
Strider: Automatic Rate Adaptation and Collision Handling

Aditya Gudipati, Sachin Katti
Stanford University

{adityag1,skatti}@stanford.edu

Abstract
This paper presents the design, implementation and evaluation of
Strider, a system that automatically achieves almost the optimal rate
adaptation without incurring any overhead. The key component in
Strider is a novel code that has two important properties: it israte-
less and collision-resilient. First, in time-varying wireless channels,
Strider’s rateless code allows a sender to effectively achieve almost
the optimal bitrate, without knowing how the channel state varies.
Second, Strider’s collision-resilient code allows a receiver to decode
both packets from collisions, and achieves the same throughput as the
collision-free scheduler. We show via theoretical analysis that Strider
achieves Shannon capacity for Gaussian channels, and our empirical
evaluation shows that Strider outperforms SoftRate, a state of the art
rate adaptation technique by70% in mobile scenarios and by upto
2.8× in contention scenarios.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-Communication
Networks

General Terms
Algorithms, Performance, Design

1. INTRODUCTION
Rate adaptation techniques face two challenging scenarios in wire-

less networks: time varying wireless channels and contention. To
pick the right bitrate in time-varying wireless channels, nodes have
to continuously estimate channel quality either via probing [2, 13, 21,
15] or by requiring channel state feedback from the receiver [4, 33].
However, probing is inaccurate since packet loss is a coarse measure
of channel strength. Channel state feedback from the receiver is more
accurate but incurs larger overhead, and can still be inaccurate in mo-
bile scenarios when the channel varies every packet. The bitrate adap-
tation decision in contention is the opposite of time-varying wireless
channels, i.e. do not adapt the bitrate due to contention related losses.
Hence in such scenarios, nodes have to use probe packets such as RT-
S/CTS [1, 35] or require explicit notification from the receiver [33,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11,August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

26] to discern the cause of packet loss and avoid making an incor-
rect bitrate change. Both techniques again incur overhead and reduce
throughput.

Prior work has made considerable progress in reducing the over-
head and improving accuracy of bitrate adaptation, but the conven-
tional wisdom is that there is a fundamental undesirable tradeoff be-
tween accuracy and overhead that cannot be avoided. Higher over-
head lowers network goodput, but inaccurate bitrate adaptation also
significantly affects network performance. The performance impact
is especially bad in mobile or high contention scenarios.

In this paper we presentStrider (for Stripping Decoder, our de-
coding algorithm), a system that eliminates the undesirable tradeoff
between overhead and accuracy for rate adaptation. Strider designs a
novel coding technique that allows a node to achieve almost the opti-
mal bitrate adaptation possible in any scenario without incurring any
overhead. Strider’s code design has two important characteristics:

• Strider’s code israteless. Hence, senders do not have to per-
form any probing or require any channel state feedback or ad-
just their bitrates, they simply create a continuous stream of
encoded packets using Strider’s algorithm until the receiver de-
codes and ACKs. We show that Strider’s technique achieves
the same effective throughput as the omniscient conventional
scheme which knows the channel state exactly in advance and
always picks the right bitrate to transmit at.

• Strider’s code iscollision-resilient, i.e. it can take collided
packets and decode the individual packets from them. Hence
there is no need for the senders to discern the cause of packet
losses and take measures to avoid collisions. We show that
Strider’s collision-resilient code achieves at least the same ef-
fective throughput as the omniscient collision-free scheduler,
i.e. a scheme which knows exactly what nodes are contending
in advance and schedules them in a collision-free manner.

The key intuition behind Strider is the concept of aminimum dis-
tance transformer(MDT). The MDT technique works by transmit-
ting linear combinations of a batch of conventionally encoded sym-
bols (e.g. QPSK symbols encoding bits that have been passed through
a 1/5 rate convolutional code). The intuition is that when we take
a batch ofL conventional symbols, and transmitM linear combi-
nations of them, in essence we are mapping points from aL dimen-
sional space (the conventional symbols) to points in aM dimensional
space. Depending on the relative values ofM andL, the minimum
distance in this new space can be controlled. Since every channel
code has a threshold minimum distance above which it can be de-
coded correctly, in Strider a sender can transmit linear combinations
until the minimum distance in the new space goes above the required
threshold and the packets are decoded correctly. Moreover, the min-
imum distance adjustment happens without any feedback from the
receiver or probing by the sender. Hence the technique automatically

achieves the best bitrate, since in effect it is finding the densest con-
stellation possible that still allows correct decoding, which is what
conventional rate adaptation protocols are attempting to accomplish.

The other important component of Strider is collision resilience.
Currently, collided packets are thrown away and receivers wait for
retransmissions, hoping they wont collide again. Instead, Strider de-
codes both (or more) packets from a collision. The key reason for our
collision resilience is Strider’s rateless code: it allows the receiver to
treat the packets from the sender with the weaker channel as noise,
and due to its rateless property, after the receiver has accumulated
sufficient transmissions it can decode the packet from the sender with
the stronger channel. After decoding the first packet, we can subtract
its contribution from the received signal and decode the packets from
the other sender. Hence, Strider’s code has the nice benefit of com-
pletely eliminating hidden terminals.

We show theoretically that Strider’s code asymptotically achieves
Shannon capacity for AWGN channels. Further, Strider’s algorithm
has linear-time computational complexity and is efficient to imple-
ment. We have prototyped Strider in the GNURadio [6] SDR plat-
form and evaluated it in an indoor testbed via experiments using
USRP2s, as well as trace drive simulations. We compare Strider to
the omniscient scheme and SoftRate [33], a state of the art conven-
tional rate adaptation scheme. The omniscient scheme has perfect
channel knowledge, and always picks the optimal bitrate and sched-
ules nodes in a collision-free manner. Our evaluation shows that:

• Strider achieves a performance that is within5% of the perfor-
mance of the omniscient scheme across a wide range of SNRs
(5-25dB).

• When collisions happen, our results show that Strider does at
least as well as the omniscient collision free scheduler, and
surprisingly in many cases Strider does better! The reason
as we discuss later is that collision free scheduling is actu-
ally sub-optimal and in many cases concurrently transmitting
and applying our technique can deliver even higher through-
put. Strider thus completely eliminates hidden terminals in our
testbed.

• In comparison with SoftRate [33], we show that Strider achieves
nearly70% throughput improvement in mobile scenarios. Fur-
ther in networks with contention/hidden terminals, Strider pro-
vides a2.8× increase over SoftRate.

Strider is related in spirit to prior work on rateless codes such as
fountain codes [19]. However, these rateless codes work only when
the packets are correctly decoded, and cannot handle wireless distor-
tions such as noise and interference. Similarly, prior work on incre-
mental redundancy and hybrid ARQ [29, 18, 7] provides a limited
form of rate adaptation by adaptively providing the right amount of
redundancy needed to enable decoding of partially correct packets.
However, these techniques still have to pick the right modulation,
and further do not work in the presence of collisions or interference.
Strider provides complete rate adaptation, and handles collisions and
interference in a single framework.

2. RELATED WORK
There is a large body of prior work on rate adaptation. Most tech-

niques use one of two approaches: estimate channel strength via di-
rect channel state feedback (in the form of SNR or BER measure-
ments) from the receiver, or infer channel strength based on packet
delivery success/failures [4, 33, 2, 13, 21, 15, 27]. Channel statefeed-
back in fast changing mobile channels can be expensive, and worse
yet, inaccurate since by the time the transmitter uses the feedback, the
channel might have changed. Inference based on packet delivery suc-
cess can be highly inaccurate, since packet delivery is a very coarse

measure of channel strength. Further, none of these techniques work
when there are collisions, and therefore often need to augment the
rate adaptation protocol with extra overhead in the form of probing
or feedback from the receiver to discern whether the packet loss was
caused by a collision.

Strider is related to prior work in rateless codes and hybrid ARQ.
Rateless codes such as LT [19] and Raptor codes [28] allow one to au-
tomatically achieve the capacity of an erasure channel without know-
ing the packet loss probability in advance. However these techniques
require whatever packets are received to be correctly decoded, and
do not work in wireless channels where packets are corrupted [28].
Second, hybrid ARQ schemes used in 4G wireless systems based on
punctured turbo codes [18, 29] can be used to selectively provide ex-
tra redundancy in the form of coded bits, to help the receiver decode
an erroneous frame. However, these techniques still need to pick the
correct modulation and further do not work when there are collisions
or external interference.

Strider’s collision resilience component is related to prior work on
interference cancellation [10, 9, 16, 17]. However, all prior tech-
niques require that the colliding packets be encoded at the correct bi-
trate to enable them to decode collisions. For example in SIC, if the
colliding packets have been encoded at a bitrate corresponding to the
idle channel (which will happen because the colliding hidden termi-
nal senders cannot know in advance that they will collide), SIC will
fail to work [9]. Zigzag has a similar but less acute problem, since it
also needs correct decoding of its interference free chunks, which re-
quires the packets to be encoded at the correct bitrate. Further Zigzag
needs the same set of packets to collide across successive collisions.
Strider does not have any of these problems, since its rateless prop-
erty automatically adjusts the effective bitrate to enable its stripping
decoder to decode collisions, and it can decode even if collisions are
between different sets of packets.

Strider’s design is inspired by recent work on uplink power control
in cellular CDMA systems, as well as theoretical work on rateless
code design [3, 34, 23, 5, 24]. As we describe later, Strider treats
each packet transmission as a set of virtual collisions among inde-
pendent blocks, very similar to how multiple packet transmissions
in a CDMA uplink wireless system collide. Hence decoding algo-
rithms that are used in CDMA basestations have a similar structure
to Strider’s algorithm. Specifically, they need to control how power
is allocated to each uplink transmitter to enable successful decoding,
and we borrow from such algorithms to design Strider’s encoding al-
gorithm. The key contribution of Strider is the application of these
techniques to design a rateless code for wireless channels, as well
as an implementation and detailed evaluation of the technique using
practical software radio experiments. Further, we also design a novel
technique that extends the code design to handle packet collisions.

3. INTUITION
Senders have to adapt bitrates because of the threshold behavior of

conventional techniques, i.e. they decode only at or above a particular
SNR threshold depending on the coding rate and modulation choice.
Even though it is fairly introductory material, we first discuss the
reasons for this thresholding behavior since it provides insight into
our eventual design.

In current schemes, data bits are first channel coded to add pro-
tection against noise. The level of protection is parameterized by the
coding rate (e.g a1/2 rate code implies that every data bit is protected
with one extra bit of redundancy). Coded bits are then modulated, i.e.
they are mapped to points in a complex constellation and transmit-
ted on the wireless channel. For example in BPSK, bits are mapped
to two points on the real line(

√
P ,−

√
P) (P is the transmission

power) and transmitted. Due to attenuation and additive noise the re-

ceiver getsy = x + n, wheren is Gaussian noise with varianceσ2.
When decoding, the receiver first demodulates the received symbol,
i.e. maps it to the nearest constellation point and infers what coded
bit was transmitted. Hence if the Gaussian noise value is greater/-
less than(

√
P/ −

√
P) the receiver makes a bit error. However, the

channel code decoder can correct a certain number of errors (depend-
ing on the amount of redundancy added) and decode the final data.
Thus as long as the number of bit flips at the demodulation (BPSK)
stage are less than the correcting power of the channel code, the data
eventually gets decoded correctly.

Assuming the channel code rate is fixed, the key to ensuring de-
coding success is to make sure that the demodulation stage does not
make more bit errors than the channel code can handle. This error
rate is dictated by theminimum distancebetween any two constella-
tion points (e.g. for BPSK it is2

√
P) and how it compares with the

noise power (σ2). To get good performance, the minimum distance
has to be sufficiently large so that no more than the tolerable number
of bit errors occur. If its too small, the channel code cannot correct,
if its too large, the extra redundancy in the channel code is wasteful.
Modulation schemes have different minimum distances (e.g. BPSK,
QPSK, 16-QAM, 64-QAM have successively decreasing minimum
distances), and depending on the channel SNR, the rate adaptation
module’s job is to pick the combination of modulation and channel
coding that correctly decodes and maximizes throughput. Hence, dif-
ferent modulation and channel coding schemes have different SNR
thresholds above which they begin to decode.

3.1 Our Approach
Strider takes a conventional fixed channel code and constellation

which works only above a particular threshold SNR, and makes it
rateless. In other words, it enables the fixed channel code and con-
stellation to decode at any SNR. We refer to this fixed channel code
and constellation as thestatic codein the rest of the paper. For ex-
position simplicity, we assume in this section that the static code is
using BPSK, but the actual implementation uses QPSK.

The key idea behind Strider’s rateless transformation is the con-
cept of minimum distance transformation (MDT). Intuitively, MDT
takes a batch of symbols from the static code and maps them to a
different space where the minimum distance between the two closest
points can be tuned to meet the static code’s requirements. To un-
derstand how MDT works, we begin with a simple (but suboptimal)
approach that demonstrates the basic idea. Assume we have a BPSK
symbolx from the static code. A simple approach to amplify the
minimum distance is to take the symbolx, and transmit it multiple
(M) times, but multiply each transmission by a complex number of
unit magnitude but random phaseri = ejθi (so transmission power
does not change). The receiver therefore gets the following symbols
after noise gets added

~y = ~rx+ ~n (1)

where~r is theM length vector of random complex numbers formed
by the coefficients of each transmission, and~n is the noise vector for
theM transmissions.

The transmitter in essence has mapped a simple BPSK symbolx
to a random point~y in a M -dimensional space. To see why this
amplifies minimum distance, lets compute the Euclidean distance in
this new space between the original two BPSK constellation points√
P ,−

√
P . The new distance is||2

√
P~r|| = 2

√
MP , which is√

M times the original minimum distance, providing much higher
resilience to noise. At some value ofM (i.e. after a certainM num-
ber of transmissions), the static code will meet its minimum distance
threshold and be able to decode.

As the reader can tell, the above naive approach is quite inefficient.
It increases the minimum distance in large increments, whereas the

static code itself might need a much smaller increment to decode.
Our key observation is that instead of operating over single symbols
as above, we can spread the transmission power over a batch ofK
symbols belonging toK parallel blocks (each block is generated by
passing data through the static code). Specifically, instead of trans-
mitting theK symbols separately one by one, Strider transmits ran-
dom linear combinations of theK symbols

√

(1/K)

(

i=K
∑

i=1

rixi

)

(2)

where the
√

1/K factor is needed to ensure that every transmitted
symbol has a power ofP .

The transmitter picks separate random coefficients for each linear
combination. Assuming the transmitter has to sendM such linear
combinations, the receiver receives the following system of linear
equations distorted by noise.

~y =
√

(1/K)R~x+ ~n (3)

where~x is theK length vector corresponding to the batch ofK static
code symbols,R is theM × K matrix consisting of the random
phase coefficientsri defined above, and all the other definitions are
the same.

To understand how this technique achieves minimum distance trans-
formation, we can use the following visualization. Intuitively, this
operation is takingK dimensional vectors~x and mapping it to ran-
dom points in aM dimensional space. AsM increases, the minimum
distance between the two closest points in this new space increases.
WhenM = 1 the minimum distance is2

√

P/K. For any valueM ,
the minimum distance between points in theM -dimensional space
corresponding to the closest constellation points for the static code
symbolsxi (assuming BPSK) is||2R(i)

√

P/K|| = 2
√

MP/K,
whereR(i) is thei’th column of matrixR. Thus the minimum dis-
tance increases monotonically withM . Hence, by controlling the
value ofM (i.e. by controlling the number of transmissions), we can
control the minimum distance until the static code’s requirements for
each of theK blocks are met and they can decode. Thus, we can
keep on transmitting linear combinations until all theK blocks can
be decoded.

Stepping back, Strider’s technique has taken a static code that used
to operate at or above a fixed SNR threshold, and converted it using
MDT to work at any SNR by adjusting the minimum distance. In
other words, we have converted the static code to berateless. To
decode, the receiver estimates what are the likely symbols~x given~y
and the matrixR, and then passes theK symbols through the decoder
for the static code. In the following section, we describe the design
of an efficient algorithm that realizes this insight, as well as extend it
to decode collided packets.

4. DESIGN
First, we describe the two main design goals for Strider, and dis-

cuss them in the context of how these goals fit into the larger picture
of code design:

• Complexity of the decoding algorithm: The efficiency of a
code (defined as how close it’s achieved throughput is to the
Shannon capacity at any SNR) is typically proportional to the
computational complexity of the decoding algorithm. For ex-
ample, Shannon himself used a random codebook construction
that achieves channel capacity, but incurs exponential decoding
computational complexity. Algorithms such as sphere decod-
ing and maximum likelihood (ML) [14] decoders try to mimic
the random decoding structure of Shannon’s design and hence

perform quite well, but still require at least cubic complexity,
if not more. Recent code designs such as LDPC codes are the
one exception to the rule, since they come close to achieving
capacity yet only have linear decoding computational complex-
ity. For practical implementations, low complexity algorithms
are of course highly desirable. Our goal is to design an efficient
code withlinear decoding computational complexity.

• Feedback from the receiver: In conventional code design,
feedback from the receiver is often quite helpful in improving
performance. For example, HARQ systems [29] use feedback
from the receiver to determine how many extra parity bits to
transmit and minimize wasteful transmission. Note that this
is not channel-state feedback, but rather feedback about what
data the receiver has already decoded. However, even such
feedback can be expensive in wireless since spectrum is scarce,
and can complicate protocol design since these feedback pack-
ets need to be scheduled and reliably delivered by the MAC
protocol. More importantly, such feedback goes against the
grain of rateless code designs [28, 19] which strive to operate
so that the receiver has to only send a single ACK packet when
all packets have been successfully decoded. Our goal is to de-
sign a code that requires the minimum possible feedback, i.e.
it requires onlyone bit of feedback from the receiver when it
has successfully decoded everything that was transmitted. The
negligible feedback requirement simplifies protocol design.

Strider’s encoding and decoding algorithms meet the above two de-
sign goals. Before describing the algorithm however, we summarize
the operational algorithm in Strider to give the reader an overview
of the end-to-end protocol, and also to harmonize notation. When a
node has data to transmit, it uses the following four simple steps:

1. Data is divided into chunks of size6KB. In each chunk we have
K = 33 data blocks of lengthM = 1500bits each.

2. Each of theK data blocks is passed through thestatic code
(currently we use a1/5 rate channel code and a QPSK constel-
lation as the static code), to produceK blocks withL = 5M/2
complex symbols each.

3. TheK blocks are passed through Strider to create a packet for
transmission.

4. Use the standard carrier sense mechanism to check if the medium
is idle, and if it is transmit the packet. After transmission, wait
for an ACK, which the receiver sends if it has successfully de-
coded the entire chunk consisting ofK blocks. If no ACK is
received, go to step 3 and repeat. Move to step 1 when an ACK
is received.

We expand on Step 3 which is the core encoding step in Strider. To
produce a packet for transmission, Strider linearly combines theK
coded blocks from the static code to create one packet. For example
to create the first symbol in the transmitted packet we would do the
following computation

s1 = r1x11 + r2x21 + . . .+ rKxK1 (4)

wherexi1 is the first complex symbol in thei’th block, andri is the
i’th complex coefficient used to create the linear combination. The
computation is repeated with the same coefficients for allL sym-
bols in each block. We assume that the random coefficients have
been normalized so that the energy of the symbols isP , the trans-
mission power budget. The above technique produces one packet
for transmission. The header of each packet includes the coefficients
used to create the linear combination of the blocks (i.e. the symbols
r1 . . . rK).

The sender creates packets using different linear combinations for
each packet, and transmits them until the receiver can decode allK

Packet 1

Packet 2

Packet M

Receive R

(xi)

(yi)

= + Noise

Decode one

block

Subtract decoded block

from received packets

K Coded Blocks

Figure 1: Strider’s decoding algorithm

blocks and ACKs. Lets assume the receiver requiresM packets be-
fore it can decode allK blocks. We can express thei’th symbol in
each of theM packets received as:

~yi = R~xi + ~n (5)

where~yi is theM length vector consisting of the received symbols at
thei’th position from theM received packets, and~xi is theK length
input vector consisting of thei’th input symbols from theK coded
blocks. R is theM × K matrix consisting of the coefficients used
in creating the linear combinations for theM transmitted packets,
with each row corresponding to one received packet. Finally~n is the
noise vector. Note that we did not include the channel attenuation in
the above equation, we assume that the noise power has been scaled
appropriately to account for channel attenuation.

4.1 Decoding Algorithm
As discussed before, we can visualize Strider as mappingK di-

mensional vectors (~xi) to M dimensional vectors that are distorted
by noise after they pass through the wireless channel to produce~yi.
Since the components of~xi can only take four discrete values (the
four points of a QPSK constellation), the vector~xi can take at most
4K different values. SinceR is known to the receiver, the receiver
can exactly estimate what4K possible points could have been trans-
mitted. Hence one method to decode would be to calculate the closest
constellation point among the4K possible points and then lookup the
corresponding input. From that point, we can apply the traditional
decoder for the static code to theK coded blocks and recover the
original data.

However, this naive technique quickly gets complicated. For ex-
ample, ifK = 10 then the number of possible constellation points
is 410 = 1048576! To compute the closest point, the decoder would
require exponential memory and compute resources, which rules out
this naive method.

4.1.1 Stripping Decoder
Strider’s key insight is thatinstead of trying to decode the entire

vector ~xi at once which incurs exponential complexity, we can try to
decode it one component at a time. Since each component in~xi can
at most take4 discrete values (QPSK), the computational complexity
is significantly lower. Hence, Strider first decodes the first coded
block’s components, and passes them through the decoder for the
static code to recover the original symbols. If decoding is successful,
we can re-encode the first block and subtract it from the received
vectors (~yi) to remove the effect of the first coded block. Next, we
can proceed to the second block and repeat the above process.

One way to visualize Strider’s decoder is as follows: remember the
received packets are each a linear combination of blocks belonging to
one chunk. Strider’s decoder is in effect trying to decode one block
at a time,strip it from the received signals, and then decode the next
block and strip it, and so on. Hence, we christen the scheme Strider
for stripping decoder.

Operationally, the above intuition implies that Strider attempts to
decode the first block while treating the otherK − 1 blocks as inter-
ference. The algorithm would work as follows for the first block:

1. Take ~R1 (the first column of matrixR) and form its complex
transposed conjugate~R∗

1.
2. Take the dot product of~yj with ~R∗

1 to obtain one symbol. Re-
peat for allj = 1 . . . L to obtainL complex symbols.

3. Attempt to decode theL symbols obtained in the previous step
using the decoder for the static code.

4. If decoding is successful1, block 1 is obtained. Subtract the
symbols corresponding to block1 from the received symbols,
i.e. subtract(x1j

~R1) from ~yj to obtain a new vector~y′

j , and
remove the first column fromR to obtain a new matrixR′. Go
to step 1 and attempt to decode the second coded block using
the same steps but with the new~y′

j andR′. Repeat until all
blocks are decoded.

To see whats going on, consider what we have after carrying out
the second step in the above algorithm:

~R∗

1 ~yi = ~R∗

1
~R1x1i + ~R∗

1
~R2x2i + . . .+ ~R∗

1
~RKxKi + ~R∗

1~n

= |R1|2x1i + I (6)

where ~Ri is thei’th column vector in matrixR andI is collapsing
all the other terms except the contribution from thei’th symbol of
the first block. This computation is performed for alli = 1, . . . L
symbols.

In Step 3, we collect theseL symbols from the computation above
and attempt to decode the first block. We can show that [31] the de-
coding will be successful only if the square of the minimum distance
for block 1 (MD(1))2, is above a thresholdC ∗ (I + N), where
C is a constant dependent on the static code, whileI andN are the
interference and noise powers respectively. The square of the min-
imum distance for block1 afterM transmissions and the decoding
condition while treating all other blocks as interference can therefore
be expressed as:

(MD(1,M))2 =
(
√
2

M
∑

i=1

|Ri1|2
)2

(7)

≥ C ∗
(

K
∑

j=2

∣

∣

M
∑

i=1

R∗

i1Rij

∣

∣

2
+

M
∑

i=1

|Ri1|2n2
i

)

The right half of the inequality thus consists of terms from the
other blocks which are treated as interference and the noise.

There are two key takeaways from the equation above. First, as the
receiver gets more packets (i.e. with increasingM), the minimum
distance improves. Intuitively this makes sense, we expect our abil-
ity to decode to improve with every successive reception. Second,
since the entries ofR are picked randomly, any two columns in the
matrix will be uncorrelated. The magnitude of the dot product of two
uncorrelated complex vectors of equal magnitude will be less than
the squared magnitude of either vector [31]. Hence, the right half
of the inequality above grows relatively slower than the first block’s
minimum distance withM . Hence, with increasingM , the mini-
mum distance for block1 monotonically increases, until it exceeds
the above threshold at which the static code can decode.

If block 1 is successfully decoded, we can subtract it and repeat
the process for block2. However, for this block, the interference will
be only from blocks3 to K, lesser than for the first block. Thus by
stripping block1 after decoding it, we reduce the minimum distance
required for block2 to decode, and as long as it is greater than the
required threshold, the block will be decoded and the algorithm pro-
ceeds. All blocks will be decoded when the minimum distance for
each is greater than the corresponding required threshold.

1each block has a CRC at the end to check decoding success

Data

Chunk

Static 1/5 Rate

Channel Code

Coded

Data bits QPSK

Modulator

Coded

Blocks
Strider Encoder

Channel

Strider Stripping

Decoder

Noisy symbols

of a blockDemod and Decode

using static code

Correctly decoded?

Re-encode Decoderusing static code Re-encode

Subtract from

Received signal

Re-encoded symbols

of a block

Figure 2: Strider’s end-to-end design

4.2 Encoding Algorithm
Our key deduction from the above analysis is that theoptimal de-

sign will have the property that allK blocks get decoded at once. To
see why, note that the receiver ACKs only when allK blocks are de-
coded, and that senders keep transmitting until an ACK is received. If
at any point only a subset of theK blocks are decoded, then the next
transmission will be wasted since it will contain components from the
already decoded blocks. However this is a contradiction, since an op-
timal design by definition would not waste any transmission. Hence,
the optimal design would guarantee that allK blocks get decoded at
once.

The above insight has the following important consequence:the
minimum distance of all theK blocks should be greater than the
required threshold for each block (defined in Eq. 8 below), when even
any one of the blocks can be decoded. This ensures, that if any block
gets decoded, then all blocks get decoded. However the required
minimum distance depends on the actual noise power in the channel,
which the sender of course does not know. Hence the encoder just
ensures the following condition: after every transmission it estimates
the maximum possible noise power it can tolerate that still ensures
that the minimum distance of each block is higher than the required
threshold for each block. If the actual noise power is higher, then
the sender will have to transmit more encoded packets. If the noise
power is lesser than the maximum tolerable, then the receiver will
decode and ACK.

To determine the entries ofR, we thus need to solve the following
set of equations where the left hand side of the first equation repre-
sents the minimum distanceMD(b,m) that blockb would need after
m transmissions to decode,

(
√
2

m
∑

i=1

|Rib|2
)2 ≥ C ∗

(

K
∑

j=b+1

∣

∣

m
∑

i=1

R∗

ibRij

∣

∣

2
+

m
∑

i=1

|Rib|2n′2
)

K
∑

i=1

|Rc,i|2 ≤ P ∀c = 1, . . . ,m (8)

andn′ is an unknown noise variable representing the maximum tol-
erable noise at them’th transmission. The second equation ensures
that the total power of any transmission cannot exceedP . We have to
solve the above for every value ofb = 1, . . . ,K andm = 1, . . . ,M .

The above set of equations constitute a non-linear optimization
problem that can be solved numerically [3], we omit the specifics
of the solution. However, we make two comments:

• First, the solver only provides the magnitudes of the entries
in the matrixR, while the phases of the complex entries are
completely free. Strider picks these phases at random for each
entry.

• Second, note that we have to computeR only once, and the
computation is performedoffline. After thatR is essentially a
codebook which all nodes know in advance. Hence the com-
putation above is not on the critical path.

To summarize, each row inR provides the coefficients for cre-
ating a separate packet. So the above computation is run to create
a sufficiently large matrix of sizeP × K, such that we can create
uptoP packets. In practice we will likely require much less thanP
transmissions and hence the receiver will only see a submatrix ofR.
The sender picks the rows ofR one after the other and uses them to
linearly combine theK blocks to produce packets for transmission.
The receiver decodes using the stripping decoder method described
before.

4.2.1 Why is the above design rateless?
Strider started out with the premise that it converts a conventional

static code that operates at a fixed SNR into a rateless one that oper-
ates at any SNR. Remember that to decode the static code, the min-
imum distance of each block needs to be above a threshold. As dis-
cussed earlier, the minimum distance depends on two factors. First,
with increasing number of transmissions it monotonically increases.
Second, with increasing noise strength (i.e. with a weaker channel)
the required minimum distance increases. After the right number of
transmissions, the minimum distance for each block exceeds the cor-
responding required threshold, ensuring that the block decodes. Thus
the above design converts a fixed static code into a rateless one. Fur-
ther, we show theoretically in Section 6 that the rateless conversion
is efficient, i.e. if the static code achieves Shannon capacity at its de-
coding threshold SNR, Strider’s rateless conversion asymptotically
achieves Shannon capacity for Gaussian wireless channels across a
wide SNR range.

5. DECODING COLLISIONS
Strider also transforms the static code to be collision-resilient, i.e.

it enables us to decode all the component packets from collided sig-
nals. To see why, consider how the Strider decoding algorithm works
even when there are no collisions. The stripping decoder initially at-
tempts to decode the first block, while treating all other blocks which
have been added to it as interference. If decoding is successful, it
subtracts the first block and attempts to decode the second block
while treating all other blocks as interference and so on. As we can
see, Strider’s stripping decoder is intrinsically treating every received
packet as a set of collisions, where the collisions are between the
blocks in a chunk. And the decoding works by decoding one block at
a time, or in effect one component of the collision at a time. Hence
intuitively, we can model a collision from two senders as a collision
between blocks of both senders, and apply the same stripping decoder
algorithm as above. We expand on this insight below.

Lets assume we have a scenario where two nodes Alice and Bob
are hidden terminals and their transmissions collide at the AP. Since
they do not receive ACKs after their first transmission, they re-encode
using Strider’s algorithm and transmit a new packet again, which will
likely collide. Lets assume the AP getsM collisions, we can repre-
sent thei’th received symbols in theM collisions as:

~yi = hAlR
~xAl
i + hBobR

~xBob
i + ~n (9)

wherehAl andhBob represent the channels, andxAl
i andxBob

i rep-
resent the blocks for Alice and Bob respectively. For exposition sim-
plicity we assume that the channel does not change through theM
transmissions, but the results hold even if it does. We can rearrange
the above equation into the following:

~yi =
[

hAlR hBobR

]

[

~xAl
i

~xBob
i

]

+ ~n (10)

In effect, the new set of equations is quite similar to Equation 5 for
the single sender case discussed in the previous section, except for the

fact that the size of the encoding matrixR as well as the data symbol
vector has doubled. Hence, we can use the same stripping decoder
method as above. Specifically, Strider uses the following algorithm:

1. EstimatehAl andhBob from the packet preambles. We discuss
how to estimate these quantities in detail in Sec. 5.0.2.

2. Calculate which node has the stronger channel, i.e. calculate
max(|hAl|2, |hBob|2). Next use Strider’s stripping decoder al-
gorithm on Eq. 10 to try and decode the blocks of the node with
the stronger channel.

3. If the previous step is successful, the signal after the contri-
bution from the decoded blocks have been stripped will only
consist of blocks from the weaker node’s blocks. The result-
ing equation will be exactly like a single sender case with no
collisions, hence we can use the standard stripping decoder al-
gorithm to decode.

Intuitively, assuming Alice has the stronger channel, the stripping
decoder is treating the packets from Bob as noise, and attempting
to decode Alice’s blocks. If successful, it subtracts the contribu-
tions of all of Alice’s blocks and moves on to decode Bob’s blocks.
The steps above are reminiscent of successive interference cancel-
lation (SIC) [10]. However, there is one critical difference. Unlike
SIC, Strider does not need the colliding packets to be encoded at the
right bitrate. Traditional SIC requires that the bitrates of the colliding
packets be picked correctly so that the packet with higher power can
be decoded while treating the other as interference [9]. However, if
the nodes do not know that their packets are going to collide, they will
not pick the correct bitrates required for SIC to work. Consequently
SIC will fail to decode. Strider does not have this issue, since due
to its rateless property it ensures that after an appropriate number of
transmissions, the bitrate is sufficient to kickstart the decoding of the
first block, which then starts a chain reaction for all the other blocks.

5.0.2 Practical Challenges in Decoding Collisions
1) Asynchrony: The above description assumed that nodes were syn-
chronized across collisions i.e. transmitted packets collide exactly at
the same offset across collisions. However, in practice due to random
backoffs nodes will not be synchronized, and different collisions will
begin at different offsets.
2) Collisions between different senders, or different chunks from
the same senders: In practice, successive collisions could be be-
tween packets from different senders. Second, in Strider the packets
from the node with the stronger channel will get decoded first, and
the node will move on to transmit the next chunk of blocks. Hence
successive collisions can be between different chunks from the same
senders.

Strider is actually invariant to both of these problems because of its
stripping decoder structure. Specifically, Strider attempts to decode
each block separately, while treating everything else as interference.
So lets say we are trying to decode the first block of Alice from the
collisions. We collect all of the collisions, and can express the decod-
ing problem for Alice’s first block as follows:

~y′

i =
~R1x

Al
1i + ~R2x

Al
2i + . . .+ ~RKxAl

Ki + ~I (11)

where the term~Ri is theM length i’th column vector ofR, and
~I subsumes all the contributions from Bob’s packets or from some
other senders.

The above equation is collecting all the terms that have collided
with thei’th symbol of Alice’s first block across theM transmissions,
and is just rearranging the terms in Eq. 10. To decode this block, we
use the same stripping decoder technique. If successful, we re-encode
it and subtract its contributions from all other symbols where it had a

contribution. Thus, it does not matter what the identity of the terms in
~I is, since we do not use that knowledge in decoding Alice’s blocks.

However, Strider does need to estimate the offsets where the colli-
sions begin, so it knows where which symbol is. To do so we leverage
the preamble and postamble trick used in prior work [33, 16, 9]. We
include a pseudorandom sequence in the preamble/postamble of each
packet, and the receiver correlates the received samples against this
known sequence. Since the pseudorandom sequence is uncorrelated
with any other sequence except itself, the correlation will spike ex-
actly when a packet starts, even if there is a collision. The location of
the spike gives us the offset where the collision begins.
3) Compensating for Frequency Offsets: Different senders will
have different carrier frequency offsets (CFO) w.r.t the receiver. When
we decode a block and subtract, we have to compute and compen-
sate for this frequency offset. Strider’s current implementation is
on top of a WiFi style OFDM PHY implemented with USRP2s and
GNURadio. Hence, we use the standard Schmidl-Cox algorithm [25]
for OFDM carrier synchronization and offset estimation. The algo-
rithm is based on exploiting a repeating preamble by computing the
cross correlation of a signal with a delayed version of itself, and com-
puting the phase offset across the correlation values at different de-
lays to compute the CFO. However, the algorithm needs to be mod-
ified for collisions, since we wont have a clean copy of the repeat-
ing preamble for the packet that starts second. Like prior work [33],
we use the postamble to get a clean copy of the repeating preamble.
The Schmidl-Cox algorithm is run on the postamble for the second
packet. The algorithm also estimates the symbol timing and sub-
carrier spacing offsets apart from the CFO, which are then used in
OFDM demod. We refer the reader to [25] for a detailed description
of the standard Schmidl-Cox implementation.
4) Channel Estimation: The receiver needs to estimate the channels
at the receiver for decoding the collisions. We use the pilot tones in
the OFDM subcarriers (e.g. WiFi uses 4 pilot tones) to estimate the
channel using the Least Squares algorithm [32]. Strider uses 4 pilot
tones that are inserted in the packet header. Supposep1, . . . , p4 and
~y = y1, . . . , y4 are the4 pilot symbols sent and received respectively.
The LS channel estimate is given by:

~h = P
−1~y (12)

whereP is diag(p1, . . . , p4), i.e. the4 × 4 diagonal matrix of the
8 known pilot symbols. To estimate the channel at the other48 data
subcarriers we use linear interpolation at every subcarrier between
two pilot subcarriers.
5) Collisions between more than two transmissions: Strider in
principle can handle collisions between more than two packets. Specif-
ically, Strider depends on the header of the packet being correctly de-
coded to handle collisions. Hence, similar to prior work [12], Strider
appends the header to the end of the packet so that it can be recov-
ered even under a collision. However if more than 2 packets collide,
a receiver may not initially be able to decode all packet headers. But
as decoding proceeds, one of the batches will get decoded after suf-
ficient transmissions, and the decoded symbols are then subtracted
from all collisions. After subtraction, a hidden header will be re-
vealed at which point Strider can recover it and incorporate the new
batch into the decoding process. We note however that in our ex-
periments collisions between more than two nodes were quite rare,
carrier sense works well enough that collisions happen only between
hidden terminals, and configurations that involved three hidden ter-
minals were very uncommon.

6. THEORETICAL ANALYSIS
Strider asymptotically achieves Shannon capacity for Gaussian chan-

nels. However, Strider’s practical performance depends on how effi-

cient the static code is at its decoding threshold. For example, a1/2
rate convolutional code with QPSK (used in the 12Mbps WiFi bitrate)
has a decoding threshold of around6dB [11] and achieves a rate of
1b/s/Hz at that threshold. But the Shannon capacity at that SNR is
actually2.3b/s/Hz. Hence convolutional codes are off from capacity,
but we use them because they can be efficiently implemented.

Strider is orthogonal to the choice of the static code, and provides
a technique for converting any static code into a rateless code that
works at any SNR. Hence, what we wish to prove is that Strider’s
rateless conversion happenswithout any loss in coding efficiency, i.e.,
we would not achieve a higher rate than Strider by using a correctly
picked conventional channel code and constellation at any SNR from
the same class of static codes (e.g. convolutional codes in WiFi).
Hence, we will assume that the rateR(T) our static code achieves at
its decoding thresholdT is equal to the Shannon capacity atT , and
intuitively show that after going through Strider’s conversion it can
achieve Shannon capacity across a larger SNR range.

When the sender uses Strider’s algorithm, he is in effect dividing
up the power among multiple blocks. Specifically, when he computes
the entries of matrixR, the magnitude of the column vectors corre-
sponds to the powers that are allocated to the blocks. Lets assume we
haveK blocks and requireM transmissions to decode. Hence, when
the receiver manages to decode, the following condition is asymptot-
ically true due to the way the matrixR is computed

P1
∑K

i=2
Pi +N

= . . . =
Pj

∑K

i=j+1
Pi +N

= T (13)

HerePi is total power allocated toi’th block across theM transmis-
sions, andN is the unknown noise power. Thus the total power used
by the sender isP =

∑K

i=1
Pi and the actual SNR of the channel is

10 log(P/N)dB and is unknown to the sender. This equation is just
restating the condition we developed in Eq. 8 that ensured that the
minimum distance for each block is guaranteed to be greater than the
required threshold for each block to decode.

The Strider decoder is a stripping decoder, i.e. it decodes the first
block treating the second as noise, strips it after decoding and then
decodes the second block. When the receiver decodes theK blocks,
So the effective rate achieved by Strider at this point is:

RStrider =

K
∑

i=1

R(T) =
K
∑

i=1

log(1 + T) (14)

=

K
∑

j=1

log(1 +
Pj

∑K

i=j+1
Pi +N

) (15)

= log

(

K
∏

j=1

∑K

i=j
Pj +N

∑K

i=j+1
Pi +N

)

(16)

= log(1 +

∑K

i=1
Pi

N
) = log(1 +

P

N
) (17)

Thus the effective rate is the same as the Shannon capacity at power
P and noiseN . In other words, Strider achieves the same throughput
as if the user had used the full powerP to transmit with a capacity
achieving code at the unknown SNR.

For our practical implemented algorithm, we use a convolutional
code at a fixed rate as the static code. Hence the practical perfor-
mance of our scheme will be dictated by how good the fixed static
code is at its decoding threshold. However, we stress thatStrider is
orthogonal to the choice of the static code. Hence, if in the future
efficient codes (e.g. LDPC codes [8]) that achieve capacity at their
decoding SNR threshold become practically available in hardware,
we can immediately use Strider to convert them into a rateless capac-
ity achieving code that works at every SNR.

7. IMPLEMENTATION
Strider is designed to work on top of a WiFi-style OFDM PHY,

with a64 length FFT out of which48 subcarriers are used for data,4
for pilot tones and the rest are padding. In Strider the data stream is
first divided into chunks ofK = 33 parallel blocks of size1500 bits
each. Each block is passed through the static code encoder, which
in our current implementation is a1/5 rate channel code based on
convolutional codes and a QPSK constellation. Next, theseK coded
blocks are linearly combined to create a single packet. The symbols
in this packet are striped across the48 data OFDM bins, which are
then passed through an IFFT to obtain the time-domain signal. At the
receiver, the process is reversed.

Strider’s current implementation builds on top of a 802.11 style
OFDM PHY implementation in GNURadio from MIT [33]. How-
ever, our frontends are USRP2/RFX2400s whose interconnects can-
not support the full 20MHz width required in Wifi, and are currently
configured to use6.25MHz (interpolation and decimation rates of16)
due to PC processing constraints. Hence the subcarrier width in our
current implementation is97.6KHz.
Static Code: Strider’s current implementation uses a static code that
consists of a fixed1/5 rate channel code. However, implementing a
convolutional code with such a large constraint length is infeasible in
practice. Strider adopts a standard communication theory trick, con-
catenate a1/2 and1/3 rate code to together create a1/2∗1/3 = 1/6
rate code, and then puncture it to make a rate1/5 code. Both1/2 and
1/3 rate codes are widely available and implemented in hardware.
We refer the reader to [20] for a description of this technique.
Packet Header: Similar to traditional WiFi, the Strider header has
a known preamble. After the preamble, the packet header includes
the following packet parameters: Sender MAC address, destination
MAC address, frame no, chunk no, the index of the row inR that is
used to create the linear combination and packet length. The header
is repeated at the end of the packet to protect it from collisions.
Complexity: The computational complexity of Strider is linear in the
number of input data symbols. Compared to traditional WiFi, Strider
employs a stripping decoder in addition to the decoder for the static
code. Since we use convolutional style coding for the static code (the
same as WiFi), the only extra complexity in Strider is from the initial
stripping decoder component. The stripping decoder algorithm re-
quiresK×L complex multiplications for every packet received. If a
block is decoded, it is subtracted from the received signal, which re-
quires anotherL complex subtractions. Thus the two extra operations
are both linear in the length of the data block. Strider’s current im-
plementation is bottlenecked by the decoding complexity of the static
code, the extra overhead of Strider’s stripping decoder is only around
20% in terms of wallclock time. However, the static codes we use are
widely implemented in conventional wireless hardware for very high
data rates, hence we believe Strider can be easily ported to a realtime
hardware implementation.

8. EVALUATION
We evaluate Strider on an indoor testbed of15 USRP2s and trace

driven simulations. We compare Strider with the following:

• Omniscient Scheme: This scheme has perfect advance knowl-
edge of the channel strength, and picks the maximum possible
bitrate that can be decoded error free. The bitrate choices are
from the9 different bitrates available in the 802.11 standard,
listed in Table 1. We augment the above rates with a 16-QAM,
2/3 code rate that achieves a rate of2.66b/s/Hz to give the om-
niscient scheme more fidelity in picking the right bitrate. The
omniscient scheme also guarantees that concurrent transmis-
sions are scheduled in a collision-free manner.

Mobility Trace Path

Figure 3: Strider Indoor Testbed Layout

Table 1: WiFi Bitrates
BitRate Channel Code/Modulation b/s/Hz

6 1/2, BPSK 0.5

9 3/4, BPSK 0.75

12 1/2, QPSK 1.0

18 3/4, QPSK 1.5

24 1/2, 16-QAM 2.0

32
∗

2/3, 16-QAM 2.66

36 3/4, 16-QAM 3.0

48 2/3, 64-QAM 4.0

54 3/4, 64-QAM 4.5

• SoftRate: This is a state of the art rate rate adaptation protocol
that uses soft information at the receiver to estimate the BER
of a packet. The BER information is sent back to the sender
via control packets, which uses it to make rate adaptation de-
cisions. SoftRate’s evaluation [33] shows that it outperforms
almost all conventional rate adaptation techniques, so we com-
pare against it as a representative of the best possible practical
rate adaptation technique.

Before describing the experiments in detail, we briefly summarize
our findings:

• In our testbed experiments, Strider achieves a throughput that
is within 5% of the omniscient scheme across a wide range
of SNRs (5-25dB). Note that Strider has no knowledge of the
channel SNR, while the omniscient scheme has perfect ad-
vance knowledge.

• Strider eliminates hidden terminals in our testbed. Further,
Strider achieves at least as good a throughput as the omniscient
scheme which uses a collision free scheduler in most scenarios,
and in the majority of the cases outperforms it.

• In comparison with SoftRate [33], a state of the art rate adap-
tation technique, we show that Strider outperforms by nearly
70% in mobile scenarios.

• In networks with contention and hidden terminals, Strider pro-
vides a throughput gain of2.8× over SoftRate and60% over
the omniscient scheme.

9. INDOOR TESTBED EXPERIMENTS
In this set of experiments, we evaluate Strider using experiments

in our indoor testbed of USRP2s. We compare with the omniscient
scheme, since current USRP2s do not meet the timing requirements
needed to implement dynamic rate adaptation techniques such as Sof-
tRate. However note that the omniscient scheme is an upper bound
on the performance of any conventional rate adaptation technique.

9.1 Strider’s Rateless Conversion
Method: In this experiment, we randomly place two USRP2 nodes
in our testbed and measure the SNR of the link. We then trans-
mit 1000 packets between the two nodes. For omniscient scheme,

SNR (dB)

T
h

ro
u

g
h

p
u

t
(b

/s
/H

z)
Throughput Comparison: Unknown SNR

0

1

2

3

4

5

5 8 11 14 17 20 23

Omniscient

Strider T
h

ro
u

g
h

p
u

t
(b

/s
/H

z)

Throughput Comparison: Buffering at Txmitter

SNR (dB)

0

1

2

3

4

5

5 8 11 14 17 20 23

Strider (4KB)

Strider (6KB)

Strider (8KB)

Strider (10KB)

Omniscient

SNR (dB)

T
h

ro
u

g
h

p
u

t
(b

/s
/H

z)

Throughput Comparison: Static Code Choices

0

1

2

3

4

5

6

5 8 11 14 17 20 23

Strider (1/5 Static Code Rate)

Strider (1/4 Static Code Rate)

Strider (1/6 Static Code Rate)

Omniscient

(A) (B) (C)
Figure 4: A) Strider performs almost as well as the omniscient scheme at all SNRs. B) Strider works fairly well even when the transmitter has a
small amount of data to transmit. C) Strider’s performance at high SNRs can be improved by selecting higher rate static codes.

we transmit using all the different bitrates, and pick the one which
achieves the maximum throughput. For Strider, we use Strider’s en-
coding and decoding algorithm. We repeat this experiment10 times
for the same location of the nodes and take the average throughput for
either scheme, expressed in terms of bits/second/Hz. We then change
the locations of the two nodes to get a different SNR and repeat the
above procedure. We plot the average throughput achieved by the
two schemes vs SNR in Fig. 4.
Analysis: As Fig. 4 shows, Strider achieves a throughput that is
atleast within5% of the omniscient scheme at all SNRs between
4−24dB. We comment on two regions of the graph. First, at medium
to low SNRs (4 − 16dB), Strider often outperforms the omniscient
scheme. The reason is that Strider has more granular steps, in fact
it can achieveK = 33 different effective bitrates. The omniscient
scheme is choosing within a relatively smaller set, the10 different
channel coding and modulation choices listed in Table 1. Hence at
certain SNRs, the omniscient scheme is limited by the choices it has.
However, note that Strider is close to the omniscient scheme at every
SNR, implying that even if the omniscient scheme had more choices,
it could not have done better than Strider.

On the other hand, Strider is around5%worse at high SNRs greater
than18dB. The same granularity that helped Strider at the medium
and lower SNRs slightly hurts Strider in the high SNR region. Re-
member that Strider’s effective throughput drops as2∗33/5M where
M is the number of transmissions needed. Hence, whenM is small
(around2 − 5), then the effective bitrate exhibits jumps. In high
SNR regions, Strider decodes using2 − 5 transmissions, and does
not have the high fidelity to achieve close to the omniscient in this
region. However, Strider is still only5% off omniscient.

How sensitive is Strider to buffering?: Strider buffers data so that it
has enough to form a batch of blocks that it can code over. However,
in practice some applications might not generate enough traffic to fill
the buffer, and hence Strider might need to work with smaller buffers.
Strider can handle these by changing two parameters: the size of a
block, as well as the number of blocks in a batch. We conduct an
experiment where the sender has different amounts of buffered data
available, and picks the best block and batch size for that buffer size.
We plot the average throughput vs SNR for buffer size in Fig. 4(b).
Analysis: Fig. 4(b) shows that Strider works fairly well even when
the buffer size is as small as 4KB. There is a slight underperformance
at medium SNRs (12-16dB). The reason is that at small buffer sizes,
Strider has to use a smaller batch size than the normal value of33.
The smaller batch size impacts the granularity of the effective bitrates
Strider can achieve, and leads to slightly lower effective throughputs.
But overall, Strider works fairly well even when there is only a small
amount of data (4KB) to transmit. In the extreme case where the
amount of data queued up at the transmitter is smaller than4KB,

Strider might be overkill. In such cases, the sender can simply use a
fixed low rate code to transmit the packet, and switch to Strider only
when the outstanding buffer is greater than4KB.

On the other hand larger buffers (i.e. larger batch sizes) slightly im-
prove performance, especially at high SNRs. However, larger batch
sizes come with the obvious tradeoff of needing more buffering at the
transmitter. We choseK = 33 as the default since it gives good per-
formance across our target SNR range, however the designer is free
to choose a higher batch size if he wishes to target higher SNRs.
Impact of Static Code Choice: Strider’s parameters, the 1/5 static
code rate and the QPSK modulation, were picked to obtain the best
performance in our target SNR range of3− 25dB that is commonly
found in deployed wireless networks. In the following experiment we
vary the static code rate to check if Strider is sensitive to that choice.
We note that varying the modulation is not necessary, since as we
discussed in Sec. 6 what really matters for Strider’s performance is
the rate at which information is encoded in a block, because that pa-
rameter dictates the minimum distance required to decode a block.
Changing the static code while keeping the QPSK modulation is suf-
ficient to control the encoding rate of a block. We plot the average
throughput vs SNR for different static code choices in Fig. 4(c).
Analysis: Fig. 4(c) plots the relative performance of different static
code choices in Strider. As we can see, at most SNRs the different
static code rates among the convolutional family do not make a big
difference. The differences again are at high SNRs, and is mostly due
to the granularity of the effective bitrates achieved for different static
code rates. Higher static code rates (e.g. 1/4 code rate) in fact perform
better at higher SNRs, achieving nearly 5.5b/s/Hz at SNRs> 22dB.
Thus changing the static code rate provides the designer another lever
if he wishes to optimize Strider for higher SNRs, outside our current
target range of3− 25dB.

9.2 Strider’s Collision Decoding
To evaluate Strider with collisions, we set up hidden terminal sce-

narios in our testbed using USRP2 nodes. To evaluate if a particular
node configuration is a hidden terminal scenario, we implement a
simple threshold based carrier sense on the USRP2 nodes and check
if they can carrier sense each other. The two hidden terminal nodes
transmit to a fixed third USRP2 node, which acts as the receiver.
Method: We compare against the omniscient collision-free scheme
where the two senders take turns transmitting1000 packets to the
receiver, and use the maximum error free bitrate for their channels
during their transmissions. For Strider, the two senders transmit con-
currently and the collided packets are decoded at the receiver using
the Strider collision decoding algorithm. We compute the average
throughput achieved by the omniscient scheme and Strider over10
consecutive runs. We plot the CDF in Fig. 5(A).
Analysis: Fig. 5(A) shows that Strider surprisingly outperforms the

omniscient collision free scheduler in most of the scenarios! The me-
dian throughput gain over the collision-free scheduler is nearly30%.
The reason is that in a hidden terminal scenario, if one node has a
stronger channel than the other, then collision-free scheduling is ac-
tually suboptimal. The collision-free scheduler allows both nodes
to transmit an equal number of packets, however the node with the
weaker channel will take longer to transmit the same number of pack-
ets. Consequently, even though the node with the stronger channel
can achieve higher rates when he is given the chance to transmit, he
is limited due to the weaker channel node. Hence overall network
throughput drops.

Strider on the other hand lets both nodes transmit concurrently and
decodes from collisions. When the two senders have equal channels,
it achieves the same throughput as the omniscient scheme. When
the channels are unequal, the node with the stronger channel gets his
packets decoded first, and moves on to the next chunk. Hence, unlike
the collision-free omniscient scheme it does not have to wait for the
weaker node to finish. Consequently, the medium is better utilized
and leads to higher overall network throughput.

Impact of Relative SNRs: To better understand the above phenomenon,
we conduct the following controlled experiment. We focus on a spe-
cific hidden terminal scenario where the SNRs of either sender to the
receiver (when they are transmitting separately) is the same at around
10dB. We then keep one sender (lets say Bob) fixed and move the
other sender (lets say Alice) closer to the receiver. For each location,
we measure the average throughput achieved by Strider and the omni-
scient collision-free scheme as described in the previous experiment.
We plot the relative throughput (i.e Strider throughput normalized by
omniscient throughput) vs relative SNR (SNR of Alice - SNR of Bob)
for both schemes in Fig. 5(B).

As Fig. 5(B) shows, the throughput of the collision free scheduler
is slightly better (≈ 5%) than Strider when the relative SNR is close
to zero. The reason is that for Strider’s decoding algorithm to get
kickstarted, it needs to be able to decode the first block. But when
the relative SNR is close to zero, Strider can take a long time before
the first block can get decoded since collisions from the second node
are treated as noise. However, as Alice moves closer to the receiver
and her channel improves, Strider’s throughput increases relativeto
the collision-free scheduler. The reason is that Alice’s packets are
decoded faster, while Bob achieves a throughput that is commensu-
rate with his channel. In the collision-free omniscient scheme, even
though Alice’s channel has improved, she cannot take full advantage
of it because Bob monopolizes the channel time to transmit his pack-
ets. When the SNR gap is nearly10dB, the overall throughput is
nearly50% better than the collision-free scheduler.

10. TRACE DRIVEN EMULATION
Although Strider can run in real time on a USRP2 connected node,

similar to prior work [33, 11] we turn to trace driven emulation to
compare Strider with SoftRate, a state of the art conventional rate
adaptation technique. This is for two reasons. First, SoftRate requires
estimated BER control feedback immediately after every transmis-
sion from the receiver to the sender, but the USRP2s are not equipped
to quickly transmit ACKs after a packet is received. Second, we want
to compare the schemes over varied channel conditions, from static
to rapidly changing, from no contention to heavy contention, to as-
sess how consistently they perform across all scenarios. However, it
is hard to generate controllable high-mobility and high-contention in
experimental settings.
Trace: We collect real channel information for the simulations via
two traces: one for mobility and the other for contention. We use the
Stanford RUSK channel sounder [22] to collect channel state infor-

0.4

0.6

0.8

1

1.2

Strider

C
u

m
u

la
ti

v
e

 F
ra

ct
io

n

Throughput Comparison: Testbed Collision Scenarios

0

0.2

0 1 2 3 4 5

Omniscient

Network Throughput (b/s/Hz)

C
u

m
u

la
ti

v
e

 F
ra

ct
io

n

1

2

3

4

5

Strider

Omniscient

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(b
/s

/H
z)

Throughput Comparison: Alice moved closer to the AP

0

1

-5 -3 -1 1 3 5 7 9 11 13

Omniscient

SNR Difference between Alice and Bob’s links (dB)

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(b
/s

/H
z)

(A) (B)
Figure 5: A) Strider eliminates hidden terminals. B) Strider’s overall
throughput improves as Alice is moved closer to the receiver.

mation for a20MHz 802.11 wireless channel. The channel sounder is
an equipment designed for high precision channel measurement, and
provides almost continuous channel state information over the entire
measurement period, and can measure channel SNRs as low as -3dB.
Our experiments are conducted at night on the band between2.426
and 2.448GHz which corresponds to WiFi channel6, and include
some interference from the building’s WiFi infrastructure which op-
erates on the same channel.

• Mobility Trace: A mobile channel sounder node is moved at
normal walking speed (≈3mph) in the testbed and the channel
sounder node at the center (the blue node at the center of the
testbed figure 3) measures the channel from the mobile node.
These nodes record and estimate detailed channel state infor-
mation for all frequencies in the20Mhz channel, and therefore
include frequency selective fading which we would not have
seen with USRP2s that operate on6.25Mhz bands. We collect
around100000 measurements over a100 second period, and
get a CSI sample every1ms for one trace. We use10 different
walking path to collect10 different mobility traces.

• Contention Trace: The channel sounder is placed at ten differ-
ent locations in our testbed, and their channel to the central blue
node is measured over a period of100 seconds similar to the
mobility traces above. We therefore collect10 such traces. We
also place two USRP2 nodes at all pairs of these10 locations
and use our hidden terminal technique described in Sec. 9.2 to
determine if the two nodes are hidden terminals. We record
this information along with the trace.

Emulator: We feed this trace to a custom emulator written using
the the MIT Gnuradio OFDM Code [33] and Strider’s implementa-
tion. For Softrate, the emulator implements a 802.11 style PHY aug-
mented with soft decoding since SoftRate uses it for BER estimation
at the receiver. Further, for both Strider and Softrate, the emulator
implements a 802.11 style MAC with ACKs, CSMA and exponential
backoff with the default parameters.
Simulating Mobility: To vary mobility, we replay the trace at dif-
ferent speeds. For example,4× mobility implies the channel mea-
surements that spannedT seconds now spanT/4 seconds. When a
packet is transmitted at timet in simulation, the symbols in the packet
are distorted using the corresponding channel measurement from the
trace at timet. If the trace has been sped up4× to simulate mobil-
ity, the channel measurement at timet in the new trace will be the
channel measurement in the original trace at time4t.
Simulating Contention: To vary contention, we pick different sub-
sets of the10 nodes from the contention trace and let them send
packets whenever the simulated 802.11 MAC lets them. If a node
is allowed to transmit at timet, then we look up the channel mea-
surements from its trace at timet and distort its transmitted symbols
accordingly. If two nodes concurrently transmit and collide, their
symbols are individually distorted according to their respective chan-
nel traces, and the distorted symbols are added up at the receiver.

Simulated Speed (mph)

Human Speeds Vehicular Speeds Very Fast Fading

Performance Comparison: Varying Mobility

N
o

rm
a

li
ze

d
 A

v
g

.
T

h
ro

u
g

h
p

u
t

0

0.2

0.4

0.6

0.8

1

1.2

3 10 20 40 60 80 160 300

Strider SoftRate

Performance Comparison: Low Contention

Avg. Rate (Mbps)

C
u

m
u

la
ti

v
e

 F
ra

ct
io

n

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Omniscient

Strider

SoftRate

Performance Comparison: High Contention

Number of contending nodes

Gain from

better medium

utilization

Gain from

decoding collisions

N
o

rm
a

li
ze

d
 A

v
g

.
T

h
ro

u
g

h
p

u
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6 7 8

Strider

SoftRate

(A) (B) (C)
Figure 6: A) Strider outperforms SotfRate with increasing mobility. B) Strider provides gains because of better medium utilization at low contention.
C) Strider outperforms both omniscient and SoftRate due to better medium utilization and ability to decode collisions in high contention scenarios.

10.0.1 Performance with Mobility
We compare the performance of Strider under varying mobility

by playing the trace at increasing speeds, from1× walking speed
(3mph) to 20× corresponding to vehicular speeds (60-80mph) to
100× corresponding to300mph. Note that the omniscient scheme
has advance knowledge of all the channel states that affect each packet
transmission, and picks the highest bitrate that can be correctly de-
coded at every instant. The other schemes are implemented as de-
scribed before. The performance metric is the average throughput
achieved by each scheme over a trace. We run the simulation for each
trace and for each compared approach and for each speed. We com-
pute the normalized throughput (i.e. throughput divided by through-
put of omniscient scheme) achieved by each approach for all traces
and for each speed, and then calculate the average normalized through-
put at each speed. Fig. 6(A) plots the average normalized throughputs
for the two schemes vs simulated speeds, along with error bars.
Analysis: Strider performs excellently, though it does exhibit some
dropoff with increasing mobility compared to the omniscient scheme.
At high mobility, Strider is around15% off the omniscient scheme’s
rate. However, Strider still outperforms SoftRate by nearly70% in
vehicular mobility scenarios, and by50% in very fast fading scenar-
ios.

All schemes do fairly well at low mobility, which is expected. At
human speeds, we do not see large fluctuations, the channel coher-
ence time in our trace is around100ms, a relatively long time given
that a 802.11 sender would manage to transmit around50 packets at
the lowest bitrate, and probably more. Hence, once a rate adaptation
algorithm locks on to the correct bitrate (which SoftRate achieves
within one packet transmission time), bitrate adaptations are rela-
tively infrequent. Therefore SoftRate performance is also close to
the omniscient scheme.

SoftRate exhibits interesting behavior at higher mobilities. First, as
mobility increases, channel coherence times drop, and bitrate adapta-
tion decisions have to be made more frequently. Hence, the likelihood
of a packet being transmitted at the incorrect bitrate increases, lead-
ing to the loss in performance. However, the surprising fact is that
SoftRate performance drops and then recovers at very high mobility,
corresponding to very fast fading scenarios. Wespeculatethat the
reason is the timescale at which Softrate adapts rate, which is every
packet. Hence if a wireless channel has a coherence time which is
on the order of1− 2 packet transmission times, SoftRate is likely to
make a mistake in the bitrate decision every second or third transmis-
sion. The coherence time in the vehicular mobility scenarios is on
the order of a few milliseconds in our trace, just sufficient to transmit
1− 4 packets. Consequently SoftRate is constantly playing catchup,
and often makes wrong bitrate decisions, leading to lower normal-
ized average rate. However, as mobility increases further, the chan-
nel changes several times within a packet. Here SoftRate manages to
average the channel over the packet transmission and accurately esti-

mate BER. If the average around which the channel fluctuates stays
the same across packets, then SoftRate finds the correct bitrate de-
cision, and performance improves. This behavior is consistent with
the findings of the SoftRate paper [33]. The SoftRate authors present
evaluations over slow and very fast fading scenarios, but mention that
in intermediate mobility where the channel changes every2−3 pack-
ets, their scheme suffers.2

10.0.2 Low Contention
Method: We compare Strider’s performance with the omniscient
scheme and SoftRate under low contention scenarios.In these exper-
iments, we randomly pick two nodes from the contention traces, and
simulate a 802.11 network with both of them communicating to an
AP. We let both nodes transmit, with the 802.11 MAC scheduling ac-
cess for Strider and SoftRate and run the simulation for100 seconds.
If these two nodes are hidden terminals according to our testbed mea-
surements, then they cannot carrier sense each other in the simulation.
Among theC10

2 pairs in our traces, only12 pairs are hidden termi-
nals. The omniscient scheme however uses a collision-free scheduler,
and concurrent transmissions will be scheduled one after the other to
eliminate collisions. We compute the average total throughput for
each two node scenario, and then repeat for a different two node
scenario. Fig. 6(B) plots the CDF of the throughputs for the three
compared schemes.
Analysis: Surprisingly, Strider outperforms even the omniscient scheme
in the low contention scenario. The median rate gain over omniscient
is around25% and around35% over SoftRate. With SoftRate ap-
proximately15% of the simulations perform quite badly (shown in
the first quartile of the CDF) because these topologies correspond to
the hidden terminals in our set. However, given that hidden terminals
are relatively rare and the omniscient scheme uses a collision free
scheduler, where do Strider’s gains come from?

The key reason for Strider’s performance isbetter medium utiliza-
tion. Consider what happens when the 802.11 MAC schedules con-
tending nodes for transmission. If the nodes are within carrier sense
range, the MAC ensures that all nodes get equal number of opportu-
nities to transmit a packet. However, if the contending nodes have
differing channel qualities to the AP, then the node with the weaker
channel monopolizes the channel time because the same sized packet
requires a larger transmission time (since it has to use a lower bi-
trate). Hence the stronger node is unfairly penalized, which hurts
overall network performance. As prior work has observed [30], the
right MAC policy in such scenarios is to ensure “time based fairness",
i.e. give all nodes equal amount of channel time regardless of their
respective channel strengths.

In Strider, due to its rateless nature, all transmissions occupy the
same amount of channel time. Since the 802.11 MAC ensures equal
number of transmission opportunities for all contending nodes, Strider

2please see Sec.3.4 of the SoftRate [33] paper for a discussion.

ensures that every node gets equal time on the channel. Thus the
stronger node is not unfairly penalized. This leads to better medium
utilization and consequently higher overall throughputs. Thus, un-
like prior work which used mechanisms such as regulating per node
queues to ensure time-based fairness, Strider achieves it for free.

10.0.3 High Contention
Method: The experiment is conducted similar to the low contention
scenario, except we pick increasing numbers of contending nodes
from our contention traces. We normalize the throughput of each
experiment by dividing it with the throughput achieved by the om-
niscient scheme. We calculate the average normalized throughput
across all experiments that have the same number of contending nodes
and plot it in Fig. 6(C) with increasing contention.
Analysis: Strider significantly outperforms both the omniscient scheme
and SoftRate as contention increases. When8 nodes are contending,
Strider is nearly60% better than the omniscient scheme, and2.8×
better than SoftRate. There are three reasons for this outperformance:

• First, Strider does better because of efficient medium utiliza-
tion, and the gain increases with higher contention. The reason
is that with more nodes, the problem of weaker channel nodes
dominating channel time becomes even more acute. Strider’s
rateless property ensures that every node gets an equal amount
of channel time regardless of its channel quality, and hence
performs better.

• Second, in high contention collisions are more frequent. Sof-
tRate’s performance suffers since it cannot decode from colli-
sions and has to resort to expensive backoffs to ensure nodes
don’t collide. Strider decodes from collisions and also elim-
inates all hidden terminal problems. We note that the colli-
sions we observed in our simulations were typically between
two transmissions, it was quite rare to see collisions between
higher number of transmissions because the required node ge-
ometry (three pairwise hidden terminals) as well as synchro-
nization in channel access inspite of three independent random
backoffs are quite unlikely.

• Finally, SoftRate relies on feedback from a previous packet’s
ACK to pick the bitrate for the next transmission. However,
in high contention scenarios, a node may not get to transmit
a packet for several milliseconds, and its bitrate estimate from
the previous measurement gets stale. This leads to inaccurate
bitrates and a loss in throughput.

11. CONCLUSION
Strider provides a rateless and collision-resilient design, that con-

sistently achieves very good performance across a wide variety of
scenarios, ranging from low mobility to high mobility, from low con-
tention to high contention and unknown channels to hidden terminals.
We believe Strider can greatly simply wireless PHY design by elim-
inating the need for complicated rate adaptation protocols. Strider
suggests a number of avenues for future work, including redesigning
the MAC to take advantage of Strider’s collision resilient code and
extending it to 802.11n MIMO scenarios.

12. REFERENCES
[1] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: Media access

protocol for wireless lans. InProceedings of the international conference on
Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM), 1994.

[2] J. Bicket. Bit-rate selection in wireless networks.MS Thesis, Massachusetts
Institute of Technology, 2005.

[3] G. Caire, S. Guemghar, A. Roumy, and S. VerdÃž. Maximizing the spectral
efficiency of coded cdma under successive decoding.IEEE Transactions on
Information Theory, Jan 2004.

[4] J. Camp and E. Knightly. Modulation rate adaptation in urban and vehicular
environments:cross-layer implementation and experimental evaluation. InACM
MOBICOM, 2008.

[5] U. Erez, M. Trott, and G. Wornell. Rateless coding and perfect rate-compatible
codes for gaussian channels. InInformation Theory, 2006 IEEE International
Symposium on, pages 528 –532, july 2006.

[6] Free Software Foundation. Gnuradio.http://gnuradio.org.
[7] P. Frenger, S. Parkvall, and E. Dahlman. Performance comparison of harq with

chase combining and incremental redundancy for hsdpa. InIEEE VTC, 2001.
[8] R. Gallagher. Low density parity check codes. InPhD thesis, MIT, 1962.
[9] S. Gollakota and D. Katabi. ZigZag decoding: combating hidden terminalsin

wireless networks. InSIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008
conference on Data communication, pages 159–170, New York, NY, USA, 2008.
ACM.

[10] D. Halperin, T. Anderson, and D. Wetherall. Taking the sting out of carrier sense:
interference cancellation for wireless lans. InMobiCom ’08: Proceedings of the
14th ACM international conference on Mobile computing and networking, pages
339–350, New York, NY, USA, 2008. ACM.

[11] D. Halperin, A. Sheth, W. Hu, and D. Wetherall. Predictable 802.11 packet
delivery from wireless channel measurements. InACM SIGCOMM, 2010.

[12] K. Jamieson and H. Balakrishnan. Ppr: Partial packet recovery for wireless
networks. InACM SIGCOMM, 2007.

[13] G. Judd, X. Wang, and P. Steenkiste. Efficient channel-aware rate adaptation in
dynamic environments. InACM MOBISYS, 2008.

[14] T. Kailath, H. Vikalo, and B. Hassibi. Mimo receive algorithms.Space-Time
Wireless Systems: From Array Processing to MIMO Communications, 2005.

[15] A. Kamerman and L. Monteban. Wavelan r-ii: A high-performance wireless lan
for the unlicensed band.Bell Labs Technical Journal, 2, 1997.

[16] S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interference: analog
network coding. InSIGCOMM ’07: Proceedings of the 2007 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 397–408, New York, NY, USA, 2007. ACM.

[17] L. E. Li, K. Tan, Y. Xu, H. Viswanathan, and Y. R. Yang. Remap decoding:
Simple retransmission permutation can resolve overlapping channel collisions. In
ACM MOBICOM, Sep 2010.

[18] S. Lin and P. Yu. A hybrid arq scheme with parity retransmission for error control
of satellite channels.IEEE Trans. on Communications, 1982.

[19] M. Luby. Lt codes. InProc. of FOCS 2002, 2002.
[20] D. Mackay.Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.
[21] MadWiFi. Onoe rate control.

http://madwifi.org/browser/trunk/ath_rate/onoe.
[22] G. V. L. J. N. Czink, B. Bandemer and A. Paulraj. Stanford july 2008 radio

channel measurement campaign. InCOST 2100, October 2008.
[23] R. Palanki and J. Yedidia. Rateless codes on noisy channels. InISIT, 2004.
[24] A. Sarwate and M. Gastpar. Rateless codes for avc models.Information Theory,

IEEE Transactions on, 56(7):3105 –3114, july 2010.
[25] T. Schmidl and D. Cox. Robust frequency and timing synchronization forofdm.

IEEE Transactions on Communications, Dec. 1997.
[26] S. Sen, R. R. Choudhury, and S. Nelakuditi. Csma/cn: Carrier sense multiple

access with collision notification. InMobicom, 2010.
[27] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi. Accurate:

Constellation based rate estimation in wireless networks. InNSDI, 2010.
[28] A. Shokrollahi. Raptor codes.IEEE/ACM Trans. Netw., 14(SI):2551–2567, 2006.
[29] E. Soljanin, R. Liu, and P. Spasojevic. Hybrid arq in wireless networks. In

DIMACS Workshop on Networking, 2003.
[30] G. Tan and J. Guttag. Time-based fairness improves performance in multi-rate

wlans. InUsenix Annual Technical Conference, 2004.
[31] D. Tse and P. Vishwanath.Fundamentals of Wireless Communications. Cambridge

University Press, 2005.
[32] J. Van de Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson. On channel

estimation in ofdm systems. 1995.
[33] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer wireless bit rate

adaptation. InACM SIGCOMM, Barcelona, Spain, August 2009.
[34] D. Warrier and U. Madhow. On the capacity of cellular cdma with successive

decoding and controlled power disparities. InProc. 48th IEEE Vehicular
Technology Conf., 1998.

[35] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate adaptation for
802.11 wireless networks. InProceedings of the 12th annual international
conference on Mobile computing and networking, New York, NY, USA, 2006.

http://gnuradio.org
http://madwifi.org/browser/trunk/ath_rate/onoe

	Introduction
	Related Work
	Intuition
	Our Approach

	Design
	Decoding Algorithm
	Stripping Decoder

	Encoding Algorithm
	Why is the above design rateless?

	Decoding Collisions
	Practical Challenges in Decoding Collisions

	Theoretical Analysis
	Implementation
	Evaluation
	Indoor Testbed Experiments
	Strider's Rateless Conversion
	Strider's Collision Decoding

	Trace Driven Emulation
	Performance with Mobility
	Low Contention
	High Contention

	Conclusion
	References

