc2068.txt.

[3] Rai Jain. The Art of Computer Systems Per-
formance Analysis. John Wiley & Sons, New
York, NY, 1991.

[4] H. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, Hakon W. Lie, and
C. Lilley. Network performance effects of
HTTP/1.1, CSS1, and PNG. In Proceedings of
SIGCOMM ’97 Symposium, pages 155–166,
Cannes, France, October 1997. Association of
Computing Machinery.
http://www.acm.org/sigcomm/sigcomm97/papers/p102.html.

[5] Jon Postel. Transmission Control Protocol.
DARPA, September 1981.
ftp://ftp.internic.net/rfc/rfc793.txt.

[6] SPEC. An explanation of the SPECweb96
benchmark, December 1996.
http://www.specbench.org/osg/web96/webpaper.html.

[7] Richard W. Stevens. TCP/IP Illustrated: The
Protocols, volume 1. Addison-Wesley, Read-
ing, MA, 1994.

[8] Gene Trent and Mark Sake. WebSTONE: The
first generation in HTTP server benchmarking,
February 1995.
http://www.mindcraft.com/webstone/paper.html.

