
SyncScan: Practical Fast Handoff for 802.11
Infrastructure Networks

Ishwar Ramani
Department of Computer Science & Engineering

University of California, San Diego
E-mail:ishwar@cs.ucsd.edu

Stefan Savage
Department of Computer Science & Engineering

University of California, San Diego
E-mail:savage@cs.ucsd.edu

Abstract— Wireless access networks scale by replicating base
stations geographically and then allowing mobile clients to seam-
lessly “hand off” from one station to the next as they traverse
the network. However, providing the illusion of continuous
connectivity requires selecting the right moment to handoff and
the right base station to transfer to. Unfortunately, 802.11-based
networks only attempt a handoff when a client’s service degrades
to a point where connectivity is threatened. Worse, the overhead
of scanning for nearby base stations is routinely over 250ms –
during which incoming packets are dropped – far longer than
what can be tolerated by highly interactive applications such
as voice telephony. In this paper we describe SyncScan, a low-
cost technique for continuously tracking nearby base stations by
synchronizing short listening periods at the client with periodic
transmissions from each base station. We have implemented this
SyncScan algorithm using commodity 802.11 hardware and we
demonstrate that it allows better handoff decisions and over
an order of magnitude improvement in handoff delay. Finally,
our approach only requires trivial implementation changes, is
incrementally deployable and is completely backward compatible
with existing 802.11 standards.

I. INTRODUCTION

Wireless broadcast networks, by their very nature, provide
the opportunity for user mobility. Within the range of a given
wireless base station, a client may roam freely and with com-
plete transparency to the network medium. It is exactly this ca-
pability that has driven the success of the $1.5 billion 802.11-
based wireless network market [1]. Inexpensive 802.11-based
access points (APs) provide transparent connectivity to the
wired Internet at low cost and with minimal configuration
overhead. However, each individual 802.11 access point (AP)
has a limited range - frequently under 100 meters indoors
- and therefore large-scale deployments of access points are
required to provide comprehensive coverage of a building or
campus (e.g. UC San Diego’s campus 802.11 network, seen
in Figure 1, includes over 250 managed public access points).

Preserving the same network transparency across collections
of access points requires a far greater degree of coordination
and management. As a client moves outside the range of
one access point, it must ”hand off” to another to preserve
the illusion of seamless connectivity. In cellular data and
voice systems this handoff decision is typically coordinated
by the network itself, which is able to leverage considerable
information about the network topology and client proximity.
However, in contrast, the 802.11 standards dictate that handoff

Fig. 1. Geographic map of 802.11b wireless coverage at UC San Diego
(courtesy http://activecampus.ucsd.edu). The entire coverage area is serviced
by over 250 “official” access points and again as many “private” access points.

should be managed autonomously and independently by each
client with no a priori knowledge of the local network
topology [2]. Moreover, while most cellular systems provide
a means for continuously monitoring signal quality between
each client and all of its neighboring base stations – handing
off whenever an alternative base station is found to provide
better service – 802.11-based systems only monitor the signal
to their current access point and handoff only after service
degrades below an acceptable threshold.

Consequently, as a mobile 802.11 client reaches the limits
of its current coverage region, it must temporarily abandon its
current access point, actively probe the network to discover
alternatives, and only then reconnect to the current best AP.
This approach minimizes management overhead, but is slow
to handoff to superior access points and worse, can produce
“gaps” in connectivity of up to a second in duration [3]–
[5]. While such disruptions may be acceptable for nomadic
applications with limited mobility and flexible response time
requirements, emerging applications like wireless voice-over-
IP are far more demanding [6], [7]. These applications require
highly interactive response during mobility and are extremely
sensitive to network outages and delays. Moreover, the limited
range of 802.11 radios makes handoff actions highly probable
for continuously mobile clients (such as a user walking with
an 802.11-based phone).

In this paper, we address all of these issues by focusing

Mobile node Neighboring access points

Probe request

Probe response

Probe request

Probe response

S
ca

nn
in

g
P

ha
se

Probing Time

Switching Time

New access point
auth. request

Auth. response

Re-association request

Re-association response

Data packets

Re-association
phase

Wired network

IAPP update

IAPP response

Fig. 2. A timing chart of the 802.11 handoff procedure. Three phases –
scanning, authentication and association – are illustrated.

on a single simple problem: how to continuously monitor
the proximity of nearby 802.11 access points? Our solution,
called SyncScan, replaces the large transient overhead of
active access point discovery with a continuous process that
passively monitors other channels for the presence of nearby
access points. The potential disruption of channel switching
is minimized by synchronizing short listening periods at the
client with regular periodic transmissions from each access
point. We have implemented the SyncScan algorithm using
commodity 802.11 network interfaces and show that we can
improve the timing of handoff decisions (thus improving the
client’s signal quality) and reduce handoff delay by over an
order of magnitude compared to the existing approach. We
demonstrate these benefits in the context of mobile voice
applications and yet show that our changes have negligible
impact on normal bulk data transfers. Finally, our approach
does not require any modification to the 802.11 protocol
itself, is incrementally deployable and requires only minor
modifications to existing implementations.

The rest of the paper is organized as follows. In Section II
we review how existing 802.11 handoff mechanisms function
and previous work in improving their overheads. Section III
describes the SyncScan algorithm and its optimizations in
detail, as well as the potential benefits arising from this
capability. An experimental analysis of our prototype imple-
mentation is presented in Section III-A. Finally, we summarize
our results and open questions in Section V.

II. BACKGROUND AND RELATED WORK

The handoff process in 802.11 networks has several phases
– each with its own costs. Figure 2 depicts this time-line

graphically.
First, a client must determine that it is nearing the periphery

of its coverage and thus must find an alternative access point
to continue. Minimally, this involves detecting that packets
are no longer being successfully received. However, typical
commercial implementations also monitor the current signal-
to-noise ratio (SNR) and will also initiate the scanning phase
when this value passes a pre-defined minimum threshold (that
said, Velayos and Karlsson provide evidence that a simple
trigger of three dropped packets is actually quicker and more
accurate than this approach [4]). Setting this threshold is
something of a black art: if the client waits too long to look
for new access points then it may incur additional disruption,
yet if the client is too eager then it may ping-pong between
access points needlessly.

Once a client has decided to attempt a handoff it must
next identify the set of proximate candidate access points.
Since 802.11 does not provide a shared control channel or
other means for distributing this information, the client must
explicitly “scan” each channel (11 in 802.11b and 802.11g,
and 8 for 802.11a indoors) for potential access points. In its
simplest form, this scan can be completely passive – the client
switches to a candidate channel and listens for periodic beacon
packets generated by access points to announce their presence
(typically every 100ms). However, the latency incurred by
this approach can be quite long since the phase of beacon
intervals is independent and a client must therefore wait the
full interval on each channel. Thus:

ScanDelay = NumChannels · MaxBeaconInterval

For example, in 802.11b, with 10 channels to be scanned
(not counting the current channel) and a beacon interval of
102ms, the scanning latency is well over a second.

To reduce this delay, most 802.11 implementations actively
broadcast a probe packet on each channel to force an access
point to respond immediately. Consequently, the delay incurred
in completing an active scan is regulated by five parameters:

• ProbeDelay. Upon settling on a new channel, the NIC
passively monitors the channel for activity before sending
a probe packet. However, to ensure that a lightly loaded
channel does not block the scanning process, the Probe-
Delay timer indicates a time after which a probe is sent
even without monitored activity. Default values for this
parameter are negligible (< 1ms).

• Media contention time. The 802.11 MAC protocol pro-
vides a distributed contention mechanism that can cause
a probe packet to be delayed, while seeking access to the
medium. On lightly loaded networks, this value is also
negligibly small.

• MinChannelTime. This represents the amount of time to
wait for the first response before declaring the channel
empty (i.e., no access point in range). This value is
an adjustable parameter and is set differently by differ-
ent systems. Different researchers have suggested ideal

settings of MinChannelTime ranging from 1ms [4] to
7ms [8].

• MaxChannelTime. This represents the amount of time to
wait to collect potential additional probe responses from
other access points. This value is meant to be configured
based on an estimate of the number of overlapping
access points and the load on the channel. Previous
empirical studies suggest values of roughly 11ms for this
parameter [4], [8].

Ignoring the negligible components, the idealized latency of
this active scanning approach is:

c=NumChannels
∑

c=1

(1 − P (c)) · Min + P (c) · Max

where P (c) is the probability of one or more access points
operating in channel c. Thus, for aggressive values of 1ms and
11ms for MinChanneltime and MaxChanneltime, the ideal la-
tency should range from 11ms to 110ms for 802.11b. However,
this analysis ignores a practical implementation parameter: the
channel switching delay. This overhead is a characteristic of
the network interface design and reflects the time to switch
to a new frequency, resynchronize and start demodulating
packets. Channel switching delay varies considerably across
implementations and we have measured times ranging from a
maximum of 19ms (12ms to switch and 7ms to resynchronize)
for Intersil Prism2-based NICs to just over 5ms for Atheros
5212-based NICs. Since this cost is per channel it adds
considerable delay to the overall scanning process.

In total, the exact overhead of scanning can vary signifi-
cantly based on the environment, choice of parameters and
hardware capabilities. That said, in our measurements we have
found popular Intersil Prism2-based 802.11b NICs observe
scanning delays of between 350 and 400ms (based on a
firmware initiated scan) and NICs based on Atheros 5212-
based designs are roughly 500ms (via a Windows XP driver-
controlled scan). This is comparable to the results reported by
Mishra et al. [8]1

Based on the measured SNR for the probe response packets
received from each access point, the client will then select the
best access point for authentication and association. A new
access point is only favored its measured SNR is at least ∆
above the associated access point as shown in Figure 3. This
hysteresis is used to avoid unnecessary handoff operations that
might produce a “ping-pong” effect when clients are equally
well served by different access points.

Authentication is required to validate the client’s right to
use a particular access point and minimally requires a two
way handshake (under 1ms in our measurements). Following
authentication, a client must then reassociate with the new
access point to finalize its decision to transfer. In public access
systems, reassociation delay is also well under 1ms. However,

1To further minimize scanning time, some vendors prioritize the order in
which channels are scanned to favor “popular” channels (such as the non-
overlapping 802.11b channel set of 1, 6 and 11) and will cut short scanning
if an AP with the same SSID and an acceptable SNR is found.

S1

S2

T1 T2 T3 T4 Time

S
ig

na
l S

tr
en

gt
h

(d
B

)

Fig. 3. How received signal strength changes over time from two different
access points (S1 and S2). If the client is associated with S1 it will consider a
handoff when its signal strength drops below the threshold at T1 (in fact, the
graph for S2 to the left of T1 is not measured in practice since scanning only
commences when S1’s signal has degraded below the threshold). Handoff is
only performed when the signal from the new access point, S2, is ∆ better
than the signal from S1.

PHASE TIME
Scanning 350-500ms

Authentication <10ms
Association <10ms

Wired update <20ms

TABLE I
APPROXIMATE OVERHEADS FOR CURRENT 802.11 HARDWARE ENGAGED

IN EACH STAGE OF THE HANDOFF PROCESS.

in environments implementing the Inter-Access Point Protocol
(IAPP) to transfer security state between the old AP and the
new AP [9], there may be additional costs to reassociation. In
this paper we focus on public access networks, but we refer
to reader to recent work by Mishra et al. which demonstrates
a proactive caching approach for reducing this cost to under
20ms on average [10].

Finally, the wired network must be informed of the handoff
and directed to forward packets destined for the client via
the newly associated access point (in most enterprise 802.11
deployments, in which APs share a single LAN or VLAN, this
function is implemented by the 802.1d spanning tree protocol).

Table 1 summarizes these costs and while these values
can vary (we refer the reader to Mishra et al. for a more
in-depth measurement analysis of these overheads [8]), the
overall conclusion does not. The scanning phase dominates the
cost of handoff – usually contributing more than 90 percent
of the overhead.

There have been several previous attempts to minimize
802.11 handoff latency. Velayos et al. and Pack et al. both
propose a scanning mechanism using topographical knowledge
of access point placement [4], [11]. If each client is made
aware of its neighboring access points and their channels, the
client can then probe a reduced set of channels during the

`

Channel #1

Channel #2

Channel #3

ap11

ap6

ap1

Beacons

node

S
w

itc
h

to
 #

2

S
w

itc
h

to
 #

1

S
w

itc
h

to
 #

1

S
w

itc
h

to
 #

3

time

Fig. 4. The state of access points and client in terms of the channel occupied
and signal generated. The client associated with AP1 uses SyncScan to receive
beacons from AP6 on channel 2 and AP11 on channel 3.

scanning phase and spend less time on each channel. While
this approach is attractive, the maintenance and dissemination
of this knowledge potentially represents a large management
burden for those deploying large-scale 802.11 networks. Re-
cently, Shin et al., have proposed a similar scheme, based on
neighbor graphs and provide a algorithm for updating these
graphs in a distributed on-line fashion [12].

However, all of these approaches require changes to the
802.11 protocol itself as well as significant implementation
changes to clients and access points. Consequently, there is
a significant deployment hurdle before these approaches will
be available for the 10 million+ 802.11 wireless NICs in use
today.

III. SYNCSCAN

802.11-based access points periodically broadcast special
beacon packets to identify themselves to potential clients
and to synchronize state information with currently associate
clients. While access points are commonly configured to send
beacons every 100ms, within this period the 802.11 standard
does not restrict the absolute time at which these packets are
generated. We exploit this degree of freedom to synchronize
clients with the timing of beacon broadcasts on each channel.
In essence, we arrange so that the clients can passively scan by
switching channels exactly when a beacon is about to arrive.

A. Basic Algorithm

At the heart of our approach is the creation of a staggered
periodic schedule of beacon periods spread across channels.
For example, all access points operating on channel 1 will
broadcast beacons at time t (or close to it), while access points
on channel 2 will do the same at time t+d ms, channel 3 access
points will send at time t+2d ms , and so on. Thus, a mobile
client associated with an access point operating on channel
c can detect APs operating on channel c + 1 by switching
to that channel d ms after receiving a beacon from its own

access point. We call this approach synchronized scanning, or
SyncScan.

A mobile client can then utilize this property to efficiently
locate all the access points in its neighborhood. By regularly
switching to each channel (as shown in Figure III), a complete
picture of all nearby access points can be observed and yet
the client minimizes the time it is out of contact with its own
access point. Consequently, when a handoff must be attempted,
the cost is reduced to that of authentication and reassociation.
In effect, SyncScan reduces the costs of continuous scanning
activity to the point where it is easily amortized against the
delay incurred by a full scan during a handoff. Moreover,
SyncScan provides the opportunity to make better handoff
decisions by continuously monitoring the signal quality of
multiple access points (rather than just the associated AP).

The basic procedure as outlined above is backward com-
patible with existing 802.11 devices since the modification in
the phase of beacon announcements has no impact on existing
scanning approaches. It is also incrementally deployable, since
a client employing SyncScan can always fall back to the
traditional means of handoff if it cannot synchronize with the
infrastructure. Moreover, since it only changes the phase of
beacon generations, SyncScan does not require any change
to the 802.11 standard itself – it is only an implementation
modification.

That said, SyncScan does add several complexities. First,
the accuracy of clocks in access points is critical to the global
synchronization of beacon timings. Over short time-scales
our measurements indicate that drift is negligible for existing
commercial access points. However, over longer time-scales
access points require a means of time synchronization. By far
the simplest approach is to leverage the wide availability of
Network Time Protocol (NTP) service over the Internet [13],
since it provides a standard out-of-band means for synchro-
nizing APs to absolute time reference (in fact, we find that
most enterprise access point products already support NTP).

However, synchronizing brings its own potential risks. Mul-
tiple access points operating on the same channel will attempt
to generate beacons at the same time – potentially interfering
with one another. When the APs are within signal range
of each other, the standard 802.11 clear channel assessment
(CCA) algorithm used for media access will order conflicting
beacons, but if they are further separated the beacons may yet
interfere with each other at an intermediate client. To address
this issue, the beacon generation time may be randomly varied
over a small window (e.g. 3ms). A client lingering on a
channel for the entire window should expect to receive most
of the beacons on that channel.

Finally, the SyncScan procedure has a hidden cost. While
it removes the transient overhead of the scanning phase, it
replaces it with a regular overhead. While a client is listening
to other channels, it cannot be sending or listening to its own
access point. Moreover, the client may miss packets sent to
it while it is exploring other channels. How significant these
factors are depends, in part, on the overhead of implementing
the SyncScan procedure. For each SyncScan session, the client

madwifi driver

ath0

Linux
Networking

stack

Applications.
Dhcp,mozilla

SyncScan application

80
2.

11
 m

an
ag

em
en

t
pa

ck
et

s

Io
ct

l c
al

ls
 fo

r
ch

an
gi

n
g

ch
an

ne
l

User level

Kernel level

802.11 PCMCIA card

Li
nk

 la
ye

r d
at

a
pa

ck
et

s

Fig. 5. Architecture of a prototype SyncScan implementation for Atheros
chipsets under Linux.

must switch channels, wait for any beacon and then switch
back. Thus,

SyncScanDelay = 2 · SwitchT ime + WaitT ime

where SwitchT ime is the time to switch channels and
WaitT ime is how long a client lingers waiting for beacons.
How often this overhead is incurred, is a function of how many
channels are scanned and how regularly a scan is initiated.
In Section III-A, we evaluate these factors in the context
of our prototype implementation and additional techniques to
eliminate packet loss.

B. Benefits

Since scanning overhead dominates the 802.11 handoff
procedure, the most obvious benefit derived from SyncScan
is the reduction in handoff latency. Using SyncScan an actual
handoff can occur in a few milliseconds rather than the 400ms
latency incurred using standard 802.11 implementations. This
reduction is sufficient to preserve the illusion of continuity
needed by interactive voice applications.

However, in addition to this obvious benefit, continuous
scanning also presents other opportunities for improvement.
In particular, while traditional 802.11 implementations initiate
scanning only when the signal has degraded below a preset

AP 1

AP 6

AP 11

Distribution System

Mobile Node

Fig. 6. Basic experimental setting, consisting of three access points in the
corridor of our department.

threshold, continuous scanning provides the means to make far
more intelligent choices about when to handoff. A continuous
scanning implementation can discover the presence of access
points with stronger SNRs even before the associated access
point’s signal has degraded below its threshold. Moreover,
since a SyncScan client samples access point SNR measure-
ments over time, it can use the change in signal quality as
an input to its decision rather than relying on a single sample
as in the traditional approach (thus shrinking the amount of
hysteresis needed to accommodate variability). Taken together,
these capabilities allow handoffs to be made earlier and
with more confidence – thereby improving the quality of a
client’s connectivity and reducing the potential of unnecessary
interference. We demonstrate the benefits of this approach in
Section III-A.

Finally, SyncScan also provides an opportunity for con-
tinuous location tracking. Systems such as RADAR orient
a mobile host via trilateration among the received signal
strength from APs in known locations [14]. In typical use,
this requires a full scan and consequently disrupts any ongoing
communication. By contrast, SyncScan provides a means for
continuously tracking signal strength from nearby APs while
still carrying on communication with a chosen AP. However,
the effectiveness of such systems is tied to the currency of
its measurements. If the time period of SyncScan operation
500ms, then readings for APs on two distinct 802.11b channels
could be separated by as much as 5 seconds in the worst
case – potentially reflecting very different client locations.
This problem can be addressed by increasing the frequency
of SyncScan operations at the cost of reduced bandwidth
available to the client. Alternatively, the client can prioritize
its SyncScan choices to favor channels on which APs have
been heard recently – thereby minimizing the delay between
their measurements. We have not yet built a location tracking
system based on SyncScan, but we believe that moderate
levels of mobility (i.e. walking) should be well-addressed by
SyncScan intervals between 200-500ms.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60

ia
t o

f p
ac

ke
ts

 (s
)

time (s)

inter-arrival time for packets sent every 20ms

iat
missed packets

"handoff"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

ia
t o

f p
ac

ke
ts

 (s
)

time (s)

sync-scan interval:500ms.

iat
missed packets

sync-scan handoff

Fig. 7. Received packet inter-arrival times (in seconds) when the mobile node is operating with the standard Windows XP driver (left) and the SyncScan
driver (right). Packets are generated at 20ms intervals.

IV. IMPLEMENTATION AND EVALUATION

We have implemented a prototype version of the SyncScan
client on Linux for two popular 802.11 chipsets: Intersil Prism-
based wireless NICs (via the popular HostAP driver [15]) and
Atheros-based NICs (via Sam Leffler’s madwifi driver). Both
environments allow the host to explicitly implement 802.11
management functions, such as scanning, beacon monitoring
and association. The prototype’s basic architecture is illus-
trated in Figure 5 (which depicts the Atheros implementation)
and consists of a modified driver which interacts directly
with the NIC and with a user-level SyncScan daemon. This
daemon, which implements the SyncScan algorithm itself,
informs the driver when to switch channels, collects beacon
frames and their SNR values, and intercepts management
frames necessary for completing a handoff (e.g. association
and authentication frames). We have implemented a SyncScan
access point by making slight modifications to the madwifi
driver under Linux. However, we did not use this access point
in our experiments (for reasons described below).

During a SyncScan operation, inbound packets may be
dropped since the client is unable to acknowledge them. As
discussed in Section II the SyncScan delay consists of the time
to switch to a new channel, the time to wait for a beacon and
the time to switch back to the original channel. For Atheros-
based NICs, the channel switching time is roughly 5ms, thus
the total delay is 10ms plus any waiting time. For Intersil-
based NICs this value is closer to 40ms. While these are
relatively short intervals, especially if SyncScan operations
are attempted twice a second, they are all greater than the
maximum retransmission time for 802.11 frames (4ms) and
consequently some packets will be lost.

To overcome this drawback, we modified the client to
announce that it was entering Power Saving Mode (PSM)
just before switching channels [2]. This causes the access
point to buffer packets destined for the client until the client
returns to the channel and resets the power saving mode.
While these buffers are not large, they are quickly emptied
when the client returns. While the client is scanning another
channel, it buffers any outbound packets to ensure that they

are not lost either. This technique is similar to the one Bahl
et al. used to create virtual wireless NICs [16]. Unfortunately,
the madwifi software underlying our SyncScan access point
does not yet support buffering client packets in PSM mode,
and consequently we could not use it to demonstrate this
feature. Instead, our experiments use unmodified commercial
access points and we emulate access point synchronization at
the client as follows: when the SyncScan client first starts,
it explicitly synchronizes with all available access points by
waiting on each channel for two beacons and recording the
times of their arrival and beacon frequency. From these initial
times, it calculates a schedule forward – as though their beacon
timings were externally synchronized.

All of our experiments were performed in a corridor in
our department. The corridor was long enough to warrant
three access points which operated at channel 1, 6 and 11 as
shown in Figure 6. The mobile client was a Dell Inspiron 6000
running Linux, typically using a Netgear WAG511 PCMCIA
card for 802.11 connectivity (unless stated otherwise).

In the remainder of this section we analyze the performance
and overhead of SyncScan operations and their impact on
existing background traffic. First, we synthetically simulate a
real-time application by streaming packets to the mobile client
at regular intervals while varying the number of SyncScan
operations attempted each second. We examine the packet
loss and jitter that occurs while the client is idling and
handing-off using the conventional handoff approach, and
SyncScan with PSM support. Next, we qualitatively explore
SyncScan’s benefits while using a commercial Voice Over
IP (VOIP) client. We then explore the benefits of SyncScan
for handoff timing – leveraging continuous scanning to make
better handoff decisions. Finally, we look at the impact of
SyncScan on traditional bulk data applications. We transfer
a file using FTP and compare the bandwidth delivered to a
normal client and one using SyncScan. This is a worst-case
scenario for SyncScan – packets are being transmitted during
the scan – and we investigate it to understand if SyncScan has
a significant detrimental effect.

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

cd
f (

%
)

iat (s)

cdf of packets with sync-scan interval:1s

cdf
cdf

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

cd
f (

%
)

iat (s)

cdf of packets with sync-scan interval:500ms

cdf
cdf

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

cd
f (

%
)

iat (s)

cdf of packets with sync-scan interval:200ms

cdf
cdf

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

cd
f (

%
)

iat (s)

cdf of packets with sync-scan interval:125ms

cdf
cdf

Fig. 8. Cumulative distribution function of packet inter-arrival time (in seconds) using SyncScan for 20ms and 60ms packet streams with varying SyncScan
intervals.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

ia
t o

f p
ac

ke
ts

 (s
)

time (s)

inter-arrival time of VoIP packets

iat
sync-scan handoff

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70

ia
t o

f p
ac

ke
ts

 (s
)

time (s)

inter-arrival time of VoIP packets

iat
normal handoff
missed packets

Fig. 9. Inter-arrival time (in seconds) of UDP packets when the mobile node is running a commercial VoIP client.

A. Real-Time Traffic

To analyze the performance of SyncScan with real-time in-
teractive traffic, we generated ICMP Echo Requests at periodic
intervals. The packets were generated at 20ms intervals – the
most aggressive rate used by interactive voice applications –
and the size was set to resemble a typical RTP packet carrying
20ms audio samples. We also examined 60ms intervals to
demonstrate audio applications that aggregate encoded frames
within a single packet. The packet generator fed these packets
into AP1 and traces were gathered at the mobile client. The
experiment was conducted by moving the mobile client from
the neighborhood of AP1 to AP11. The mobile client switched

access points at most twice: from AP1 to AP6 and sometimes
from AP6 to AP11 (the handoff from AP6 to AP11 depended
on the trajectory of movement). The parameters of SyncScan
were set as follows: The WaitT ime for the beacon capture
was set conservatively to 5ms and SyncScan operations were
initiated at performed at different rates – 1000ms, 500ms,
200ms and 125ms – to explore the tradeoff between temporal
fidelity and application impact.

As a basis for comparing the performance of SyncScan with
the existing scanning procedures, we first measured packet
inter-arrival times when the mobile client was executing the
default driver under Windows XP (this was a decision meant

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

Li
nk

 Q
ua

lit
y

time (s)

vanilla handoff

ap at channel 1
ap at channel 6

sync-scan handoff
average signal quality

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

Li
nk

 Q
ua

lit
y

time (s)

proactive hysteresis

ap at channel 1
ap at channel 6

sync-scan handoff
average signal quality

Fig. 10. NIC reported signal quality and the time of handoff using the traditional reactive handoff decision (left) and using a proactive handoff decision
(right).

to put the default behavior in the best light, since the Linux
scanning latency was even worse). Figure 7 presents the inter-
arrival times for packet streams generated at 20ms using this
driver (on the left). In general, they are quite close to 20ms
until the client reaches the edge of its current APs coverage
and starts scanning (roughly at time 45). At this point packet
inter-arrivals increase and over 20 packets are lost. Finally,
at time 48, after multiple scans have taken place (taking an
average of 40ms each), the signal from a new AP is strong
enough that a handoff takes place (indicated by the dotted
line). The client continues to scan however and the inter-arrival
time does not resume to 20ms until time 50.

The right side of Figure 7 shows the same experiment
using SyncScan. Note that the y-axis is appropriately scaled
to show the range of inter-arrivals – an order of magnitude
less than using the standard driver. Moreover, there is no
significant inter-arrival variation around the handoff time (20s)
and no packets are lost. However, these packet losses are being
masked by the PSM buffering and being “transformed” into
additional jitter. The probability of packet being buffered is the
probability that an arriving packet corresponds to a SyncScan
operation:

P (BufferedPacket) =

{

SST

IAT
ifSST ≤ IAT

1 otherwise

where SST is the total time for a SyncScan operation (16ms
in this experiment) and IAT is the packet inter-arrival time.
While the PSM approach could also eliminate packet loss
for conventional scanning, the large 300ms inter-arrival times
would still remain.

Figure 8 also shows the cumulative distribution of inter-
arrival times of 20ms and 60ms as SyncScan operations
become more frequent. As the SyncScan frequency increases,
more packets are buffered and hence arrive later than the
expected time. At 1 second intervals over 95 percent of packets
are within 2ms of the 20ms period, this decreases to a bit under
90 percent for the 200ms interval, reaching only 75 percent at
the 125ms interval. For the same SyncScan time, more packets
arrive closer to expected time for 60ms compared to 20ms.

For example, at 200ms interval 96% of the packets arrive at
60 ± 2ms compare to 90% for 20 ± 5ms. This is expected
since, the chances of SyncScans occurring between two packet
arrivals increases with an increase in the inter-arrival times.
Hence the jitter is inversely proportional to the inter arrival
time of packets. Note that in all cases the worst case jitter
is 15ms (which is the SyncScan delay) for 20ms and 60ms
sending interval. Consequently, there is a tradeoff between how
frequently one scans other channels, the application’s inter-
arrival rate and jitter. For highly-interactive applications, we
believe that 500ms SyncScan intervals represent a reasonable
tradeoff.

To analyze the performance of SyncScan, we tested it over
a regular voice over IP session. We used a popular VoIP client
called Skype which uses UDP packets exchanged between two
clients for voice communication. The observed mean inter-
arrival time over several experiments was 27ms with 98% of
all samples being 27± 5 ms. Figure 9 shows the performance
of a Skype [17] session while walking between AP1 and AP6.
The graph on the right is the inter-arrival time of UDP VoIP
packets arriving at the client while using the standard driver.
The card performs a scan at 28s and handoff at 50s. In both
these operations, packet loss is severe. For the entire run 44
packets were lost. The graph on the left is the same application,
but using SyncScan (with a scan interval of 500ms). We
observed zero packet losses and no variations in inter-arrival
times.

B. Proactive Handoff

While SyncScan reduces the overhead of actually executing
a handoff operation, it doesn’t impact the decision of when
to handoff. Figure 10 shows how per-API signal quality (as
reported by the NIC) changes over time and when a handoff
takes place. The graph on the left shows measurements of
the conventional reactive handoff approach – handing off at
38s when the old AP hits a signal strength of 10 (an average
signal quality of 26 during the experiment). However, using the
continual measurements taken during SyncScan operations it
is possible to make proactive decisions about when to handoff

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

nu
m

be
r o

f r
ec

ei
ve

d
pa

ck
et

s
in

 th
e

la
st

 5
0m

s

time(s)

normal mode
syncscan mode

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3

cd
f -

 %

time(s)

normal mode
syncscan mode

Fig. 11. Instantaneous bandwidth binned at 50 intervals and a CDF of packet vs time during an FTP transfer. Both graphs overlay both normal and SyncScan
modes of operation and normal mode.

as well. The graph on the right depicts a proactive handoff
driven by the relative signal quality received from distinct APs.
Here the client performs handoff long before its AP reaches
the minimum signal quality threshold and can quickly adopt
AP 6 as the superior access point (an average signal quality
of 42). This improvement increases the probability that client
packets are received without retransmission and reduces the
probability of packets being lost as the client reaches the edge
of the APs range.

subsectionBulk data traffic We also analyzed the perfor-
mance of TCP/IP over SyncScan using FTP. We compared
the performance of an FTP transfer of the same file over
SyncScan (using an interval of 500ms) and the normal 802.11
infrastructure mode. In both cases we used the popular Ethe-
real application to capture the traffic at the receiver. The file
size was 1.5MB and was fetched from a well-provisioned
remote server. The results are plotted in Figure 11. The
first graph shows instantaneous bandwidth in 50ms buckets.
During the SyncScan operations the bandwidth drops to a
smaller value at 0.7 seconds and 1.9 seconds. But due to PSM
buffering the overall throughput is not significantly impacted.
To demonstrate this, the second graph depicts the cumulative
distribution of packets received as a function of time. For
transfers in normal mode and using SyncScan, both the CDFs
run parallel to each other indicating the negligible difference
in throughput.

V. CONCLUSION

Mobile voice applications are the next challenge for 802.11-
based wireless networks. One of the major impediments is the
high cost of handoff as clients roam between access points in
an infrastructure network.

In this paper we have proposed using implicit time synchro-
nization to reduce the key cost of discovering new wireless
access points. By synchronizing the announcement of beacon
packets, a client can arrange to listen to other channels with
very low overhead. As a result, handoff using this SyncScan
approach is an order of magnitude quicker than using the
conventional approach.

We have designed and implemented the SyncScan handoff
procedure using existing commodity 802.11 hardware. In spite
of the limitations of existing hardware, we have been able to
demonstrate the dramatic benefits of SyncScan for interactive
real-time traffic and that it has minimal impact on existing
bulk-data applications.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
constructive feedback, John Bellardo for his help in setting up
our wireless infrastructure, Yu-chung Cheng for his input re-
garding PSM and letting us use machines provided by Google
for testing. Marvin McNett for maintaining our systems. This
work was funded in part by DARPA FTN Contract N66001-
01-1-8933 and a grant from the UCSD Center for Networked
Systems.

REFERENCES

[1] Dell’Oro Group, “Dell’Oro Group’s Wireless LAN Five Year Forecast
Report,” jul 2003.

[2] IEEE Computer Society LAN MAN standards Committee, “IEEE Stan-
dard for Information Technology: Part 11: Wireless LAN Medium access
Control (MAC) and Physical Layer (PHY) Specications,” 1999.

[3] A. Mishra, M. Shin, and W. Arbaugh, “An Empirical Analysis of the
IEEE 802.11 MAC layer Handoff Process,” University of Maryland,
College Park, Tech. Rep. UMIACS-TR-2002-75, Nov 2002.

[4] H. Velayos and G. Karlsson, “Techniques to Reduce IEEE 802.11b
MAC Layer Handover Time,” KunglTekniska Hogskolen, Stockholm,
Sweden, Tech. Rep. TRITA-IMIT-LCN R 03:02, ISSN 1651-7717, ISRN
KTH/IMIT/LCN/R-03/02–SE, April 2003.

[5] F. K. Al-Bin-Ali, P. Boddupalli, and N. Davies, “An Inter-Access Point
Handoff mechanism for Wireless Network Management: The Sabino
System,” in Proceedings of the International Conference on Wireless
Networks , Las Vegas, NV, June 2003.

[6] T. Henriksson, “Hardware architecture for 802.11b based h.323 voice
and image IP telephony terminal,” in Swedish system-on-chip confer-
ence2001, Proceedings of the SSoCC, Arild, Sweden, March 2001.

[7] Cisco, “CISCO 802.11b based IP phone,”
http://www.cisco.com/warp/public/cc/pd/tlhw/.

[8] A. Mishra, M. Shin, and W. Arbaugh, “An Empirical Analysis of the
IEEE 802.11 MAC layer Handoff Process,” ACM Computer Communi-
cations Review, vol. 33, no. 2, Apr. 2003.

[9] IEEE Computer Society LAN MAN standards Committee, “IEEE. Rec-
ommended Practice for Multi-Vendor Access Point Interoperability via
an Inter-Access Point Protocol Across Distribution Systems Supporting
IEEE 802.11 Operation,” Jan 2002, IEEE Draft 802.1f/D3.

[10] A. Mishra, M. Shin, and W. Arbaugh, “Context Caching using Neighbor
Graphcs for Fast Handoffs in a Wireless Network,” in Proceedings of
the IEEE INFOCOM Conference, Hong Kong, China, March 2004.

[11] S. Pack and Y. Choi, “Fast Inter-AP Handoff Using Predictive Authen-
tication Scheme in a Public Wireless LAN ,” in Proceedings of IEEE
Networks Conference, Atlanta, GA, Aug. 2002.

[12] M. Shin, A. Mishra, and W. Arbaugh, “Improving the Latency of 802.11
hand-offs using Neighbor Graphs,” in Proceedings of the ACM MobiSys
Conference, Boston, MA, June 2004.

[13] D. Mills, “Network Time Protocol (Version 3) specification, implemen-
tation and analysis,” IETF RFC-1305, March 1992.

[14] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proceedings of the IEEE
INFOCOM Conference, Mar 2000, pp. 775–784. [Online]. Available:
citeseer.ist.psu.edu/bahl00radar.html

[15] J. Malinen, “Host AP driver for Intersil Prism2/2.5/3,”
http://hostap.epitest.fi/.

[16] P. Bahl, P. Bahl, and R. Chandra, “Enabling Simultaneous Connections
to Multiple Wireless Networks using a Single Radio,” Microsoft Re-
search, Tech. Rep. MSR-TR-2003-46, June 2003.

[17] “Skype,” http://www.skype.com/.

