
Using Physical Layer Emulation to Optimize and Evaluate
Mobile and Wireless Systems

Glenn Judd
Carnegie Mellon University

Pittsburgh, PA, USA
glennj@cs.cmu.edu

Xiaohui Wang
Carnegie Mellon University

Pittsburgh, PA, USA
xiaohuiw@ece.cmu.edu

Mei-Hsuan Lu
Carnegie Mellon University

Pittsburgh, PA, USA
meihsual@ece.cmu.edu

Peter Steenkiste
Carnegie Mellon University

Pittsburgh, PA, USA
prs@cs.cmu.edu

ABSTRACT
Testing and evaluating protocols and applications for wire-
less networks and mobile users is challenging because the
physical environment has a significant impact on the behav-
ior and dynamics of the system. It is however important that
these physical world effects are considered during system im-
plementation and evaluation to ensure correct and efficient
operation. Unfortunately, since these physical world effects
are hard to control and model, this adds considerable com-
plexitity to system development. In this paper we show how
a wireless networking testbed based on signal propagration
emulation was used in the development, testing, and evalu-
ation of mobile systems. The paper is organized as two case
studies at different levels of the system: roaming in 802.11
networks and video streaming. We found that the combi-
nation of realism and control improved both efficiency and
performance during development.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]:
Computer-Communication Networks
; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design
Wireless communication

General Terms
Measurement, Performance

Keywords
Roaming, video streaming

This research was funded in part by NSF under award num-
bers CCR-0205266 and CNS-0434824. Additional support
was provided by Intel and Xilinx.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiQuitous 2008, July 21 - 25, 2008, Dublin, Ireland.
Copyright 2008 ACM 978-963-9799-21-9 ...$5.00.

1. INTRODUCTION
Testing and evaluating protocols and applications for wire-

less and mobile users is challenging because the physical
environment has a significant impact on the behavior and
dynamics of the system. For example, the physical infras-
tructure and movement by people and objects can create
shadows and fading that create dynamic wireless conditions.
Mobility of the wireless devices adds an additional dimen-
sion to channel dynamics. These physical world effects must
however be considered during system development and eval-
uation to ensure correct and efficient operation. For this
reason, developers typically test their code in variety of real
world environments, but the lack of control over the physi-
cal world (movement by people, production networks, etc.)
means that the experiments are not repeatable. This makes
testing, debugging, and side-by-side comparison of differ-
ent implementations challenging. Moreover, it may be hard
to interpret results and the precise reasons for poor perfor-
mance may be difficult to isolate

In response, developers have looked at alternative plat-
forms. The obvious choice is simulators such as ns-2 [14]
and OPNET [18]. They are widely used in the research
community but it has been observed that the lack of physi-
cal layer accuracy can lead to the incorrect conclusions [9].
Moreover, simulator code does not always port easily to real
systems. Researchers have also developed other techniques
such as packet level emulation [17], analog channel emula-
tion [4], partially controllable wireless testbeds [23, 20, 2],
or hybrid solutions [22]. While these approaches are useful
for certain classes of experiments, they also have limitations
such as limited physical layer control or repeatability, lim-
ited flexibility, or high complexity.

In this paper we explore how a wireless networking testbed
based on signal propagration emulation can be used in the
development, testing, and evaluation of wireless and mobile
systems. The testbed achieves a high level of realism since it
uses real wireless devices but it also provides full control and
repeatability at the physical layer. This paper is organized
as a set of two case studies that focus on different levels
of the system: the impact of roaming in 802.11 networks
(MAC layer), and video streaming over wireless (application
layer). Both roaming and video are very sensitive to timing,
which in turn depends on the properties and dynamics of
the wireless channel. Results on how the emulator supports



Emulation
Controller

Network devices and signal conversion modules reside in shielded chassis.

DSP Engine
FPGA-based

Signal 
Conversion

Signal 
Conversion

Signal 
Conversion

Signal 
Conversion

Figure 1: Emulator Implementation

physical layer studies have appeared elsewhere [8, 5].
The primary contribution of this paper is that we show

how digital signal propagation emulation can improve the
development, testing, and evaluation process of wireless and
mobile systems. The control provided by a wireless emu-
lation testbed can improve measurement accuracy and user
efficiency, thus speeding up the development process. Other
contributions include a novel approach to fast roaming for
mobile users and an in depth evaluation of time-aware re-
transmission in 802.11.

The remainder of this paper is organized as follows. In the
next section we give an overview of the wireless network em-
ulator testbed. We present our two case studies in Sections 3
and 4. Finally, we summarize our results in Section 5.

2. WIRELESS NETWORK EMULATOR
Signal propagation emulation [6, 5] allows us to conduct

network experiments using real wireless devices running in
real-time in a controlled environment. The operation of our
emulator is illustrated in Figure 1. A number of “RF nodes”
(e.g. laptops) are connected to the emulator through a ca-
ble attached to the antenna port of their wireless networks
cards. On transmit, the RF signal from a given RF node is
passed into the signal conversion module where it is shifted
down to a lower frequency, digitized, and then forwarded in
digital form into a central DSP Engine that is built around
an FPGA. The DSP Engine models the effects of signal prop-
agation (e.g. large-scale attenuation, multi-path, and small-
scale fading) on each signal path. Finally, for each RF node,
the DSP combines the processed input signals from all the
other RF nodes and sends it to the signal conversion mod-
ule. It converts the digital signal back into a radio signal
and sends it to the wireless line card through the antenna
port. Our implementation supports the full 2.4 GHz ISM
band.

The emulator simultaneously offers a high degree of real-
ism and control. The RF nodes are shielded from each other
(boxes in Figure 1) so that no communication occurs
over the air. Since RF nodes only communicate through
the emulator, we have full control over the signal propaga-
tion environment. The only simulated element is the prop-
agation of signals between hosts. Channels are modeled at
the signal level but the wireless hardware, signal generation,
signal reception, and software on the end hosts are all real.

Emulation is controlled by an Emulation Controller exe-
cuting on the Emulation Controller PC. The Emulation Con-
troller models the emulated physical environment including

Config
Fil

User
Script GUI

(visualize) Initialization

File

Application
Coordination

Timed
Events

World

(visualize)Coordination

“Power”
User

Threads

o d
Model

Channel
Model

Channel
Model

Channel
Model

Channel
Model

Channel
Model

Channel
Model

Channel
Model

Channel
Model

Channel
Model

Channel
ModelGUI

(control)

DSP
Communicator

( )

User Control

Figure 2: Emulator control software

the movement of the wireless devices (World Model in Fig-
ure 2). It also coordinates the movement of devices with the
modeling of the signal propagation in the FPGAs by mod-
ifying its parameters in real time (Channel Models). For
example, as nodes move in the emulated physical environ-
ment, the emulation controller adjusts the parameters for
the large-scale attenuation and fine grain fading in a way
that is consistent with the speed and location of the devices
and writes the new values to the FPGA. The Emulation
Controller can also control application behavior on the end
hosts (Application Coordination). Each RF node runs a
small daemon that allows the Emulation Controller to con-
trol its operation via a wired control network.

Users can specify and control wireless experiments in three
different ways [7] (left side of Figure 2):

• Interactive GUI - Users can control key features of the
experiments such as node placement and channel pa-
rameters using an GUI. When using the GUI, users
often log into the laptops to manually control applica-
tions and monitor performance.

• Scripting - Users can use a scripting language to con-
trol nodes, applications and wireless channels. The
scripting language is very simple, e.g. there is no con-
trol flow.

• Programmatic control - Users can use Java code to
access to all emulator features by directly calling the
appropriate classes. They can also replace or bypass
modules, such as the “World Model”.

3. OPTIMIZING ROAMING IN 802.11
Access point selection is a fundamental issue that has a

large impact on wireless LAN performance, especially for
mobile users. In 802.11, access points provide mechanisms
for client association and disassociation, but clients are left
to discover access points and implement policies that provide
good performance. In this section we discuss how we used
the wireless emulator testbed to develop a new fast roaming
algorithm.

3.1 Roaming Challenges and Background
The first step in roaming is access point discovery, which is

a slow process because 802.11 clients are half-duplex devices
that operate on a single channel. As a results, communi-
cating using a specific access point and looking for new ac-



cess points (which may be on other channels) are largely
mutually exclusive operations. Let us briefly review the
two access point discovery mechanisms provided by 802.11.
With passive discovery, the client simply listens for a certain
amount of time on each channel for incoming beacon frames
that access points transmit periodically. The disadvantage
of this approach is the latency involved. Beacons are typi-
cally sent out at 100 ms intervals, so a station must listen
on each channel for at least 100 ms to hear from all access
points. Thus scanning eleven 802.11b/g channels and/or
802.11a channels requires on the order of one to two seconds.
The latency of the discovery process can be reduced by us-
ing active access point discovery. With active discovery, a
client sends out a probe frame on a channel and then waits
for for probe responses from the access points within range.
While significantly faster than passive scanning, this pro-
cess can still take several hundred milliseconds. Moreover,
the recent trend towards centralized access point controllers
could increase this latency in the future.

Once a client has a list of access points within range, it
must decide what access point to associate with. Access
point selection policy is not specified in the 802.11 standard,
but given the paucity of information available to clients, the
most realistic policy is to select the access point with the
strongest signal. We will use this common policy in this
work. The client can then associate with the access point.
Several other functions may need to be performed, including
authentication, acquiring an IP address, etc. The cost of
these functions depends heavily on the context and it is often
possible to reduce their overhead using caching, i.e. the cost
is only paid once when associating for the first time with
an access point in the enterprise [1]. For this reason we will
ignore these costs and focus on access point discovery.

Channel scanning for a new access point can be triggered
by a high loss rate of beacons from the current access point.
Alternatively, roaming clients may want to proactively look
for better access points. Client can avoid packet loss while
scanning other channels by using power save mode. The
client first sends a power safe mode message to its current
access point. If there are no buffered packets in the access
point, the client switches to a different channels, probes for
new access points, waits for responses and switches back
to its original channel. It can then collect any packets that
may have arrived from the access point thus avoiding packet
loss. Whenever the client discovers an access points with
stronger signals, it disassociates with the old access point
and associates with the new one.

3.2 Measuring Access Point Selection Perfor-
mance

To better understand the performance of access point dis-
covery and roaming, we designed two tests that examine a
single roam operation between two access points in a very
simple environment, where we can easily determine the per-
formance of a “perfect” client. These simple emulator ex-
periments provide insights into the protocol behavior that
would be very difficult to obtain using other techniques. In
this section, we describe the two tests and report and ana-
lyze the results obtained for the Madwifi driver.

3.2.1 Abrupt Roam Test
In the abrupt roam test, the client initially has a superb

connection with access point A and no connectivity with

tmove

...
tscan tjoin tjoin

treaction

...

tdisassoc

tcompB

tcompA(tcompletion)

nassoc

Figure 3: Roaming Metrics

access point B. At a certain time, tmove, the client is in-
stantaneously moved from its location near access point A
to a point near access point B. At that time, the connec-
tions are reversed so that it has no connectivity with A and
excellent connectivity with B. We specified the experiment
using emulator’s programmatic control interface. This al-
lows tight control over client movement and coordination of
the measurement of access point selection behavior with the
movement. We directly control path loss and do not use fine
grain fading.

We instrumented the client client driver to monitor the
time tscan when a non-background channel scan is triggered,
as well as the times, tjoin, when the client associates with a
different station (access points B) after completing the scan.
We also had a user process periodically capture the associ-
ation status of the network interface using iwconfig. Using
this information, we then calculated the following metrics
(Figure 3):

• treaction = tscan − tmove: the amount of time after
tmove until the client starts a scan.

• tcompletion = max{tjoin} − tmove: the amount of time
after tmove until the client is associated with access
point B and no further associations or disassociations
are observed.

• tdisassoc = tjoin − tscan: the amount of time during
which the client was disassociated from all access points.
In the abrupt roaming scenario, the client is discon-
nected longer than tdisassoc because the client was not
aware of the abrupt change until tscan and it was tech-
nically still associated with access point A, although it
can longer reach it. The client is really disconnected
until tcompletion.

• nassoc: the number of access point associations. E.g.
a client that disassociated with A, associated with B,
disassociated with B, then associated with A would
yield nassoc = 2.

The “optimal” client behavior in this scenario is that the
client should change access point as soon as possible, so the
above times should be as small as possible.

The abrupt test was used to analyze the roaming perfor-
mance of the Madwifi-NG driver, version 0.9.1, which was
very popular at the time of this work. The wireless cards
used were Senao NL-5354MP ARIES2 cards which are based
on the Atheros 5212. Table 1 shows the results for a series of



treaction tcompletion tdisassoc nassoc

Mean 11.61 s 15.55 s 3.94 s 1.25
Median 7.69 s 12.40 s 2.14 s 1
Min. 5.09 s 7.20 s 2.07 s 1
Max. 23.18 s 27.58 s 9.24 s 2
Std.Dev. 6.91 s 7.82 s 2.71 s 0.44

Table 1: Abrupt roaming - Madwifi 0.9.1

20 runs of the abrupt test for the Madwifi 0.9.1 driver. The
results clearly reveal two serious shortcomings. First, the
driver is extremely slow to react to the new signal environ-
ment. It took over 7 seconds on average to begin searching
for a new access point. Second, once the driver has recog-
nized the need to find a new access point, it is quite slow
in doing so. It took an average of another 5 seconds to find
and associate with the new access point. During the roaming
process, the client is either associated with an access point
it cannot reach or it is not associated with any access point,
so the client is disconnected from the network for over 12
seconds.

3.2.2 Gradual Roam Test
To observe behavior under a more typical roam scenario -

but one in which the “optimal” outcome is still known - we
designed the gradual roam test. The gradual test models the
scenario of a person walking quickly between the two access
points so that the change in signal conditions is gradual.
Moreover, the client is never completely out of range of ei-
ther access point. In the scenario we evaluated, access points
A and B are 100 meters away from each other. We use a log
distance large scale path loss model with a d0 of 1 m, a pld0

of 40 dB, and a path loss exponent n of 3. Again, no fading
was used. The trip between the two access points takes 20
seconds, so the client is moving quite quickly. We picked
this high rate of movement to stress the roaming support in
the driver. The client then remains stationary near access
point B for 20 more seconds before the test is repeated in
the opposite direction. This process was repeated 20 times.
When the client is close to an access point, e.g. B, it can
communicate with that access point at 11 Mbps, achieving
the maximum throughput of about 6 Mbps. At that time,
connnectivity with the access point A is very weak: the re-
ceived signal strength from access point A is -92dBm and
an iperf test shows a throughput of 1.5 Mbps. In this test,
the optimal behavior is that the client switches access points
when it is halfway between the two access points, i.e. after
10 seconds.

Under this test, the Madwifi 0.9.1 driver failed to roam
despite very poor connectivity with access point A when
located near access point B. For the entire test, the client
remained associated with access point A. This test clearly
shows that Madwifi 0.9.1’s slow reaction to a changing signal
environment performs very poorly in a mobile scenario.

3.3 Improving and Tuning Madwifi 0.9.1
The emulator’s interactive GUI provided an ideal environ-

ment in which to investigate the causes of the poor roam-
ing performance. We used the signal environment from the
abrupt roam case, but we turned off the mobility script and
instead controlled the node placement using the GUI. We
logged into the laptops to enable roam debug logging and
recorded the time of the association and disassociation re-

treaction tcompletion tdisassoc nassoc

Mean 2.43 s 4.89 s 2.46 s 1.1
Median 2.00 s 4.17 s 2.16 s 1
Min. 0.94 s 4.05 s 2.13 s 1
Max. 11.53 s 14.66 s 4.31 s 2
Std.Dev. 2.16 s 2.36 s 0.69 s 0.31

Table 2: Abrupt roaming - Madwifi 0.9.1-E

treaction tcompA tcompB tdisassoc nassoc

Mean 13.92 s 16.05 s 16.05 s 0 s 1
Median 13.76 s 16.53 s 16.53 s 0 s 1
Min. 11.11 s 11.11 s 11.11 s 0 s 1
Max. 16.69 s 18.97 s 18.97 s 0 s 1
Std.Dev. 2.35 s 2.61 s 2.61 s 0 s 0

Table 3: Gradual roaming - Madwifi 0.9.1-E

sults. By analyzing the results and looking through the code
we were able to quickly identify several mechanisms that
were contributing to the poor roaming performance. First,
proactive scanning code was disabled so scanning was purely
failure driven, i.e. the connection with the current access
point had to break before scanning was initiated. Second,
the signal strength results of a scan were sent through a
low-pass filter, which caused the results to be updated very
slowly. Thus, several scans were required to obtain an ac-
curate view of the signal environment. Third, scan entries
were cached. This may be appropriate for nomadic users, i.e.
users who use their laptops in different locations, but it can
result in the use of stale information for mobile users. For ex-
ample, based on stale cache entries, multiple attempts were
made to associate with access points that were not reach-
able. Finally, we also observed that the scanning algorithm
is very slow and uses poorly tuned parameters.

3.4 Enhanced Roaming
We developed an enhanced version of Madwifi 0.9.1 - called

Madwifi 0.9.1-E. - that addressing the problems identified
above. We made three changes to the original code: (1)
we enabled proactive scanning, (2) we disabled the low-pass
filter of signal strength results, and (3) we disabled scan
caching. We then repeated the abrupt and gradual roaming
tests; the results are shown in Tables 2 and 3. We also re-
peated the gradual roaming test with Ricean fading (with
k = 3), which is more realistic for a mobile scenario. Table 4
shows that the result are similar to those for the non-fading
scenario.

The results show that in the abrupt roaming case, reac-
tion and completion times have dropped significantly. In the
gradual roaming test, in contrast to the original driver, the
Madwifi driver now roams. In fact, in the tests we reduced
the dwell time to 10 seconds as roaming clearly happens
well under that. In the gradual roam case we need different
definitions for tcompletion - labeled tcompA and tcompB . The
reason is that the client may switch between access points
multiple times during the test. Moreover, since proactive
scanning is used, the client may be able to switch to the new
access point before performance with the old access point
has degraded, thus avoiding triggering an active scanning as
in abrupt roaming. As a result, the definition of treaction

also need a slight modifications. The metrics for gradual
roaming are defined as follows:

• tcompA: the amount of time after tmove until the client



treaction tcompA tcompB tdisassoc nassoc

Mean 13.15 s 16.14 s 16.55 s 0.41 s 1.3
Median 13.44 s 16.34 s 17.25 s 0 s 1
Min. 10.05 s 13.15 s 13.15 s 0 s 1
Max. 15.76 s 18.92 s 18.92 s 3.11 s 2
Std.Dev. 2.03 s 1.76 s 1.86 s 1.00 s 0.48

Table 4: Gradual roaming + fading -Madwifi 0.9.1-E

is first associated with access point B.
• tcompB : the amount of time after tmove until the client

is associated with access point B and no further asso-
ciations or disassociations are observed.

• treaction = min{tjoin, tscan}: the amount of time after
tmove until the client either starts a scan or associates
with the new access point.

Ideally in this case, roaming would occur halfway between
the access points or at 10 seconds. The enhanced version
performs within a couple seconds of this optimal time, but
there is still room for improvement.

Probe 1

Probe 2

Probe 11 Wait 11

AP 1

AP 2

AP 11

Client

Response

Wait 1

Wait 2

Response

Response

Figure 4: 802.11 Scanning

3.5 Access Point Discovery Using Fast Scan-
ning

Our measurements of the Madwifi 0.9.1-E scan perfor-
mance revealed that a scan operation typically takes around
three seconds. To reduce this delay, we develop a fast scan-
ning algorithm. Let us first review the operation of a tra-
ditional 802.11 active scan operation (Figure 4). When
searching for access points, a scanning client scans all eleven
channels by changing to the desired frequency, sending a
probe request, and then waiting for probe responses. While
a station is scanning, it cannot communicate with its access
point. The scanning time is dominated by the need to wait
for probe responses from access points. If no access point is
heard on a given channel, the maximum channel dwell time
must be used. For Madwifi 0.9.1 this is 200 ms. We can re-
duce the dwell time, but this only helps to a limited degree
and it could cause missed probe responses.

Our fast scanning approach, shown in Figure 5, elimi-
nates the time required to listen for probe responses. The

Probe 1

Probe 2

Probe 11 Wait 1

AP 1

AP 2

AP 11

Client

Probe responses 1-10 forwarded to AP 11

Aggregate
Response

Figure 5: Fast Scanning

treaction tcompA tcompB tdisassoc nassoc

Mean 9.77 s 13.01 s 15.20 s 2.19 s 1.54
Median 9.46 s 11.89 s 12.53 s 3.07 s 2
Min. 6.29 s 8.54 s 11.52 s 0.00 s 1
Max. 14.70 s 19.02 s 20.09 s 5.33 s 2
Std.Dev. 3.20 s 3.35 s 3.79 s 2.27 0.52

Table 5: Gradual roaming - Madwifi 0.9.1-EFS

key idea is to have access points use the wired network to
forward scan information to the scanning client’s current ac-
cess point, which then forwards it to the client. This means
that the client only needs to wait for probe responses. As
before, a fast scanning client visits all channels to send a
probe request, but it then moves to the next channel with-
out waiting for a probe response. The last channel scanned
is the channel of its current access point. The access point
collects the probe responses it receives from the other ac-
cess points and sends an aggregate probe response to the
client. This approach greatly reduces the amount of time
required to complete a scan. In fact, all channels can often
be scanned in less time than two channels can be scanned
without fast scanning. Moreover, the only wait for probe
reponses occurs when on the channel of the currently asso-
ciated access point, so communication can still take place
while waiting for probe responses.

We implemented fast scanning in the Madwifi 0.9.1-E driver.
In the Madwifi 0.9.1-EFS driver, the client proactively scans
every 500 msec and it uses power save mode while scanning
to prevent packet loss, as described in Section 3.1. Table 5
shows the performance of the gradual roam test with Mad-
wifi 0.9.1-EFS; again, the results shown are from 20 repeti-
tions. The reduced scanning time enabled by fast scanning
brings the scan completion time much closer to the optimal
10.0 seconds compared to Madwifi 0.9.1-E. Thus fast scan-
ning appears to be a promising and viable approach. Results
with fading are similar (table omitted).

The abrupt roam test performance was essentially the
same as Madwifi 0.9.1-E. This was expected since since fast
scanning was not implemented for the not-associated case,
e.g. when a client initially joins a network. Fast scanning
must be modified in that case since the client is not asso-
ciated with any access point. One possible solution is to



Figure 6: Multi-AP Test Topology

have the client associate with the first access point it en-
counters and then switch to fast scanning to find the best
access point. We did not implement this since our focus is
on optimizing roaming.

3.6 Multiple Access Point Performance.
In this section we evaluate the three Madwifi roaming vari-

ants using a more realistic scenario that involves a client
roaming in an area covered by multiple access points. The
goal is to maintain high throughput while avoid disassocia-
tion. We consider an application scenarios involving VoIP-
like UDP traffic. The multiple-access point high-mobility
scenario is shown in Figure 6. It consists of six access points
(emu-3, emu-6, emu-7, emu-8, emu-9, and emu-10) that are
distributed in the test area. They are set to channels 8, 10,
6, 4, 2, and 10 respectively. The client (emu-5) navigates a
route that goes past the access points at a speed of 2 meters
per second in a counter-clockwise fashion. A log distance
large scale path loss model is used with a d0 of 1 m, a pld0

of 40 dB, and a path loss exponent n of 4.1. Ricean fading
with k = 3 was used. Note that this is a very challenging
scenario: the client has very poor connectivity to all access
points during several parts of the route. This experiment
was implemented using Java to give us good control over
timing.

UDP-unicast traffic was sent from a wired host to the
mobile client as it navigates the route. Each packet was
stamped with an ID, and the client recorded which packets
were received successfully. The same test was repeated 20
times for the three roaming solutions. The traffic sent used
a VoIP-like data profile of 240 byte packets sent at 33 pack-
ets per second. 4620 packets were sent during each circuit.
Table 6 shows that Madwifi 0.9.1 fares very poorly. Madwifi
0.9.1-E performs significantly better, as expected. Madwifi
0.9.1-EFS is able to increase performance slightly in this
case. The reason is that the full benefits of fast scanning are
somewhat hidden in this test since the VoIP-like data does
not push the limits of throughput.

Mean Median
Fraction Fraction Standard
Received Received Deviation

Madwifi 0.9.1 0.41 0.41 0.16
Madwifi 0.9.1-E 0.70 0.69 0.05
Madwifi 0.9.1-EFS 0.77 0.76 0.04

Table 6: Multi-access point roam - UDP

3.7 Previous Work
Previous efforts have attempted to reduce scan completion

time by reducing the number of channels scanned [1, 21, 16,
15]. The idea is that each access point maintains a list of
neighbors. When a station roams away from that access
point, it only scans channels of neighbors thereby reducing
scanning time. While this improves performance, it runs
the risk of missing available access points. An alternative
it is have the client do synchronized passive scanning [19]
to learn about available basestations. While this reduces
scane time, it adds some complexity to the infrastructure.
Other research has optimized other aspects of roaming, such
as authentication and IP address assignment, e.g. [3]. That
work is orthogonal to the results presented in this paper.

3.8 Roaming Discussion
During the development of the fast roaming protocol, the

wireless emulator testbed was used in a number of ways.
First, the emulator allowed us to implement very simple ex-
periments to quickly understand key properties of both the
original and the improved versions of the driver. The GUI
interface enabled an investigation into the source of the poor
performance, by allowing us to execute interactive mobile
experiments from the desktop. The ability to do debbuging,
testing, and performance tuning using (emulated) mobility
while sitting at the desktop looking at the code resulted in
a very fast development cycle. The alternative is to install
code on a few of laptops and taking them around the build-
ing. This is certainly possible, but it is a slower and labor
intensive process. Finally, we were able to compare the three
drivers in identical but realistic scenarios, which would not
be possible in the real world.

4. VIDEO STREAMING OVER 802.11
In our second case study, we evaluate the performance of

time-aware MAC retransmission for video streaming.

4.1 Challenges
With the rapid adoption of 802.11 WLANs, wireless video

streaming has gained a lot of attention. However, provid-
ing seamless wireless video streaming services is challenging.
Poor channel conditions and interference can result in low
bandwidth, high packet loss rates, and high delay, thus de-
grading the video quality. Moreover, the interframe coding
used by many video coding standards means that even a
single packet loss can significantly affect quality. We used
the emulator to quantify the problem based on the topol-
ogy shown in Figure 7(a). Nodes emu-3, emu-5, and emu-9
simultaneously run iperf UDP tests to emu-4, emu-6, and
emu-10 for one minute. Madwifi 0.9.1 is used for all the
tests. emu-7 is operating in monitor mode and is set up to
have a perfect channel to emu-5, allowing it to monitor all



(a) General (b) Mobile-user (c) Congested-network

Figure 7: Streaming test topologies

200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

160

Packet index

Tr
an

sm
is

si
on

 d
el

ay
 (m

se
c)

Mean: 16.6ms 
Std.: 20.2 ms
Max: 273.4 ms
Min:1.1ms

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Transmission count

(a) Transmission count

200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

160

Packet index

Tr
an

sm
is

si
on

 d
el

ay
 (m

se
c)

Mean: 16.6ms 
Std.: 34.7 ms
Max: 158.3 ms
Min:1.1ms

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Transmission count

(b) Transmission delay

Figure 8: Transmission counts and delays

transmissions (including retransmissions) made by emu-5.
All transmissions are timestamped using the 1 microsecond
clock available on Atheros cards. Using emu-7’s monitoring
results, we can calculate the distribution of the transmission
count and transmission delays for emu-5’s transmissions

The results are shown in Figure 8. Transmission counts
are the number of transmissions (initial attempts and re-
transmissions) issued from the sender for each packet and
the transmission delay is the time needed, including trans-
mit time, inter-frame space, and backoff interval. The re-
sults show that transmission delays fluctuate by more than
two orders of magnitude. This is a result of the exponen-
tial backoff algorithm used by 802.11: once a packet has
been retransmitted a few times, further retransmissions can
take a very long time. The fact that the backoff counter
is frozen while the medium is busy further exacerbates this
effect when the traffic load is high. This high and variable
packet delay is clearly a problem for real-time video stream-
ing, since the receiver must display frames at a constant
rate, so late frames must be discarded.

4.2 Time-based Adaptive Retry (TAR)
To reduce transmission delay, we have proposed TAR,

a time-based adaptive retransmission mechanism [13]. In
TAR, each packet is assigned a retransmission deadline at
the application layer. This information is then used by the
MAC layer to determine whether it should (re)transmit or
discard the packet at some time point. This design philoso-
phy is different from the conventional count-based strategy
used in the 802.11 protocol in which a failed packet is re-
transmitted until a fixed retry limit is reached. For video,
the retry deadlines are assigned based on the predictive-
coding property of MPEG. Specifically, all packets in a group
of pictures (GOP) are given the same deadline, correspond-
ing to the end of the GOP. This means that reference video
frames are assigned a relatively later deadline than inter-
coded frames. This implicitly prioritizes important packets
that contribute more to the video quality by giving them
more transmission opportunities.

4.3 Evaluation
Earlier evaluations of TAR have used simulation. We now

evaluate an implementation of TAR in the Madwifi driver
using three scenarios. The first is a simple scenario with
only the video server and client in the network. This sce-



simple

(a) Simple
mobile

(b) Mobile-user

congested

(c) Congested-network

Simulation

(d) Mobile-user(simulation)

Realworld test

(e) Mobile-user(testbed)

Figure 9: Results of time relative to playback sched-
ule

802.11 Eligible Late Lost
I frame packets 85% 9% 6%
P frame packets 78% 19% 3%
Total packets 79% 18% 3%
TAR Eligible Late Lost
I frame packets 100% 0 0%
P frame packets 88% 0 12%
Total packets 90% 0 10%

(a) Simple

802.11 Eligible Late Lost
I frame packets 45% 32% 23%
P frame packets 50% 25% 25%
Total packets 50% 26% 24%
TAR Eligible Late Lost
I frame packets 92% 0 8%
P frame packets 54% 0 46%
Total packets 59% 0 41%

(b) Mobile-user

802.11 Eligible Late Lost
I frame packets 7% 66% 27%
P frame packets 5% 56% 39%
Total packets 5% 57% 38%
TAR Eligible Late Lost
I frame packets 99% 0 1%
P frame packets 46% 0 54%
Total packets 52% 0 48%

(c) Congested-network

802.11 Eligible Late Lost
I frame packets 54% 46% 1%
P frame packets 55% 45% 0%
Total packets 55% 45% 0%
TAR Eligible Late Lost
I frame packets 97% 0 3%
P frame packets 80% 0 20%
Total packets 82% 0 18%

(d) Mobile-user (simulation)

802.11 Eligible Late Lost
I frame packets 47% 15% 38%
P frame packets 48% 9% 44%
Total packets 48% 9% 43%
TAR Eligible Late Lost
I frame packets 95% 0 5%
P frame packets 50% 0 50%
Total packets 57% 0 43%

(e) Mobile-user (testbed)

Table 7: Results of Packet Ratios



802.11 TAR
Simple 25.5 dB 32.0 dB
Mobile-user 22.1 dB 26.8 dB
Congested-network 7.8 dB 26.1 dB
Mobile-user(sim) 23.6 dB 30.7 dB
Mobile-user(testbed) 21.9 dB 26.5 dB

Table 8: PSNR values of the luminance component

nario was used mainly during debugging and testing of our
TAR implementation. The second scenario is a mobile-user
scenario (Figure 7(b)) with the video server and client mov-
ing at a velocity of 10 m/s based on a predefined route in
a 100x100 square meter area. Ricean fading with k = 3
was used. The last scenario is a congested network (Fig-
ure 7(c)) in which six stations contend with the video server
and client. Each contending station sends out a 1KB ping
packet at a rate of 10Hz. In the tests, emu-5 and emu-6
serve as the video server and client, respectively. The video
client drops late frames and displays the video according to
its original coding rate without stretching or shrinking inter-
frame intervals. The test sequence is “stefan” in CIF format,
encoded with 30 frames per second and 15 frames per GOP
(composed of an I frame and 14 P frames). The sequence is
repeatedly streamed from emu-5 to emu-6 for one minute.

Figure 9(a)-(c) depicts the arrival time relative to the
playback time for the three scenarios. The results show that
TAR has nearly no late arrivals while 802.11 suffers a large
number of late packets under degraded channel conditions.
The increased percentage of lost packets in TAR reflects
packets dropped by the MAC as a result of the time-based
retransmission strategy. This translates into bandwidth sav-
ings by not transmitting useless information. Table 7(a)-(c)
gives the ratio of eligible, late, and lost packets carrying dif-
ferent frame types. The results show that TAR prioritizes I
frame packets over P frame packets through the assignment
of retransmission deadlines. This unequal error protection
translates into a higher PSNR for TAR ((Table 8): TAR
outperforms 802.11 by more than 5 dB in PSNR for the
video.

4.4 Related Work
Representative work on the MAC layer retransmission in-

cludes [10, 11, 12]. Li and van der Schaar [10] consider the
MAC retry limit and sending buffer occupancy and suggest a
heuristic for determining the operating point at which packet
loss due to buffer overflow and link errors is minimal. Unlike
[10], the goal of TAR is to solve the problem of late packets
rather than transmit buffer overflow. Liebl et al. [11] de-
velop an integrated scheduler and drop strategy in the link
layer. The proposed method requires accurate channel state
information, which is not easy to obtain in practice. [12]
incorporates information about the video stream structure
and future channel behavior into the scheduling algorithm.
A solution based on a simplified rate-distortion model that
relies on one single metric per user is proposed. TAR can
be viewed as a special case of [12]. However, our approach
does not rely on knowledge of future channel behavior or on
the availability of rate-distortion-quality triples in the base
station. All the above work uses simulation for evaluation.

4.5 Video Streaming Discussion
In [13], we demonstrated the effectiveness of TAR us-

ing simulation (OPNET). Simulation is a convenient tool
to quickly evaluate a new protocol since the implementa-
tion is relatively easy. It is also possible to evaluate large
topologies. However, simulation results may be misleading
since they (over)simplify the wireless system. To explore
this, we recreated the mobile-user scenario using OPNET
modeler 12.0 [18]. OPNET allows us to define trajectories
and add Ricean fadings, as we did in the emulator. We also
integrate our video server/client software into OPNET. The
simulation results for the mobile-user scenario are shown in
Figure 9(d) and Table 7(d). TAR again outperforms 802.11,
but the simulation results show a greater performance dif-
ference between 802.11 and TAR. We discovered that this is
the result of differences in how OPNET and the Linux driver
implement flow control in the protocol stack. In Linux sys-
tems, the socket layer interacts with the user application
to avoid buffer overflow and limit the queue size. However,
OPNET’s flow control results in large queue build up, which
increases latency and hurts the performance of 802.11-based
video streaming. TAR avoids the queue build up so TAR
sees more substantial improvements in OPNET than on real
hardware. This problem shows how simplifications in simu-
lators can affect performance in hard-to-predict ways.

We also conducted the mobile-user experiment in the real
world with two laptops using the same configuration as used
in the emulator. Each laptop is carried by a person roughly
following the trajectories in Figure 7(b) indoors. The chan-
nel is shared with other wireless stations so the test nodes
are exposed to co-channel interferences. We repeated the
experiment several times; Figure 9(e) and Table 7(e) show
the results of one run. The high level result is similar to that
of the emulator results, but the details are different, which
is not surprising given the lack of control in this real world
experiment.

During the implementation of TAR, the emulator greatly
reduced the testing and debugging time. The interactive
GUI can be used to explore different topologies quickly. We
can also easily reproduce scenarios that trigger bugs or have
poor performance. For example, we were able to quickly fix
a memory leak in scenarios involving a gray zone by manu-
ally controlling path loss. This is hard to realize on an un-
controlled testbed. We were also able to perform extensive
tests by varying the channel parameters at a fine-grained
level. Finally, it is easy to set up a monitor node to listen in
on the traffic of the experiment. By controlling the wireless
channel, we can make sure the monitor node is not affected
by interfering traffic.

5. CONCLUSION
In this paper we presented two case studies that used

a testbed based on digital signal propagation emulation to
support the implementation, testing, and evaluation of wire-
less and mobile systems. The use of a controlled testbed
allowed us to gain some interesting insights. For example,
we found that the roaming in the Madwifi driver was opti-
mized for nomadic users and performed very poorly for mo-
bile users. We also introduced a“fast roaming” solution that
uses the wired network to collect probe responses efficiently.
In our second study, we showed how time-aware MAC layer
retransmission improved the quality of video streaming, es-



pecially for mobile users and congested networks.
Our experience showed that the wireless emulator was

very useful during the various stages of the two projects.
Early in the project, it allowed us to implement very simple
tests to quantify key properties of the system. The interac-
tive GUI also made it possible to quickly test the system in
mobile scenarios while working at a desktop. Later in the
project, the emulator was used to perform controlled and
repeatable performance comparisons of different versions of
the protocols under study. The video project also allowed us
to compare emulation and simulation. While simulators of-
fer a more pleasant development environment and support
larger scale experiments, the level of realism they provide
is hard to assess, especially with respect to timing at the
lowest layers of the system.

6. REFERENCES
[1] C. Corporation. Cisco Compatible Extensions.

http://www.cisco.com/web/partners/pr46/pr147/

partners_pgm_concept_home.html.

[2] P. De, R. Krishnan, A. Raniwala, K. Tatavarthi,
N. Syed, J. Modi, and T. Chiueh. MiNT-m: An
Autonomous Mobile Wireless Experimentation
Platform. In Proc. of Mobisys 2006, Uppsala, Sweden,
June 2006.

[3] A. Dutta, S. Madhani, W. Chen, and O. A.
andHenning Schulzrinne. GPS-assisted Fast-handoff
for Real-time communication. In 2006 IEEE Sarnoff
Symposium, Princeton, March 2006. IEEE.

[4] E. Hernandez and S. Helal. RAMON: Rapid Mobility
Network Emulator. In Proc. of the 27th IEEE
Conference on Local Computer Networks (LCN’02),
Tampa, FL, November 2002. IEEE.

[5] G. Judd. Using physical layer emulation to understand
and improve wireless networks, October 2006. PhD
Thesis, Department of Computer Science, Carnegie
Mellon University.

[6] G. Judd and P. Steenkiste. Using Emulation to
Understand and Improve Wireless Networks and
Applications. In Proceedings of NSDI 2005, Boston,
MA, May 2005.

[7] G. Judd and P. Steenkiste. Software architecture for
physical layer wireless network emulation. In The
First ACM International Workshop on Wireless
Network Testbeds, Experimental evaluation and
CHaracterization (WiNTECH 2006), Los Angeles, Sep
2006. ACM.

[8] G. Judd and P. Steenkiste. Understanding Link-level
802.11 Behavior: Replacing Convention with
Measurement. In Wireless Internet Conference 2007
(Wicon07), Austin, Texas, October 2007.

[9] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and
C. Elliott. Experimental evaluation of wireless
simulation assumptions. In Proceedings of MSWiM
2004, Venice, Italy, October 2004.

[10] Q. Li and M. van der Schaar. Providing adaptive qos
to layered video over wireless local area networks
through real-time retry limit adaptation. IEEE Trans.
on Multimedia, pages 278–290, April 2004.

[11] G. Liebl, H. Jenkac, T. Stockhammer, and
C. Buchner. Joint Buffer Management and Scheduling
for Wireless Video Streaming. In Proceedings of ICN

2005, April 2005.

[12] G. Liebl, K. Kalman, and B. Girod. Deadline-Aware
Scheduling for Wireless Video Streaming. In
Proceedings of ICME 2005, Amsterdam, the
Netherlands, April 2005.

[13] M. Lu, P. Steenkiste, and T. Chen. A time-based
adaptive retry strategy for video streaming in 802.11
wlans. Wireless Communications and Mobile
Computing, Special Issue on Video Communications
for 4G Wireless Systems, pages 187–203, January
2007.

[14] S. McCanne and S. Floyd. UCB/LBNL/VINT
Network Simulator - ns (version 2).
http://www.isi.edu/nsnam/ns/, April 1999.

[15] A. Mishra, M. Shin, and W. Arbaugh. An empirical
analysis of the ieee 802.11 mac layer handoff process.
ACM SIGCOMM Computer Communication Review,
33(2):31–31, 2003.

[16] A. Mishra, M. Shin, and W. Arbaugh. Context
caching using neighbor graphs for fast handoffs in a
wireless network. In Proceedings of Infocom 2004,
Hong Kong, March 2004.

[17] B. Noble, M. Satyanarayanan, G. Nguyen, and
R. Katz. Trace-based mobile network emulation. In
Proc. of SIGCOMM 1997, Cannes, France, September
1997. ACM.

[18] OPNET Tech. Opnet. http://www.opnet.com.

[19] I. Ramani and S. Savage. SyncScan: Practical Fast
Handoff for 802.11 Infrastructure Networks. In
Proceedings of Infocom 2005, pages 675– 684, Miami,
Florida, March 2005.

[20] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu,
and M. Singh. Overview of the ORBIT Radio Grid
Testbed for Evaluation of Next-Generation Wireless
Network Protocols. In Proc. of WCNC 2005., New
Orleans, LA, March 2005.

[21] M. Shin, A. Mishra, and W. Arbaugh. Improving the
latency of 802.11 hand-offs using neighbor graphs. In
Proceedings of Mobisys 2004, Boston, MA, June 2004.

[22] UCLA. Whynet Project.
http://chenyen.cs.ucla.edu/projects/whynet.

[23] B. White, J. Lepreau, and S. Guruprasad. Lowering
the barrier to wireless and mobile experimentation. In
Proc. of the First Workshop on Hot Topics in
Networks, Princeton, NJ, October 2002. ACM.


