
Mitosis: A Speculative Multithreaded Processor
Based on Precomputation Slices

Carlos Madriles, Carlos Garcı́a-Quiñones, Jesús Sánchez, Member, IEEE,

Pedro Marcuello, Member, IEEE Computer Society, Antonio González, Member, IEEE,

Dean M. Tullsen, Senior Member, IEEE, Hong Wang, Member, IEEE, and John P. Shen, Fellow, IEEE

Abstract—This paper presents the Mitosis framework, which is a combined hardware-software approach to speculative
multithreading, even in the presence of frequent dependences among threads. Speculative multithreading increases single-threaded
application performance by exploiting thread-level parallelism speculatively, that is, executing code in parallel, even when the compiler
or runtime system cannot guarantee that the parallelism exists. The proposed approach is based on predicting/computing thread input
values via software through a piece of code that is added at the beginning of each thread (the precomputation slice). A precomputation
slice is expected to compute the correct thread input values most of the time but not necessarily always. This allows aggressive
optimization techniques to be applied to the slice to make it very short. This paper focuses on the microarchitecture that supports
this execution model. The primary novelty of the microarchitecture is the hardware support for the execution and validation of
precomputation slices. Additionally, this paper presents new architectures for the register file and the cache memory in order to
support multiple versions of each variable and allow for efficient rollback in case of misspeculation. We show that the proposed
microarchitecture, together with the compiler support, achieves an average speedup of 2.2 for applications that conventional
nonspeculative approaches are not able to parallelize at all.

Index Terms—Speculative thread-level parallelism, precomputation slices, thread partitioning, multicore architecture.

Ç

1 INTRODUCTION

MOST high-performance processor vendors have intro-
duced designs that can execute multiple threads

simultaneously on the same chip through simultaneous
multithreading [8], [18], multiple cores [29], or a combina-
tion of the two [20]. The way that thread-level parallelism
(TLP) is currently being exploited in these processors is
through nonspeculative parallelism. There are two main
sources of nonspeculative TLP: 1) executing different
applications in parallel [31] and 2) executing parallel
threads generated by the compiler or programmer from a
single application. In the former case, running different
independent applications in the same processor provides an
increase in throughput (the number of jobs finished per
time unit) over a single-threaded processor. In the latter
case, programs are partitioned into smaller threads that are
executed in parallel. This partitioning process may sig-
nificantly reduce the execution time of the parallelized
application over single-threaded execution.

Executing different applications in parallel increases
throughput but provides no gain at all for workloads
consisting of just one application. On the other hand,
partitioning applications into parallel threads may be a
straightforward task in regular applications but becomes
much harder for irregular programs, where compilers
usually fail to discover sufficient TLP. This is typically
because of the necessarily conservative approach taken by the
compiler. This results in the compiler including many
unnecessary interthread communication/synchronization
operations or, more likely, concluding that insufficient
parallelism exists. However, although compilers are typically
unable to find parallel threads in irregular applications and
thus benefit from the hardware support for multiple contexts,
this does not mean that those applications do not contain
large amounts of parallelism. In many cases, they do.

Recent studies have proposed the use of coarse-grained
speculation techniques to reduce the execution time of these
applications. This kind of parallelism is usually referred to
as speculative TLP. This technique reduces the execution
time of applications by executing several speculative
threads in parallel. These threads are speculative in the
sense that they may be data and control dependent on
previous threads, and their correct execution and commit-
ment are not guaranteed. Therefore, in this model, we
execute sections of the code in parallel, because we suspect
that they may be independent (or predictably dependent),
and we check whether that was true after the fact. For these
architectures, additional hardware/software is required to
validate these threads and eventually commit them.

There are two main strategies for speculative TLP:
1) the use of helper threads to reduce the execution time of
high-latency instructions by means of side effects [5], [7], [24],
[34] and 2) relaxing the parallelization constraints and

914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008

. C. Madriles, C. Garcı́a-Quiñones, J. Sánchez, P. Marcuello, and
A. González are with the Intel-UPC Barcelona Research Center, Intel
Corporation, Jordi Girona 29 Nexus II, 3A Barcelona 08034, Spain.
E-mail: {carlos.madriles.gimeno, carlos.garcia.quinones, f.jesus.sanchez,
pedro.marcuello, antonio.gonzalez}@intel.com.

. D.M. Tullsen is with the Department of Computer Science and Engineering,
University of California, San Diego, 9500 Gilman Dr. #0404, La Jolla,
CA 92093-0404. E-mail: tullsen@cs.ucsd.edu.

. H. Wang is with the Microprocessor Research Lab, Intel Corp.,
3600 Juliette Ln., SC-12, Santa Clara, CA 95054.
E-mail: hong.wang@intel.com.

. J.P. Shen is with the Nokia Research Center, Nokia, 955 Page Mill Rd.,
Suite 200, Palo Alto, CA 94304-1003. E-mail: John.Shen@nokia.com.

Manuscript received 2 Nov. 2006; revised 2 Aug. 2007; accepted 3 Oct. 2007;
published online 23 Oct. 2007.
Recommended for acceptance by U. Ramachandran.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0383-1106.
Digital Object Identifier no. 10.1109/TPDS.2007.70797.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

parallelizing the applications into speculative threads
(for example, [1], [6], [12], [15], [25], [27], [30], and [33],
among others).

The Mitosis processor is based on the speculative
parallelization approach. Each of the speculative threads
executes a different portion of the program. The partition-
ing process allows the spawning of speculative threads,
even where the compiler cannot guarantee correct execu-
tion. Once the thread finishes, the speculative decisions are
verified. If they were correct, then the application has been
accelerated. If a misspeculation (control or data) has
occurred, then the speculative work done is discarded,
and the processor continues with the correct threads.

It is occasionally possible to partition a program into
enough parallel threads (depending on the number of
hardware contexts) such that there are few or no depen-
dences between them [27]. For architectures that take this
approach, they speculate that there are no dependences
between threads, and they recover when there are depen-
dences. However, for most programs, it is necessary to
create threads where there are control/data dependences
across these partitions to fully exploit available parallelism.
The manner in which such dependences are managed
critically affects the performance of the speculative multi-
threaded processor. Previous approaches have used the
hardware communication of produced register values [14],
explicit synchronization [9], [30], and hardware value
prediction [16] to manage these dependences.

In contrast, Mitosis takes a completely new software-
based approach to managing both data and control
dependences among threads. We find that this produces
values earlier than the hardware-assisted value-passing
approaches and more accurately than hardware value
prediction approaches (due to the use of instructions
derived from the original code). Each speculative thread is
prepended with a speculative precomputation slice (p-slice) that
precomputes live-ins (those register and memory values
that are consumed by the speculative thread and may be
computed by prior threads still in execution). The p-slice
typically executes in a fraction of the time of the actual code
that produces those live-ins, because it skips over all code
that is not specifically computing live-in values.

The Mitosis framework is composed of a compiler that
partitions the applications into speculative threads and
generates the corresponding p-slice and a speculative
multithreaded processor that is able to manage multiple
speculative threads. This paper presents the whole Mitosis
framework but focuses more heavily on the hardware
architecture, which contains a number of novel features.
These include hardware support for the execution and
validation of p-slices, a new multiversion register file that
manages global register state and intercore dependences
with virtually no latency overhead, and a multiversion
memory subsystem that uses a replication cache (RC) to
allow the processor to achieve cache performance similar to
what would be seen by the application if it were running in
a single core.

Early performance results reported by the Mitosis
processor show an average speedup of about 2.2 for a subset
of the Olden benchmark suite and 1.75 over a configuration
that models perfect L1 data caches.

The rest of this paper is organized as follows: Section 2
presents the execution model. The Mitosis compiler is
briefly described in Section 3. Section 4 details the main
features of the microarchitecture. Some performance results
are shown in Section 5. Related work is reviewed in
Section 6, and finally, Section 7 summarizes the main
conclusions of this work.

2 EXECUTION MODEL OF THE MITOSIS PROCESSOR

Fig. 1 shows the Mitosis processor execution model.
Programs are partitioned into speculative threads statically
with the Mitosis compiler. The partitioning process explores
the application to insert spawning pairs. A Spawning pair is
a pair of instructions made up of the point where the
speculative thread will be spawned (the spawning point (SP))
and the point where the speculative thread will start its
execution (the control quasi-independent point (CQIP)) based on
earlier terminology [17]. The Mitosis compiler also computes
the p-slice corresponding to each spawning pair. The p-slice
is the subset of instructions between the SP and CQIP, which
produce values consumed shortly after the CQIP.

In the example shown in Fig. 1, then, the choice of a
particular SP and CQIP allow the code in section C (the code
following the CQIP) to execute in parallel with the code in B
(the code between the SP and CQIP) after the completion of
the p-slice. As can be seen from this example, the amount of
parallelism exposed by this technique is sensitive to the
size of B (the distance between SP and CQIP) and the size of
the p-slice (which is derived from B). Thus, if the size of the
p-slice is similar to that of B, that is, most of the computation
of B is consumed in C, then there will be little or no gain
from these techniques. If the p-slice is very small relative
to B, then the code will execute as if the regions were
completely parallel, despite the existence of dependences.

This new binary produced by the Mitosis compiler is
executed on the Mitosis processor. Applications run on a
Mitosis processor in the same way as on a conventional
superscalar processor. However, when a spawn instruction
is found, the processor looks for the availability of a free
context (or thread unit (TU)). Upon finding a free one, the
p-slice of the corresponding speculative thread is assigned
to a TU. The p-slice executes on that TU, ending with an
unconditional jump to the CQIP, thereby starting the
execution of the speculative thread.

MADRILES ET AL.: MITOSIS: A SPECULATIVE MULTITHREADED PROCESSOR BASED ON PRECOMPUTATION SLICES 915

Fig. 1. Execution model of the Mitosis processor. (a) Sequential
execution. (b) Parallel Mitosis execution.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

If no free TU is available when the spawn instruction is
executed, the system looks for a speculative thread that is
more speculative (further in sequential time) than the new
thread that we want to spawn. If any is found, the most
speculative one is canceled, and its TU is assigned to the
new thread.

Threads in the Mitosis processor are committed in a
sequential program order. The thread executing the oldest
instructions in program order is nonspeculative, whereas
the rest are speculative. When any running thread reaches
the CQIP of any other active thread, it stops fetching
instructions until it becomes nonspeculative. Then, a
verification process checks that the next speculative thread
has been executed with the correct input values. If the
speculation has been correct, the nonspeculative thread is
committed, and its TU is freed. Moreover, the next
speculative thread now becomes the nonspeculative one:
it will either continue executing in nonspeculative mode or,
if it has already reached another CQIP, immediately
proceed to verify its successor. If there is misspeculation,
the next speculative thread and all its successors are
squashed, and the nonspeculative thread continues execut-
ing the instructions beyond the CQIP. Other less conserva-
tive recovery mechanisms such as selective reissuing can
reduce the impact of squashing the whole thread and its
successors but are not considered in this paper due to their
higher complexity. Our results indicate that the high
accuracy of the slice-based live-in prediction makes the
system relatively insensitive to squash overhead.

In the Mitosis processor, the spawning mechanism is
highly general. Any speculative or nonspeculative thread
can spawn a new speculative thread upon reaching an SP.
Moreover, speculative threads can be spawned out of the
program order; that is, threads can be created in a different
order than they will be committed.

3 MITOSIS COMPILER

The Mitosis compiler [10] for this architecture performs the
following highly coupled tasks: 1) select the best candidate
spawning pairs and 2) generate the p-slices for each pair
and optimize them to minimize the overhead. We will detail
these two steps in the following.

The proposed scheme has been implemented in the
code generation phase (after optimizations) of the ORC
compiler [13]. The compiler makes use of the information
provided by an edge profile. This information includes the
probability of going from any basic block to each of its
successors and the execution count of each basic block.

3.1 Pair Identification and Selection

A key feature of the proposed compilation tool is its
generality in the sense that it can discover a speculative TLP
in any region of the program. The tool is not constrained to
analyze potential spawning pairs at loop or subroutine
boundary, but practically, any pair of basic blocks is
considered a candidate spawning pair. To reduce the search
space, we first apply the following filters to eliminate
candidate pairs that likely have little potential:

1. Spawning pairs in routines whose contribution to
the total execution of the program is lower than a
threshold are discarded.

2. Both basic blocks of the spawning pair must be
located in the same routine and at the same loop level.
Notice that this does not constrain the possibility of
selecting candidate pairs different from loop itera-
tions and subroutine continuations. For instance,
potentially important spawning pairs like those that
partition large sequential regions are also eligible.

3. The length of the spawning pair (as the average
length of all the paths from the SP to the CQIP) must
be higher than a certain minimum size in order to
overcome the initialization overhead when a spec-
ulative thread is created. It must also be lower than a
certain maximum size in order to avoid very large
speculative threads and stalls due to the lack of
space to store speculative state.

4. The probability of reaching the CQIP from the SP
must be higher than a certain threshold.

5. Finally, the ratio between the length of the p-slice and
the estimated length of the speculative thread must
be lower than a threshold. This ratio is a key factor in
determining the potential benefits of the thread.

Selecting the best set of spawning pairs requires assessing
the benefit of any given candidate pair. However, determin-
ing the benefits of a particular spawning pair is not
straightforward and cannot be done on a pair-per-pair basis.
The effectiveness of a pair depends not only on the control
flow between the SP and the start of the thread, the control
flow after the start of the thread, and the accuracy and
overhead of its p-slice but also on the number of hardware
contexts available to execute speculative threads and
interactions with other speculative threads running at the
same time.

Once the set of candidate pairs is built, the selection of
pairs is performed using a greedy search by means of a cost
model that estimates the expected benefit of any set of
potential spawning pairs. This model takes into account the
aforementioned parameters. The goal of this model is to
analyze the behavior and interactions of the set of spawning
pairs when the program is executed on the given
Mitosis processor. The output of the model is the expected
execution time. For the sake of simplicity, we assume in
the following that the execution of any instruction takes a
unit of time. However, the model can be extended in a
straightforward manner to include different execution times
for each static instruction (for example, using average
memory latencies obtained through profiling).

3.2 P-Slice Generation

For each spawning pair, the compiler identifies its input
values and generates the p-slice, which consists of a minimal
set of instructions between the SP and CQIP, assuring that
the input values are almost always correct. The p-slice is
built by traversing the control-flow graph backward from its
CQIP until the SP. The identification of data dependences is
relatively straightforward for register values but is harder
for memory values. To detect memory dependences, the
Mitosis compiler uses a memory dependence profiler.

Large p-slices significantly constrain the benefits of
speculative threads. However, a key feature of the
Mitosis SpMT architecture is that it can detect and recover
from misspeculations. This opens the door to new types of

916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

aggressive/unsafe optimizations that otherwise could not
be applied by the compiler and that have the potential of
significantly reducing the overhead of p-slices. The follow-
ing optimizations have been considered so far:

. Memory dependence speculation. Based on a memory
dependence profile, dependences that never occur in
practice or occur very infrequently are discarded.

. Branch pruning. Based on an edge profile, paths that
exhibit low probability of being taken are ignored.
These paths may belong to either the body of the
speculative thread or its p-slice. In the first case,
live-ins in the pruned path are ignored. In the
second case, all the instructions of the pruned path
from the p-slice are removed, as well as the
predecessors of these removed instructions, if their
output is not used elsewhere.

A lot of research remains to be done on the compiler side,
mainly in the form of new p-slice optimizations and pair
selection techniques. In the Mitosis paradigm, the perfor-
mance of the architecture is clearly sensitive to the quality
of the compiler; thus, we expect the performance of the
architecture to improve significantly as the compiler
improves.

Full details of the Mitosis compiler infrastructure can be
found in [10].

4 THE MITOSIS PROCESSOR

The Mitosis processor has a multicore design similar to an
on-chip multiprocessor (CMP), as shown in Fig. 2. Each
TU executes a single thread at a time and is similar to a
conventional superscalar core. Each speculative thread may
have a different version for each logical register and memory
location. The ability to have different active versions for the
register and memory values is supported by means of a local
register file (LRF) and a local cache per TU. In this section,
the most relevant components of the microarchitecture are
described, including the Multiversion Register File and the
Multiversion Memory. These two structures maintain a
single global view of register and memory contents while
allowing multiple local versions of those values.

The most novel aspect of this architecture is the use of
p-slices to precompute live-ins for the speculative threads.
This has several implications and challenges for the
microarchitecture. Although the p-slice and the thread

execute consecutively on the TU, they differ in significant
ways. First, the p-slice executes in the speculative domain of
the parent (at the SP), whereas the thread executes in a more
speculative domain, following the CQIP. Second, register
and memory values produced by the p-slice must be
validated (usually) but are not committed: they predict the
processor state but are not processor states. Conversely,
values produced in the thread must be committed but do
not need to be validated.

Therefore, the architecture must support the following
features for executing p-slices:

. It must be able to distinguish between a p-slice and a
regular computation.

. P-slice register and memory writes must be handled
differently from regular writes.

. The state of the parent thread at the SP must remain
visible to the p-slice, even if values are overwritten
by the parent, as long as the p-slice is still executing.

The specific implementation of these features, as well as
other novel features of the architecture to support the
Mitosis speculative multithreading model, is described in
the following sections.

4.1 Spawning Threads

A speculative thread starts when any active thread executes
a spawn instruction in the code. The spawn instruction
triggers the allocation of a TU, the initialization of some
registers, and the ordering of the new thread with respect to
the other active threads. These tasks are handled by the
Speculation Engine.

To initialize the register state, the spawn instruction
includes a mask that encodes which registers are p-slice
live-ins. Registers included in the mask are copied from the
parent thread to the spawned one. Our studies show that on
the average, just six registers need to be initialized.

Any active thread is allowed to spawn a new thread
when it executes a spawn instruction. Additionally, spec-
ulative threads can be spawned out of the program order;
that is, a speculative thread that would be executed later
than another thread, if executed sequentially, can be
spawned in reverse order in the Mitosis processor. Previous
studies have shown that out-of-order spawning schemes
have a much higher performance potential than in-order
approaches [1], [20], [15].

It is also necessary to properly order the spawned thread
with respect to the rest of the active speculative threads. The
order among threads will determine where a thread is
going to look for values not produced by itself and will be
used to check misspeculations. Akkary and Driscoll [1]
proposed a simple mechanism in which the new spawned
thread is always assumed to be the most speculative. On the
other hand, Marcuello [15] proposed an order predictor
based on the previous executions of the speculative threads.
This latter scheme takes advantage of the fact that thread
spawning patterns are typically repeated. This suggests a
simple order predictor that predicts for a new spawned
thread the same order seen in its previous executions with
the same coexecuting threads.

Fig. 3 shows the order predictor used in the Mitosis
processor. It is made up of a table that is indexed by the

MADRILES ET AL.: MITOSIS: A SPECULATIVE MULTITHREADED PROCESSOR BASED ON PRECOMPUTATION SLICES 917

Fig. 2. Mitosis processor microarchitecture.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

SP address of the newly spawned thread, and it contains all
the relationship information of that thread regarding the
other active threads. The entries of the table may be tagged
or nontagged. In this work, we have considered a nontagged
approach. Each entry of the table holds a bitmap. When a
thread spawns a new thread, this bitmap is accessed for all
the active speculative threads that are within the parent
thread and the most speculative thread. Each bit of the
bitmap represents whether the new thread would be more
(that is, 1) or less (that is, 0) speculative, a thread that hashes
to that index in the bitmap. The hash function uses the
original spawn point address for each of the active threads.

Fig. 3 gives an example. Thread 0 spawns a new
thread (T3). We know that T3 occurs in the program
order after T0, but we do not know where it falls relative
to threads T1 and T2. Thread T1’s hash function indexes
to the fourth bit, and T2 indexes to the eighth bit. Those
bits indicate that T3 (based on its past history) should fall
before T2 but after T1. Thus, when T1 reaches T3’s CQIP,
it will assume that T3 is its successor.

The bitmaps of the Order Prediction Table may contain
single-bit information for each thread (as in Fig. 3) or can
also be implemented by means of n-bit saturated counters.
In our experiments, we assume that each entry contains
eight 2-bit saturated counters, since this provides the best
average hit ratios. With this configuration, our studies show
that the average hit ratio of the order predictor is higher
than 98 percent.

4.2 Multiversion Register File

To achieve correct execution and high performance, the
architecture must simultaneously support the following
seemingly conflicting goals: a unified view of all committed
register state, the coexistence of multiple versions of each
register, register dependences that cross TUs, and a latency
similar to a single LRF.

This support is provided by the Mitosis multiversion
register file. As shown in Fig. 4a, the register file has a
hierarchical organization. Each TU has its own LRF, and
there is a Global Register File (GRF) for all the TUs. There is
also a table, the Register Versioning Table (RVT), that has as
many rows as logical registers and as many columns as TUs
and tracks which TUs have a copy of that logical register.

When a speculative thread is spawned in a TU, the p-slice
live-in registers are copied from the parent thread to the LRF
of the spawned thread. These registers are identified by a
mask in the spawn instruction, as it was previously pointed
out. Remember that slices have the characteristic that they
are neither more nor less speculative than the parent thread.
In fact, they execute a subset of instructions of the parent
thread, so the speculation degree is the same. Therefore, it
needs to access the same register versions, as the parent
thread would see at the SP (while executing in a different TU).

The values produced by a speculative thread are always
stored in its LRF. On the first write to a register in the LRF,
the corresponding entry of the RVT is set to mark that this
TU has a local copy of this register.

When a thread requires a register value, the LRF is
checked first. If the value is not present, then the RVT is
accessed to determine the closest predecessor thread that has
a copy of the value. If there are no predecessors that have the
requested register, the value is obtained from the GRF.

There is an additional structure per core, the Register
Validation Store (RVS), which is used for validation pur-
poses. When a speculative thread reads a register for the
first time and this value has not been produced by the thread
itself, the value is copied into this structure. Additionally,
those register values generated by the p-slice that have been
used by the speculative thread are also inserted in the RVS.
When this thread is validated, the values in the RVS are
compared with the actual values of the corresponding
registers in the predecessor thread. By doing so, we ensure
that values consumed by the speculative thread are identical
to those that would have been seen in a sequential execution.
Because we explicitly track the values consumed, incorrect
live-ins produced by the slice that are not consumed do not
cause misspeculation.

Finally, when the nonspeculative thread commits, all the
modified registers in the LRF are copied into the GRF. An
evaluation of the performance impact of the Multiversion
Register File design has been done. On the average, more than

918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008

Fig. 3. Mitosis order predictor.

Fig. 4. (a) Multiversion register file. (b) Multiversion memory system.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

99 percent of the register accesses are satisfied from the LRF
for the benchmarks evaluated. Thus, the average perceived
latency for register access is essentially equal to the latency of
the LRF, meeting the goals for our register file hierarchy.
When we miss in the LRF, most of the accesses are to the GRF,
and only a few go to a remote register file. This is because
most of the register values needed by the speculative thread
are usually computed by the p-slice: this is another side
benefit of the accuracy of the p-slice mechanism.

4.3 Multiversion Memory System

Similar to the register storage, the memory system of the
Mitosis processor provides support for multiversioning;
that is, it allows different threads to have different versions
for each memory location. As shown in Fig. 4b, each TU has
its own L0 and L1 data caches, which are responsible for
maintaining all speculative values, since speculative
threads are not allowed to modify the main memory.
Moreover, three additional structures are needed at each
TU: the Slice Buffer (SB), the Old Buffer (OldB), and the RC.
Finally, there is a global L2 cache shared among all the TUs
that can only be updated by the nonspeculative thread and
centralized logic to handle the order list of the different
variables, that is, the Version Control Logic (VCL).

The architecture of this memory system is inspired by
the Speculative Versioning Cache (SVC) [11], with notable
extensions to handle p-slices in our implementation. As a
summary, the Mitosis memory subsystem contains the
following novel features: support for p-slice execution and
the RC. This section focuses on these new features.

A load in a p-slice needs to read the value of that
memory location at the SP, whereas a load in the thread
needs to see the value at the CQIP, unless the value was
produced by a store in the same thread. For this reason,
during the execution of a p-slice, the processor needs to
have an exact view of the machine state of the parent at the
time of the spawn instruction. Therefore, when a thread
performs a store and any of its children is still executing its
p-slice, the value of that memory location needs to be saved
before overwriting it, since its children may later require
that value. The buffers used for storing the values that are
overwritten while a child is executing a p-slice are referred
to as OldBs. Each TU has as many OldBs as direct child
threads are allowed to be executing a p-slice simulta-
neously. Thus, when a speculative thread that is executing
the p-slice performs a load to a memory location, it first
checks for a local version at its local memory. In case of a
miss, it checks in its corresponding OldB from the parent
thread. If the value is there, then it is forwarded to the
speculative thread. Otherwise, it looks for it at any less
speculative thread cache. When a speculative thread
finishes its slice, it sends a notification to its parent thread
to deallocate the corresponding OldB. Finally, it is possible
that a thread finishes its execution and some of its children
are still executing the p-slice. Then, those OldBs cannot be
freed until these threads finish their corresponding p-slices.

The values read from the corresponding OldB during the
execution of a p-slice are stored in the local memory but
have to be marked in some way to avoid being read by any
other thread and mistaken as state expected to be valid
beyond the CQIP. To prevent a more speculative thread

from incorrectly reading these values, a new bit is added to
the SVC protocol, which is referred to as the Old Bit. When a
thread that is executing the slice performs a load from the
parent OldB, the value is inserted into the local cache with
the Old Bit set. Then, when a more speculative thread
requests this value and if it finds the Old Bit set, it knows
that the value stored in that cache may potentially be old
and is ignored. Finally, when the slice finishes, all the lines
of the local cache with the Old Bit set are invalidated.

SBs are used to store the values computed by the p-slice
in order to be later validated. When a thread is allocated to a
TU, the SB is reset. All the stores performed during the
execution of the p-slice go directly to the SB, bypassing the
cache. Each entry of the SB contains an address, a value, a
read bit, and a valid bit. When the slice finishes and the
speculative thread starts the execution of its body, the SB is
checked first whenever a value is read from the memory. If
the value is there, the read bit is set, and the value is copied
to the cache. When the thread is validated, all the values
that have been consumed from the SB have to be checked
for their correctness. Thus, those entries that have their read
bit set are compared with the value of the corresponding
memory locations seen by the previous (terminated) thread.

The speculative multithreading execution model can
cause problems for the cache subsystem, especially when
implemented on a multicore architecture without shared
L1 caches. A sequential execution would pass values from
stores to loads within the single cache, whereas with
speculative multithreading, it is common that the load
executes in a different thread context than the store.
Additionally, data that exists in the cache when the thread
starts is not necessarily valid for this thread. Since this
architecture is capable of exploiting parallelism from rela-
tively small threads, if threads only exploited same-thread
memory locality, cache miss rates would be extremely high.
However, without modifying the memory subsystem, this
is exactly what happens, and preliminary experiments
confirmed this result: every newly spawned thread begins
with a completely empty cold cache.

The results of this preliminary study for a subset of the
Olden benchmarks and a reduced input set (executing
about 10 million instructions) are shown in Fig. 5. These
results correspond to the miss ratio for a memory system
with a 16-Kbyte local L0 data cache and a four-way 1-Mbyte
local L1 cache. Complete details of the simulations and the

MADRILES ET AL.: MITOSIS: A SPECULATIVE MULTITHREADED PROCESSOR BASED ON PRECOMPUTATION SLICES 919

Fig. 5. Multiversion cache (L1) miss ratio for the basic MVC protocol, the
full MVC protocol (with the stale bit), and the RC.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

benchmarks are described in the next section. The leftmost
bar corresponds to the initial implementation of the multi-
version memory, as described above. The miss ratio can be
reduced by introducing a stale bit in the memory protocol,
as proposed in [11]. The stale bit marks whether committed
data on a local L1 cache, pending to be propagated to main
memory, is stale and thus cannot be used on a local cache
access. Without the stale bit, every access to the committed
data on a local L1 cache has to be treated as a miss, because
the data is potentially stale.

The miss ratio for this feature is depicted in the
second bar. The stale bit achieves a drastic reduction in
miss ratio by allowing sharing between threads that follow
each other temporally on the same core, but the miss rate is
still high, because there is no locality between threads on
different cores.

To further reduce the miss ratio, the Mitosis processor
includes an RC. This cache works as follows: When a thread
performs a store, it sends a bus request to know whether
any more speculative thread has performed a load on that
address in order to detect misspeculations due to memory
dependence violations. Together with this request, we send
the value and store it in the RC of all the threads that are
more speculative and all free TUs. Thus, when a thread
performs a load, the local L1 and RC are checked
simultaneously. If the value requested is not in L1 but in
the RC, the value is moved to L1 and supplied to the TU.
This simple mechanism prevents the TUs from starting with
cold caches and taking advantage of locality. The RC enables
write-update coherence. Although write-update (versus
write-invalidate) is less common among recent multiproces-
sor implementations, it is justified for two reasons: 1) the
write messages piggyback messages already required in
this system and 2) more importantly, in this architecture,
implementing a sequential execution model, store-load
communication between cores is much higher than on a
system executing conventionally parallelized code.

The miss ratio for two configurations of the RC is shown
in the rightmost bars. It can be observed that the use of a
four-way 16-Kbyte RC significantly reduces the miss ratio
to 15 percent on the average. Further reduction in the miss
rate can be achieved by a larger 1-Mbyte RC.

4.4 Thread Validation

A thread finishes its execution when it reaches the starting
point of any other active thread, that is, the CQIP. At this
point, if the thread is nonspeculative, it validates the next
thread. Otherwise, it waits until it becomes the nonspecu-
lative one. The first thing to verify is the order. The CQIP
found by the terminating thread is compared with the CQIP
of the following thread in the thread order (as maintained
by the order predictor). If they are not the same, then an
order misspeculation has occurred, and the following
thread and all its successors are squashed.

If the order is correct, the thread input values used by
the speculative thread are verified. These comparisons may
take some time, depending on the number of values to
validate. We have observed that on the average, in our
studies, thread validation results in only checking less than
one memory value and about five register values. Note that
only memory values produced by the slice and then
consumed by the thread (values read from the SB) need to
be validated when the previous thread finishes. Other
memory values consumed by the thread are dynamically
validated through the versioning protocol as soon as they are
produced. If no misspeculations are detected, the nonspecu-
lative thread is committed, and the next thread becomes the
nonspeculative one. The TU assigned to the finished thread
is freed, except when there is a child thread that is still
executing the p-slice, since it may require values in the OldB.

5 EVALUATION

The performance of the Mitosis processor has been
evaluated through a detailed execution-driven simulation.
The Mitosis processor simulator models a research Itanium
CMP processor with four TUs, and it is based upon
SMTSIM [31], configured for multicore execution. The main
parameters considered are shown in Table 1. The numbers
in the table are per TU.

The simulator executes binaries generated by our Mitosis
compiler. In this paper, we present the initial results for the
Olden benchmarks, which exhibit the complex interdepen-
dence patterns between prospective threads targeted by

920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008

TABLE 1
Mitosis Processor Configuration (per TU)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

these techniques but are small enough to be handled easily
by our compiler. Improving the compiler infrastructure to
handle larger and more complex programs (for example,
SPEC) is ongoing. The benchmarks used are bh, em3d,
health, mst, and perimeter, with an input set that, on the
average, executes around 300 million instructions. The rest
of the suite has not been considered due to the recursive
nature of the programs. Currently, the Mitosis compiler is
not able to extract speculative TLP in recursive routines.
This feature will be targeted in our future work. Statistics in
the next section correspond to the whole execution of the
programs. Different input data sets have been used for
profiling and simulation.

The Olden suite has been chosen, since automatic
parallel compilers are unable to extract TLP. To corroborate
this, we have compiled the Olden suite with the Intel C++
production compiler, which produces parallel code. None
of the loops in these applications was parallelized by this
compiler.

5.1 Performance Figures

Statistics corresponding to the characterization of the
speculative threads are shown in Table 2. The last row
shows the arithmetic mean for the evaluated benchmarks.
The second column shows the number of spawned threads
by benchmark, and the third column shows the average
number of speculative instructions executed by the spec-
ulative threads. It can be observed that bh spawns the fewest
number of threads, but the average size is about 30 times
larger than for the rest of the benchmarks. On the other hand,
mst spawns the most, but the average size is the lowest.
The fourth column shows the average dynamic size of the
slices, and the fifth column shows the relationship between
the sizes of the speculative threads and their corresponding
slice. This percentage is consistently quite low for all
the studied benchmarks and, on the average, is less than
3 percent. The low slice overhead comes from three sources:
the careful choice of SP-CQIP pairs, the elimination of all
unnecessary computation, and the aggressive (and some-
times unsafe) minimization of the slice size by the compiler
(errors in the slice are manifested as invalid live-ins,
which are captured by the Mitosis hardware).

The sixth column shows the average number of thread
input values that are computed by the slice; that is, on the
average, it is only necessary to compute three values to

execute the speculative threads. This supports our hypoth-
esis that irregular programs contain parallel regions of code
not easily detectable with conventional compiler techniques.
Finally, the rightmost column represents the average
percentage of squashed threads. For most of the benchmarks,
this percentage is rather low, except for health, where almost
one of every four threads is squashed. We have observed
that for this benchmark, memory dependences for the
profiling and simulated inputs are significantly different,
which result in many memory dependence misspeculations.

Fig. 6 shows the speedups of the Mitosis processor over a
superscalar in-order processor with about the same re-
sources as one Mitosis TU with no speculative threading.
For comparison, we also show the speedup of a more
aggressive processor, with twice the amount of resources
(functional units), twice the superscalar width and out-of-
order issue (with no speculative threading), and a processor
with a perfect first-level cache (an aggressive upper limit to
the performance of helper threads that target cache misses).

It can be observed that the Mitosis processor achieves an
average speedup close to 2.2 over single-threaded execution,
whereas the rest of the configurations provide a much lower
performance. Perfect memory achieves a speedup of just 1.23,
and the more aggressive out-of-order processor only pro-
vides a 1.26 speedup. These results show that when the lack of
execution resources are the bottleneck (em3d, with high
instruction-level parallelism), Mitosis alleviates this problem

MADRILES ET AL.: MITOSIS: A SPECULATIVE MULTITHREADED PROCESSOR BASED ON PRECOMPUTATION SLICES 921

TABLE 2
Characterization of the Olden Benchmarks

Fig. 6. Speedup over a single-threaded execution.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

as effectively as a much more complex uniprocessor by
spreading the computation among multiple cores. When

memory latency is the bottleneck (mst, with L1 miss ratio over
70 percent), the ability to hide memory latencies in Mitosis

(speculative threads do not stall waiting for load misses on
other cores) gives the performance of a perfect cache. In

summary, we find Mitosis mirrors an aggressive superscalar
when the ILP is high, an unattainable memory subsystem

when memory parallelism is high, and outperforms both
when neither ILP nor memory parallelism is high.

Fig. 7a shows the degree of speculative TLP that is

exploited in the Mitosis processor. It can be observed that
even though parallel compilers are unable to find TLP in

these benchmarks, there is, in fact, a high degree of TLP. On
the average, the number of active threads per cycle that
perform useful work is around 2.5.

We have also measured that, on average, 1.2 TUs are idle
due to the lack of threads. Fig. 7b shows the active time
breakdown for the execution of the different benchmarks in

the Mitosis processor. As expected, the most of the time the
TUs are executing useful work (the sum of the nonspecu-

lative and the speculative execution). On the average, this is
nearly 80 percent of the time that the TUs are working and

higher than 90 percent for bh and em3d. The overhead
added by this execution model represents less than

20 percent for these benchmarks. The most significant part
of it comes from the wait time. This time stands for the time

that a TU has finished the execution of a speculative thread
but it has to wait until becoming nonspeculative to commit.
The other components of the overhead are the slice

execution, initialization, validation, and commit overhead.
It is worth noting that the overhead of the slices only

amounts to 4 percent. Finally, the top of the bars shows the
average time that TUs are executing incorrect work, that is,

executing instructions for threads that are later squashed.
This percentage is only 8 percent overall, mostly due to

health, where the overhead is almost 20 percent. In this
case, most of the squashes are due to memory violations, as

previously pointed out in this section, and the cascading
effect of the squashing mechanism. Recall, however, that
health still maintains a three-time speedup, despite these

squashes.

These results strongly validate the effectiveness of the
execution model introduced in this paper (p-slice-based
speculative multithreading) in meeting the Mitosis design
goals: high performance, resulting from high parallelism
(low wait time), high spawn accuracy (very low squash
rates), and low spawn and prediction overhead (very low
slice overheads).

6 RELATED WORK

Multithreaded architectures have been studied extensively,
with the primary focus on the improvement of throughput
by executing several independent threads or dependent
threads from parallel applications. Examples of architec-
tural paradigms that exploit this kind of nonspeculative
TLPs are multiprocessors and simultaneous multithreaded
processors [31].

For speculative multithreading, pioneering works were
the Expandable Split Window Paradigm [9] and the follow-
up work Multiscalar processor [26]. This microarchitecture
is made up of several execution units interconnected by
means of a unidirectional ring. Speculative threads are
created by the compiler based on several heuristics that try
minimizing data dependences among threads and maximiz-
ing workload balance, among other compiler criteria [32].

Some other examples of speculative multithreaded
architectures are the Superthreaded architecture [30], the
Dynamic Multithreaded Processors [1], and the Clustered
SpMT [15]. In those architectures, speculative threads are
assigned to well-known program constructs such as loop
iterations, loop continuations, and subroutine continuations.

A more generic scheme for partitioning the program into
speculative threads has been recently presented [17]. This
work differs in the way speculative thread inputs are
predicted. Mitosis uses a software-based approach, whereas
a hardware-based scheme is used in that earlier work [17].
This has important implications on the architecture and the
required compiler analysis.

There has also been prior research focused on speculative
multithreading for CMPs. For instance, the I-ACOMA Group
[3], [4], [14], [22], the STAMPede Group [27], [28], and the
Hydra Group [12], [19] have proposed compiler-based
techniques to speculatively exploit TLP. In these works,
loops are considered as the main source of speculative TLP.

922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008

Fig. 7. (a) Average number of active threads/cycle. (b) Time breakdown for the Mitosis processor.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

A different approach for CMPs is taken by the Atlas
multiprocessor [6]. Speculative threads are obtained by
means of the MEM-slicing algorithm, which, instead of
spawning threads at points of the program with high control
independence, spawns threads at memory access instruc-
tions. On the other hand, Warg and Stenström [33] also
used a CMP to exploit speculative TLP at the module level
(procedures, functions, methods, etc.).

With regard to the implementation of multiversion
structures, some proposals for register files [2], [14] and
memory subsystem [3], [11] can be found in some previous
work, but the execution model of the Mitosis processor
requires special features not considered in those previous
works. Prvulovic et al. [22] proposed some optimizations to
increase the scalability of the memory subsystem that are
also applicable to the Mitosis processor.

Finally, it is well known that the way interthread data
dependences are managed strongly affects the perfor-
mance of speculative multithreaded processors [15].
Basically, two mechanisms have been studied previously:
synchronization and value prediction. Synchronization
mechanisms include all those mechanisms where an
interthread-dependent instruction has to wait for the
computation of the value at the producer thread. There
are techniques to reduce these long latencies, such as code
reordering [30], identifying the last writer [26], etc.
Compared to these techniques, Mitosis can benefit from
aggressive speculative optimizations that can reduce the
size of the p-slice over the prologue of the Superthreaded
or to have the values available earlier than Multiscalar.

Value prediction of dependences can significantly in-
crease parallelism, especially for register values that are
quite predictable [16], but memory values are harder to
predict [4], [28]. Speculative multithreading architectures
are particularly sensitive to value prediction accuracy,
because multiple values must typically be predicted cor-
rectly for the thread to be useful. In contrast to the hardware
approach, Mitosis uses p-slices to predict in the software
the interthread data dependent values. This scheme im-
proves on hardware value prediction, since the prediction is
potentially more accurate, since the computation of these
values is directly derived from the original code. Addition-
ally, it can encapsulate multiple control flows that contribute
to the computation of the live-ins. Some hardware value
predictors can also do that [16], but they require additional
hardware to predict the control flow of the parent thread.
Another usage model of p-slices in the area of speculative
multithreading has been recently proposed for recovering
from interthread dependence violations [25].

The Pinot group [21] has proposed a speculative multi-
threading architecture with a generic thread partition scheme
that is able to exploit TLS over a wide range of granularities as
Mitosis does. However, the Pinot architecture does not
support out-of-order spawning, and interthread data depen-
dences are handled through code reordering, without
including any support for hardware or software prediction.

The use of Helper Threads to reduce the latency of high-
cost instructions has been thoroughly studied [7], [24], [34].
This research borrows some high-level concepts from that
body of work to create the p-slices for thread live-ins.
However, the need of Mitosis to precompute a set of values
accurately (as opposed to a single load address or branch
result), as well as an increased cost of misspeculation,

requires significantly more careful creation of slices, and the
inclusion of a more accurate control flow in the slice
(previous work on helper threads typically followed only a
single control flow path in a slice) makes it quite different
from other models.

Finally, Zilles and Sohi present a different scheme to
exploit speculative TLP by means of distilled programs [35].
A distilled program executes a small subset of the instructions
of a given program to compute the input values of all
speculative threads. In that execution model, the distilled
program runs as a master thread. When all the input values
for a speculative thread are computed, it is spawned on an
idle context, whereas the master starts computing new input
values for the next thread. The Mitosis execution model
differs from that previous work in the fact that the
computation of the thread live-in values are done by the
speculative threads themselves, which allows the processor
to spawn threads out of the program order and to often
compute the live-ins for many speculative threads in parallel.

7 CONCLUSIONS

In this work, we have presented and evaluated the Mitosis
processor, which exploits speculative TLP through a novel
software scheme to predict and manage interthread data
dependences that leverages the original code to compute
thread live-ins. It does so by inserting a piece of code in
the binary that speculatively computes the values at the
starting point of the speculative thread. This code, referred
to as a p-slice, is built from a subset of the code after the
spawn instruction and before the beginning of the
speculative thread. A key feature of the Mitosis processor
is that p-slices do not need to be correct, which allows the
compiler to use aggressive optimizations when generating
them, to keep the p-slice overhead low.

The key microarchitecture components of the Mitosis
processor have been presented: 1) hardware support for the
spawning, execution, and validation of p-slices allows the
compiler to create slices with minimal overhead, 2) a novel
multiversion register file organization supports a unified
global register view, multiple versions of register values,
transparent communication of register dependences across
processor cores, all with no significant latency increase
over traditional register files, and 3) the memory system
supports multiple versions of memory values and intro-
duces a novel architecture that pushes values toward
threads that are executing future code to effectively mimic
the temporal locality available to a single-threaded proces-
sor with a single cache.

Finally, the results obtained by the Mitosis processor
with four TUs for a subset of the Olden benchmarks show a

significant performance potential for this architecture. It

outperforms the single-threaded execution by 2.2 times

and provides more than a 1.75 speedup over a double-sized
out-of-order processor. A similar speedup was achieved

over a processor with perfect memory. These results

confirm that there are large amounts of available TLP for
code that is resistant to conventional parallelism techniques.

However, this parallelism requires highly accurate depen-

dence prediction and efficient data communication between
threads, as provided by the Mitosis architecture.

MADRILES ET AL.: MITOSIS: A SPECULATIVE MULTITHREADED PROCESSOR BASED ON PRECOMPUTATION SLICES 923

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work was done while D.M. Tullsen was on a sabbatical

leave and was with the Interl-UPC Barcelona Research

Center (IBRC).

REFERENCES

[1] H. Akkary and M.A. Driscoll, “A Dynamic Multithreading
Processor,” Proc. 31st IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), 1998.

[2] S. Breach, T.N. Vijaykumar, and G.S. Sohi, “The Anatomy of
the Register File in a Multiscalar Processor,” Proc. 25th IEEE/
ACM Int’l Symp. Microarchitecture (MICRO ’94), pp. 181-190,
1994.

[3] M. Cintra, J.F. Martinez, and J. Torrellas, “Architectural Support
for Scalable Speculative Parallelization in Shared-Memory
Systems,” Proc. 27th IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), 2000.

[4] M. Cintra and J. Torrellas, “Eliminating Squashes through
Learning Cross-Thread Violations in Speculative Parallelization
for Multiprocessors,” Proc. Eighth Int’l Symp. High-Performance
Computer Architecture (HPCA), 2002.

[5] R.S. Chappel, J. Stark, S.P. Kim, S.K. Reinhardt, and Y.N. Patt,
“Simultaneous Subordinate Microthreading (SSMT),” Proc.
26th Int’l Symp. Computer Architecture (ISCA ’99), pp. 186-195, 1999.

[6] L. Codrescu and D. Wills, “On Dynamic Speculative Thread
Partitioning and the MEM-Slicing Algorithm,” Proc. Int’l
Conf. Parallel Architectures and Compilation Techniques (PACT ’99),
pp. 40-46, 1999.

[7] J.D. Collins, H. Wang, D.M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J.P. Shen, “Speculative Precomputation: Long
Range Prefetching of Delinquent Loads,” Proc. 28th Int’l
Symp. Computer Architecture (ISCA), 2001.

[8] K. Diekendorff, Compaq Chooses SMT for Alpha, microprocessor
report, Dec. 1999.

[9] M. Franklin and G.S. Sohi, “The Expandable Split Window
Paradigm for Exploiting Fine-Grain Parallelism,” Proc. 19th Int’l
Symp. Computer Architecture (ISCA ’92), pp. 58-67, 1992.

[10] C. Garcia, C. Madriles, J. Sanchez, P. Marcuello, A. Gonzalez,
and D.M. Tullsen, “Mitosis Compiler: n Infrastructure for
Speculative Threading Based on Pre-Computation Slices,” Proc.
ACM Conf. Programming Language Design and Implementation
(PLDI ’05), June 2005.

[11] S. Gopal, T.N. Vijaykumar, J.E. Smith, and G.S. Sohi, “Speculative
Versioning Cache,” Proc. Fourth Int’l Symp. High-Performance
Computer Architecture (HPCA), 1998.

[12] L. Hammond, M. Willey, and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor,” Proc. Eighth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1998.

[13] http://ipf-orc/sourceforge.net, 2007.
[14] V. Krishnan and J. Torrellas, “Hardware and Software Support

for Speculative Execution of Sequential Binaries on a Chip-
Multiprocessor,” Proc. Int’l Conf. Supercomputing (ICS ’98),
pp. 85-92, 1998.

[15] P. Marcuello, “Speculative Multithreaded Processors,” PhD
dissertation, Universitat Politecnica de Catalunya, 2003.

[16] P. Marcuello, J. Tubella, and A. González, “Value Prediction for
Speculative Multithreaded Architectures,” Proc. 32nd Int’l Conf.
Microarchitecture (MICRO ’99), pp. 203-236, 1999.

[17] P. Marcuello and A. González, “Thread-Spawning Schemes
for Speculative Multithreaded Architectures,” Proc. Eighth
Int’l Symp. High-Performance Computer Architecture (HPCA),
2002.

[18] T. Marr et al., “Hyperthreading Technology Architecture and
Microarchitecture,” Intel Technology J., vol. 6, no. 1, 2002.

[19] J. Oplinger et al., “Software and Hardware for Exploiting
Speculative Parallelism in Multiprocessors,” Technical Report
CSL-TR-97-715, Stanford Univ., 1997.

[20] A. Mendelson et al., “CMP Implementation in the Intel Core Duo
Processor,” Intel Technology J., vol. 10, no. 2, 2006.

[21] T. Ohsawa, M. Takagi, S. Kawahara, and S. Matsushita, “Pinot:
Speculative Muti-threading Processor Architecture Exploiting
Parallelism over a wide Range of Granularities,” Proc. 38th Int’l
Symp. Microarchitecture (MICRO), 2005.

[22] M. Prvulovic, M.J. Garzarán, L. Rauchwerger, and J. Torrellas,
“Removing Architectural Bottlenecks to the Scalability of
Speculative Parallelization,” Proc. 28th Int’l Symp. Computer
Architecture (ISCA), 2001.

[23] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas,
“Tasking with Out-of-Order Spawn in TLS Chip Multiprocessors:
Microarchitecture and Compilation,” Proc. 19th ACM Int’l Conf.
Supercomputing (ICS), 2005.

[24] A. Roth and G.S. Sohi, “Speculative Data-Driven Multithreading,”
Proc. Seventh Int’l Symp. High-Performance Computer Architecture
(HPCA ’01), pp. 37-48, 2001.

[25] S.R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou, “ReSlice: Selective
Re-Execution of Long-Retired Misspeculated Instructions Using
Forward Slicing,” Proc. 38th Int’l Symp. Microarchitecture (MICRO),
2005.

[26] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar Proces-
sors,” Proc. 22nd Int’l Symp. Computer Architecture (ISCA ’95),
pp. 414-425, 1995.

[27] J. Steffan and T. Mowry, “The Potential of Using Thread-Level
Data Speculation to Facilitate Automatic Parallelization,”
Proc. Fourth Int’l Symp. High-Performance Computer Architecture
(HPCA ’98), pp. 2-13, 1998.

[28] J. Steffan, C. Colohan, A. Zhai, and T. Mowry, “Improving
Value Communication for Thread-Level Speculation,” Proc.
Eighth Int’l Symp. High-Performance Computer Architecture
(HPCA ’98), pp. 58-62, 1998.

[29] S. Storino and D.J. Borkenhagen, “A Multithreaded 64-bit
PowerPC Commercial RISC Processor Design,” Proc. 11th Int’l
Conf. High-Performance Chips, 1999.

[30] J.Y. Tsai and P.-C. Yew, “The Superthreaded Architecture: Thread
Pipelining with Run-Time Data Dependence Checking and
Control Speculation,” Proc. Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), 1995.

[31] D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous Multi-
threading: Maximizing On-Chip Parallelism,” Proc. 22nd Int’l
Symp. Computer Architecture (ISCA ’95), pp. 392-403, 1995.

[32] T.N. Vijaykumar, “Compiling for the Multiscalar Architecture,”
PhD dissertation, Univ. of Wisconsin, Madison, 1998.

[33] F. Warg and P. Stenström, “Limits on Speculative Module-Level
Parallelism in Imperative and Object-Oriented Programs on
CMP Platforms,” Proc. Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), 2001.

[34] C.B. Zilles and G.S. Sohi, “Execution-Based Prediction Using
Speculative Slices,” Proc. 28th Int’l Symp. Computer Architecture
(ISCA), 2001.

[35] C.B. Zilles and G.S. Sohi, “Master/Slave Speculative Paralleliza-
tion,” Proc. 35th Int’l Symp. Microarchitecture (MICRO), 2002.

Carlos Madriles received the MS degree in
computer engineering in 2002 from the Univer-
sitat Politècnica de Catalunya (UPC), Barcelona,
where he is currently working toward the PhD
degree in speculative thread-level parallelism.
He joined the Department of Computer Archi-
tecture, UPC, in 2001 as a research assistant.
Since May 2002, he has been a research
scientist at the Intel-UPC Barcelona Research
Center. His research interests include multicore

architectures and compilation techniques, in particular speculative
multithreading and transactional memory.

Carlos Garcı́a-Quiñones received the MS
degree in computer science in 2003 from the
Universitat Politècnica de Catalunya (UPC),
Barcelona. From 2002 to 2006, he was with
the Intel-UPC Barcelona Research Center as a
researcher in computer architecture, in particular
compilers for speculative architectures. His
research interests include massively distributed
computation and reconfigurable hardware.

924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

Jesús Sánchez received the MS and PhD
degrees in computer engineering from the
Universitat Politècnica de Catalunya (UPC),
Barcelona, in 1995 and 2001, respectively. He
joined the Department of Computer Architecture,
UPC, in 1995 as a research assistant and was
an assistant professor from 1998 to 2002. Since
March 2002, he has been with the Intel-UPC
Barcelona Research Center, which he joined as
a senior research scientist. His interests include

processor microarchitecture and compilation techniques, in particular
memory hierarchy, instruction-level parallelism, clustered architectures,
instruction scheduling, and speculative multithreading. He has more
than 25 publications on these topics. He is currently working on
speculative multithreading techniques and FPGA-based prototypes. He
is a member of the IEEE.

Pedro Marcuello received the bachelor’s and
PhD degrees in computer science from the
Universitat Politècnica de Catalunya (UPC),
Barcelona, in 1995 and 2003, respectively.
Since 2003, he has been with the Intel-UPC
Barcelona Research Center as a research
scientist. From 1997 to 2003, he was with the
Department of Computer Architecture, UPC, as
a full-time teaching assistant. His research
interests include speculative thread-level paral-

lelism and multicore architectures. He is a member of the IEEE
Computer Society.

Antonio González received the MS and PhD
degrees from the Universitat Politècnica de
Catalunya (UPC), Barcelona. He joined the
faculty of the Department of Computer Archi-
tecture, UPC, in 1986 and became a full
professor in 2002. He is the founding director
of the Intel-UPC Barcelona Research Center,
which started in 2002 and whose research
focuses on new microarchitecture paradigms
and code generation techniques for future

microprocessors. He has given over more than invited talks, is the
holder of more than 40 patents, and has advised 13 PhD dissertations
in the areas of computer architecture and compilers. He is an
associate editor for the IEEE Transactions on Computers, IEEE
Transactions on Parallel and Distributed Systems, ACM Transactions
on Architecture and Code Optimization, and Journal of Embedded
Computing. He has served on more than 100 program committees for
international symposia in the field of computer architecture, including
the International Symposium on Computer Architecture (ISCA), Annual
International Symposium on Microarchitecture (MICRO), International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), IEEE International Symposium on High
Performance Computer Architecture (HPCA), International Conference
on Parallel Architectures and Compilation Techniques (PACT), ACM
International Conference on Supercomputing (ICS), IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), and International Parallel
and Distributed Processing Symposium (IPDPS). He has been the
program chair or cochair of ICS 2003, ISPASS 2003, MICRO 2004,
and HPCA 2008, among other symposia. He has published more than
250 papers. He is a member of the IEEE.

Dean M. Tullsen received the BS and MS
degrees from the University of California, Los
Angeles (UCLA) and the PhD degree in August
1996 from the University of Washington. He
spent four years as a computer architect at
AT&T Computer Systems/AT&T Bell Labs and a
year teaching in the Department of Computer
Science, Shantou University, Shantou, China.
He is currently a professor in the Department of
Computer Science and Engineering, University

of California, San Diego. His research interests include computer
architecture. He is a senior member of the IEEE.

Hong Wang received the PhD degree in
electrical engineering from the University of
Rhode Island in 1996. He joined Intel in 1995,
where he is currently a senior principal engineer
and the director of the Microarchitecture Re-
search Labs (uAL). His work involves research
on future processor architecture and microarch-
itecture. He is a member of the IEEE.

John P. Shen received the BS degree in
electrical engineering from the University of
Michigan and the MS and PhD degrees in
electrical engineering from the University of
Southern California. He is the head of the Nokia
Research Center, Nokia, Palo Alto, which is a
newly established research laboratory focusing
on mobile Internet systems, applications, and
services. Prior to joining Nokia in 2006, he was
the director of the Microarchitecture Research

Labs, Intel Corp., which was responsible for developing processor and
system architecture innovations. Prior to joining Intel in 2000, he was a
professor at Carnegie Mellon University, where he supervised a total of
17 PhD students and numerous MS students and received multiple
teaching awards. He is currently an adjunct professor at Carnegie Mellon
West. He is the author or coauthor of numerous published articles and
books, including Modern Processor Design: Fundamentals of Super-
scalar Processors (McGraw-Hill, 2005). He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MADRILES ET AL.: MITOSIS: A SPECULATIVE MULTITHREADED PROCESSOR BASED ON PRECOMPUTATION SLICES 925

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 07:49 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

