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Abstract

Web applications typically interact with a back-end dassbt re-
trieve persistent data and then present the data to the sishr-a
namically generated output, such as HTML web pages. However
this interaction is commonly done through a low-level APIdyy
namically constructing query strings within a generalgmse pro-
gramming language, such as Java. This low-level intenadtsi@d

hoc because it does not take into account the structure ofiipeit
language. Accordingly, user inputs are treated as isolatadal
entities which, if not properly sanitized, can cause the egflica-

tion to generate unintended output. This is called@amand injec-
tion attack which poses a serious threat to web application security.
This paper presents the first formal definition of commanddanj
tion attacks in the context of web applications, and giveeund
and complete algorithm for preventing them based on cotfitegt
grammars and compiler parsing techniques. Our key obsenviat
that, for an attack to succeed, the input that gets propdgate

the database query or the output document must change the in
tended syntactic structure of the query or document. Ounidgiefn
and algorithm are general and apply to many forms of comman
injection attacks. We validate our approach witQLEHECK, an
implementation for the setting of SQL command injectiomeks.
We evaluated 8LCHECK on real-world web applications with sys-
tematically compiled real-world attack data as inpubLEHECK
produced no false positives or false negatives, incurradrlm-
time overhead, and applied straightforwardly to web ajppilbns
written in different languages.

d

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Software/Program Verification—Reliability, Validatip D.3.1
[Programming Languagés Formal Definitions and Theory—
Syntax; F.4.2[Mathematical Logic and Formal Languade&ram-
mars and Other Rewriting Systems—~Parsing, Grammar Types

General Terms Algorithms, Experimentation, Languages, Relia-
bility, Security, Verification

Keywords command injection attacks, web applications, gram-
mars, parsing, runtime verification

1. Introduction

Web applications are designed to present to any user withba we
browser a system-independent interface to some dynamigaiti-
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erated content. They are ubiquitous. For example, when B use
logs on to his bank account through a web browser, he is using
a web database application. These applications normakyaat
with databases to access persistent data. This interastioom-
monly done within a general-purpose programming langusugeh

as Java, through an application programming interface y/ARth

as JDBC. A typical system architecture for application$is in
Figure 1. It is normally a three-tiered architecture, cstisg of a
web-browser, an application server, and a back-end dataieager.
Within the underlying general-purpose language, such aticap

tion constructs database queries, often dynamically, &aphtthes
these queries over an API to appropriate databases fortexecin
such a way, a web application retrieves and presents ddia tser
based on the user’s input as part of the application’s fonetity;

itis not intended to be simply an interface for arbitraryenaction
with the database.

However, if the user’s input is not handled properly, sesise-
curity problems can occur. This is because queries are rembsd
dynamically in an ad hoc manner through low-level string ipan
ulations. This is ad hoc because databases interpret gtrargss
as structured, meaningful commands, while web applicatidten
view query strings simply as unstructured sequences ofclers.
This semantic gap, combined with improper handling of useut,
makes web applications susceptible to a large class of imasi@t-
tacks known asommand injection attacks

We use one common kind of such attacks to illustrate the prob-
lem, namely theSQL command injection attackSQLCIA). An
SQLCIA injection attack occurs when a malicious user, tgiou
specifically crafted input, causes a web application to geaend
send a query that functions differently than the programimer
tended. For example, if a database contains user names asid pa
words, the application may contain code such as the follgwin

"SELECT * FROM accounts WHERE name=’"
+ request.getParameter ("name")

+ "’ AND password=’"

+ request.getParameter("pass") + "’";

query =

This code generates a query intended to be used to autherdica
user who tries to login to a web site. However, if a maliciogsru
enters badguy” into the name field and *0R’ a’=’a” into the
password field, the query string becomes:

SELECT * FROM accounts WHERE
name=’badguy’ AND password=’’ OR ’a’=’a’

whose condition always evaluates to true, and the user ypiags
the authentication logic.

Command injection vulnerabilities continue to be discedson
large, real-world web applications [37], and the effects ba se-
vere. A recent news article [23] told about a major univgnsibose
student-application login page had a vulnerability mudte lihe
example shown above. Using appropriate input, an attackddc
retrieve personal information about any of the hundredshotit
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user database

Figure 1. A typical system architecture for web applications.

sands of that school’s applicants. The university had tynevery
applicant whose records were in the database about thebpibgsi
that the applicant was now the victim of identity theft. Thanse-
guence was both an expense and a blow to public relationiédor t
university.

The problem goes beyond simply failing to check input that
is incorporated into a query. Even web applications thafoper
some checks on every input may be vulnerable. For example, if
the application forbids the use of the single-quote in inf@tich
may prevent legitimate inputs such @s Brian”), SQLCIAs may
still be possible because numeric literals are not delinitéth
quotes. The problem is that web applications generallyt trgeut
strings as isolated lexical entities. Input strings andstamt strings
are combined to produce structured output (SQL queriesjourt
regard to the structure of the output language (SQL).

A number of approaches to dealing with the SQLCIA problem
have been proposed, but to the best of our knowledge, no forma
definition for SQLCIAs has been given. Consequently, theceff
tiveness of these approaches can only be evaluated based on e
amples, empirical results, and informal arguments. Thigepélls
that gap by formally defining SQLCIAs and presenting a sourd a
complete algorithm to detect SQLCIAs using this definitiame
bined with parsing techniques [1].

This paper makes the following contributions:

o A formal definition of a web application, and in that contehe t
first formal definition of an SQLCIA.

e An algorithm for preventing SQLCIAs, along with proofs of it
soundness and completeness. Both the definition and the algo
rithm apply directly to other settings that generate inteted

<!

— [— // database connection info
= String dbDriver = "com.mysql.jdbc.Driver";
“\u& sees q“a@“ String strConn = "jdbc:mysql://"
v \\\\\igﬂzi + "sportésale.com/sport";
W ‘7EQF\\\\ String dbUser = "manager";
application Seg String dbPassword = "athltpass";

// generate query to send
String sanitizedName

replace(request.getParameter ("name"),"’","’>");
String sanitizedCardType

replace(request.getParameter("cardtype"),
|I7|I’|I7)I|);

String query = "SELECT cardnum FROM accounts"
+ " WHERE uname=’" + sanitizedName + "’"
+ " AND cardtype=" + sanitizedCardType + ";";

try {

// connect to database and send query

java.sql.DriverManager.registerDriver(
(java.sql.Driver)
(Class.forName (dbDriver) .newInstance()));

javaq.sql.Connection conn
java.sql.DriverManager.getConnecion(

strConn, dbUser, dbPassword);

java.sql.Statement stmt
conn.createStatement () ;

java.sql.ResultSet rs
stmt . executeQuery (query) ;

// generate html output

out.println("<html><body><table>");

while(rs.next()) {
out.println("<tr> <td>");
out.println(rs.getString(1));
out.println("</td> </tr>");

}

if (rs != null) {
rs.close();

out.println("</table> </body> </html>");
} catch (Exception e)
{ out.println(e.toString()); }

output (see Section 4). »>
e An implementation, ®LCHECK, which is generated from Figure 2. A JSP page for retrieving credit card numbers.
lexer- and parser-generator input files. ThuBLEHECK can
be modified for different dialects of SQL or different chaazf
security policy (see Section 3.1) with minimal effort. spectively. Section 7 discusses related work, and fina#lgfién 8

An empirical evaluation of 8LCHECK on real-world web ap-
plications written in PHP and JSP. Web applications of diffe
ent languages were used to evaluatet SHECK's applicabil-
ity across different languages. In our evaluation, we ugsd |

co

2.

ncludes.

Overview of Approach

Web applications have injection vulnerabilities becatsy tlo not
constrain syntactically the inputs they use to construttctired
output. Consider, for example, the JSP page in Figure 2. ®he c
text of this page is an online store. The website allows users
store credit card information so that they can retrieve iitffoure
purchases. This page returns a list of a user’s credit cambats
of a selected credit card type.(, Visa). In the code to construct a
query, the quotes are “escaped” with theplace method so that
any single quote characters in the input will be interpreietiteral
characters and not string delimiters. This is intended tzlblat-
tacks by preventing a user from ending the string and addig S
code. Howevercardtype is a numeric column, so if a user passes

of real-world attack- and legitimate-data provided by atein
pendant research group [13], in addition to our own test.data
These lists were systematically compiled and generatad fro
sources such as CERT/CC advisorieQLSHECK produced no
false positives or false negatives. It checked in roughlg per
query, and thus incurred low runtime overhead.

The rest of this paper is organized as follows: Section 2sre
overview of our approach and Section 3 formalizes it withrdefi
tions, algorithms, and correctness proofs. Section 4 dgsiother
settings to which our approach applies. Sections 5 and @&pres
our implementation and an evaluation of the implementatien



command injection attack or is meaningless to the inteeprtiiat
would receive it.

Figure 3 shows the architecture of our runtime checkingesyst
After SQLCHECK s built using the grammar of the output language
\ and a policy specifying permitted syntactic forms, it resi@n the
\ web server and intercepts generated queries. Each inpiig thdbe

propagated into some query, regardless of the input’s spgets
i application augmented with the meta-charactefsand ‘). The application
user database then generates augmented queries, whigh GHECK attempts to
parse. If a query parses successfullgLEHECK sends it sans the
meta-data to the database. Otherwise, the query is blocked.

Grammar

3. Formal Descriptions

&
Policy This section formalizes the notion of a web application,, amthat
context, formally defines an SQLCIA.
Figure 3. System architecture of @ CHECK. 3.1 Problem Formalization
A web application has the following characteristics reteveo
SQLCIAs:

“2 OR 1=1" as the card type, all account numbers in the database e |t takes input strings, which it may modify;
will be returned and displayed.

We approach the problem by addressing its cause: we track
through the program the substrings from user input and cainst
those substrings syntactically. The idea is to block qgeriavhich
the input substrings change the syntactic structure ofabieaf the

e |t generates a string.€., a query) by combining filtered inputs
and constant strings. For example, in FigurgahitizedName
is a filtered input, and'SELECT cardnum FROM accounts"
is a constant string for building dynamic queries;

query. Such queries ammmmand injection attackSQLCIAs, in e The query is generated without respect to the SQL grammar,
the context of database back-ends). We track the user’s mpu even though in practice programmers write web applications
using meta-data, displayed a§ and ),’ to mark the beginning with the intent that the queries be grammatical; and

and end of each input string. This meta-data follows thengtri o The generated query provides no information about the sourc

through assignments, concatenations, etc., so that wheerst s
ready to be sent to the database, it has matching pairs ofensark
identifying the substrings from input. We call this annethtiuery In order to capture the above intuition, we defineeb application
anaugmented query as follows:

We want to forbid input substrings from modifying the syntac | |

tic structure of the rest of the query. To do this we constarct Definition 3.1 (Web Application).  We abstract aveb applica-
augmented gramméor augmented queries based on the standard 4o, p . ($*,...,5*) — ©* as a mapping from user inputs (over

grammar for SQL queries. In the augmented grammar, the @aly p - o, aiphabets) to query strings (oveE). In particular, P is given

of its characters/substrings.

ductions in which (" and ‘)’ occur have the following form: by {(f1,- .., fu)s (51, .., 5m)} where
nonterm ::= ( symbol e fi:X" — X" lisaninputfilter;
wheresymbolis either a terminal or a non-terminal. For an aug- o s ¥ IS aconstant string.
mented query to be in the language of this grammar, the sngstr ~ The argument td® is ann-tuple of input strings(i1, . . ., i»), and
surrounded by(" and ‘)’ must be syntactically confined. By select- P returns aqueryq = g1 + ... + ge Where, forl < j </,
ing only certain symbols to be on thks of such productions, we wheres € { )
can specify the syntactic forms permitted for input subgsiin a =15 S 81, .-, Sm
query!o v Y P P s 4 { f(i) wheref € {fi,....fa} Ai€ {ir,... in}

One reason to allow input to take syntactic forms othertan | That is, eachq, is either a static string or a filtered input.
erals is for stored queries. Some web applications readeguer | |
query fragments in from a file or database. For example, Bagai

widely used bug tracking system, allows the conditionalistes of Definition 3.1 says nothing about control-flow paths or any
queries to be stored in a database for later use. In thisxipateau- other execution model, so it is not tied to any particulargpaon-
tology is not an attack, since the conditional clause sinsgiywes ming paradigm. ) o

to filter out uninteresting bug reports. Persistent stoizae be a In order to motivate our definition of an SQLCIA, we return to
medium for second order attacks [2], so input from them shbel the example JSP code shown in Figure 2. If the user inplafsr”
constrained, but if stored queries are forbidden, apjitinatthat as his user name and perhaps through a dropdown box seledits cr
use them will break. For example, in an application thatvedlo ~ card type 2" (both expected inputs), the generated query will be:
conditional clauses to be stored along with associateddabena- SELECT cardnum FROM accounts WHERE uname=’John’

licious user may storeval = 1; DROP TABLE users” and as- AND cardtype=2

sociate a benign-sounding label so that an unsuspectimgailse
retrieve and execute it.

We use a parser generator to build a parser for the augmente
grammar and attempt to parse each augmented query. If the que
parses successfully, it meets the syntactic constraintssalegit- SELECT cardnum FROM accounts WHERE uname=’John’
imate. Otherwise, it fails the syntactic constraints antieziis a AND cardtype=2 OR 1=1

As stated in Section 2, a malicious user may replace thetcreci
dype in the input with 2 OR 1=1" in order to return all stored
credit card numbers:
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Figure 4. Parse trees fafHERE clauses of generated queries. Substrings from user inpuiraterlined.

constructed byP is an SQL command injection attack (SQLCIA)

Figure 4 shows a parse tree for each query. Note that in Fig- if the following conditions hold:

ure 4a, for each substring from input there exists a node én th
parse tree whose descendant leaves comprise the entitesirpu
string and no mordit for the first substring andum.lit/valuefor

the second, as shown with shading. No such parse tree node ex-
L |

ists for the second input substring in Figure 4b. This didiom is
common to all examples of legitimate vs. malicious querfes t
we have seen. The intuition behind this distinction is thatrmali-
cious user attempts to cause the execution of a query beyend t
constraints intended by the programmer, while the normat us
does not attempt to break any such constraints. We use this di
tinction as our definition of an SQLCIA. The definition reliea
the notion of a parse tree node having an input substring ateit
scendants, and we formalize this notion as#d syntactic form

Definition 3.2 (Valid Syntactic Form). LetG = (V,X, S, P)
be a context-free grammar with non-termindls terminalsy, a
start symbolS, and productionsP. LetU C V U X. Strings in the
sub-languagel. generated by are calledvalid syntactic forms
w.r.t. U. More formally,L is given by:

L=wnzu Y

ueunv

LV, X, u, P))

where £(G) denotes the language generated by the gram6iar
L |

Definition 3.2 allows for a modifiable security policy: The g&
can be assigned such thatincludes only the syntactic forms that
the application programmer wants to allow the user to supidy-
ing a definition for valid syntactic forms, we define SQL conmuia
injection attacks as follows:

I 1
Definition 3.3 (SQL Command Injection Attack). Given a web
application P and an input vectofis, . . ., i), the following SQL
query:

q:P(il,...,in)

e The query string; has a valid parse tre&y;
e There exists such thatl < k < n and fy(ix) is a substring
in ¢ and is not a valid syntactic form i#,.

The first condition, thayy have a valid parse tree, prevents
query strings that would fail to execute from being consider
attacks. The second condition includes a clause speciftfiag
valid syntactic forms are only considered within the cohteithe
query’s parse tree. This is necessary because the sameirsybst
may have multiple syntactic forms when considered in isohat
For example, PROP TABLE employee” could be viewed either as
aDROP statement or as string literal data if not viewed in the cxinte
of a whole query.

Note that these definition do not include all forms of dangsro
or unexpected behavior. Definition 3.1 provides no meand-of a
tering the behavior of the web applicatioa.d, through a buffer
overflow). Definition 3.3 assumes that the portions of thergue
from constant strings represent the programmer’s intestitf a
programmer mistakenly includes in the web application ayjte
drop a needed table, that query would not be considered an SQL
CIA. Additionally, Definition 3.3 constrains the web appiton to
use input only where a valid syntactic form is permitted. BgfD
inition 3.2, a valid syntactic form has a unique root in theiys
parse tree. Consider, for example, the following query taoson:

query = "SELECT * FROM tbl WHERE col " + input;

If the variableinput had the value'> 5", the query would be

syntactically correct. However, if the grammar uses a rutthsas

“e — eop, e”for relational expressions, then the input cannot have

a unique root, and this construction will only generate SQAC
However, we believe these limitations are appropriate is th

setting. By projecting away the possibility of the applioatserver

getting hacked, we can focus on the essence of the SQLCIA prob

lem. Regarding the programmer’s intentions, none of tleedture

we have seen on this topic ever calls into question the cmess

of the constant portions of queries (except Fugue [9], Gatld



selectstmt ::= SELECT selectlist from_clause
| SELECT selectlist from.clause whereclause
selectlist c:= id_list
| %
id_list 2= id
| id, id_list
from_clause ::= FROM tbl_list
tbl_list c:= id_list
whereclause: := WHERE bool.cond
bcond = bcond OR bterm
|  bterm
bterm ::= bterm AND bfactor
|  bfactor
bfactor ::= NOT cond
| cond
cond := value comp value
value c:=id
| strlit
| num
str_lit = it
comp ==l < > =] >= ] I=

Figure 5. Simplified grammar for th6ELECT statement.

al.’s work on static type checking of dynamically generageery
strings [12], and our earlier work on static analysis for vagplica-
tion security [41], which consider this question to someitiét de-
gree). Additionally, programmers generally do not proviokenal
specifications for their code, so taking the code as the Spetidn
directs us to a solution that is fitting for the current preetiFinally,
we have not encountered any examples either in the literatuin
the wild of constructed queries where the input cannot pbsbie
a valid syntactic form.

3.2 Algorithm

Given a web applicatio®® and query string generated by and
input (i1, ...,i,), we need an algorithmi to decide whethey is
an SQLCIA, i.e., A(q) is true iff ¢ is an SQLCIA. The algorithm
A must check whether the substrinfjg:;) in ¢ are valid syntactic
forms, but the web application does not automatically pevin-
formation about the source of a generated query’s substrigce
the internals of the web application are not accessiblectireve
need a means of tracking the input through the web applicatio
the constructed query. For this purpose we msga-characters(’
and j),” which are not inX. We modify the definition of the filters
such that for all filtersf,

o f: Uil — (EU{(D}); and
e for all stringso € X%, f((o))) = (f(o)).

By augmentingthe input to((i1)),. .., (i»)), we can determine
which substrings of the constructed query come from thetinpu

I
Definition 3.4 (Augmented Query). A query ¢* is an aug-
mented queryf it was generated from augmented inpug,, ¢¢ =

P((@1), - - -, (in))-

We now describe an algorithm for checking whether a query

is an SQLCIA. This algorithm is initialized once with the SQL
grammar and a policy stating the valid syntactic forms, wittich
it constructs armugmented grammar

Definition 3.5 (Augmented Grammar). Given a grammar
G = {V,%,S,P} and a setU C V U X specifying the valid

selectstmt ::= SELECT selectlist from_clause
| SELECT selectlist from.clause whereclause
selectlist c:= id_list
| %
id® = id
[ (id)
id_list o= id?
| id®, id_list
from_clause ::= FROM tbl_list
tbl_list c:= id_list
whereclause: := WHERE bcond
bcond ::= bcond OR bterm
| bterm
bterm ::= bterm AND bfactor
| bfactor
bfactor ::= NOT cond
| cond
cond’ ::= cond
I ( cond)
cond ::= value comp value
value ci= qd?
| strlit
| nunf
nunf’ (1= num
[ ( num)
lit® = it
[ lit )
str_lit = |it* 2
comp == | < | > | k=] >= | 1=

Figure 6. Augmented grammar for grammar shown in Figure 5.

New/modified productions are shaded.

syntactic forms, amugmented grammag“ has the property that
an augmented query” = P((i1)), ..., (i»)) is in L(G?) iff:

e The queryg = P(i1,...,in)isin L(G); and

¢ For each substring that separates a pair of matching ‘and

‘)"in ¢, if all meta-characters are removed frosms is a valid
syntactic form ing’s parse tree.

A natural way to construct an augmented gramraer from
G and U is to create a new production rule for eache U
of the formu® — (u) | u, and replace all otherhs occur-
rences ofu with . We give our construction in Algorithm 3.6.

I 1
Algorithm 3.6 (Grammar Augmentation). Given a grammar
G = (V,X,S,R) and a policyU C V U X, we defineG’s
augmented grammar as:

G =(VUu{v'veU}L,ZU{()}, S R
where v® denotes a fresh non-terminal. Givehs = v1...v,
wherev; € V UX, letrhs® = w; ... w, Where
v ifv,eU

o Wi = { v;  otherwise
R“ is given by:

R* = {v—rhs"|v— rhs € R}
U {v*"—>wv|velU} U {v"— @) |veU}




v

value
v
num_lit'
num_lit
v
..." (John) '... 02)...
(@) (b)

Figure 7. Parse tree fragments for an augmented query.

To demonstrate this algorithm, consider the simplified gream
for SQL's SELECT statement in Figure 5. This is the grammar used
to generate the parse trees in Figure 4. If a security polficy o
U = {cond id, num lit} is chosen, the result of Algorithm 3.6

is shown in Figure 6. Suppose the queries shown in Figure 4 ."

were augmented. Using the augmented grammar, the pardertree
the first query would look the same as Figure 4a, except tlat th
subtrees shown in Figures 7a and 7b would be substituted thdo
first and second input strings, respectively. No parse toeé&de
constructed for the second augmented query.

A GLR parser generator [28] can be used to generate a parse

for an augmented grammé&i“.

Algorithm 3.7 (SQLCIA Prevention). Here are steps of our al-
gorithm A to prevent SQLCIAs and invalid queries:

1. Intercept augmented quegy;

2. Attempt to parsg® using the parser generated fro6i";

3. If ¢° fails to parse, raise an error;

4. Otherwise, ifg® parses, strip all occurrences of ‘and ‘)’ out
of ¢“ to produceg and outputy.

3.3 Correctness

We now argue that the algorithms given in Section 3.2 arescbrr
with respect to the definitions given in Section 3.1. Lemmas 3
and 3.9 prove the soundness and completeness respectivdly o
gorithm 3.6 for constructing augmented grammars. Usingehe
lemmas, Theorem 3.10 proves the soundness and completédness
Algorithm 3.7 for preventing SQLCIAs.

Lemma 3.8 (Grammar Construction: Sound). Let G* be the
augmented grammar constructed from gramr@aand setl. For
all (i1,...,in),if P(i1,...,in) € L(G) and P(i1, ..., i) iS nOt
an SQLCIA, then

P((i1), ..., (in)) € L(G")

Proof. Consider an arbitrary query = P(i1,...,i,) for some
(i1,...,in) such thaty € £(G) andgq is not an SQLCIA. Be-
causeq € L(G), there exists a parse trég, for ¢ from G’s

productionsR. For each parse tree nodein T, with children

V1,...,Um, there exists a rule — wv1,...,v,, € R. For each
rulev — vi,...,vm € R, Algorithm 3.6 specifies a rule —
wi,...,wm € R* wherew; = v;* if v; € U andw; = v; oth-

erwise. For each; € U, Algorithm 3.6 specifies a rule;* — v;.

r

Consequently, there exists a parse tigefor ¢ from G*’s pro-
ductionsR“. By assumptiong is not an SQLCIA, which by Def-
initions 3.2 and 3.3 means that for eaeh= f;(i;) used in the
construction ofg, there exists some parse tree nadm 7;, such
thatv € U andv’s leaf-descendants are exactly Find such a
parse tree node for eacho. The construction of ' from 7T, cre-
ates a mapping from the parse tree nodeg,ro the parse tree
nodes irll,;". Using that mapping, find the corresponding node
Ty . By the definition of meta-characters and of augmented gsieri
P((i1), - -, (in)) produces a query identical { except that each
o is replaced with(o]). Algorithm 3.6 specifies that there is a rule
v;* — (v;) for eachv; € U. These rules allow eachidentified
above inT}' to be replaced witlfv). This results in the parse tree
T7., which proves thag® € £(G*). O

Lemma 3.9 (Grammar Construction: Complete). Let G* be the
augmented grammar constructed from gramr@aand setl/. For
all P((i1), -, (in)) = q¢* € L(G?), P(i1,...,in) = q € L(G)
andgq is not an SQLCIA.

Proof. Suppose for contradiction that there exists safe ...,

in) such thatP((i1),..., (in)) = ¢* € L(G?), but P(i1, ...,

in) = q is an SQLCIA. This implies thay® has a parse tree
4o from R® in G“. Becausey is an SQLCIA, there exists some

substring(o) in ¢* whereo is not a valid syntactic formi.e,,

no nodewv in T,. both hass as it descendant leaves and has

v € U.If v ¢ U, then Algorithm 3.6 specifies no rule of the

form v — (v) € R". Consequentlyl;. cannot exist, and this

contradicts our initial assumption. a
Theorem 3.10 (Soundness and Completeness).For all
(i1, ..., in), Algorithm 3.7 will permit query = P(i1,. .., in) iff

q € L(G) andg is not an SQLCIA.

Proof. Step 2 of Algorithm 3.7 attempts to parse the augmented
queryq® = P((i1), ..., (in)). By Lemma 3.8, ifg is an SQLCIA

or if ¢ is not a syntactically correct SQL quegy; will fail to parse.

If ¢ fails to parse, step 3 will prevegtfrom being executed. By
Lemma 3.9, ifg is syntactically correct and is not an SQLCI;

will parse. Step 4 causes the query to be executed. a

3.4 Complexity

Theorem 3.11 (Time Complexity). The worst-case time bound
on Algorithm 3.7 is:

O(lq]) LALR
O(|q|*) if G*is not LALR but is deterministic
O(|q*) non-deterministic

Proof. These time bounds follow from known time-bounds for
classes of grammars [1]. Achieving them for Algorithm 3.7 is
contingent on the parser generator being able to handle czeseh
without using an algorithm for a more expressive class afngnar.

|

4. Applications

Although we have so far focused on examples of SQL command
injections, our definition and algorithm are general andlyapp
other settings that generate structured, meaningful oufom
user-provided input. We discuss three other common forrosiof
mand injections.



4.1 Cross Site Scripting

Web sites that display input data are subject to cross giigtisg
(XSS) attacks. This vulnerability is perhaps more widesgrian
SQLCIAs because the web application need not access a bdck-e
database. As an example of XSS, consider an auction webaite t
allows users to put items up for bid. The site then displaystaf
item numbers where each item number is a link to a URL to bid on
the corresponding item. Suppose that an attacker enteng &sim

to add:

><script>document.location=
*http://www.xss.com/cgi-bin/cookie.cgi?
>%20+document . cookie</script

When a user clicks on the attacker’'s item number, the text in
the URL will be parsed and interpreted as JavaScript. Thiptsc
sends the user’s cookie lxtp://www.xss.com/, the attacker’'s
website. Note that the string provided by the attacker isanlid
syntactic form, since the first character completes a piegéeeg.

4.2 XPath Injection

A web application that uses an XML document/database for its
back-end storage and accesses the data through dynantoaHy
structed XPath expressions may be vulnerable to XPathtiojec
attacks [19]. This is closely related to the problem of SQAEI

but the vulnerability is more severe because:

e XPath allows one to query all items of the database, while an
SQL DBMS may not provide a “table of tables,” for example;
and

e XPath provides no mechanism to restrict access on parteof th
XML document, whereas most SQL DBMSs provide a facility
to make parts of the database inaccessible.

The following piece of ASP code is vulnerable to XPath injarct

XPathExpression expr =
nav.Compile("string(//user [name/text O=""
+TextBox1.Text+"’ and password/text()=’"
+TextBox2.Text+"’]/account/text O");

Entering a tautology as in Figure 4b would allow an attacker t
log in, but given knowledge of the XML document’s node-set, a
attacker could enter:

NoUser’] | P | //user[name/text()=’NoUser

whereP is a node-set. The surrounding predicates would always be

false, so the constructed XPath expression would retursttivey
value of the node-s@t Such attacks can also be prevented with our
technique.

4.3 Shell Injection

Shell injection attacks occur when input is incorporatetb ia
string to be interpreted by the shell. For example, if thmgtvari-
ablefilename is insufficiently sanitized, the PHP code fragment:

exec("open(".$filename.")");

will allow an attacker to be able to execute arbitrary sheline
mands iffilename is not a valid syntactic form in the shell’s
grammar. This vulnerability is not confined to web applicas.
A setuid program with this vulnerability allows a user with re-
stricted privileges to execute arbitrary shell commands@ast.
Checking the string to ensure that each substring from irgpat
valid syntactic form would prevent these attacks.

5. Implementation

We implemented the query checking algorithm asLSHECK.
SQLCHECK is generated using an input file faex and an input

file to bison. For meta-characters, we use two randomly generated
strings of four alphabetic characters: one to represgrarid the
other to represenf)” We made this design decision based on two
considerations: (1) the meta-characters should not bevenioy
input filters, and (2) the probability of a user entering a anet
character should be low.

First, we selected alphabetic characters because somifiinpu
tering functions restrict or remove certain charactersgeaerally
alphabetic characters are permitted. The common excepéom
filters for numeric fields which allow only numeric charastein
this case either the meta-characters can be added aftgirapph
filter, or they can be stripped off leaving only numeric datsich
cannot change the syntactic structure of the generated.qder
added them after the filter, where applicable.

Second, ignoring caseg* = 456, 976 different four-character
strings are possible. To avoid using meaningful words asamet
characters, we forbid meta-characters from being reptedess
strings that occur in the dictionary. The default dictigndior
ispell contains 72,421 words, and if these are forbidden for use
as meta-characters, 384,555 unique strings remain. Iffisuti to
quantify precisely the probability of a user accidentaltyezing a
substring identical to one of the strings used for metaattars be-
cause of several unknown factors. If we assume (1)ab#t of the
words that a user enters occur in the dictionary and the rénmpi
10% are chosen uniformly at random from non-dictionary words,
(2) that the average number of words entered on a web session i
100, and (3) that the word length is 4, the probability of aruse
accidentally entering a meta-character string in one webiee is:

9 (.1x100)
1—(1-——F— . 2
( 267 — 72, 421) 00005

This probability can be further reduced by using longer eirgs

of meta-characters. We expect that the actual probaksligsis than
what is shown above, since the numbers chosen for the cadoula
were intended to be conservative. Also, in settings whepatiis
least expected to occur in a dictionagyd, passwords), sequences
of alphabetic characters are often broken up by numeric ape-“
cial” characters, and the same non-dictionary words areateplly
entered. Section 6.3 addresses the possibility of a usesiggthe
meta-character encodings.

The input toflex requires roughly 70 lines of manually writ-
ten C code to distinguish meta-characters from stringdigercol-
umn/table names, and numeric literals when they are notategh
by the usual token delimiters.

The algorithm allows for a policy to be defined in terms of
which non-terminals in the SQL grammar are permitted to be at
the root of a valid syntactic form. For the evaluation we sield
literals, names, and arithmetic expressions to be validasyic
forms. Additional forms can be added to the policy at the cost
of one line in thebison input file per form, a find-and-replace
on the added symbol, and a token declaration. Additioniltre
DBMS allows SQL constructs not recognized bglSCHECK, they
can be added straightforwardly by updating thgon input file.
Thebison utility includes aglr mode, which can be used if the
augmented grammar is not LALR. For the policy choice useé,her
the augmented grammar is LALR.

6. Evaluation
This section presents our evaluation @L$CHECK.

6.1 Evaluation Setup

To evaluate our implementation, we selected five real-waskth
applications that have been used for previous evaluatiotieilit-
erature [13]. Each of these web applications is provided it m



Subject Description LOC Query | Query | Metachar | External
PHP JSP | Checks | Sites Pairs Query
Added Added Data
Employee Directory|| Online employee directory 2,801 | 3,114 5 16 4 39
Events Event tracking system 2,819 | 3,894 7 20 4 47
Classifieds Online management system for classifieds,540 | 5,819 10 41 4 67
Portal Portal for a club 8,745 | 8,870 13 42 7 149
Bookstore Online bookstore 9,224 | 9,649 18 56 9 121

Table 1. Subject programs used in our empirical evaluation.

Language Subject Queries Timing (Mms)
Legitimate Attacks Mean | Std Dev
(Attempted/allowed) | (Attempted/prevented)

Employee Directory 660 / 660 3937 /3937 3.230 2.080
Events 9007900 3605 73605 2.613 | 0.961

PHP Classifieds 5767576 372473724 2.478 1.049
Portal 108071080 368573685 3.788 | 3.233
Bookstore 6087608 347373473 2.806 1.625
Employee Directory 660 / 660 3937 /3937 3.186 0.652
Events 9007900 3605 73605 3.368 | 0.710

JSP Classifieds 576 /576 372473724 3.134 0.548
Portal 108071080 368573685 3.063 | 0.441
Bookstore 6087608 347373473 2.897 0.257

Table 2. Precision and timing results forgg CHECK.

tiple web-programming languages, so we used the PHP and JSHirst compiling one list of attack inputs, which were glearieam

version of each to evaluate the applicability of our implaiae CERT/CC advisories and other sources that list vulnetasiand
tion across different languages. Although the notion ofplaga- exploits, and one list of legitimate inputs. The data typeath
bility across languages” is somewhat qualitative, it imgigant: input was also recorded. Then each parameter in each URL was

the more language-specific an approach is, the less it istable annotated with its type. Two lists of URLs were then genehate
address the broad problem of SQLCIAs (and command injextion one ATTACK list and one IEGIT list, by substituting inputs from
in general). For example, an approach that involves using@i-m the respective lists into the URLs in a type consistent wachE

fied interpreter [32, 31] is not easily applicable to a largpitike URL in the ATTACK list had at least one parameter from the list of

Java {.e., JSP and servlets) because Sun is unlikely to modify its attack inputs, while each URL in theglcIT list had only legitimate

Java interpreter for the sake of web applications. To theddesur parameters. Finally, the URLs were tested on unprotectesiores

knowledge, this is the first evaluation in the literature ammweb of the web applications to ensure that theTAck URLSs did, in

applications written in different languages. fact, execute attacks and the&iT URLs resulted in normal, ex-
Table 1 lists the subjects, giving for each subject its name, pected behavior.

brief description of its function, the number of lines of eoth The machine used to perform the evaluation runs Linux kernel

the PHP and JSP versions, the number of pairs of meta-chesact 2.4.27 and has a 2 GHz Pentium M processor and 1 GB of memory.
added, the number of input sites, the number of callsgpGHECK
added, and the number of points at which complete queries are6.2 Results

generated. The number of pairs of meta-characters addetésg|s  Table 2 shows, for each web application, the number of atatk

than the number of input sites because in these applicatioost tempted (using URLs from the Track list) and prevented, the
input parameters were passed through a particular functiod number of legitimate uses attempted and allowed, and thexmea
by adding a single pair of meta-characters in this functioany and standard deviation of times across all runs @f SHECK for
inputs did not need to be instrumented individually. Forrailsir that application. 8LCHECK successfully prevented all attacks and

reason, the number of added calls tQLEHECK is less than the  allowed all legitimate uses. Theorem 3.10 predicted thisttese
number of points at which completed queries are generated: | results provide some assurance that SHECK was implemented
order to make switching DBMSs easy, a wrapper function was without significant oversight. Additionally, the timingselts show
added around the databas@BLECT query function. Adding a  that SoLCHECK is quite efficient. Round trip time over the Inter-
call to SQLCHECK within that wrapper ensures that @ELECT net varies widely, but 80-100ms is typical. Consequently|.-S
queries will be checked. Calling CHECK from the JSP versions  CHeck’s overhead is imperceptible to the user, and is also reason-
requires a Java Native Interface (JNI) wrapper. We repoth bo  aple for servers with heavier traffic.
figures to indicate approximately the numbers of checksrtaat In addition to the figures shown in Table 2, our experiencegisi
to be added for web applications of this size that are lesnife  SqLCHECK provides experimental results. Even in the absence of
designed. For this evaluation, we added the meta-chaszaterthe an automated tool for inserting meta-characters and ot -
calls to LCHECK manually; in the future, we plan to automate  CHeck, this technique could be applied straightforwardly. Most
this task using a static flow analysis. existing techniques for preventing SQLCIAs either cannaken

In addition to real-world web applications, the evaluation syntactic guarantee®.g, regular expression filters) or require a
needed real-world inputs. To this end we used a set of URLS tool with knowledge of the source language. For examplepa-ty
provided by Halfond and Orso. These URLs were generated by system based approach requires typing rules in some foremfdr



construct in the source language. As another example, aitpeh
that generates automata for use in dynamic checking rexjaire
string analyzer designed for the source language. Forghagse

of the string analyzer would require an appropriate autom#r
each query site to be generated manually, which most weld-appl
cation programmers cannot/will not do. In contrast, a paogner
without a tool designed for the source language of his chcice
still use YLCHECK to prevent SQLCIASs.

6.3 Discussions

We now discuss some of our design decisions and limitatibtigeo
current implementation.

First, we used a single polidy for all test cases. In practice we
expect that a simple policy will suffice for most uses. In gahea
unique policy can be defined for each pair of input site (byosimy
a different pair of strings to serve as delimiters) and qusiey (by
generating an augmented grammar according to the desitiegt po
for each pair of delimiters). However, everiifwere always chosen
to beV U X, SQLCHECK would restrict the user input to syntactic

tle assumptions do not hold, as in the case of the second arder
tacks [2]. In the absence of a principled analysis to cheelsah
methods, security cannot be guaranteed.

7.2 Syntactic Structure Enforcement

Other techniques deal with input validation by enforcingtthll
input will take the syntactic position of literals. Bind vaoles and
parameters in stored procedures can be used as placehfdders
literals within queries, so that whatever they hold will beated
as literals and not as arbitrary code. SQLrand, a recentiyqeed
instruction set randomization for SQL in web applicatiohas a
similar effect [4]. It relies on a proxy to translate instiioas dy-
namically, so SQL keywords entered as input will not reaah th
SQL server as keywords. The main disadvantages of suchensyst
are its complex setup and security of the randomization Key-
fond and Orso address SQL injection attacks through firdtlimgj
a model of legal queries and then ensuring that generateteque
conform to this model via runtime monitoring [13], follovgna
similar approach to Wagner and Dean’s work on Intrusion Bete

forms in the SQL language. In the case where user input is usedtion Via Static Analysis [8]. The precision of this technijis sub-

in a comparison expression, the best an attacker can hopeiso d
to change the number of tuples returned; no statements thdifym
the database, execute external code, or return columns thidne
those in the column list will be allowed.

ject to both the precision of the statically constructed etaahd the
tokenizing technique used. Because how their model is gezasr
user inputs are confined to statically defined syntactictiposi.
These techniques for enforcing syntactic structure do rtenel

Second, because the check is based on parsing, it would be posto applications that accept or retrieve queries or quaagrents,

sible to integrate it into the DBMSs own parser. From a saféwa
engineering standpoint, this does not seem to be a goodatecis
Web applications are often ported to different environra@mtd in-
terface with different backend DBMS's, so the security guéees
could be lost without the programmer realizing it.

Finally, the test cases used for the evaluation were gestklst
an independant research group from real-world exploitsvéver,
they were not written by attackers attempting to defeat &g
ular security mechanism we used. In its current implemantat
our technique is vulnerable to an exhaustive search of taeach
ter strings used as delimiters. This vulnerability can lmeaeed by
modifying the augmenting step: in addition to adding detiars,
it must check for the presence of the delimiters within theuin
string. If the delimiters occur, it must “escape” them bypeed-
ing them with some designated characteyL SHECK must also be
modified so that first, its lexer will not interpret escapedtirdigers
as delimiters, and second, it will remove the escaping charaf-
ter parsing.

7. Related Work
7.1

Improper input validation accounts for most security peoi in
database and web applications. Many suggested techniguis f
put validation are signature-based, including enumegatimown
“bad” strings necessary for injection attacks, limiting fength of
input strings, or more generally, using regular expression fil-
tering. An alternative is to alter inputs, perhaps by addilaghes
in front of quotes to prevent the quotes that surround lisefram
being closed within the inpug(g, with PHP’saddslashes func-
tion and PHP'snagic_quotes setting, for example). Recent re-
search efforts provide ways of systematically specifying an-
forcing constraints on user inputs [5, 35, 36]. A number aheo
mercial products, such as Sanctum’s AppShield [34] and Ha'sa
InterDo [17], offer similar strategies. All of these techues are
an improvement over unregulated input, but they all havekwea
nesses. None of them can say anything about the syntaatiz str
ture of the generated queries, and all may still admit badtjrfpr
example, regular expression filters may be under-resteiciore
significantly, escaping quotes can also be circumventeawshb-

Input Filtering Techniques

such as those that retrieve stored queries from persistersge
(e.qg, afile or a database).

7.3 Static and Runtime Checking

Many real-world web applications have vulnerabilitiegthough
measures such as those mentioned above are used. Vulitiesbil
exist because of insufficiency of the technique, impropeges
incomplete usage, or some combination of these. Therdjtaek-
box testing tools have been built for web database appbicsti
One from the research community is called WAVES (Web Appli-
cation Vulnerability and Error Scanner) [14]. Several coenciel
products also exist, such as AppScan [33], Weblnspect [88],
ScanDo [17]. While testing can be useful in practice for fivgdiul-
nerabilities, it cannot be used to make security guaranfeess,
several techniques based on static analysis or runtimekicizec
have been proposed, most of which are based on the notion of
“taintedness,” similar to Perl’s “tainted mode” [40]. Inntaular,
there are two recent techniques using static analysis t& tiee
flow of untrusted input through a program: one based on a type
system [15] (similar to CQual [10]) and one based on a points-
to analysis [24] (using a precise points-to analysis foraJ@a]
and policies specified in PQL [22, 26]). Both systems trugrus
filters, so they do not provide strong security guaranteerdlis
also recent work on runtime taint tracking [31, 32]. Pietedet al.
suggest the use of meta-data for tracking the flow of inpuitttn
filters [32]. The closest work to ours is by Buehsdral. [6]. They
bound user input, and at the point where queries are segtrehe
place input by dummy literals and compare the parse treeseof t
original query and the substituted query. In this case, erleould
suffice for the check, since input substrings must be lisci&le do
not address the question of completeness of usagélfat all input
and query sites in the application source code are augmentbd
checked, respectively). However, a web application prognar
using YLCHECK need not make the false-positive/false-negative
tradeoffs that come with less rigorous approaches. Consigua
guarantee of completeness of usage fLSHECK implies that
SQLCIAs will not occur.

This work also relates to some recent work on security aiglys
for Java applications. Naumovich and Centonze proposetia sta
analysis technique to validate role-based access contiaigs



in J2EE applications [30]. They use a points-to analysisetierd

mine which object fields are accessed by which EJB methods to

discover potential inconsistencies with the policy thayread to
security holes. Koveét al. study the complementary problem of
statically determining the access rights required for @mm or a
component to run on a client machine [21] using a dataflowyanal
sis [16, 18].

7.4 Meta-Programming

To be put in a broader context, our research can be viewed as an

instance of providing runtime safety guarantee for metaam-
ming [39]. Macros are a very old and established meta-progra
ming technique; this was perhaps the first setting wheresthgei

of correctness of generated code arose. Powerful macrodaeg
comprise a complete programming facility, which enable mmac
programmers to create complex meta-programs that con&rofon
expansion and generate code in the target language. Hesie, ba
syntactic correctness, let alone semantic propertieheofyener-
ated code cannot be taken for granted, and only limiteccsthéck-

ing of such meta-programs is available. The levels of staterk-
ing available include none, syntactic, hygienic, and tyjpecking.
The widely usedpp macro pre-processor allows programmers to
manipulate and generate arbitrary textual strings, anwiiges no
checking. The programmable syntax macros of Weise & Crel [42
work at the level of correct abstract-syntax tree (AST) finagts,
and guarantee that generated code is syntactically caxititre-
spect (specifically) to the C language. Weise & Crew macres ar
validated via standard type checking: static type checlungran-
tees that AST fragments (e.g., Expressions, Statemet$,aee
used appropriately in macro meta-programs. Because matros
sert program fragments into new locations, they risk “capty
variable names unexpectedly. Preventing variable cajgwralled
hygiene. Hygienic macro expansion algorithms, beginnirnth w
Kohlbeckeret al. [20] provide hygiene guarantees. Recent work,

such as that of Taha & Sheard [39], focuses on designing type

checking of object-programs into functional meta-prograny
languages. There are also a number of proposals to provde ty
safe APIs for dynamic SQL, including, for example Safe Query
Objects [7], SQL DOM [27], and Xen [3, 29]. These proposalg-su
gest better programming models, but require programmeesata

a new API. In contrast, our approach does not introduce a riely A
and it is suited to address the problems in the enormous nuofibe
programs that use existing database APIs. There are alsarobs
efforts on type-checking polylingual systems [11, 25], they do
not deal with applications interfacing with databases saskeb
applications.

8. Conclusions and Future Work

In this paper, we have presented the first formal definitiocofi-
mand injection attacks in web applications. Based on thiside
tion, we have developed a sound and complete runtime chgckin
algorithm for preventing command injection attacks ancdpoed
a working implementation of the algorithm. The implemeiatat
proved effective under testing; it identified SQLCIAs pesty and
incurred low runtime overhead. Our definition and algoritare
general and apply directly to other settings that producgtired,
interpreted output.

Here are a few interesting directions for future work:

e First, we plan to experiment with other ways to evaluata. S
CHECK. A natural choice will be to use @ CHECK in some
online web applications to expos@BSCHECK to the real world.

By logging the blocked and permitted queries, we hope to val-

idate that it does not disrupt normal use and does not allew at
tacks. A more novel approach to evaluatingLEHECK will

be to generate queries with “place-holder” user inputs.nThe
using a modified top-down parser, we will generate random in-
puts that, when put in place of the place-holder inputs, form
syntactically correct queries. By feeding these randoralyeg-
ated inputs to the web application, we will tespISCHECK on
randomly generated yet meaningful queries.

Second, we plan to explore static analysis techniques o hel
insert meta-characters and calls tQLEHECK automatically.
The challenge will be to insert the meta-characters such tha
no constant strings are captured and the control-flow of the
application will not be altered.

e Third, we plan to adapt our technique to other settings, for
example, to prevent cross-site scripting and XPath irgecti
attacks.
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