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Abstract

A shared virtual memory system can provide a virtual address
space shared among all processors in a loosely-coupled multipro-
cessor. This paper shows that such a memory can solve many
problems in message passing systems on loosely-coupled multi-
processors, and describes the design and implementation of a
prototype shared virtual memory system, IVY, implemented on
an Apollo ring network. The experiments on the prototype sys-
tem show that parallel programs using a shared virtual memory
yield almost linear and occasionally super-linear speedups and
that it is practical to implement such a system on existing ar-
chitectures.

Introduction

Much of the work on distributed computing has focused on mes-
sage passing models such as Hoare’s communicating sequential
processes [16] and Actor [15)], perhaps because message passing
matches the basic communication mechanism in loosely-coupled
multiprocessors. Many people have studied shared memory mod-
els for tightly coupled multiprocessors, but few have studied that
model for loosely-coupled multiprocessors. Because not enough
work has been done, it has not been clear whether a message
passing model is better than a shared memory model for parallel
computation on loosely-coupled multiprocessors. It has also not
been clear whether it is possible to design an efficient system to
support the shared memory model on loosely-coupled multipro-
Cessors. :

Systems based on message passing suffer mainly in two as-
pects: passing complex data structures and process migrations.
This paper shows that a solution to these problems is to build
a shared virtual memory . The shared virtual memory provides
a virtual address space that is shared among all processors in a
loosely-coupled distributed-memory multiprocessor system. Ap-
plication programs can use the shared virtual memory just as
they do a traditional virtual memory, except that processes can
run on different processors in parallel. The shared virtual mem-
ory keeps its memory pages coherent all the time and data can
naturally migrate between processors on demand [23,22]. Fur-
thermore, just as a conventional virtual memory swaps processes,
so does the shared virtual memory. Thus the shared virtual
memory provides a natural and efficient form of process migra-
tion between processors in a distributed system. This is quite
a gain because process migration is usually very difficult to im-
plement. In effect, process migration subsumes remote procedure
calls.

A prototype shared virtual memory has beer implemented on
a network of Apollo workstations. A number of practical par-
allel program examples are chosen to run on the prototype sys-
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tem. The experimental results show that parallel programs using
such a not well-tuned, user-mode shared virtual memory system
yield almost linear and occasionally super-linear speedups over
a uniprocessor. The success of this implementation suggests a
new operating mode for loosely-coupled multiprocessor architec-
tures in which parallel programs can exploit the total processing
power and memory capabilities in a far more unified way than
the traditional “message-passing” approach.

Shared Memory vs. Meésage Passing

Message passing in concurrent systems is characterized by mul-
tiple threads of control. A pure message passing system usually
does not have any shared global data; instead processes access
ports or mailboxes to achieve interprocess communication. Par-
allel programs need to use primitives such as send and receive
explicitly through channels, ports, or mailboxes. Although pro-
grammers can use these primitives to synchronize parallel pro-
grams, they need to be conscious of data movement between
processes at all times.

Remote procedure call is a mechanism for language-level
transfer of control and data between programs in disjoint address
spaces whose primary communication medium is a narrow chan-
nel [24]. A remote procedure call mechanism allows programmers
to worry less about data movement and provides clients with a
fairly transparent interface so that remote procedure calls look
much like local procedure calls. However, the transparency of re-
mote procedure calls is limited because a remote procedure call
mechanism actually simulates the execution in the same address
space using completely different address spaces.

Since both message passing and remote procedure calls deal
with multiple address spaces, they yoth have difficulties with
passing complex data structures. In fact, the difficulty of pass-
ing complex data structures is the main drawback of message
passing and remote procedure calls for parallel programming.
For example, passing a list data structure by sending messages
will introduce considerable complexity in programming and sub-
stantial overhead in both space and time [14]. In a remote pro-
cedure call, there is no good way to pass a pointer argument
[24]. This problem becomes more severe when the data struc-
tures are fundamental to a language being implemented on a
parallel machine.

In contrast, a shared memory multiprocessor has no difficulty
passing pointers because processors can share a single address
space. Therefore, there is no need to pack and unpack the data
structures containing pointers in messages. Passing a list data
structure simply requires passing a pointer.

Another problem with message passing systems is the diffi-
culty of process migration because there are multiple address




spaces. When migrating a process, all the operating system
resources allocated by the process have to be moved together;
this is expensive [25]. In the case where a process has a few
opened ports and files, the pending messages and file access con-
trol blocks need to be transferred. Furthermore, the code and
the stack of the process have to be moved because there is no
easy way to translate the contents of different address spaces
efficiently on the fly.

In a shared memory multiprocessor system, a process migra-
tion only requires moving a process from the ready queue on the
source processor to the ready queue on the destination processor
because process control block, code, and stack are all in the same
address space.

Some systems use a set of primitives to access a global space
that is used to store shared data structures of processes [8,5].
Although programming the global space does not require data
movement as much as message passing, programmers still have
to explicitly use the primitives. In a primitive global-space sys-
tem, passing complex data structures and process migration are
as difficult as in message passing systems, since accessing the
data structures and process migration are by value or by name.
Furthermore, using primitives may greatly reduce the efficiency
of parallel programs because a primitive operation requires at
least one procedure call, which costs much more than a simple
memory reference.

Both data structure passing and process migration are im-
portant for implementing parallel programming languages. Al-
though some implementations of parallel programming languages
are based on a message passing facility, implementing exist-
ing parallel languages on a shared memory multiprocessor can
greatly simplify the implementations. In summary, shared mem-
ory is highly desirable for parallel computation.

Shared Virtual Memory

A shared virtual memory is a single address space shared by a
number of processors (Figure 1). Any processor can access any
memory location in the address space directly. Memory mapping
managers implement the mapping between local memories and
the shared virtual memory address space. Other than mapping,
their chief responsibility is to keep the address space coherent at
all times; that is, the value returned by a read operation is always
the same as the value written by the most recent write operation
to the same address. In short, a shared virtual memory provides
clients with the same interface as the shared memory address
space on a shared-memory multiprocessor.

A shared virtual memory address space is partitioned into
pages. Pages that are marked read-only can have copies resid-
ing in the physical memories of many processors at the same
time. But a page marked write can reside in only one proces-
sor’s physical memory. The memory mapping manager views
its local memory as a large cache of the shared virtual mem-
ory address space for its associated processor. Like traditional
virtual memory [11}, the shared memory itself exists only virtu-
ally. A memory reference will cause a page fault when the page
containing the memory location is not in a processor’s current
physical memory. When this happens, the memory mapping
manager retrieves the page from either disk or the memory of
another processor. If the faulting memory reference is the target
of a write operation, then the memory mapping manager must
guarantee the atomicity of the operation [23].
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Figure 1: Shared virtual memory mapping

In a shared virtual memory system, the model of a parallel
program is a set of processes (or threads) that share a single vir-
tual memory address space. These processes are “lightweight”—
they share the same address space and thus the cost of a process
context switch, process creation, or process termination is small,
say, on the order of a few procedure calls [20]. One of the key
goals of the shared virtual memory, of course, is to allow pro-
cesses of a program to execute on different processors in parallel.
To do so, the appropriate process manager and memory allo-
cation manager must be integrated properly with the memory
mapping manager.

The performance of parallel programs on a shared virtual
memory system depends mainly on two things: the number
of parallel processes and the degree of data sharing (i.e. con-
tention). Theoretically, performance improves as the number
of parallel processes increases and contention decreases. Con-
tention is less if a program exhibits locality of references. One
of the main justifications for the traditional virtual memory is
that memory references in sequential programs generally exhibit
a high degree of locality [10,12]. Although memory references in
parallel programs may behave differently from those in sequential
ones, a single process is still a sequential program, and should
exhibit a high degree of locality. Contention among parallel pro-
cesses for the same piece of data depends on the algorithm, of
course, but a common goal in designing parallel algorithms is to
minimize such contention for optimal performance.

Prototype Implementation

In order to answer the question of whether it is practical to build
a shared virtual memory on a loosely-coupled multiprocessor and
whether most parallel application programs will get speedup on
such a system, a user-mode prototype system has been imple-
mented on the Apollo Domain {1,21], an integrated system of
personal workstations and server computers connected by a 12M
bit/sec baseband, single token ring network. IVY is implemented
on top of the modified operating system Aegis of the Domain en-
vironment. The implementation is not particularly efficient but
simple and tractable. '

IVY consists of 5 modules, namely, remote operation, mem-
ory mapping, process management, memory allocation, and ini-
tialization. The hierarchy of the system is shown in Figure 2.
The three top modules in the hierarchy form the IVY client in-




terface. Each consists of a set of primitives that can be used by
application programs.

Client programs

Process Memory Ce e e
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Remote Memory
Operation mapping
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Figure 2: IVY hierarchy.

Shared Virtual Memory Mapping

Memory mapping managers implement the mapping between
local memories and the shared virtual memory address space.
Other than mapping, their chief responsibility is to keep the ad-
dress space coherent at all times; that is, the value returned by
a read operation is always the same as the value written by the
most recent write operation to the same address. The memory
coherence problem is similar to that encountered in cache and
multicache designs for shared memories on multiprocessors (see
[27,2] for a survey), but most memory coherence techniques for
multicaches do not apply, because a loosely-coupled multipro-
cessor has no physically shared memory and the communication
cost between processors is non-trivial. [23] gives a detailed de-
scription and analysis of the algorithms for memory coherence.

Since memory coherence memory coherence of a shared vir-
tual memory is maintained at page level, it is important to choose
the right page size. ‘On a stock loosely-coupled multiprocessor,
one has to use a page size which is consistent with or the mul-
tiple of that provided in a Memory Management Unit (MMU)
in order to use its protection mechanisms to detect incoherent
memory references and trap them to appropriate fault handlers.
These page fault handlers and their servers implement memory
coherence strategy that keeps the memory space coherent at all
times. Since sending large packets of data (say 1,000 bytes) in a
loosely-coupled multiprocessor is not much more expensive than
sending small ones (say 100 bytes) [28], relatively large page sizes
are possible in a shared virtual memory. On the other hand, the
larger the memory unit, the greater the chance for contention.
The possibility of contention indicates the need for relatively
small page sizes. Our experience with a page size of 1K bytes
has been pleasant and we expect that smaller page sizes (per-
haps as low as 256 bytes) will work well also, but we are not as
confident about larger page sizes, due to the contention problem.
The right size is clearly application dependent, however, and we
simply do not have the implementation experience to say what
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size is best for a sufficiently broad range of parallel programs.

In IVY, each user address space is divided into two portions.
The shared virtual memory address space is in the high portion
and the private memory is in the low portion. For simplicity, the
data structure of the page table is a vector of records and each
record is a table entry. The whole table is stored in the private
memory. .

The memory coherence strategies implemented IVY use in-
validation approach. In this approach, all read-only copies of a
page are invalidated (changed to nil access) before a processor
writes to a page. For experimental purposes, we implemented
three algorithms: the improved centralized manager algorithm,
the fixed distributed manager algorithm, and the dynamic dis-
tributed manager algorithm. These algorithms and other al-
gorithms for solving the memory coherence problem have been
studied in depth [23]. Briefly, The centralized manager algo-
rithm is similar to the cache coherence solution [6]. The cen-
tralized manager resides on a single processor, and maintains all
ownership information. When having a page fault, a processor
will ask the manager for the copy of the page. The manager will
then ask the owner of the page to send a copy to the requesting
processor.

The fired distributed manager algorithm gives every proces-
sor a predetermined set of pages to manage. The most straight-
forward approach is to distribute pages evenly in a fixed manner
to all processors (the distributed directory map solution to the
multicache coherence problem [2] is similar). With this approach
there is one manager per processor, each responsible for the pages
specified by the fixed mapping function H. When a fault occurs
on page p, the faulting processor asks processor H(p) where the
true page owner is, and then proceeds as in the centralized man-
ager algorithm. '

The dynamic distributed manager algorithm keeps track of
the ownership of all pages in each processor’s local page table,
using a field called probOwner in each page entry. The value of
this field can be either the true owner or the “probable” owner
of the page. The information that it contains is just a hint; it
is not necessarily correct at all times, but if incorrect it will at
least provide the beginning of a sequence of processors through
which the true owner can be found. Initially, the probOwner
field of every entry on all processors is set to some default pro-
cessor that can be considered the initial owner of all pages. As
the system runs, each processor uses the probOuner field to keep
track of the last change of the ownership of a page. This field is
updated whenever a processor receives an invalidation request, -
relinquishes ownership of the page, or forwards a page fault re-
quest.

The fixed distributed manager algorithm, the dynamic dis-
tributed manager algorithm, and their variations are more ap-
propriate than others.

Process and Process Scheduling

The process management module implements all the operations
for process control, process migration, and process synchroniza-
tion. The module provides clients with a set of calls for writing
parallel programs.

All the processes in IVY are lightweight. The program code
of a process is stored in its private memory; therefore, IVY need
not have its own loader. The stack of a process is allocated from
the shared memory portion. Each process has a process control




block (PCB) that contains necessary information like process
state, stack, context, and other process control-dependent in-
formation. The PCBs are stored in the private memory of the
address space. Therefore, the PID of a process is represented as
a pair—processor number and the address of its PCB.

The process scheduling mechanism is designed to be simple.
Each processor has a local ready queue using a last-in-first-out
policy, that is, processes do not have priorities. The process
dispatcher always picks up the process in the front of the ready
queue. If there is no ready process available, the dispatcher runs
a system process called the null process.

The null process implements a passive load balancing algo-
rithm. It normally waits on two low level eventcounts, one for
timeout and another for new ready processes. The null process
is invoked when either of them is advanced. When a timeout
event occurs, the null process will run the passive load balancing
algorithm. The main idea of the algorithm is to let each proces-
sor ask for work when it is idle using some hints. The eventcount
for new ready processes can be advanced only when a process is
migrated to the current processor, a remote resume operation is
performed, or a remote notification operation results in waking
up a process. Of course, when a new ready process is available,
the null process will suspend itself. The dispatcher will then do
another schedule.

The hint information about the number of ready processes is
important for minimizing the number of rejections of migration
requests. The processors in IVY keep each other up to date
on their current work loads by adding a few extra bits to the
messages transmitted for remote operations. Usually, a byte will
be enough to transfer the information. This byte can be packed
into every message at almost no extra cost.

Experiments with many parallel application programs show
that the algorithm will not work well if the number of ready
processes on each processor is used as the only criterion for mi-
grating processes. A better way is to use the number of processes
(including both ready and suspended) controlled by thresholds
[22]. When such a number is less than the lower threshold, the
processor will try to ask for work. When such a number is greater
than the upper threshold, the processor will migrate processes
to other processors upon requests.

Process migration

A process in IVY is either migratable or non-migratable, in-
dicated by a field in its PCB. Clients can modify the field by
using a primitive so that a migratable process can become non-
migratable or vice versa at run time. Only a ready, migratable
process can migrate from one processor to another. When a
process is migrated, a.forwarding pointer is put into its PCB
and the migrated attribute is set. The PCBs of migrated pro-
cesses are used for storing forwarding pointers. The collection of
non-reachable PCB’s has not been implemented in IVY.

Since PCBs are stored in the private memory portion of the
address space, a process migration must

o send the PCB of the process to the destination processor

and put it into a PCB,

copy the current page of the process’s stack to the desti-
nation processor and transfer the ownership of the page,

o transfer the ownership of all the pages in the upper portion
of the stack to the destination processor, and

e put the PCB in the ready queue on the destination proces-
sor. ‘
The reason for moving the current page of the process’s stack is
to avoid a page fault in the process dispatcher (Figure 3).
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current
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SP —»
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Figure 3: A process stack.

The upper portion of the stack need not move to the desti-
nation processor because its content is meaningless. Ownership
transfer is inexpensive because it only requires setting the pro-
tection bits of the page frames. There is no need to do anything
with the lower portion of the stack because the stack can grow
without having further page faults after the current page and
the upper portion of the stack become writable.

Eventcount Implementation

In a shared virtual memory system, it is possible to implement a
process synchronization mechanism based on either global mem-
ory or message passing. Eventcount [26] is the process synchro-
nization mechanism in IVY. The main reason for choosing event-
count is that the Aegis operating system uses eventcounts as its
synchronization mechanism.

An eventcount synchronization mechanism has four primitive
operations:

e Init( ec ) — initializes an eventcount.

e Read( ec ) — returns the value of the eventcount.

e Await( ec, value ) — suspends the calling process itself
until the value of the eventcount reaches the value specified.

e Advance( ec ) — increments the value of the eventcount
by one and wakes up awaiting processes.
After an eventcount is initialized, any process can use it without
knowing where it resides.

The implementation of these primitives is based on shared
virtual memory. The atomic operation is implemented by pin-
ning memory pages and using test-and-set instructions. This
implementation is much cleaner than that based on message-
passing; furthermore, the performance is better when there is
more than one process on each processor because eventcount
primitives become local operations when the eventcount data
structure has been paged into the local processor.

The data structures of an eventcount usually reside together
in one page. The shared virtual memory mapping mechanism
can move this page on demand when an eventcount operation is
performed and on a processor where there is no such eventcount
data structures. If the data structures of an eventcount require
more than one page, then the additional pages will be linked to-
gether. This mechanism increases the locality of the eventcount




data structure. In most cases, only one page is needed for each
eventcount.

Memory Allocation

IVY has a simple memory allocation module that uses a “first
fit” algorithm with one-level centralized control. The proces-
sor with which the user directly contacts will be appointed to
the centralized memory manager. To reduce the memory con-
tention, the memory allocator allocates each piece of memory to
the boundary of a page.

Both allocate and free are atomic operations. IVY uses a
binary lock on each processor for memory allocation purposes.
At the beginning of each memory management primitive, a test-
and-set operation is performed on the lock. A failed process will
be put into a queue and will be awakened by an unlock operation
on the lock which is done at every end of each primitive.

A more efficient approach is two-level memory management.
In this approach, each processor has a local allocator maintain-
ing a big chunk of memory allocated from the central memory
allocator. This big chunk of memory serves for the local memory
allocations. When there is not enough free memory left in the big
chunk, the local allocator will allocate another big chunk from
the central allocator. This approach has not been implemented
yet, though it is expected to have better performance.

Remote Operation

The remote operation module implements a remote request /reply
mechanism that handles all the remote operations of other mod-
wes. Such a mechanism (also called simple RPC) is similar
to remote procedure call facility [24,3], but it is simpler than
the general one and has a few special features for implementing
shared virtual memory system.

One of such features is broadcast or multicast remote oper-
ation mechanism. A broadcast or a multicast request has three
reply schemes: a reply from any receiving processor, replies from
all receiving processors, and no reply at all. The first option is
useful for broadcasting page fault requests to locate page own-
ers (see [23]). The second option can be used for implementing
invalidation operations. The third option is for broadcasting
approximate information for process scheduling.

Another feature is a forwarding request mechanism that al-
lows a processor to forward a request to another processor. For
example, processor 1 can send a request to processor 2, processor
2 forwards the request to processor 3, and so on until processor
k performs the operation and sends a reply back to processor 1.
There are no intermediate replies involved in the operation. This

mechanism is particularly useful for implementing the dynamic

distributed manager algorithm.

The retransmission protocol is based on the philosophy of
resending replies only when necessary. Such a design is based
on two assumptions: local computation is always correct, and
communication may be unreliable, but once a packet is received,
its content is always correct. The protocol is reliable only when
these assumptions hold. In practice, the assumptions are reason-
able. Retransmission checking is done in a null process, which
checks all the outgoing channels every half second when there is
nothing to do.
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Programming in the IVY Environment

Programmers can use any programming language in the Apollo
DOMAIN to write parallel programs as long as they can interact
with the procedure calls in the Apollo DOMAIN Pascal in which
IVY is implemented. Since all the languages in the Apollo DO-
MAIN are designed for sequential programming, the programmer
has to program parallel constructs explicitly with the primitives
provided by IVY.

Programmers or compilers using IVY need to decide which
piece of data puts into shared virtual memory and which into
private memory. Programs later do not need to know where
the shared data structures are in the sense that references to
these data structures are the same as to other data structures.
If IVY had its own loader, explicit memory allocation would not
be necessary.

Clients can use primitives provided by the process manage-
ment module to create lightweight processes (or threads) for a
parallel computation. The programmer can choose how to sched-
ule processes when calling an initialization procedure at the be-
ginning of the program. There are two options: manual schedul-
ing and system scheduling. If system scheduling is used, the
programmer only needs to create and terminate processes. But
if manual scheduling is chosen, the programmer needs to tell
where and when a process goes. It is the programmer’s respon-
sibility to program process synchronization. The methodology
of such programming is the same as that of “conventional” con-
current programming developed since the 1960s. Although there
is no parallel programming language, such a primitive environ-
ment has proven to be convenient enough to write benchmark
programs.

IVY does not have any special debugging tools. Initial de-
bugging programs can be done on a single processor. Since an
IVY image file can run on any number of processors, there is
no need to have a simulator. If a program follows IVY paral-
lel programming conventions, debugging on a single processor
is usually easy. After debugging on a single processor, the pro-
grammer should debug on two and then three processors. My
experience indicates that if a program can run on three proces-
sors correctly, there are few bugs left.

Experiments

Given the difficulties of finding practical parallel programs, the
only reasonable way to do experiments is to select a set of appli-
cation programs from different fields as a benchmark suite. All
benchmarks have the following two properties:

e reasonably fine granularity of parallelism, and

e side-effects in shared data structures.
Parallel programs with rather coarse granularity can obviously
perform well in the shared virtual memory system. There are
parallel functional programs that do not have any side-effects in
their data structures at run time. The shared virtual memory
system is clearly a big win in these applications. The main goal
in using the two criteria is to avoid weighing the experiments in
favor of the shared virtual memory system by picking problems
that suit the system well. The benchmark set in the experiments
consists of six parallel programs that are written in Pascal. All
of them are transformed manually from sequential algorithms
into parallel ones in a straightforward way.

Linear Equation Solver This program implements a par-
allel Jacobi algorithm for solving linear equations. The algorithm




is transformed from the traditional, sequential Jacobi algorithm
that solves the linear equation Az = b where 4 is an n by n
matrix. In each iteration, z(¥*1) js obtained by
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The parallel algorithm creates a number of processes to partition
the problem by the number of rows of matrix A. All the pro-
cesses are synchronized at each iteration by using an eventcount.
The data structures A,z, and b are stored linearly in the shared
virtual memory, and the processes access them freely without
regard to their location.

3D PDE Solver This program solves three dimensional
partial differential equations (PDEs) using a parallel Jacobi al-
gorithm. The algorithm and its transformation are similar to
the linear equation solver except that in the equation Az = b,
A is a sparse matrix. Since this matrix is never updated in
the program, the practical PDE solvers in scientific computing
usually eliminate the matrix by coding it into programs to save
space and time. In practice, matrix A is large and it is read-
only, coding it into program will not be in favor of the shared
virtual memory performance. To be more realistic, we choose
to do so. The vectors z and b are stored linearly in the shared
virtual memory.

Traveling Salesman Problem The traveling salesman
problem is to find a tour that visits each city once with the
minimum cost. The cities are represented as the nodes in an
undirected graph. The cost of a tour is the sum of the weights
of the edges on the tour. The algorithm used in the program is
a simplified version of the branch-and-bound approach proposed
‘in [13]. At each step, an 1-tree (a variation of the minimum span-
ning tree) of the remaining graph is computed. The sum of the
cost of the subtour and the 1-tree is compared with the cost of
the current least upper bound. If the cost is less than the upper
bound, it will replace the upper bound and the subtour is still
valid; otherwise, the subtour will be thrown away. The available
branches, the graph, and the least upper bound are stored in
the shared virtual memory. The program creates a process for
each processor that performs the branch-and-bound algorithm
on a branch obtained from the shared virtual memory. These
processes run in parallel until the tour is found. Each process
is not much different from the sequential one except it needs to
access shared data structures mutual exclusively.

Matrix Multiply This program computes C = AB where
A, B and C are square matrices. A number of processes are cre-
ated to partition the problem by the number of columns of ma-
trix B. All the matrices are stored in the shared virtual memory.
The program assumes that matrix 4 and B are on one processor
at the beginning and they will be paged to other processors on
demand.

Dot-product The dot-product program computes

n
S = Z Ui
i=1

A number of processes are created to partition the problem.
Each process computes a partial sum and S is obtained by sum-
ming up the partial sums produced by the individual processes.
Both vector z and y are stored in the shared virtual memory in
a random manmner, under the assumption that z and y are not
fully distributed before doing the computation. The main reason
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for choosing this example is to show the weak side of the shared
virtual memory system; dot-product does little computation but
requires a lot of data movement.

Split-merge Sort -This program implements a variation
of the block odd-even based merge-split algorithm described in
{4]. The sorted data is a vector of records that contain random
strings. At the beginning, the program divides the vector into
2N blocks for N processors, and creates N processes, one for each
processor. Each process sorts two blocks by using a quicksort
algorithm [17]. This internal sorting is naturally done in parallel.
Each process then does an odd-even block merge-split sort 2N —1
times. The vector is stored in the shared virtual memory, and the
spawned processes access it freely. Because the data movement
is implicit, the parallel transformation is straightforward.

The speedup of a program is the ratio of the execution time
of the program on a single processor to that on the shared virtual
memory system. In order to obtain a fair speedup measurement,
all the programs in the experiments partition their problems by
creating a certain number of processes according to the number
of processors used. As a result of such a parameterized partition-
ing, any program does its best for any given number of proces-
sors. Unlike message-passing systems or primitive global-space
systems, IVY has almost no extra overhead when programs run
on a single processor. The only additional costs are in creating
processes, which takes milliseconds in total, and mutual exclu-
sion, which takes two 68000 instructions for each locking. Since
there are few locking operations in the programs above, the pro-
grams using one processor run just as fast as their sequential
programs.
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Figure 4: Super-linear speedup

The 3D PDE program, when matrix A is 50° by 503, ex-
perienced super-linear speedup as shown in Figure 4. At first
glance, the result seems impossible because the fundamental law
of parallel computation says that a parallel solution utilizing p
processors can improve the best sequential solution by at most a
factor of p. Since the algorithm in both programs is a straightfor-
ward transformation from the sequential Jacobi algorithm and
all the processes are synchronized at each iteration, the algorithm
cannot yield super-linear speedup. The reason is that the funda-
mental law of parallel computation assumes that every processor
has an infinitely large memory, which is not true in practice. For
instance, in the paralle]l 3-D PDE example, the data structure




for the problem is greater than the size of physical memory on
a single processor, so when the program is TUn On one Processor
there is a large amount of paging between the physical memory
and disk.

Table 1 shows the total number of disk 1/O page transfers of
the first six iterations when the 3D PDE program runs on one
processor and two processors. Obviously, the number of the disk
I/O page transfers on two processors is substantially less than
that on one processor. In the two-processor case, the program
initializes its data structures only on one processor, this proces-
sor causes most disk I/O transfers because it cannot hold all the
data structures in its physical memory. As the program runs,
the processes start to access some portions of the data struc-
tures, causing the shared virtual memory page faults to move
pages from one processor to another. When the shared virtual
memory distributes the data structure into individual physical
memories whose cumulative size is large enough, few disk I/0
data movements will occur. On the other hand, IVY is a user-
mode system implemented on top of the Aegis virtual memory
system which performs an approximate LRU page replacement
strategy; the pages recently moved from the processor with ini-
tialized data structures may not be replaced because these pages
are also most recently referenced ones. This explains why the
number of disk I/O page transfers in the two-processor case de-
creases gradually.

Disk page transfers of each iteration
1 2 3 4 5 [
1 processor | 899 | 1600 1543 | 1515 | 1542 | 1540
9 processors | 1432 | 1072 466 156 101 105

Table 1: Disk page transfers

When the data structure of the problem is not larger than
the physical memory on a processor (matrix Ais 403 by 40%), the
result of the 3D PDE is no longer super-linear, as shown in Fig-
ure 5. They are similar to what we see in the past. For example,
the result is similar to that generated by similar experiments on

CM*, a shared memory multiprocessor [18,9]. Indeed, the shared
virtual memory system is as good as the best curve in the pub-
lished experiments on CM* for the same program; but the efforts
and costs of the two approaches are dramatically different. In
fact, the best curve in CM* was obtained by keeping the private
program code and stack in the local memory on each proces-
sor. The main reason that the performance of this program is so
good in the shared virtual memory system is that the program
exhibits a high degree of locality. While the shared virtual mem-
ory system pays the cost of local memory references, CM* pays
the cost of remote memory references across its Kmaps.

The dot-product program did not perform well on IVY, as
indicated in Figure 5. It is included here so as not to paint too
bright a picture. Since this program only references each element
once, the ratio of the communication cost to the computation
cost in this program is large. For programs like dot-product, it
is not appropriate to use a shared virtual memory system, unless
the communication cost can be reduced.

Matrix multiply and traveling salesman problem perform well
on IVY system. They show the good side of the shared vir-
tual memory system. Both programs exhibit a high degree of
localized computation. Since the algorithm used in the travel-
ing salesman problem is a parallel branch-and-bound, there are
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anomalies {19]. It is possible that the program gets super-linear
speedup or no speedup at all. In this example, it happens to
have super-linear speedup.

Figure 6 shows the speedup of merge-split sort program. The
curve does not-look very good because even with no communi-
cation costs, the algorithm does not yield linear speedup. The
program uses the best strategy for any given number of proces-
sors. For example, there is one merge-split sorting when running
the program on one processor, there are 4 blocks when running
the program on two processors, and so on. Using a fixed number
of blocks for any number of processors would result in a better
speedup, but such an approach is not reasonable.

Number of processors

Figure 6: Speedup of merge-split sort

Conclusion

The difficulties with passing complex data structures and pro-
cess migration are the main drawbacks of the message passing
model for parallel computing. Shared virtual memory on loosely-
coupled multiprocessors can solve these problems. The success
of implementing the prototype shared virtual memory system
IVY and the experiments show that it is practical to implement
such a system on existing loosely-coupled multiprocessors such
as local area networks.

The implementation experience shows that, although it is
possible to implement a shared virtual memory without modi-




fying an existing system like the'Aegis operating system, it is
necessary to modify the existing system to get acceptable per-
formance. IVY is a user-mode implementation, so it has a lot
of overhead. A system-mode implementation ought to provide
a substantial improvement. It is expected that a well-tuned
system-mode implementation should improve the performance
of remote operations and page moving by a factor of at least two
according to the performance comparison with some well tuned
systems [28,7). 1/O overlaps among the lightweight processes
do not exist in IVY. An integrated heavyweight and lightweight
process scheduler is highly desirable. The disk I /O overlap may
also greatly improve IVY’s performance.

The experimental results of running some non-trivial parallel
programs on the prototype system strongly support the idea of
shared virtual memory on loosely-coupled multiprocessors. The
results demonstrate that the shared virtual memory can effec-
tively exploit not only the available processors but also the com-
bined physical memories of a multiprocessor system.

The experimental results reported in this paper are limited
because there were only up to eight processors available for run-
ning the modified Aegis operating system at the time. Exper-
iments on more processors will show more insights of shared
virtual memory and behaviors of parallel programs. To answer
many unanswered questions, we plan to perform more experi-
ments on a shared virtual memory system being implemented
on a large-scale multiprocessor at Princeton.
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