HiPEC: High Performance External Virtual Memory Caching

Chao-Hsien Lee’, Meng Chang Chen* and Ruei-Chuan Chang'™

Department of Computer and Information Science!
National Chiao Tung University, Taiwan, ROC

paul@os.nctu.edu.tw

Institute of Information Sciencet
Academia Sinica, Taiwan, ROC

{mcc,rc}@iis.sinica.edu.tw

Abstract

Traditional operating systems use a fixed LRU-like
page replacement policy and centralized frame pool
that cannot properly serve all types of memory access
patterns of various applications. As a result, many
memory-intensive applications, such as databases,
multimedia applications and scientific simulators, in-
duce excessive page faults and page replacement when
running on top of existing operating systems.

This paper presents a High Performance External
virtual memory Caching mechanism (HiPEC) to pro-
vide applications with their own specific page replace-
ment management. The user specific policy, pro-
grammed in the HIPEC command set, is stored in user
address space. When a page fault occurs, the kernel
fetches and interprets the corresponding policy com-
mands to perform the user-specific page replacement
management. Experimental results show that HIPEC
induces little overhead and can significantly improve
performance for memory-intensive applications.

1 Introduction

Though technological advances have greatly improved
the speed and enlarged the memory capacity of com-
puter systems, because of the increasing size of appli-
cations, it is still impossible to load all applications
and their data sets into physical memory at one time.
Existing virtual memory management schemes can be
used to compensate for limited memory size by sharing
the physical frame pool among all applications. In cur-
rent operating systems, a fixed LRU-like page replace-
ment policy is usually used to handle memory sharing.
This fixed LRU-like page replacement policy performs
well when the applications have limited memory re-
quirements or random memory access patterns, but it
is unsuitable for many memory-intensive applications,

The research described in this paper was partially supported
by NSC under grant NSC83-0408-FE-001-008.

such as databases [27], multimedia applications [24],
and scientific simulators [23].

The reasons for this are the following. First, a
fixed LRU-like page replacement policy and central-
1zed frame pool that cannot properly serve all types of
memory access patterns of various applications. As a
result, memory intensive applications tend to induce
excessive page faults and page replacement. Since page
replacement usually involves disk I/O operations that
are far slower than processor computation and memory
access, the performance of memory-intensive applica-
tions degenerates.

Second, the operating system kernel cannot pre-
dict application access patterns and user applications
know nothing about their virtual memory caching sta-
tus. Since all the applications share the same cen-
tralized frame pool, the lack of information sharing
between the kernel and user applications leads to un-
necessary paging activities. Ideally, if the kernel and
user applications share information in page replace-
ment decision-making, and each application manages
its private frame pool, the system can achieve high
performance virtual memory caching by reducing un-
necessary page replacement. However, the information
sharing induces expensive overhead if the kernel should
transfer control to user applications, or user applica-
tions should transfer control to kernel.

In this paper, we present a new mechanism, HiPEC
(High Performance External virtual memory Caching),
to support application-controlled virtual memory page
replacement management. HiPEC is based on the
Mach 3.0 kernel but can easily be ported to other oper-
ating systems. Recent research has addressed similar
virtual memory caching problems. This research will
be reviewed in Section 2. The motivation for HIPEC
and system design are described in Section 3. The
overall architecture of HIPEC and the implementation
are presented in Section 4. In Section 5, several mea-
surements and experiments are used to evaluate the
overhead of HIPEC and the performance improvement

for specific applications that using the HiPEC mech-
anism. Section 6 concludes the paper and presents
suggestions for future work.

2 Related Work

Many advanced operating systems and research pro-
totypes have addressed the virtual memory caching
problems. Mach [1], V4++ [8] [11], Spring [18], and
SPIN [6] all put the external memory management
into their designs. In Mach, an external pager [32]
is responsible for paging in and paging out memory-
mapped data, which can be shared in a distributed
environment because each data object is represented
as a Mach TPC port. External pager is powerful but
it lacks interfaces for applications to handle page re-
placement management.

McNamee’s PREMO extends the external pager in-
terfaces so that the page replacement facility is ex-
ported to applications [21]. The system-maintained
information, such as reference and modify bits for each
page frame, can be obtained by invoking PREMO-
created system calls. This simple and direct modifica-
tion of Mach reduces the number of page faults by 15%
in a synthetic benchmark program. However, PREMO
does not take into account the interference from other
applications. PREMO puts all the page frames in one
pool, which makes specific applications susceptible to
unnecessary paging activities because of interference
between applications.

In addition, although PREMO provides reference
and modify information, it does not supply other in-
formation, such as the number of physical frames un-
der control, which is essential to the performance of
specific applications. Moreover, the IPC overhead for
communication between the kernel and external pager
is high. Even if the communications are implemented
by upcall, as Krueger suggested [17], it is still expen-
sive to upcall from the kernel to the user application
and then call back from the user to the kernel because
of the runtime stack changes.

In Sechrest’s work [28], the centralized frame pool is
partitioned into separate private frame lists when new
memory objects are created. Specific applications have
their own PageOut Daemon (POD) to handle their
own memory object management, while non-specific
applications are handled by a default POD. The weak-
ness of this approach is its lack of security: information
is shared between the kernel and applications without
protection. The strategy of [28] is to trust on specific
application designers.

Spring [18] has an external paging mechanism simi-
lar to Mach except that it separates the memory object
from the pager object. The caching objects are also
controlled by the kernel without user participation.

V++ and SPIN are designed for application-controlled
external page-cache management. V+4+-+ uses a seg-
ment manager to handle page faults and has inter-
faces to request and migrate page frames to and from
different segment managers. It uses a memory mar-
ket approach [10] to handle global memory allocation
among segment managers. However, all the operations
or requests involve transferring control among differ-
ent address spaces. This incurs extra IPC overhead
compared to an in-kernel integrated implementation.

SPIN is an extensible operating system for dynamic
creation of system services. The dynamically created
objects, called spindles, allow applications to have spe-
cific control of their allocated system resources, such
as processors, memory, and network protocols. Using
optimized compiling and dynamic linking skills, SPIN
provides applications with full control of allocated sys-
tem resources. Applications running under SPIN can
achieve maximum performance without overhead from
crossing the kernel /user boundary.

HiPEC 1s similar to SPIN in that it does not need
to cross the kernel/user boundary when executing a
user-specific page replacement policy. SPIN creates
its application-specific control by linking the compiled
object code into the kernel. It requires dynamic com-
piling and linking when new services are created. On
the contrary, HIPEC does not create any object codes.
Instead, HiPEC interprets the specific control codes
placed in the user buffer area. This design provides
more flexibility and requires less modification of the
operating system kernel.

Mogul’s work [22], the packet filter, is worth men-
tioned, although it is not related to user level memory
management. The packet filter is a kernel-resident,
protocol independent packet demultiplexer. Users can
program their filters in the filter language, which is
similar to, but simpler than, HIPEC commands. The
filter is interpreted by the packet filter when system
receives a packet. The goals of the packet filter are
the reduction of the rate of context switches, and easy
to port and test communication protocols.

3 Motivation and System Design

Due to the variety of memory access patterns of appli-
cations, operating systems must be flexible enough to
support different page replacement strategies to meet
the individual needs. When several page replacement
strategies run at a time, it is important to reduce the
interference from each other to maintain the perfor-
mance of applications. One solution is to partition
the centralized frame pool into separate lists that each
list is allocated to a specific application® and managed

*A specific application is defined as an application uses
HiPEC mechanism in this paper.

by the application. In addition, the kernel and spe-
cific applications need to cooperate with each other to
make good allocation and replacement decisions.

There are several communication techniques avail-
able between kernel and applications. When an appli-
cation needs information from kernel, it uses system
calls or sends messages to communicate with kernel.
Upcalls are often used by kernel to activate applica-
tions functions. Since requiring context switches, all
the techniques are expensive. Another approach is to
use shared memory to map shared data structures be-
tween kernel and user applications. Though this ap-
proach can speed up data access, the data has to be
collected and mapped into fixed locations which 1s ex-
pensive too. Moreover, if the shared area 1s mapped
with read/write permission, the security of the oper-
ating system kernel might be compromised. Conse-
quently, kernel crossing is the source of overhead and
potential problems.

Instead of finding an efficient technique for crossing
the kernel boundary, HIPEC employs an integrated in-
kernel implementation. In HiPEC, a specific applica-
tion only needs to place its specific page replacement
policy, coded as a sequence of commands in HIPEC
command set, in the user space and store the pointer
in an object known to the kernel. When page replace-
ment is needed, the kernel fetches, decodes and inter-
prets the command codes to perform the application
specific page replacement policy.

Application
A Region
i Command) (L
3 (5)
Disk
@ Kernel D —

Figure 1: The Proposed Mechanism for Application
Specific Control.

Figure 1 illustrates the proposed mechanism for
application-specific control. The address space of spe-
cific application is partitioned into regions of continu-
ous virtual memory. The region is the basic unit of spe-
cific control. The command codes implementing the
application page replacement policy are stored in the
command buffer. To activate HIPEC mechanism, the

specific application first (1) calls the HiPEC-created
system call with parameters including the starting
address and size of the virtual memory region, and
pointer to the command buffer. Normally, the specific
application obtains the corresponding private frame
list from the kernel, as in (2). When a page fault is
generated inside the region, the application traps to
the kernel as shown in the step (3). If a page replace-
ment decision is needed, the kernel fetches the com-
mands from the command buffer, decodes the com-
mands and performs the required operations. After
allocating physical frames for the faulted region, the
kernel reads data from the disk and stores the data
to the faulted address, as in step (4). Finally, in the
step (5), the page fault is resolved and the application
resumes its work.
This design has several advantages:

e A high degree of efficiency can be achieved be-
cause no need to cross the kernel boundary and
the overhead for fetching and decoding commands
is low.

e System security is guaranteed because the kernel
data structure is accessed by the kernel-provided
operations only. Applications cannot access pro-
tected information.

e The command codes can be treated as a portable
interface for specific applications. The details
of virtual memory management and system-
maintained data structures are shielded from ap-
plications and designers. As a result, specific ap-
plication designers do not need to consider tedious
operating system internals in their design.

e High performance gain is obtainable if specific ap-
plication designers know the access patterns of
their applications and are able to program an effi-
cient replacement policy in HIPEC command set.

4 HiIPEC Implementation

HiPEC has been implemented on OSF/1 MK 5.0.2
operating system that extends the external memory
management (EMM) interface of Mach kernel to sup-
port external virtual memory caching management.
With this extension, applications can control the pag-
ing activities of memory-mapped data via the external
pager [31] interface and handle the page replacement
policy of a virtual memory region. Wang’s implemen-
tation [30] shows that little performance overhead is
incurred for running an EMM interface on BSD UNIX.
This result implies that HiIPEC can be ported to oper-
ating systems to support virtual memory caching man-
agement no matter whether there is an EMM interface
embedded in the operating systems.

Though the current HIPEC virtual memory caching
management is based on the Mach EMM interface,
the concept and implementation of HIPEC is indepen-
dent from the interface. Specific applications can use
HiPEC to control dynamically created virtual mem-
ory regions without the help of an external pager.
HiPEC has several constituents, including the secu-
rity checker, policy executor, command buffer, global
frame manager, user-level pseudo code translator, and
HiPEC command set.

policy
buffer Translator
@ checker
AIIocator
Contamer

Figure 2: HiPEC Architecture.

4.1 Architecture Overview

HiPEC is composed of a set of kernel data structures,
procedures, kernel threads, and user-level libraries and
utilities. The architecture of HiPEC is illustrated in
Figure 2. The global frame manager, implemented
from Mach pageout daemon, is responsible for allo-
cating free frames to and deallocating frames from ap-
plications. The VM object 1s used in the Mach kernel
to represent a segment of virtual memory region that
can be a memory-mapped data file or a segment of ad-
dress space with the same protection attributes. One
new kernel object, container, is added to record useful
information for the HiIPEC mechanism. Container is
created from the zone system [29] and mounted under
VM object when HiPEC is invoked by specific appli-
cations. A list of free frames, allocated by the global
frame manager, is mounted under the container. The
important information stored in the container includes
pointer to next container, pointers to related VM ob-
jects and threads, pointers to the HiPEC command
buffers, pointers to allocated free frame lists, operand
array, and a timeout flag.

The command buffer is a wired down user-level area,
used to store the application-specific page replacement
policy. The buffer is set as read-only after a specific

application invokes HIPEC and the buffer is passed
as a parameter to kernel. If applications attempt to
modify the contents of the policy buffer, a write fault
occurs. The page fault handling routines check the ad-
dress of the fault, and terminate the application with
a error message.

The policy executor, called by the page fault han-
dler, fetches the HIPEC commands for the event, de-
codes them, and performs the operations. Since ex-
ecutor resides in kernel address space, it can fetch the
commands without kernel crossing or stack changing.
The overhead introduced is just the time for fetch and
decode several HIPEC commands.

The security checker is implemented as a kernel
thread to check illegitimate HIPEC commands and de-
tect abnormal policy execution. In the current imple-
mentation, the checker checks whether HiPEC com-
mands have an invalid format or are inconsistent. The
checker is periodically awakened to detect timeouts
of policy executions. Since policy execution is per-
formed in kernel mode, bad policies from malicious
users or due to program mistakes can compromise sys-
tem integrity and degenerate performance. The secu-
rity checker ensures the robustness of the system. The
detailed structure of each component of HIPEC is dis-
cussed in the following subsections.

4.2 HiIPEC Commands

0 8 16 24

Command Code | Operand Operand Flag

Figure 3: The HiPEC Command Format.

A HiPEC command is a 32-bit long word that contains
an 8-bit operator code and up to three operands, as de-
picted in Figure 3. The operand is an 8-bit long integer
which is used as an index to one entry in the operand
array. The operand array is stored in a container with
up to 256 entries. Each entry in the operand array is
a pointer to a variable. The types of the variable can
be as simple as an unsigned integer, or as complex as
the virtual memory page structure or page queue list.

There are 20 commands in the current implemen-
tation: Return, Arith, Comp, Logic, EmptyQ, InQ,
Jump, DeQueue, EnQueue, Request, Release, Flush,
Set, Ref, Mod, Find, Activate, FIFO, LRU and MRU.
The syntax and semantics of each command are listed
in Table 1.

Each command is implemented in the kernel as a
macro or a procedure call. HIPEC commands range
from complex commands, such as the page replace-
ment policies FIFO, LRU, and MRU, to simple ones,
such as Arith and Comp. The more complex a com-

| Command | Binary | Opl | Op2 | Flag | Operations
Return 00000000 | op — — The end of execution. Return value is stored in op.
Arith 00000001 | opl | op2 flag Arithmetic operations for integer operands.
Comp 00000010 | opl | op2 flag Comparison operations for integer operands.
Logic 00000011 | opl | op2 flag Logical operations for boolean operands.
EmptQ 00000100 | op — — Test if queue op is empty.
InQ 00000101 | opl | op2 — Test if page op2is in queue opl.
Jump 00000110 cC Branch to next command. CC is the command counter.
DeQueue 00000111 | opl | op2 flag Move the page op! from queue op2.
EnQueue 00001000 | opl | op2 flag Add page op! to queue op2.
Request 00001001 Size Request Size frames from frame manager.
Release 00001010 | op — — Release op frame to frame manager.
Flush 00001011 | op — — Flush page op to disk.
Set 00001100 | opl | flagl | flag2 | Set or reset reference or modify bit of page opl.
Ref 00001101 | op — — Test if page op is referenced or not.
Mod 00001110 | op — — Test if page op is modified or not.
Find 00001111 | opl | op2 flag Given virtual address op2, find the associated page frame opl.
Activate 00010000 | op — — Invoke another policy event. op is the event number.
FIFO 00010001 | op — — Execute FIFO page replacement policy for the op queue.
LRU 00010010 | op — — Execute LRU page replacement policy for the op queue.
MRU 00010011 | op — — Execute MRU page replacement policy for the op queue.

Table 1: The HiIPEC Command Set.

mand is, the less overhead it creates because the pol-
icy executor does not need to fetch and interpret many
commands during execution. While the simple com-
mands induce more overhead in executing the page
replacement policy, they are flexible for application de-
signers to program a specific policy. Though only 20
commands are defined in the current implementation,
they are powerful enough for many specific applica-
tions. Since the HIPEC command code is 8 bits long,
there can be up to 256 different commands. It is easy
to add new commands to HIPEC if more commands
are needed to handle page replacement. A HiPEC pro-
gram can be created by a user-level translator from a
high-level pseudo code program or by hand coding.

When an event occurs, a segment of a HIPEC com-
mand program 1s called to handle the event. There
is no limitation of the number of events that a spe-
cific application can define. However, a specific appli-
cation at least has to handle the two HiPEC-defined
events, PageFault and ReclaimFrame. When page
faults occur, the HiPEC commands for PageFault
event are interpreted to obtain free frames to han-
dle the fault. The ReclaimFrame event happens when
the system needs to retrieve physical frames from user
jobs. The non-HiPEC-defined events are activated by
other events, which can be viewed as procedure calls.
Table 2 is a simple example that implements a FIFO
with a second chance LRU-like page replacement pol-

1cy.

4.3 Implementation

HiPEC mechanism is initialized by two HiPEC system
calls, vim_map_hipec() and vm_allocate_hipec(), cor-
responding to vm_map() and vm_allocate() in Mach
respectively. vm.map() maps a file into the applica-
tion’s address space and vm_allocate() allocates a re-
gion of unused virtual memory for dynamic or tempo-
rary data. When either of these two system calls are
invoked, the kernel allocates and initializes the con-
tainer, allocates free page frames from the global frame
manager, and checks the validity of HIPEC commands
stored in the policy buffers.

Global

4.3.1 Pageout Daemon Serves as
Frame Manager

In the HiPEC implementation, the pageout daemon
acts as the global frame manager. It allocates free
page frames to specific applications, and reclaims them
when applications terminate, or when other specific
applications request for page frames. Since specific ap-
plications and non-specific applications share the same
global frame pool, it is important to balance the allo-
cation of free page frames between them. The global
frame manager performs four basic tasks: balance, al-
location, deallocation, and I/O handling.

e Balance. The global frame manager is also the
pageout daemon, which is responsible for page
allocation and page replacement for non-specific
applications when page faults occur. Since the
page frame allocation should be fair for both spe-

The PageFault Event

| CcC | Command Code | The executed operations.
0 | HiPEC Magic No | Magic number used for checking.
1102 02 0C 01 |if(free_count > reserved_target)
2106 00 00 05 | /*else*/ Jump to (CC==H)
3107 0B 01 01 | Get page from Afree_queue by DeQueue.
4100 0B — — | Return
5110 02 — — | Activate Lack_free_frame event.
6106 00 00 03 | Jump
The Lack_Free_Frame Event
| CC | Command Code | The executed operations.
0 | HiPEC Magic No | Magic number used for checking.
1102 02 0A 02 | if(free_count < free_target)
2106 00 00 OFE/| /*else*/Jump to (14)
3107 0B 00 01 | Get page from anactive_queue by DeQueue.
410D 0B — — | Judge if the page is referenced
5106 00 00 09 | /*else*/Jump to (09)
6108 0B 03 02 | Put page to _active_queue by EnQueue
710C 0B 02 01 | Reset the page reference bit
8106 00 00 OFE | Jump to (CC==14)
9| 0E 0B — — | Judge if the page is modified
10|06 00 00 O0C | /*else */Jump to (CC==12)
11 | 0B 0B — — | Flush page
12108 0B 01 01 | Put page to free queue by EnQueue
13106 00 00 01 | Jump to (CC==1)
14 102 06 09 02 |if (inactive_count < inactive_target)
15106 00 00 14 | /*else */ Jump to (CC==20)
16 | 07 0B 03 01 | Get page from free_queue by DeQueue
17 | 0C 0B 02 01 | Reset the page reference bit
18 108 0B 05 02 | Put page to _inactive_queue
19106 00 00 OFE | Jump to (CC==14)
20100 00 — — | Return

Table 2: The FIFO with Second Chance Page Replacement Policy.

cific and non-specific applications, we define a
watermark partition_burst to monitor the alloca-
tion. When the total pages allocated to all the
specific applications exceed this watermark, the
global frame manager will deallocate pages from
specific applications.

Currently, partition_burst is defined as 50% of the
available free page frames after the system starts
up. This is under the assumption that about
the same number of physical page frames are re-
quested by specific and non-specific applications
and they should have equal opportunity to be
served by the global frame manager. An adapt-
able or dynamically adjustable partition burst will
be studied in the future to investigate the impact
on system performance. The effect of other frame
allocation methods 1s also worth studying. How-
ever, it is beyond the scope of this paper.

Allocation. When specific applications invoke the
HiPEC mechanism, they must identify the size of
their memory needs. The parameter minFrame 1s
passed to the kernel to request the minimum num-
ber of page frames from the global frame man-
ager. Specific applications will keep at least min-
Frame pages during their executions. If the min-
Frame request cannot be satisfied when HiPEC
is 1nitially invoked, an error code is returned.
The specific application can either run as a non-
specific application or terminate and retry later.
The minFrame of each specific application is de-
cided and administrated by designated privileged
users who have the responsibility of system per-
formance.

If a specific application needs more page frames,
the executor executes a Request command to re-
quest more pages. The global frame manager
grants or rejects the request depending on the
number of the remaining free page frames and the
status of the requester. When the number of re-
quested page frames 1s more than the available
page frames, the request is rejected. The execu-
tor checks the returned code to know the status
of frame allocation request. Upon request failure,
the executor makes the specific page replacement
policy to handle the shortage of page frames. Con-
sequently, the HIPEC executor will not be hung
indefinitely for waiting the return from the global
frame manager.

Deallocation. The global frame manager retrieves
page frames from specific applications when their
VM region is deallocated. The second situation
is when global frame manager has fewer avail-
able free page frames than the minFrame requests
from new specific applications. The last situation

of reclamation is when the total pages allocated
to specific application exceed the partition_burst.
The global frame manager reclaims page frames
from specific applications with more pages than
their minimal request(i.e. minFrame pages) only.

The reclamation of frames can be normal reclama-
tion and forced reclamation. When HiPEC is in-
voked, the newly created container is added to the
end of the list that links all containers. A simple
policy, FAFR (First Allocated, First Reclaimed),
is implemented to select the victims of reclama-
tion. The procedure of normal reclamation is that
the global frame manager follows the container
list and selects the first container to release page
frames until the request is satisfied. The global
frame manager calls the policy executor to exe-
cute the ReclaimFrame event of a selected spe-
cific application to return pages to the system.
This ReclaimFrame event allows specific applica-
tions to decide which pages are less important and
can be released.

The global frame manager starts forced reclama-
tion when it cannot retrieve enough page frames
from normal reclamation. Since all the allocated
page frames of all specific applications are linked
in the sequence of the time of allocation, the
global frame manager can reclaim frame pages
from the list. The reclaimed dirty pages are linked
to a VM object and are flushed to disk by the
global frame manager later.

e I/0 Handling. The global frame manager also
performs page flushing for specific applications.
When a policy executor wants to flush a page us-
ing Flush command, it releases the flushed page to
a VM object of the global frame manager and re-
ceives a new free page from the global frame man-
ager. The real flushing operation is done by the
global frame manager later. This design prevents
the executor from having to wait for disk I/O op-
erations. Otherwise, the executor may timeout
often and terminated by the checker when wait-
ing for the time consuming disk I/O operations.

4.3.2 Application-Specific Policy Executor

When invoked by the page fault handler or global
frame manager, the policy executor fetches commands
from policy buffers, decodes them, and executes the
corresponding operations. The policy executed de-
pends on the type of event that occurs for the spe-
cific VM object. At the begin of execution, the policy
executor first writes a timestamp into the container
to record the starting time of execution. This times-
tamp is checked by security checker to detect timeout
of policy execution. The container also contains a CC

(Command Counter) variable that is used to record
the address of the next HIPEC command to be inter-
preted. Since the policy executor runs in kernel mode
and can directly access both kernel and user address
spaces, 1t does not need to transfer control from ker-
nel to user applications when fetching the commands.
The executor will keep running until it reads Return
from the policy buffers.

4.3.3 In-Kernel Security Checker

The security checker is implemented as a kernel thread
that checks the validity of application-specific page re-
placement policies. In the current version, the security
checker only checks for illegal syntax of commands,
such as the wrong number or illegal type of operands.
Another duty of the checker is to detect timeouts of
policy executions. The checker is awakened period-
ically by the timer. The length of sleeping time is
adjusted according to whether a timeout is detected
by the checker. Every time a timeout is detected, the
sleeping time for the checker is halved. If no time-
out execution 1s detected, the time is doubled. Since
normally there are very few runaway policy executions,
the checker sleeps most of the time and does not create
enormous overhead to degenerate system performance.
The formula of the sleeping time of the checker is de-
scribed in the following equation:

WakeUp/2 if timeout detected

WakeUp * 2 if no timeout detected
WakeUp = 250msec if WakeUp < 250 msec

8sec if WakeUp > 8 sec

When the checker is awakened, it checks the stored
timestamp of each container by traversing the con-
tainer link list. A policy execution is treated as a
timeout if the execution time is longer than the Teme-
QOut period. Currently, the length of TimeOQut period
is determined manually by a privileged user. When
the checker finds an executor has run longer than the
timeout period, the corresponding specific application
will be terminated by the checker.

4.3.4 Pseudo Code Translator and Library

It is not convenient for a programmer to design a
page replacement policy by directly using the low-
level HIPEC command set. We implement a pseudo
code translator to assist application designers in their
programming. The translator translates C language
like pseudo codes into a stream of HIPEC command
codes. The translator is implemented as a stand alone
program and is also incorporated into the user level li-
brary. The HiPEC event is represented as a procedure
call in the pseudo code program with the Event type.
Figure 4 shows an example of a pseudo code program

Event PageFault() {
if (_free_count > reserve_target)

page = de_queue_head(_free_queue)
else begin

Lack_free_frame()

page = de_queue_head(_free_queue)
endif
return(page)

1

Event Lack_free_frame() { /* FIFO with 2th Chance */

while (_inactive_count < inactive_target) {
page = de_queue_head(_active_queue)
reset(page.reference)
en_queue_tail(inactive_queue)

while (_free_count < free_target) {
page = de_queue_head(_inactive_queue)
if (page.reference) begin
en_queue_tail(_active_queue,page)
reset(page.reference)

end
else begin
if (page.dirty) begin
flush(page)
end
en_queue_head(_free_queue,page)
end
}
}
Event ReclaimFrame() { }

Figure 4: Pseudo Code Program for FIFO with Second
Chance Caching Policy.

that implements a FIFO with a second chance page
replacement policy.

5 Experiments and Performance Eval-
uation

The advantage of HiPEC over previous techniques is
that it does not need to transfer control between ker-
nel and applications. The cost 1s the time for fetching
and decoding HiPEC commands, execution of security
checker and miscellaneous processings. In this section,
three experiments are designed to measure the over-
head and evaluate the performance of HiPEC mech-
anism. The experimental results show that HiPEC
induces little overhead and can significantly improve
performance for memory-intensive applications.

The first experiment presents the measurements of
HiPEC mechanism that are compared with other tech-
niques. The second experiment shows negligible over-
head of HiPEC for non-specific applications. The last

Average Time Average
Evaluation Overhead Evaluation Time
40 Mbytes page fault Null System Call 19 u sec
Without disk I/O operations Null TPC Call 292 pu sec
Running on Mach 3.0 Kernel 4016.5 msec Simple HiPEC page fault overhead 2150 nsec
Running on HiPEC mechanism 4088.6 msec

HiPEC Overhead 1.8%

40 Mbytes page fault

with disk I/O operations
Running on Mach 3.0 Kernel
Running on HiPEC mechanism

HiPEC Overhead

82485.5 msec
82505.6 msec
0.024%

Table 3: Comparison — 1.

experiment show the merit of HIPEC in allowing spe-
cific applications to have great performance improve-
ment by using their specific page replacement policy.
All the experiments are performed on an Acer Altos
10000 machine, which has two Intel 486-50 CPUs and
64 Megabytes main memory. One CPU is disabled
during the experiments to prevent unexpected inter-
ference.

5.1 Measurements of HIPEC Mecha-

nism

In this experiment, we want to find out the overhead
created by HiIPEC and compare with other techniques
that are usually used to implement application-specific
page replacement management. We measure the page
fault handling time for accessing 40 Megabytes virtual
address space both under Mach kernel and HiPEC.
To make the comparison fair, the HiIPEC environment
has implemented the same FIFO with a second chance
page replacement policy as in Mach kernel [13] and
both request 40 Megabytes for their private manage-
ment. In order to distinguish the effect of disk 1/0
on the overall execution time, we measure the elapsed
time with and without disk I/O operations separately.
From Table 3, the overhead incurred by HiPEC is so
small that can be compensated by as few as one or
two disk page I/O operations. In the experiment 3,
it 1s shown that a specific application with right re-
placement policy can reduce unnecessary page replace-
ments.

The common techniques used to provide application
specific resource management are upcall and TPC. Up-
calls are implemented as procedure invocations from
the kernel to user applications. The overhead is mainly
in allocating area for new user stack and changing
stacks. In Mach, the TPC mechanism is implemented
by message passing. The time for null system call is
used to describe the upcall overhead. For IPC, we
measure the execution time of a null IPC.

Since HiIPEC overhead 1s mostly determined by the

Table 4: Comparison — II.

programmed policy, we again use the FIFO with a sec-
ond chance page replacement policy as the referenced
policy. The overhead created by HIPEC mechanism in
simple page fault is negligible, because it is only the
time to fetch and decode Comp, DeQueue, Return com-
mands. We use approximation notation to represent
the simple page fault overhead for HIPEC mechanism,
because the time measured is too small that can be
easily affected by other system activities. It is con-
cluded from Table 4 that HIPEC is more efficient than
the upcall or IPC techniques.

5.2 The System Throughputs of Mod-
ified and Unmodified Mach Kernel

In this experiment, we want to find out the over-
head of HiPEC to non-specific applications. We run
a synthetic system benchmarm, AIM, on the original
Mach kernel and modified HIPEC kernel to compare
the overall system throughput. The AIM suite IIT
benchmark [3] is designed to compare the system per-
formance of various platforms and operating systems.
Users can tune the workload mix by giving weights
to different kind of simulated jobs to measure system
throughputs.

HiPEC implementation has added checking state-
ments to Mach kernel in the page fault handling rou-
tines to decide whether the faulted virtual address is
located 1n the regions controlled by the specific appli-
cations. Another HIPEC implementation overhead for
non-specific applications is from the security checker.
The checker is awakened periodically to check if there
is any timeout of policy execution. The overhead of
the checker depends on the number of specific applica-
tions running in the system and the frequency of time-
out detected. When only non-specific applications run
in the system, the overhead created by the checker is
limited.

We use three different workload mixes to evaluate
the system throughput. The first is the standard work-
load. The second workload emphasizes on the disk
usage and the third emphasizes on the memory us-
age. The experimental results are illustrated in Fig-
ure 5. When the number of simulated concurrent users
is larger than five or six, the throughput is degraded
because the users jobs are competing the system re-

sources. From the results in Figure 5, the original

Mach Kernel and modified HiIPEC kernel almost pro-
vide the same throughput under these three different
workload mixes. The overhead created from HiPEC
does not have obvious influence on the system perfor-
mance.

100 . T
Mach3.0 [1] +—
HIPEC [1] —+-
Mach3.0[2] -&--
95 - HIPEC [2] *
Mach3.0 [3] -+
HIPEC [3] +
9 |-
S
- /* *—mk * Mg
E ¥
F 85 /
B /
ER
£ ol
e BOF T g gt g B,
£ ¥ e
£ 5f
g
12}
0l
65 -
Py
2 4 8 14 16 18 20
Simulated Concurrent Users
Figure 5: The Throughput on Mach Kernel and

HiPEC Kernel.

5.3 Performance Evaluation of Join
Operator

Join is one of the most important operations of rela-
tional database management systems. We implement
a MRU page replacement policy in HiPEC for the
nested-loops join operator to show the performance
improvement. The other policy used is a LRU-like
page replacement policy for its popularity in conven-
tional operating systems. The inner table of the join
operator is 4 K bytes and the size of outer table ranges
from 20 Megabytes to 60 Megabytes. Both tables are
composed of 64 bytes tuples. The output table is
dumped immediately in this experiment since we want
to focus on the page replacement behavior of outer
table. In this experiment, the join operator is imple-
mented as sequentially accessing the tuples in the 4
K inner table and doing join operation with every tu-
ple in the outer table. The inner 4 K table is pinned
in memory while the outer table 1s scanned as many
times as the number of tuples in the inner table.

When the size of allocated memory is larger than
the outer table, no page replacement will be needed.
Otherwise, there are page replacement activities for
each scan of outer table. LRU policy chooses the least
recently used page frame as the page to be replaced
that causes the cyclic faults for every outer loop scan.
The number of page faults for LRU is

OutlL Size x Loop

PF =
! PageSize

The OutLSize represents the size of the outer table.
The Loop is the scanning times for the outer table. In
our experiment, Loop equals to 64. PageSize is the
physical page frame size, which is 4096 bytes for our
machine.

MRU chooses the most recently used page frame
to be replaced. The number of page faults for first
scanning the outer table is the page number of outer
table. But in the successive scanning, the number of
page faults is just the page number difference between
the outer loop table and the HIPEC allocated memory.
The total number of page faults for MRU is

(OutLSize — M Size) * (Loop — 1) + OutLSize
PageSize

PF, =

The variable MSize represents the allocated memory
size, which is 40 Mega bytes in this experiment. Ob-
viously, MRU is the right solution to the nested-loop
join operation. The performance gain is

Gain =

(PFy— PFy,) « PFHandleTime

= (LOO’;; 1)5*,MS’Z6 « PFHandleTime
ageSize

Experimental results show that a great response
time gap occurs when data size i1s larger than avail-
able frames, i.e. 40 Megabytes. Figure 6 shows the
experimental results which match the analytic result.

250

T T
LRU-by- H PEC +—
NRU- by- H PEC ~+--

El apse Tinme (min)

I I
20 25 30 35 40 45 50 55 60
Data File Size (Mega Bytes)

0 I I I

|— 30 [40 45 |50 [55 [60]
LRU [23.8 [32.1 [155.8 [173.1 [190.5 | 207.7
MRU | 23.8 [32.1 [67.5 | 84.8 [1023 | 1195

Figure 6: Elapsed Time (in min.) for The Join Oper-
ation.

6 Conclusions and Future Work

In this paper, we considered the virtual memory
caching problem for specific applications. We pre-
sented the design and implementation of the HIPEC
mechanism which provides efficient external page re-
placement management. The HiPEC mechanism does
not require the kernel transfer control to the user ap-
plications when the kernel makes page replacement
decisions to match the specific applications access
patterns. Specific applications use HIPEC command
codes to inform the kernel of their specific page re-
placement policies. The kernel fetches the commands,
decodes them and does the corresponding operations.

The shared centralized frame pool is partitioned
into private frame lists for each specific application.
This separation can avoid interference from other jobs.
HiPEC also implements a security checker to check the
syntax of the HiIPEC command sequence and detect
any policy execution timeout. The security checker
does not incur heavy overhead because it will sleep of-
ten if there 1s no frequent policy execution timeouts
within the system. Several measurements and exper-
iments are also presented to show that the HiPEC
mechanism has little overhead as compared to the orig-
inal integrated kernel services. Specific applications
can achieve the maximum performance if the right
page replacement policies are designed and managed
by using HiPEC.

Though the current version of HiPEC shows suc-
cesses in solving page replacement problem, there are
some jobs that need more considerations in the future.
First, we want to consider the page migration oper-
ations between relevant specific applications. In our
current implementation, specific applications can only
return the page frames to the global frame allocator.
However migrating physical frames between the rele-
vant jobs might be important and necessary. Relevant
jobs can use physical frame migration to share infor-
mation.

Second, we only define 20 HiIPEC commands for
doing application-specific control in our current im-
plementation. They are sufficient in the current us-
age, but not claim they are complete. The new hard-
ware architecture, such as flash RAM, can be man-
aged efficiently if each specific application can control
the device to meet its specific requirement. To man-
age these new hardware architecture, the HiPEC com-
mands should be extended to meet the requirement.
Fortunately, adding new HiPEC commands is easy in
our implementation. Third, the security checker could
do more than the current version in detecting mali-
clous actions or mistakes from the specific applications.
Fourth, the global frame allocation and deallocation
are extremely important to the system performance.
Though the current allocation policy works well, the

allocation policy does not address the problems of ef-
fective resource usage and pays little attention to fair-
ness.

Lastly, we plan to design a database management
system that uses HIPEC to improve the performance
and observe database requirements for future enhance-
ment to HIPEC. This is important because the HIPEC
mechanism is expected and designed for practical spe-
cific applications, not just an experimental product.

Acknowledgments

The authors would like to thank the paper shepherd,
Brian Bershad, OSDI program committee as well as re-
viewers for their valuable comments in improving this

paper.

References

[1] Accetta, M. J., Baron, R. V., Bolosky, W., Golub, D.
B., Rashid, R. F., Tevanain, Jr. A.; and Young, M. W.
Mach: A New Kernel Foundation for UNIX Develop-
ment. In Proceedings of the Summer 1986 USENIX
Conference, July 1986.

[2] Anderson, Thomas E., Bershad, Brian N., Lazowska,
Edward D. and Levy, Henry M. Scheduler Activations:
Effective Kernel Support for the User-Level Manage-
ment of Parallelism. In Proceedings of the 13th ACM
Symposium on Operating System Principles, October

1991.
[3] AIM Technology AIM Benchmark Suite IIT User’s
Guide. 1986.

[4] Black, D. L. Scheduling and Resource Management
Techniques for Multiprocessors. Ph.D. dissertation,
Carnegie Mellon University, July 1990.

[5] Bershad, Brian N., Anderson, Thomas E., Lazowska,
Edward D., and Levy, Henry M. User-Level Inter-
process Communication for Shared Memory Multipro-
cessors. In ACM Transactions on Computer Systems,
9(2):175-198, May 1991.

[6] Bershad, Brian N.; Chambers, C., Eggers, S., Maeda,
C., McNamee, D., Pardyak, P., Savage, S., and Sirer,
Emin Gun SPIN - An Extensible Microkernel for
Application-specific Operating System Services. Tech.
Report, University of Washington, Feburary 1994.

[7] Bolosky, William J., Fitzgerald, Robert P.; Scott,
Michael L. Simple But Effective Techniques for
NUMA Memory Management. In Proceedings of the
12th ACM Symposium On Operating Systems Princi-
ples, December 1989.

[8] Cheriton, David R. The V Distributed System. In
Communications of the ACM, 31(3):314-333, March
1988.

[9] Cheriton, David R., Goosen, Hendrik A. and Boyle,
Patrick D. Pradigm : A Highly Scalable Shared Mem-
ory Multicomputer Architecture. IFEFE Computer,
February 1991.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Cheriton, David R. and Harty, Kieran A Market
Approach to Operating System Memory Allocation.
Tech. Report, Stanford University, CA, March 1992.

Harty, Kieran and Cheriton, David R. Application-
Controlled Physical Memory Using External Page-
Cache Management. In Proceedings of 5th Interna-
tional Conference on Architectural Support for Pro-
grammeng Languages and Operating Systems, October
1992.

Date, C. J. An Introduction To Database Systems.
In Addison-Wesley Systems Programming Series, Vol-
ume 1, Fifth Edition, 1990.

Draves, Richard P. Page Replacement and Reference
Bit Emulation in Mach. In Proceedings of the USENIX
Mach Symposium, Monterey, CA, November 1991.

Draves, Richard P., Bershad, Brian N., Rashid,
Richard F. and Dean, Randall W. Using Continua-
tions to Implement Thread Management and Com-
munication in Operating Systems. In Proceedings of
the 13th ACM Symposium on Operating System Prin-
ciples, October 1991.

Golub, David B. and Draves, Richard P. Moving the
Default Memory Manager out of the Mach Kernel. In
Proceedings of the USENIX Mach Symposium, Mon-
terey, CA, November 1991.

Graefe, Goetz Query Evaluation Techniques for Large
Database. In ACM Computing Surveys, June 1993.

Krueger, Keith and Loftesness, David and Vahdat,
Amin and Anderson, Thomas Tools for the Devel-
opment of Application-Specific Virtual Memory Man-
agement. In Proceedings of the 1993 OOPSLA, 1993.

Khalidi, Youself A. and Nelson, Michael N. A Flexible
External Paging Interface. In Proceedings of USENIX
Association Symposium on Microkernels and Other
Kernel Architectures, 1993.

Lenoski, Dean, et al. The DASH prototype: Imple-
mentation and Performance. In Proceedings of 19th
Symposium on Computer Architecture, May 1992.

McCanne, S., Jacobson, V. The BSD Packet Filter: A
New Architecture for User-Level Packet Capture. In
Proceedings of the Winter 1993 USENIX Conference,
January 1993.

McNamee, Dylan and Armstrong, Katherine Extend-
ing The Mach External Pager Interface To Accommo-
date User-Level Page Replacement Policies. In Pro-
ceedings of the USENIX Association Mach Workshop,
Burlington, Vermont, October 1990.

Mogul, J. C.; Rashid, R. F., and Accetta, M. J. The
Packet Filter: An Efficient Mechanism for User-level
Network Code. In Proceedings of th 11th ACM Sympo-
seum on Operating Systems Principle, November 1987.

McDonald, Jeffrey D. Particle Simulation in a Multi-
processor Environment. In Proceedings of AIAA 26th
Thermophysics Conference, June 1991.

Muller, Keith and Pasquale, Joseph A High Perfor-
mance Multi-Structured File System Design. In Pro-
ceedings of the 13th ACM Symposium on Operating
System Principles, October 1991.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]

Ritchie, D. Stuart and Neufeld, Gerald W. User Level
IPC and Device management in the Raven Kernel.
In Proceedings of USENIX Association Symposium on
Micro Kernels and Other Kernel Architectures, 1993.

Ruemmler, Chris and Wilkes, John An Introduction
to Disk Drive Modeling. In /EFE Computer, March
1994.

Stonebraker, Michael Operating System Support for
Database Management. In Communications of the

ACM, Vol. 24, No. 7, July 1981.

Sechrest, Stuart and Park, Yoonho User-Level Phys-
ical Memory Management for Mach. In Proceedings
of the USENIX Mach Symposium, Monterey, CA,
November 1991.

Sciver, James V. and Rashid, Richard F. Zone
Garbage Collection. In Proceedings of the USENIX
Association Mach Workshop, Burlington, Vermont,
October 1990.

Wang, Hsiao-Hsi., Lu, Pei-Ku, and Chang, Ruei-
Chuan. An Implementation of an External Pager In-
terface on BSD UNIX. To appear in The Journal of
Systems and Software.

Young, M., Tevanian, A.; Rashid, R.; Golub, D.; Ep-
pinger, J., Chew, J., Bolosky, W., Black, D. and
Baron, R. The Duality of Memory and Communica-
tion in the Implementation of a Multiprocessor Oper-
ating System. In Proceedings of the 11th ACM Sympo-
seum on Operating System Principles, November 1987.

Young, Michael W. Exporting a User Interface
to Memory Management from a Communication-
Oriented Operating System. Ph.D. dissertation,

Carnegie Mellon University, November 1989.

Yuhara, Masanobu and Bershad, Brian N. Efficient
Packet Demultiplexing for Multiple Endpoints and
Large Messages. In Proceedings of the Winter 1994
USENIX Conference, January 1994.

