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Abstract
Attackers exploit software vulnerabilities to control or crash
programs. Bouncer uses existing software instrumentation
techniques to detect attacks and it generates filters auto-
matically to block exploits of the target vulnerabilities. The
filters are deployed automatically by instrumenting system
calls to drop exploit messages. These filters introduce low
overhead and they allow programs to keep running correctly
under attack. Previous work computes filters using symbolic
execution along the path taken by a sample exploit, but at-
tackers can bypass these filters by generating exploits that
follow a different execution path. Bouncer introduces three
techniques to generalize filters so that they are harder to
bypass: a new form of program slicing that uses a combina-
tion of static and dynamic analysis to remove unnecessary
conditions from the filter; symbolic summaries for common
library functions that characterize their behavior succinctly
as a set of conditions on the input; and generation of alterna-
tive exploits guided by symbolic execution. Bouncer filters
have low overhead, they do not have false positives by de-
sign, and our results show that Bouncer can generate filters
that block all exploits of some real-world vulnerabilities.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.5
[Operating Systems]: Reliability; D.4.8 [Operating Sys-

tems]: Performance

General Terms
Security, Reliability, Availability, Performance, Algorithms,
Design, Measurement
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1. INTRODUCTION
Attackers exploit software vulnerabilities to crash pro-

grams or to gain control over their execution. This is a
serious problem because there are many vulnerabilities and
attacks are frequent. We describe Bouncer, a system that
prevents attacks by dropping exploit messages before they
are processed by a vulnerable program. Bouncer introduces
low overhead and it allows programs to keep running cor-
rectly even when under attack.

Several techniques detect (potentially unknown) attacks
by adding checks to programs: safe languages include checks
to ensure type safety and they throw exceptions when the
checks fail (e.g., Java and C#), and checks can be added
transparently to programs written in unsafe languages (e.g.,
[4, 12, 13, 16, 17, 28, 40]). The problem is that these tech-
niques detect attacks too late when the only way to recover
may be to restart the program. For example, CRED [40]
adds bounds checks to prevent buffer overflows in C pro-
grams. These prevent the attacker from gaining control over
the execution, but how do we recover when an attack causes
a bounds check to fail? In the absence of additional mech-
anism, restarting the program is the only option because
the program does not include any code to recover from the
failure. This problem is not exclusive to unsafe languages.
Even though out-of-bounds exceptions are part of type safe
languages, programs frequently lack correct code to handle
run time exceptions [48]. Therefore, these techniques are
not sufficient. They leave services vulnerable to loss of data
and denial of service.

Bouncer improves the reliability and availability of pro-
grams under attack. It uses previous techniques to detect
attempts to exploit a vulnerability and it generates filters
automatically to match messages that can exploit the vul-
nerability. The filters are deployed automatically by instru-
menting system calls to run the filter on incoming messages
and to drop exploit messages before they are delivered to
the vulnerable program. We designed the system to ensure
that these filters have low overhead and no false positives,
that is, they only drop messages that can exploit the vulner-
ability. Since most programs can cope with message losses
and filters have no false positives, Bouncer allows programs
to keep working correctly and efficiently even when they are
attacked repeatedly.

Bouncer builds on Vigilante’s [16] technique to generate
filters automatically. It computes an initial set of filter con-
ditions using symbolic execution along the path followed by



the program when processing a sample exploit. It assigns
symbolic values b0, b1, b2, b3... to the bytes in the exploit
messages, and keeps track of symbolic state for the processor
and memory. For example, if input points to a buffer with
the exploit bytes, register eax has symbolic value b0 + 1 af-
ter executing movzx eax, input; add eax, 1. Whenever
a conditional branch is executed, we add a condition to the
filter to ensure that inputs that satisfy the filter conditions
follow the same execution path. Continuing with the pre-
vious example, if cmp eax, 2; jg target is executed and
the branch is taken, we add the condition b0 + 1 > 2 to
the filter. This technique guarantees no false positives: any
input that satisfies the filter conditions can make the pro-
gram follow the same execution path as the sample exploit.
These filters block many variants of the sample exploit, but
attackers can bypass them by generating exploits that follow
a different execution path.

Bouncer introduces three practical techniques to general-
ize the initial filter to block additional exploits of the same
vulnerability:

• Precondition slicing is a new form of program slic-
ing [49] that uses a combination of static and dynamic
analysis to remove unnecessary filter conditions.

• Symbolic summaries generalize the conditions captured
by the symbolic execution inside common library func-
tions. They replace these conditions by a succinct set
of conditions that characterize the behavior of these
functions for a broader set of inputs. These summaries
are generated automatically from a template that is
written once for each library function.

• Generation of alternative exploits guided by symbolic
execution. Bouncer uses the initial exploit message
and the conditions obtained from symbolic execution
to derive new input messages that are likely to exploit
the same vulnerability. It uses existing techniques to
check if the new input messages are valid exploits, and
it computes a new set of filter conditions for each new
exploit. The final filter is a combination of the filters
obtained for each exploit.

We implemented Bouncer and evaluated it using four vul-
nerabilities in four real programs: Microsoft SQL server,
ghttpd, nullhttpd, and stunnel. The results show that
Bouncer significantly improves the coverage of Vigilante fil-
ters, and that filters introduce low overhead.

Computing a filter that blocks exactly the set of mes-
sages that can exploit a vulnerability is similar to computing
weakest preconditions [15, 20], which is hard for programs
with loops or recursion [50]. Since we guarantee zero false
positives, we do not guarantee zero false negatives, that is,
Bouncer filters may fail to block some exploits of the tar-
get vulnerability. But our initial results are promising: a
detailed analysis of the vulnerable code shows that Bouncer
can generate filters with no false negatives for the vulnera-
bilities in SQL server and stunnel.

The rest of the paper is organized as follows. Section 2
provides an overview of Bouncer. Section 3 describes how
Bouncer computes an initial set of filter conditions using
symbolic execution. Section 4 describes filter refinement
with improved detector accuracy. Section 5 presents pre-
condition slicing. Section 6 describes symbolic summaries.
Section 7 describes the procedure to search for alternative
attacks. Section 8 presents the results of our evaluation.
Section 9 discusses related work and Section 10 concludes.

ProcessMessage(char* msg) {
char buffer[1024];
char p0 = ’A’;
char p1 = 0;

if (msg[0] > 0)
p0 = msg[0];

if (msg[1] > 0)
p1 = msg[1];

if (msg[2] == 0x1) {
sprintf(buffer, "\\servers\\%s\\%c", msg+3, p0);
StartServer(buffer, p1);

} }

Figure 1: Example vulnerable code: sprintf can

overflow buffer.

2. OVERVIEW AND BACKGROUND
Vulnerabilities in the context of this paper are program

errors that an attacker can exploit to make the vulnerable
program deviate from its specification. An attacker exploits
a vulnerability by crafting input that causes the program to
behave incorrectly. We call such an input an exploit.

Figure 1 shows a vulnerable code fragment that we will
use as an example throughout the paper. This is in C for
clarity but Bouncer works with binary code. The function
ProcessMessage is called immediately after the message msg
is received from the network. This function has a vulnerabil-
ity: exploit messages can cause it to overflow buffer in the
call to sprintf. The attacker can exploit this vulnerability
to overwrite the return address on the stack, which can cause
the program to crash or execute arbitrary code. There are
usually many exploits for a vulnerability, for example, any
message with the third byte equal to 0x1 followed by at least
1013 non-zero bytes is a valid exploit for this vulnerability.

Bouncer protects programs by generating filters that drop
exploits before they are processed. Figure 2 provides an
overview of Bouncer’s filter generation architecture.

Filter generation starts with a sample exploit that identi-
fies a vulnerability. We obtain a sample exploit by running
a version of the vulnerable program instrumented to log in-
puts and to detect attacks. When an attack is detected, the
exploit messages are retrieved from the log [16] and sent to
Bouncer. The current prototype uses DFI [12] to detect at-
tacks on C and C++ programs but it would be possible to
use other detectors (e.g., [28, 4, 17, 40, 37, 16, 13]) or to
apply our techniques to programs written in safe languages.

DFI detects memory safety violations, for example, format
string vulnerabilities, buffer overflows, accesses through dan-
gling pointers, reads of uninitialized data, and double frees.
For each value read by an instruction in the program text,
DFI uses static analysis to compute the set of instructions
that may write the value. At runtime, it maintains a table
with the identifier of the last instruction to write to each
memory location. The program is instrumented to update
this table before writes, and reads are instrumented to check
if the identifier of the instruction that wrote the value being
read is an element of the set computed by the static analysis.
If it is not, DFI raises an exception. DFI has low overhead
because most instrumentation can be optimized away with
static analysis, and it has no false positives: it only raises
exceptions when memory safety is violated.

For our example, we will use a sample exploit message that



Figure 2: Bouncer architecture.

starts with three bytes equal to 0x1 followed by 1500 non-
zero bytes and byte zero. Processing this message causes
DFI to throw an exception when p1 is accessed to set up the
call stack for StartServer because p1 has been overwritten.

The messages in the sample exploit are sent to a version of
the vulnerable program that is instrumented both to detect
attacks and to generate an execution trace (see Figure 2).
The current prototype uses DFI to detect attacks and Nir-
vana [8] to generate an execution trace. If the sample exploit
is valid, the execution trace is sent to the module that runs
the precondition slicing algorithm. This trace contains the
sequence of x86 instructions executed from the moment the
first message is received to the point where the attack is de-
tected. We call the instruction where the attack is detected
the vulnerability point. In our example, the trace contains
the instructions up to the call to sprintf, the instructions
inside sprintf, and the remaining instructions up to the
vulnerability point, which is the push of p1 onto the stack.

The module that runs the precondition slicing algorithm
(see Figure 2) uses the same technique as Vigilante [16] to
generate an initial set of conditions for the filter. This tech-
nique replaces the concrete value of each byte in the sample
exploit by a symbolic value bi and performs forward sym-
bolic execution along the trace of x86 instructions. It adds
a condition to the filter for each branch that depends on the
input. The initial set of conditions for our example is:

b0 > 0 ∧ b1 > 0 ∧ b2 = 1 ∧ b1503 = 0 ∧ ∀2<i<1503bi 6= 0
The vulnerable program is guaranteed to follow the execu-
tion path in the trace when processing any message that
satisfies the initial filter conditions. Therefore, this filter
can be used to drop exploit messages without introducing
false positives. However, the attacker can craft exploits that
are not dropped by this filter because there are some condi-
tions that are not necessary to exploit the vulnerability. For
example, the conditions on b0 and b1 are not necessary and
exploits with both shorter and longer sequences of non-zero
bytes starting at index three can exploit the vulnerability.

Bouncer replaces the conditions generated for some library
functions, like sprintf in our example, by symbolic sum-

maries that contain exactly the conditions on the function
arguments that cause it to violate memory safety. These
summaries are generated automatically from a template that
is written once per library function. In our example, Bouncer
performs static analysis and determines that buffer has size
1024 bytes, and that any sequence with at least 1013 non-
zero bytes pointed to by msg+3 will lead to a memory safety
violation independent of the value of p0. Therefore, the filter
conditions after this step are:

b0 > 0 ∧ b1 > 0 ∧ b2 = 1 ∧ ∀2<i<1016bi 6= 0
After adding symbolic summaries, precondition slicing uses

a combination of static and dynamic analysis to remove un-
necessary conditions from the filter. In our example, it is
able to remove the conditions on bytes b0 and b1 producing
the optimal filter:

b2 = 1 ∧ ∀2<i<1016bi 6= 0
In general, the filters produced after the first iteration are

not optimal. Bouncer generalizes these filters by repeating
the process with alternative exploits of the same vulnera-
bility that cause the program to follow different execution
paths. The filter conditions are sent to the module that
generates alternative exploits. This module uses the sample
exploit and the conditions to generate new input messages
that are likely to exploit the same vulnerability. Then, it
sends these messages to the instrumented vulnerable pro-
gram to check if they are valid exploits. If they are, the
process is repeated with the new exploit messages. Other-
wise, the module generates new input.

The set of filter conditions obtained with each exploit is
combined into an efficient final filter by one of Bouncer’s
modules (see Figure 2).

Bouncer filters can be deployed automatically a few tens
of seconds after a new vulnerability is identified and they
can be updated as our analysis generalizes the filters. We
can also run the filters with vulnerable programs that are
instrumented to detect attacks with DFI and to log inputs.
This scenario allows Bouncer to refine the filter when an
attack that bypasses the filter is detected by DFI. We expect
Bouncer to improve availability and reliability significantly
until the software vendor issues a patch for the vulnerability,
which can take many days.

3. SYMBOLIC EXECUTION
Bouncer computes the initial set of filter conditions by

performing forward symbolic execution along the trace ob-
tained by processing a sample exploit. Any input that sat-
isfies these conditions can make the program follow the exe-
cution path in the trace until the vulnerability is exploited.

The trace is generated by Nirvana [8] and it contains the
sequence of x86 instructions executed by each thread and
the concrete values of source and destination operands for
each instruction.

The symbolic execution starts by replacing the concrete
values of the bytes in the sample exploit by symbolic val-
ues: the byte at index i gets symbolic value bi. Then, it
executes the instructions in the trace keeping track of the
symbolic value of storage locations that are data dependent



on the input. The symbolic values are expressions whose
value depends on some of the bi. They are represented as
trees whose interior nodes are x86 instruction opcodes and
whose leaves are constants or one of the bi. We chose this
representation because it is trivial to convert into executable
code and it avoids the problem of modeling x86 instructions
using another language.

The symbolic execution defines a total order on the in-
structions in the trace that is a legal uniprocessor schedule.
The instructions are processed one at a time in this total
order. If the next instruction to be processed has at least
one source operand that references a storage location with
a symbolic value, the instruction is executed symbolically.
Otherwise, any storage locations modified by the instruction
are marked as concrete, that is, we delete any symbolic value
these locations may have had because they are no longer
data dependent on the input. For example, consider the
trace in Figure 3 that corresponds to the test in the first if
in Figure 1. Since the source operand of the first instruction
is concrete, the value in register eax is marked concrete. The
source operand of the second instruction references the first
byte in the msg array that has symbolic value b0. Therefore,
eax gets symbolic value (movsx b0) after the instruction is
executed. Since the value of register eax is now symbolic,
the flags register (eflags) has symbolic value (cmp (movsx
b0) 0) after the cmp instruction.

mov eax,dword ptr [msg]
movsx eax,byte ptr [eax]
cmp eax,0
jg ProcessMessage+25h (401045h)

Figure 3: Assembly code for the first if in the ex-

ample from Figure 1.

Whenever the symbolic execution encounters a branch
that depends on the input, it adds a condition to the filter
to ensure that inputs that satisfy the filter conditions can
follow the execution path in the trace. A branch depends on
the input if the value of eflags is symbolic. Conditions are
represented as a tree of the form: (Jcc f), where f is the
symbolic value of eflags. If the branch is taken in the trace,
Jcc is the opcode of the branch instruction. Otherwise, Jcc
is the opcode of the branch instruction that tests the nega-
tion of the condition tested in the trace. For example when
the last instruction in Figure 3 is executed, symbolic execu-
tion generates the condition (jg (cmp (movsx b0) 0)). If the
branch had not been taken in the trace, the condition would
be (jle (cmp (movsx b0) 0)). No conditions are added for
branches that do not depend on the input.

Symbolic execution also generates conditions when an in-
direct call or jump is executed and the value of the target
operand is symbolic. The condition in this case asserts that
ts = tc where ts is the symbolic value of the target and tc

is the concrete value of the target retrieved from the trace.
We represent the condition as (je (cmp ts tc)).

Similar conditions are generated when a load or store is ex-
ecuted and the address operand has a symbolic value. These
conditions assert that as = ac where as is the symbolic value
of the address operand and ac is its concrete value retrieved
from the trace. We represent the condition as (je (cmp
as ac)). EXE [11] describes a technique to generate weaker
conditions in this case. We could use this technique to ob-
tain a more general initial filter but our current prototype

only applies EXE’s technique to common library functions
like strtok and sscanf.

The initial filter is a conjunction of these conditions. Any
input that satisfies the filter conditions can make the pro-
gram follow the execution path in the trace until the vul-
nerability is exploited. We say can because the program
may only follow the same execution path if the input is
processed in the same setting as the sample exploit, that
is, if the input is received in the same state where the trace
started and the runtime environment makes the same non-
deterministic choices it made during the trace (for example,
the same scheduling decisions). Since this state is reachable
and clients do not control the non-deterministic choices, the
filter has no false positives.

Additionally, the symbolic or concrete values of instruc-
tion operands are equivalent across the traces obtained when
processing any of the inputs that satisfy the conditions in
the initial filter (in the same setting as the sample exploit).
Equivalent means identical modulo different locations for the
same logical objects, for example, the bases of stacks can dif-
fer and locations of objects on the heap can be different but
the heaps will be isomorphic.

4. IMPROVING DETECTOR ACCURACY
Detector inaccuracy can lead to filters with unnecessary

conditions because it increases the length of the traces used
during symbolic execution. Many techniques to detect at-
tacks are inaccurate (e.g., [28, 4, 17, 37, 16, 13, 12]): they
detect an attack only when some instruction observes the ef-
fect of the exploit rather than identifying the vulnerability.
For example, DFI detects a memory safety violation only
when it reads data produced by an unsafe write. This write
may occur much earlier in the execution.

We analyze the trace to improve DFI’s accuracy. When
DFI detects a memory safety violation, we traverse the trace
backwards to find the unsafe write. We make this write
instruction the vulnerability point and any conditions added
by instructions that appear later in the trace are removed
from the initial filter.

This analysis may be insufficient to identify the vulner-
ability for attacks that corrupt internal data structures in
libraries. For example, a class of attacks corrupts the heap
management data structures in the C runtime libraries to
write anywhere in memory. Since DFI does not check reads
inside libraries, it detects the attack only when an instruc-
tion reads data produced by this write. We implemented an
analysis to find the instruction that first corrupts the heap
management data structures. We first traverse the trace
backwards to find the unsafe write (as described above). If
this write was executed by one of the heap management
functions (e.g., malloc), we traverse the trace forward from
the beginning to find the first read inside malloc, calloc or
free of a value written by an instruction outside these func-
tions. We make the instruction that wrote this value the
vulnerability point, and remove any conditions added by
later instructions. Our current implementation only deals
with heap management data structures but the same idea
could be applied to other library functions.

5. PRECONDITION SLICING
The initial filter generated by symbolic execution blocks

many exploit variants, but it can be bypassed by attacks that



exploit the vulnerability through a different execution path.
This section provides an overview of slicing techniques and
describes the precondition slicing algorithm that generalizes
the initial filter without introducing false positives.

5.1 Static or dynamic?
Program slicing [49] performs static analysis to identify

the set of instructions that are relevant to the value of a set
of variables when a chosen instruction is reached. This set
of instructions is called the slice. We could run an existing
program slicing algorithm to remove unnecessary conditions
from the initial filter. This algorithm could compute the set
of instructions that are relevant to the value of the operands
of the instruction at the vulnerability point. Then we could
remove from the filter conditions added by branch instruc-
tions not in the slice.

The problem with slicing techniques that rely only on sta-
tic analysis is that they are very imprecise when applied to
real C and C++ programs with pointers [29, 24]. They tend
to classify most instructions as relevant and, therefore, are
not effective at removing conditions from the filter.

Dynamic slicing techniques [29, 51] use dynamic informa-
tion to improve precision. They take an input, generate an
execution trace, and use the dynamic dependencies observed
during the trace to classify instructions as relevant. These
techniques are not suitable to remove conditions from the
filter because they may introduce false positives.

Dynamic slicing can lead to the removal of necessary con-
ditions from the filter because it does not capture depen-
dencies on instructions that were not executed in the trace.
Figure 4 shows an example where this can happen. If we
apply dynamic slicing to the trace obtained with the sample
exploit msg = "ab", the branch corresponding to the second
if is marked irrelevant. However, removing the condition
added by this branch from the initial filter results in a filter
that blocks all messages starting with ’a’. This filter has
false positives: it can block messages starting with "aa" that
can never reach the vulnerability point.

int a = 0, b = 0;
int *c = &b;
if (msg[0] == ’a’)
a = 1;

if (msg[1] == ’a’)
c = &a;

*c = 0;
if (a)
Vulnerability();

Figure 4: Example where removing conditions using

dynamic slicing can lead to false positives.

We developed a new slicing algorithm to remove unneces-
sary conditions without adding false positives. It combines
ideas from a static slicing algorithm called path slicing [24]
with ideas from dynamic slicing. Path slicing is well suited
to our problem because it computes the set of statements
in a path through a program that are relevant to reach a
target location. We improve its accuracy by using not only
the path in the execution trace for the sample exploit but
also dynamic information from the trace, and we perform
slicing of assembly code rather than source code.

5.2 Basic structure
Precondition slicing traverses the execution trace back-

wards from the vulnerability point to compute a path slice,

that is, a subsequence of the instructions in the trace whose
execution is sufficient to ensure that the vulnerability can
be exploited. Intuitively, the path slice contains branches
whose outcome matters to exploit the vulnerability and mu-
tations that affect the outcome of those branches [24]. We
generalize the initial filter by removing any conditions that
were added by instructions that are not in the slice.

The current implementation of precondition slicing is lim-
ited to the case where all instructions that are relevant to
reach the vulnerability point are executed by the same thread.
This does not mean that our algorithm only works with
single-threaded programs. In fact, all the programs we used
to evaluate Bouncer are multi-threaded. We are working on
an extension to handle the case where the interaction be-
tween several threads is required to exploit a vulnerability.

We start by describing the algorithm at a high level and
explain how we combine static and dynamic analysis to im-
prove precision in the next section.

The algorithm receives as inputs a trace, a representation
of the program code, and alias analysis information. The
trace has a sequence of entries for each instruction in the
execution with the sample exploit. Each entry in the trace
has a pointer to the corresponding instruction in the code,
the memory addresses or register names read and written
by the instruction in the execution trace, and the symbolic
or concrete values read and written by the instruction in
the symbolic execution. We obtain a representation of the
program code by using Phoenix [33] to raise the program
binary to an intermediate representation very similar to the
x86 instruction set.

We use the alias analysis implemented in DFI [12]. The
analysis is performed during the compilation of the program
from source code. It generates two relations on operands
of instructions in the program code: MayAlias(o1, o2) iff
the operands o1 and o2 may refer to overlapping storage
locations in some execution, and MustAlias(o1, o2) iff the
operands o1 and o2 always refer to the same storage location
in all executions. These relations are conservative approx-
imations. MayAlias may include pairs that never overlap
and MustAlias may not include pairs that always overlap.
The alias relations are written to disk during compilation
and later read by our algorithm together with the binary.

The algorithm maintains the following data structures:
• cur is the trace entry being processed
• slice is a list of trace entries that were added to the

path slice. Initially, it contains the entry for the vul-
nerability point instruction.

• live keeps track of dependencies for instructions in
slice. It contains entries for operands read by these
instructions that have not been completely overwritten
by instructions that appear earlier in the trace. Entries
in live contain a pointer to the corresponding operand
in the code, the register or memory address from which
the instruction read the operand in the execution trace,
and the symbolic or concrete value of the operand read
by the instruction in the symbolic execution. Entries
also keep track of portions of the operand that have
been overwritten by instructions that appear earlier in
the trace. Initially, live contains the operands read
by the instruction at the vulnerability point.

We show pseudo code for the algorithm in Figure 5. The
algorithm iterates through the trace backwards deciding what
instructions to take into the slice. Return, call, and branch



ComputeSlice() {
while (!trace.IsEmpty) {
cur = trace.RemoveTail();
if (cur.IsRet) {

call = trace.FindCall(cur);
if (MayWriteF(CalledFunc(call), live))
Take(cur);

else
trace.RemoveRange(cur,call);

} else if (cur.IsCall) {
Take(cur);
foreach (e in trace.CallArgSetup(cur)) {
Take(e);
trace.Remove(e);

}
} else if (cur.IsBranch) {

if (!Postdominates(slice.head,cur)
|| WrittenBetween(cur, slice.head))

Take(cur);
} else {

if (MayWrite(cur, live))
Take(cur);

} } }

void Take(cur) {
slice.AddHead(cur);
live.UpdateWritten(cur);
live.AddRead(cur);

}

Figure 5: Pseudo-code for the slicing algorithm.

instructions are treated in a special way but other instruc-
tions are taken if they may overwrite the operands in live.

When cur is a return instruction, the algorithm finds the
corresponding call in the trace and takes the return if the
called function can overwrite operands in live; otherwise,
none of the instructions in the called function is taken and
all the entries between the return and the call are removed
from the trace. When the return is taken, the algorithm
iterates through the instructions in the called function.

Call instructions are always taken unless they were already
removed when processing the corresponding return. We also
take the instructions that set up the arguments for the call.

Branches are taken if the direction of the branch is rele-
vant to the value of the operands in live, that is, if there
is some path originating at the branch instruction that does
not lead to the last instruction added to the slice, or if one of
the operands in live may be overwritten in a path between
the branch and the last instruction added to the slice.

The procedure Take adds the trace entry of each instruc-
tion that is taken to slice. In addition, it updates live

to reflect the writes and reads performed by the instruction
in the trace. The method UpdateWritten records what lo-
cations were written by the instruction in cur and AddRead

adds the operands read by cur to live recording the location
they were read from and their value.

5.3 Combining static and dynamic analysis
Precondition slicing improves the accuracy of path slic-

ing [24] by taking advantage of information from the sym-
bolic execution. It ensures the following invariant. Let F be
the intermediate filter that contains all the conditions in the
initial filter that were added by instructions up to cur and
the conditions added by instructions in slice. Then all the
execution paths obtained by processing inputs that match
F (in the same setting as the sample exploit) execute the se-

ProcessMessage(char* msg, char *p0, char* p1) {
char buffer[1024];

if (msg[0] > 0)
*p0 = msg[0];

if (msg[1] > 0)
*p1 = msg[1];

if (msg[2] == 0x1 && *p0 != 0) {
sprintf(buffer, "\\servers\\%s\\%c", msg+3, *p0);
StartServer(buffer, p1);

} }

Figure 6: Example to illustrate benefit of using dy-

namic information to remove operands from live.

quence of instructions in slice and the source operands of
each of these instructions have equivalent concrete or sym-
bolic values across these paths.

We use dynamic information to remove entries from live

sooner than possible using static analysis. The method Up-

dateWritten removes an entry from live when the stor-
age location that the operand was read from in the execu-
tion trace is completely overwritten by earlier instructions
in the trace. Since live already captures the dependencies
of the instructions that overwrote the removed entry, the
entry no longer affects the reachability of the vulnerability
at this point in any path obtained with inputs that match
F . In contrast, path slicing removes an operand from live

if MustAlias holds for the operand and any of the operands
written by the current instruction.

We can illustrate the benefits of our approach using the
modified example in Figure 6 and the same sample exploit
that we used earlier. Assume that p0 and p1 point to the
same storage location and that this fact cannot be deter-
mined by the static analysis. Path slicing would not be able
to remove any condition from the initial filter. Precondition
slicing can remove the condition b0 > 0 from the initial filter.
When *p1=msg[1] is processed, the operand for *p0 is re-
moved from live because its storage location is overwritten.
Therefore, the branch that checks msg[0]>0 is not added to
the slice.

The function MayWrite checks if an instruction may over-
write an operand in live. We also use a combination of sta-
tic and dynamic analysis to implement this function. May-

Write starts by computing the set L with all operands in
the code that may alias at least one operand with an entry
in live. According to the static analysis, MayWrite should
return true if any of the operands written by cur is in L and
false otherwise. We perform an additional check to improve
accuracy with dynamic information. We do not take cur if
its execution did not write over the storage locations of any
of the operands in live and its target address is determined
by concrete values of operands in live. This preserves the
invariant because the dependencies captured in live ensure
that cur cannot affect the value of the operands in live in
any path obtained with inputs that match F . So it is not
relevant to reach the vulnerability.

To check if the target address of cur is determined by
concrete values of operands in live, we iterate over the in-
structions in the basic block of cur. If all operands read by
an instruction must alias an operand with a concrete value
in live or the result operand of a previous instruction in
the basic block, we execute the instruction with the con-



ProcessMessage(char* msg, char *p0, char* p1) {
char buffer[1024];

if (msg[0] > 0)
*p0 = msg[0];

if (msg[1] > 0)
*p1 = msg[1];

if (msg[2] == 0x1 && *p0 != 0 && p1 != p0) {
sprintf(buffer, "\\servers\\%s\\%c", msg+3, *p0);
StartServer(buffer, p1);

} }

Figure 7: Example to illustrate benefit of using dy-

namic information to compute MayWrite.

crete values and record the concrete value of the destination
operand. We do not take cur if we can compute a concrete
value for its target address.

Figure 7 shows a modified version of our example code
that illustrates the behavior of MayWrite. Assume that p0

and p1 point to different locations but static analysis cannot
determine this fact. In this case, path slicing cannot remove
any conditions from the original filter. Precondition slicing
can remove the condition b1 > 0. *p1=msg[1] is not taken
because it does not overwrite any operand in live and p1 is
in live. So the branch that checks msg[1]>0 is not taken.
MayWriteF checks whether a function may write over any

operand in live. It computes the intersection between the
set of all operands the function may modify and L. If the in-
tersection is empty, we do not take the function. Otherwise,
we perform an additional check for library functions whose
semantics we know. We do not take a library function if
the locations it writes are determined by the concrete values
of operands in live and it did not write over any operand
in live in the trace. For example, we do not take the call
memcpy(dst, src, n) if the values of dst and n are con-
stants or are determined by the concrete values of operands
in live, and it did not overwrite any operand in live.

There are two checks to determine whether to add a branch
to the slice. The first one checks if the last instruction added
to the slice is a postdominator of the branch [5], i.e., whether
all paths from the branch to the function’s return instruc-
tions pass by slice.head. If not, we add the branch to the
slice to capture in live the dependencies necessary to ensure
the branch outcome in the trace. Otherwise, the execution
paths might not visit the instructions in slice.

We use a standard static analysis to determine postdom-
inance but first we check if the outcome of the branch is
already decided given the concrete and symbolic values of
operands in live. In this case, we do not add the branch
to the slice. This is similar to the techniques described to
improve the accuracy of MayWrite but we make use of sym-
bolic operand values and the conditions added by instruc-
tions already in the slice. If the branch flag is symbolic, we
check if the conditions already in the slice imply the branch
condition or its negation. The current implementation only
deals with simple expressions. This preserves the invariant
because, when the branch is not added to slice, the de-
pendencies captured in live already ensure the appropriate
branch outcome to reach the vulnerability in any path ob-
tained with an input that matches F .
WrittenBetween implements the second check to deter-

mine whether or not to take a branch. It returns true if there

is some path in the code between the branch and slice.head

where some operands in live may be overwritten. We per-
form this check by traversing the control flow graph between
the branch and slice.head in depth-first order. We iterate
over the instructions in each basic block visited. We use
MayWrite (or MayWriteF for function calls) to determine if
the instructions in the basic block can modify operands in
live. We also make use of concrete values of operands in
live to improve the accuracy of the analysis. This is very
similar to what was described above.

6. SYMBOLIC SUMMARIES
Precondition slicing is not effective at removing conditions

added by instructions inside library functions. Without alias
information, it must be conservative and add all the instruc-
tions in these functions to the slice. We took a pragmatic
approach to address this limitation: we use knowledge about
the semantics of common library functions to generate sym-
bolic summaries that characterize the behavior of a function
as a set of conditions on its inputs. We use these summaries
to replace the conditions extracted from the trace.

We generate symbolic summaries automatically from a
template that is written once per library function. There
are two cases depending on whether the vulnerability point
is inside a library function or the library function is called
in the path towards the vulnerability. In the first case, we
do not need to characterize the full behavior of the func-
tion because what happens after the vulnerability point is
not important. Therefore, the symbolic summary is simply
a condition on the arguments of the function that is true
exactly when the vulnerability can be exploited.

The conditions in a symbolic summary are generated from
a template (which depends on the library function) using a
combination of static and dynamic analysis. The analysis
must determine the symbolic or concrete values of function
arguments and potentially the sizes of the objects pointed
to by these arguments. For example if the vulnerability
is a buffer overflow in the call memcpy(dst, src, n), the
summary will state that the size of the object pointed to
by dst must be greater than or equal to n. To generate
this condition, the analysis must determine the concrete or
symbolic values for n and for the size of the object pointed
to by dst. The value for arguments like n is readily available
from the trace entry for the corresponding push instruction.

To determine the size of the object pointed to by an ar-
gument, the analysis traverses the trace backwards from the
function call to the point where the object is allocated. For
objects that are allocated dynamically using calloc, mal-
loc, or realloc, the analysis obtains the concrete or sym-
bolic values of the arguments passed to these allocators to
compute an expression for the object size. For objects whose
size is known statically, the analysis obtains the object size
from our representation of the code. During this trace tra-
versal, the analysis builds an expression for the offset be-
tween the argument pointer and the start address of the
object. The expression for the size used in the condition is
equal to the object size minus this offset.

It is harder to compute symbolic summaries for functions
in the printf family because they have a variable number of
arguments with variable types, but it is important because
these functions are involved in many vulnerabilities. We
distinguish two cases: when the format string depends on
the input and when it is known statically.



In the first case, we only deal with calls that receive no
arguments beyond the format string, which is the common
case with format string vulnerabilities. The analysis gener-
ates a summary with a condition on the symbolic values of
the bytes in the format string. This condition is true when
the format string contains valid format specifiers or when its
size (after consuming escape characters) exceeds the size of
the destination buffer for functions in the sprintf family.

When the format string does not depend on the input, the
most common vulnerability is for a function in the sprintf

family to format an attacker-supplied string into a destina-
tion buffer that is too small (as in our example in Figure 1).
The summary for this case is a condition on the sizes of
the argument strings. The analysis computes the bound
on these sizes by parsing the static format string using the
same algorithm as printf, processing any arguments that
do not depend on the input, and determining the size of the
destination buffer (as described above).

It is interesting to contrast symbolic summaries with a
technique that patches the code by adding a check before
the library call. Symbolic summaries allow Bouncer to de-
tect and discard bad input before it is processed. Therefore,
services can keep running correctly under attack. Whereas
recovering when the check fails is hard. Furthermore, adding
the check may require keeping a runtime structure mapping
objects to their sizes. This is not needed by symbolic sum-
maries because they are specific to a particular execution
path (the one defined by the other conditions in the filter).

We also compute a second type of symbolic summary for
library functions that are called in the path towards the
vulnerability. We motivate this with the following example:

if (stricmp(s,"A string") == 0)
Vulnerability();

the vulnerability in this example is reachable if the attacker
supplied string equals “A string” after both are converted
to lowercase. The conditions that we extract automatically
from a sample execution of stricmp will only capture a par-
ticular value of s that satisfies the comparison. The tech-
niques described in the next section generate executions with
alternative inputs to generalize the filters. But they would
require at least 28 inputs (where 8 is the size of “A string”)
to generate a filter that can block all the attacks that can
exploit the vulnerability. If we replace the conditions for the
execution of stricmp in the sample trace by the summary

(s[0] = A ∨ s[0] = a) ∧ ... ∧ (s[8] = G ∨ s[8] = g) ∧ s[9] = 0

we can capture succinctly all values of s that can be used to
exploit the vulnerability. Since the vulnerability is not inside
these functions, we can alternatively choose to call them
directly in the filter. Currently, we only generate summaries
for functions in the middle of the path if they have no side
effects. There is some recent work that proposes computing
similar summaries automatically for arbitrary functions [22].

7. SEARCH FOR OTHER ATTACKS
The techniques described in the previous sections gener-

ate filters that block many attacks that exploit the same
vulnerability, but they are not sufficient to generate optimal
filters that block all exploits.

To generalize our filters further, we search for alterna-
tive exploits of the same vulnerability, obtain new execu-
tion traces using these exploits, and apply the algorithms
described in the previous sections to compute a new filter.

The disjunction of the filters obtained from the different ex-
ecution traces catches more exploits.

The search for all possible exploits may take a significant
amount of time. Therefore, the initial filter may be deployed
as soon as it is available (within tens of seconds), while the
search procedure incrementally improves its accuracy.

We experimented with two techniques to search for alter-
native exploits. First, we implemented the test generation
approach of DART [23] (which was also proposed in [41,
11]). This approach uses conditions obtained from symbolic
execution (as in Section 3) to guide new test input genera-
tion. It takes a prefix of the conditions negates the last one
and feeds the resulting conditions to a constraint solver to
obtain new test inputs. This approach has the nice property
that given enough time it can find all exploits of the same
vulnerability. The problem is that it requires too much time
in practice. We are working on search heuristics that might
make this approach practical.

We currently use a second search strategy that generates
alternative exploits by removing or duplicating bytes in the
original exploit messages. This strategy is not guaranteed
to find all exploits of the same vulnerability but it is simple,
fast and easy to parallelize.

We pick bytes to remove or duplicate using an heuris-
tic based on the filter conditions. We give a score to each
condition equal to the total number of bytes in conditions
divided by the number of bytes that have an identical condi-
tion. Each byte has a score equal to the sum of the scores of
the conditions it appears in. We pick the bytes with the low-
est scores because they are likely to be filler bytes in buffer
overflow exploits.

After generating a potential new exploit, we send it to
the version of the vulnerable program that is instrumented
to detect attacks (as shown in Figure 2). If the detector
signals that the exploit is valid, we repeat the filter gen-
eration process for the new exploit. When using symbolic
summaries for the library function with the vulnerability, we
instrument the vulnerable program to signal success when
the call site with the vulnerability is reached. If the exploit
is not valid, the detector does not raise an exception. We
detect this case using a watchdog that checks if all threads in
the vulnerable program are idle. This works well in practice
and avoids having to wait for a large timeout.

We use our heuristic to select bytes to remove. If after
removing a byte the resulting message is not a valid exploit,
we retain that byte and pick another one to remove. We
repeat this process until we have tried to remove all bytes
or the message size is lower than a bound from a symbolic
summary. Then, we start generating new exploits by dupli-
cating bytes in the original exploit message. We pick another
byte to duplicate if we did not obtain an exploit or if there
are bytes in the resulting exploit message that are not read
by the vulnerable program. We stop after we have tried to
duplicate all bytes.

We combine the filters generated for each alternative ex-
ploit to obtain the final filter. Simply taking the disjunction
of all filters can result in a final filter with high overhead. In-
stead, we compare the conditions applied to each byte index
by each filter. A common structure is a set of byte indices
in the beginning of a message that have the same condition
in all filters. These are typically followed by sequences of
byte indices that have different lengths in different filters
but have the same conditions applied to each byte in the



sequence in each filter. There may be several of these se-
quences. Typically, they are followed by terminator bytes
with the same conditions in each filter.

If we recognize this structure, we take advantage of it to
generate an efficient final filter. In this case, the final filter
has the conditions for the initial bytes followed by loops that
check the conditions on the variable length byte sequences,
and conditions that check the terminator bytes.

The final filter is an x86 executable. It is straightforward
to convert the conditions generated during symbolic exe-
cution into executable code. We use a simple stack-based
strategy to evaluate each condition and a short-circuit eval-
uation of the conjunction of the conditions. The size of the
stack is bounded by the depth of the trees in the conditions
and filters only access this stack and the input messages.
Therefore, filters are guaranteed to run in bounded time
and to use a bounded amount of memory.

8. EVALUATION
We implemented a prototype of Bouncer and we evaluated

it using real vulnerabilities in real programs: Microsoft SQL

server, ghttpd, nullhttpd, and stunnel. We started by an-
alyzing each vulnerability carefully to characterize the set of
attack messages that can exploit it. Then, we used Bouncer
to generate a filter for each vulnerability and evaluated the
fraction of attack variants blocked by the filter. The results
show that our filters can block all attacks that exploit two
of the vulnerabilities.

We also ran experiments to study filter generation. We
measured filter generation time, the number of iterations in
the search for alternative exploits, and the contribution of
each of our techniques to generalize the initial filter.

The final set of experiments measured the overhead intro-
duced by the filters when used to protect running services.
We measured both the running time of the filters and the
degradation in service throughput with and without attacks.
Our results show that the deployed filters have negligible
overhead and that attackers must consume a large amount
of bandwidth to reduce service throughput significantly.

8.1 Services and vulnerabilities
We start by describing the services and vulnerabilities that

we studied, and all the attacks that can exploit each vulner-
ability. Determining the set of all attacks required detailed
analysis of the vulnerable programs aided by our tools. We
also describe the sample exploit that we used to bootstrap
the filter generation process for each vulnerability.
SQL server is a relational database from Microsoft that

was infected by the infamous Slammer [34] worm. We stud-
ied the buffer overflow vulnerability exploited by Slammer.
An attacker can overflow a stack buffer by sending a UDP
message with the first byte equal to 0x4 followed by more
than 60 bytes different from zero. The stack overflow occurs
inside a call to sprintf. We use the same exploit as Slam-
mer to start the filter generation process. This exploit has
the first byte set to 0x4 followed by a 375-byte string with
the worm code, and it overwrites the return address of the
function that calls sprintf.
Ghttpd is an HTTP server with several vulnerabilities [1].

The vulnerability that we chose is a stack buffer overflow
when processing the target URL for GET requests. The
overflow occurs when logging the request inside a call to
vsprintf. There are many exploits that can overflow the

buffer. Successful exploits must have less than 4 Kbytes and
have a sequence of non-zero bytes terminated by "\n\n" or
"\r\n\r\n". They must start with zero or more space char-
acters followed by the string "GET" and by one or more space
characters. The sequence of remaining characters until the
first ’\n’ or ’\r’ cannot contain the string "\\.." and must
have more than 150 bytes.

The sample exploit to start filter generation for ghttpd

begins with the string "GET " followed by a sequence of 203
non-zero bytes terminated by "\n\n". This exploit overflows
the return address of the function that calls vsprintf.
Nullhttpd is another HTTP server. This server has a

heap overflow vulnerability that an attacker can exploit by
sending HTTP POST requests with a negative value for the
content length field [2]. These requests cause the server to
allocate a heap buffer that is too small to hold the data in the
POST request. While calling recv to read the POST data into
the buffer, the server overwrites the heap management data
structures maintained by the C library. This vulnerability
can be exploited to overwrite arbitrary words in memory.

There is a very large number of messages that can cause
the buffer to overflow in nullhttpd. Each of these messages
is a sequence of lines with up to 2046 non-zero bytes dif-
ferent from ’\n’ terminated by ’\n’. The first line must
start with "POST" (case insensitive) followed by two other
fields separated by spaces. Then, there can be any num-
ber of arbitrary non-empty lines until a line that starts with
"Content-Length: " (case insensitive) followed by a string
that is interpreted as a negative number −N by atoi. This
line can then be followed by any number of non-empty lines
that do not start with "Content-Length: ". The message
must end with an empty line followed by at least 1024 − N

bytes of POST data.
We used the exploit described in [14] to start the filter

generation process for nullhttpd. This is a two message ex-
ploit. The first message exploits the vulnerability to modify
the CGI-BIN configuration string to allow the attacker to
start an arbitrary program. The second message starts a
shell. The first message has a line with a cookie that is not
necessary for the attack.
Stunnel is a generic tunneling service that encrypts TCP

connections using SSL. We studied a format string vulner-
ability in the code that establishes a tunnel for SMTP [3].
An attacker can overflow a stack buffer by sending a message
that is passed as a format string to the vsprintf function.
The buffer overflows if the attacker sends any message with
up to 1024 bytes terminated by ’\n’ with a sequence of
initial bytes different from ’\n’ that expands to more than
1024 bytes when interpreted as a format string. There are
many messages that satisfy these conditions and they can
be small, for example, "%1025.x\n" overflows the buffer.

The sample exploit that we used to bootstrap the filter
generation process for stunnel was a message starting with
"%.512x" followed by 602 ’A’ characters and a ’\n’. This
message overwrites the return address of the function that
calls vsprintf.

8.2 Filter accuracy
This section evaluates the accuracy of Bouncer filters. Ta-

ble 1 summarizes our results. A filter has false negatives if
it fails to block input that can exploit the vulnerability un-
der study and false positives if it blocks input that cannot
exploit the vulnerability.



service false positives false negatives
SQL server no no

ghttpd no yes
nullhttpd no yes
stunnel no no

Table 1: Accuracy of Bouncer filters.
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after applying each technique. The number of con-

ditions after symbolic execution is the number of

conditions in Vigilante filters.

Filters generated by Bouncer have no false positives by
design: all the messages they block can exploit the vulner-
ability. Although we cannot provide strong guarantees on
false negatives, we found empirically that Bouncer generates
filters with no false negatives for the vulnerabilities in SQL

server and stunnel: our filters block all the attacks that
can exploit these vulnerabilities.

The filters for the other vulnerabilities fail to block some
exploits but they block many exploits different from the sam-
ple exploit. It is harder for Bouncer to generate filters with
no false negatives when protocols allow semantically equiva-
lent messages to be encoded in many different ways, or when
there are several variable length fields that are processed be-
fore reaching the vulnerability. For example, HTTP GET mes-
sages can have zero or more spaces before "GET" and one
of more spaces after "GET". Bouncer’s filter for ghttpd fails
to block exploit messages that have spaces before "GET" but
captures exploits that add spaces after "GET".

Bouncer filters block significantly more attacks than Vig-
ilante filters [16]. Bouncer removes a large fraction of the
conditions in Vigilante filters (which are obtained using sym-
bolic execution alone as described in Section 3).

Figure 8 shows the number of conditions in Bouncer filters
after symbolic execution (same as Vigilante), after improv-
ing detector accuracy, after replacing the conditions in the
library function where the vulnerability occurs by a sym-
bolic summary, and after precondition slicing. These num-
bers were obtained in the first iteration (which processes
the sample exploit) and all the conditions depend on the
input. Additional iterations would improve the accuracy of
Bouncer filters relative to Vigilante filters even further. The
results show that all the techniques improve the accuracy
of Bouncer filters. Precondition slicing has the largest im-
pact for SQL server, ghttpd, and stunnel. For nullhttpd,
improving detector accuracy is the largest contributor.

We believe that it would be possible to reduce false neg-
atives by combining Bouncer’s techniques with other tech-
niques to compute weakest preconditions (e.g.,[6]). How-
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ever, there are problems with loops and recursion that have
to be solved for these techniques to be useful. Additionally,
we could exploit protocol knowledge (when available) to im-
prove the search for alternative exploits as in ShieldGen [19].

8.3 Filter generation
We also evaluated the cost of filter generation by measur-

ing the number of iterations and the time to generate the
filters. We ran these experiments on a Dell Precision Work-
station 350 with a 3GHz Intel Pentium 4 processor and 1GB
of memory. The operating system was Windows XP profes-
sional with service pack 2.

Figures 9 and 10 show the total time and the number
of iterations to generate the filters, respectively. We ran the
experiments with a 24-hour time limit. The filter generation
process for nullhttpd and ghttpd did not terminate before
this limit. It took Bouncer 4.7 hours to generate the filter
for SQL server and 16.2 for stunnel.

The filter generation process ran for roughly 1000 itera-
tions in all cases. It stopped after 967 iterations for SQL

server and after 1025 iterations for stunnel. The minimum
exploit size for SQL server is 61 bytes and the maximum is
1024. For stunnel the minimum exploit size is 2 bytes and
the maximum is also 1024.

There are two reasons for the relatively large filter gen-
eration times. First, the time per iteration is large due to
inefficiencies in our prototype: 17s for SQL Server, 83s for
nullhttpd, 79s for ghttpd, and 57s for stunnel. For exam-
ple, generation and removal of conditions is performed by
separate processes that communicate by reading and writing
large files. Better integration would significantly reduce the
time per iteration. Second, the number of iterations is also
large to ensure the final filter has no false positives. We are
studying techniques to analyze loops statically that should
reduce the number of iterations necessary. Our prototype is
useful even with these limitations.
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server vulnerability as a function of message size.

In some deployment scenarios, it is easy to reduce filter
generation times by exploiting parallelism. Since iterations
in our filter generation process are independent, it can be
parallelized by assigning each iteration to a different proces-
sor. For example, a large software vendor like Microsoft
could run the filter generation process in a cluster with 1000
machines and then disseminate the filters to users of vulner-
able software. This could speed up filter generation times
by up to three orders of magnitude, for example, generating
the filters for the SQL Server and stunnel vulnerabilities
would take less than one minute.

In other scenarios, we can deploy a filter after the first
iteration, which takes tens of seconds. Then we can deploy
an improved filter after each iteration. Additionally, if we
run the vulnerable program instrumented to detect attacks
with DFI and to log inputs, Bouncer can refine the filter
when an attack that bypasses the filter is detected by DFI.

8.4 Filter overhead
We also ran experiments to measure the overhead intro-

duced by deployed filters. The results show that the over-
head to process both exploit and non-exploit messages is low
for all the filters generated. Therefore, filters allow services
to work correctly and efficiently even under attack.

8.4.1 Running time
To measure the filter running time, we varied message

sizes from 16 to 400 bytes in increments of 16 bytes. For each
message size, we measured the time to process 1000 messages
and repeated this experiment 1000 times. We present the
average time across the 1000 experiments. We ran these ex-
periments in the machine described in the previous section.

We chose messages to obtain a worst-case overhead for
the filters. The messages are picked randomly but with con-
straints designed to force the filter to check conditions on
the maximum number of message bytes possible. For ex-
ample, the messages used to measure the overhead of the
SQL server filter have the first byte equal to 0x4 to force
the filter to check if the remaining bytes in the message are
different from zero. On the other hand, the messages sent
to the stunnel filter have no % characters because the fil-
ter stops processing the message bytes when it finds a valid
format specifier.

Figure 11 shows the SQL server filter overhead. The over-
head curve is flat for small message sizes because the first
condition in the filter checks if the message has at least 61
bytes. This condition is obtained from the symbolic sum-
mary for the sprintf function where the vulnerability oc-
curs. The overhead grows linearly with the size for longer
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Figure 13: Filter overhead for the nullhttpd vulner-

ability as a function of message size.

messages (which are all exploits) because the number of
bytes processed by the filter increases linearly.

Figure 12 shows the filter overhead for the ghttpd vulner-
ability. The curve is similar to the one for SQL server: it
is flat for messages up to 156 bytes because of the condition
obtained from the symbolic summary of the vsprintf func-
tion where the vulnerability occurs. The overhead grows
linearly for exploit messages. As in SQL server the over-
head for processing non-exploit messages is negligible and
the overhead for processing exploit messages is low.

The overhead curve for nullhttpd is different from the
previous two as shown in Figure 13. This happens because
we use POST requests to test this filter and increase message
size by adding bytes to the POST data, which is not processed
by the filter. The results show that the overhead to process
POST requests is low. Since one of the first conditions in the
filter checks if the message starts with POST, the overhead to
process messages that do not start with POST is very low.

Figure 14 shows the filter overhead for the stunnel vul-
nerability. This curve is different from all the others because
this vulnerability can be exploited with very small messages
and the filter must check every byte in the message look-
ing for valid format specifiers. The overhead is higher than
that observed for the other filters but this filter is only ap-
plied to greeting messages when establishing SSL tunnels
for the SMTP protocol. Therefore, its overall impact on
performance is negligible.

In all cases shown, the time to run the filter on non-
exploit messages is between three and five orders of mag-
nitude smaller than typical wide-area network latencies and
between two and three orders of magnitude smaller than
typical local-area network latencies. Therefore, our filters
have a negligible impact on overall service latency.
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bility as a function of message size.

8.4.2 Effect on throughput
We also measured throughput reduction due to filters on

SQL server and nullhttpd. The vulnerable services ran on
a Dell Precision workstation 350 with a 3GHz Intel Pentium
4 processor and 2GB of RAM, running Windows 2000. We
ran clients on a Dell Latitude D600 laptop with a 2GHz In-
tel Pentium processor and 1GB of RAM, running Windows
XP professional with service pack 2, and on a Dell Latitude
D620 laptop with a 2.16GHz Core2 Duo processor and 2 GB
of RAM, running Windows Vista. Server and clients were
connected by a 100Mbps D-Link Ethernet switch.

For SQL server, we used the TPC-C benchmark [45] to
generate load. To measure the worst case scenario for the
filter overhead, clients were configured with zero think time
and we used empty implementations for the TPC-C stored
procedures. For nullhttpd, we generated load using a re-
quest from the SPEC Web 1999 benchmark [43]. The re-
quest fetches a static file with 102 bytes. We chose this re-
quest because the file is cached by the server, which ensures
the filter overhead is not masked by I/O.

For both SQL server and nullhttpd, we measured the
maximum throughput in the absence of attacks for a base
version without the filter and for a version with the filter
deployed. For both versions, we increased the request rate
until the server reached 100% CPU usage. We report the
average of three runs. The overhead is very low: it was
below 1% for both services.

On a second set of experiments, we measured the through-
put of the two services under attack. We sent attack probes
to servers that were fully loaded and measured the reduc-
tion in throughput as we increased the rate of attack probes.
The attacks probes carried the same exploits that were used
to start the filter generation process. We ran this exper-
iment with services protected by Bouncer filters and with
services that restart when they detect an attack. We restart
the service immediately after an attack probe is received
to make the comparison independent of the performance of
any particular detection mechanism. Figures 15 and 16 show
the normalized throughput under attack of SQL server and
nullhttpd, respectively.

Detecting the attacks is not enough. If SQL server is
restarted whenever an attack is detected, the attacker can
make the service unavailable with very little effort. The
results show that an attacker can reduce the throughput of
SQL server by more than 90% with an attack rate of only 12
probes per minute. This happens because SQL server has
a complex start up procedure that takes approximately five
seconds. With Bouncer filters, the reduction in throughput
with this attack rate is negligible.
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Figure 15: Normalized throughput for Bouncer and

Restart on a SQL server under attack.
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Figure 16: Normalized throughput for Bouncer and

Restart on a nullhttpd Web server under attack.

The results when nullhttpd is restarted on attack are sim-
ilar: the attacker can reduce the throughput of nullhttpd
by more than 90% with a rate of only 100 probes per minute.
The attack rate required to make the service unavailable is
larger for nullhttpd than for SQL server because the start
up time for nullhttpd is more than an order of magnitude
smaller. The version of nullhttpd protected by Bouncer is
essentially unaffected by attacks with this rate.

The attacker needs to expend orders of magnitude more
bandwidth to affect the throughput of services protected by
Bouncer. Figure 17 shows that when the attacker sends
almost 18000 probes per second, SQL server protected by
Bouncer can still deliver 80% of the throughput achievable
without attacks. Figure 18 shows that nullhttpd protected
by Bouncer can deliver 65% of the normal throughput at an
attack rate of 1000 probes per second. The throughput de-
grades faster for nullhttpd because it creates a new thread
for each request (including attack probes), while SQL server

uses an efficient thread pooling mechanism.

9. RELATED WORK
There has been previous work on automatic generation of

filters to block exploit messages. Most proposals [25, 26, 42,
30, 36, 44, 47, 31, 32, 19] provide no guarantees on the rate of
false positives. Therefore, they can make the program stop
working even when it is not under attack. From these tech-
niques, ShieldGen [19] is the most closely related to Bouncer.
It uses a protocol specification to generate different poten-
tial exploits from an initial sample, and it instruments the
program to check if potential exploits are valid exploits. We
could improve Bouncer’s alternative exploit generation by
leveraging a protocol specification, but these specifications
do not exist for most programs.
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Vigilante [16] computes filters automatically using a form
of symbolic execution [27] along the path taken by a sample
exploit. Filters are guaranteed to have no false positives and
they block all exploits that cause the program to follow the
same execution path until the vulnerability point. Crandall
et al. [18] have shown that these filters can catch many at-
tack variants. However, attackers can bypass these filters by
generating exploits that follow a different execution path.

Recent work has explored techniques to generalize Vigi-
lante filters to block exploits that follow different execution
paths. Brumley et al [9] propose three filter representations:
Turing machines, symbolic constraints, and regular expres-
sions. Turing machine filters are a chopped version of the
vulnerable program that is instrumented to detect the at-
tack. Program chopping removes instructions that cannot
be executed from the point where the exploit message is
received to the vulnerability point. Turing machine filters
can have low false negatives and no false positives, but their
overhead is high. The filter can include most of the instruc-
tions in the original program (because chopping is imprecise)
and it is necessary to initialize the state of the filter before
processing each message. The techniques to generate sym-
bolic constraint and regular expression filters do not scale
to real programs [10].

Concurrently with our work, Brumley et al. [10] proposed
a promising technique to compute symbolic constraint fil-
ters, which are similar to Bouncer’s filters. They leverage
previous work on computing weakest preconditions [6] to
create the filter. These filters have no false positives but
they may have false negatives because loops are unrolled a
constant number of times before computing weakest precon-
ditions. Another concern is that the filters are large (even
when loops are unrolled only once) because the addresses
in memory accesses are treated symbolically [6]. Bouncer’s
symbolic execution technique uses concrete addresses to re-

trieve the symbolic or concrete values of memory cells. This
has two advantages: it simplifies the conditions in the fil-
ter and it removes unnecessary conditions. Additionally, we
use precondition slicing to remove unecessary conditions. It
would be interesting to combine Bouncer’s techniques with
other techniques to compute weakest preconditions [6].

Other techniques prevent attacks by adding checks to pro-
grams to detect exploits (e.g., type-safe languages and trans-
parent instrumentation for unsafe programs [4, 12, 13, 16,
17, 28, 40]). These techniques can introduce a significant
overhead and they detect attacks too late when the only
way to recover may be to restart the program. Vulnerability-
specific execution filters [35, 46] can reduce the overhead by
instrumenting the program to detect exploits of a single vul-
nerability, but they cannot solve the second problem.

There are several techniques that allow programs to keep
working under attack. Failure-oblivious computing [39] uses
CRED [40] to check for out-of-bounds accesses but does
not abort the execution when a check fails. Instead, it
ignores out-of-bounds writes and it generates values for out-
of-bounds reads. This allows programs to keep working but
the overhead can be high and programs can behave incor-
rectly, for example, the authors had to carefully craft values
for out-of-bounds reads to prevent infinite loops in their ex-
amples. DieHard [7] randomizes the location of objects in a
large heap to make it less likely for out-of-bounds writes to
overwrite another object. This technique has low overhead
but it can be easy for attackers to bypass. Checkpointing
and rollback recovery [21] are general techniques to recover
from faults. They can be used to recover when an attack
is detected [38, 46] but recovery can be relatively expen-
sive and they suffer from the output commit problem [21],
that is, they cannot rollback the environment after sending
output. Sweeper [46] proposes the use of filters on input
messages to reduce the number of times recovery is needed.

10. CONCLUSIONS
This paper described Bouncer, a system that automati-

cally generates filters to block exploit messages before they
are processed by a vulnerable program. Bouncer uses DFI
to obtain sample exploits for (potentially unknown) vulner-
abilities and it generates filters from these samples. Bouncer
generates filters using a combination of four techniques: sym-
bolic execution computes an initial set of filter conditions;
precondition slicing uses a combination of static and dy-
namic analysis to remove unnecessary conditions from the
filter; symbolic summaries characterize the behavior of com-
mon library functions succinctly as a set of conditions on
the input; and alternative attack search generates new at-
tack input guided by symbolic execution. Bouncer filters do
not have false positives by design and our results show that
it can generate filters with no false negatives for real-world
vulnerabilities in SQL server and stunnel. The results also
show that these filters introduce low overhead and allow pro-
grams to keep running efficiently even when under attack.
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