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MultiMulti--Core Processors on Technology Core Processors on Technology 
Road Map Road Map 

Multi-core processors on Intel’s roadmap 
SMPs have been around for a long time. 
What is new for multi-core?
Why general-purpose applications now?
Use thread-level parallelism (TLP) to 
improve instruction-level parallelism (ILP)
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Use TLP to Support ILPUse TLP to Support ILP
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TLP Challenges in GeneralTLP Challenges in General--
Purpose ApplicationsPurpose Applications

Mostly Do-while loops
– Need thread-level control speculation

Parallelism exists mostly in outer loops 
– Not good for VLIW (i.e. software pipelining ) or vector 

processing =>  need thread-level support
Pointers complicate alias and data dependence analysis
– Need runtime support for disambiguation and data speculation

Many small loops and doacross loops
– Need fast and low overhead communication

Small basic blocks – need to exploit both ILP and TLP
Need new approaches to apply parallel processing 

for such applications!!
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Speculation:Speculation:
Breaking Program Dependency Breaking Program Dependency 

Speculation is an effective approach to break 
dependences

Optimize program execution by ignoring 
infrequent data dependence edges, or taking 
predicted paths
Check possible violation (mis-speculation) at 
runtime
Recover if violation occurs
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Speculation on Intel IA64Speculation on Intel IA64

Both control and data speculation are supported on 
Intel IA64
– Special instructions and hardware are provided
– ld.s, ld.a, ld.sa and ld.c, chk.a, chk.s

Memory load operation is targeted for speculation
– Memory delay is usually the bottleneck of performance
– Memory load is usually the start of speculative operations
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A Compiler Framework:A Compiler Framework:
Intel Open Research Compiler (ORC)Intel Open Research Compiler (ORC)

 

Speculative alias and 
dataflow analysis

Control flow graph 
 (control speculation) 

Speculative use-def chain/ SSA form
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Control flow 
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Speculative optimizations 
 PRE based optimizations: PRE for expressions, 

register promotion, global value numbering based 
redundancy elimination, strength reduction, … 
 Instruction scheduling 
 … 
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Main Compiler Components in Main Compiler Components in 
the Frameworkthe Framework

Efficient alias and data dependence 
profiling tools, or heuristic algorithms
Annotating profiled information in compiler
Speculative optimizations
Recovery code generation
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Alias and Data Dependence Alias and Data Dependence 
ProfilingProfiling

Instrumentation-based alias profiling
Instrumentation-based data dependence 
profiling
Techniques to reduce profiling overhead

• T.Chen et al, Data Dependence Profiling for Speculative Optimizations, 
Proc. Of Int’l Conf on Compiler Construction (CC), March 2004

• T.Chen et al, An Empirical Study on the Granularity of Pointer Analysis in 
C programs, Proc. 15th Workshop on Languages and Compilers for Parallel 
Computing (LCPC15), August 2002
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Crucial Considerations Crucial Considerations 

Program coverage: 10/90 rule
– uncovered regions => use compiler 

analysis results or heuristic rules
Input sensitivity
Profiling overhead (space and time)
Using alias and data dependence profiles is 
inherently speculative => need hardware 
support for correct execution
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Alias Profiling vs. Static AnalysisAlias Profiling vs. Static Analysis
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Data Dependence ProfilingData Dependence Profiling

Data dependence edges among memory 
references and function calls
Detailed information
– type: flow, anti, output, or input
– probability: frequency of occurrence

When loops are targeted
– dependence distance: limited



2006/4/12 CTHPC 2006 - P.C.Yew 15

Overhead of DD ProfilingOverhead of DD Profiling
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Techniques to Reduce Profiling Techniques to Reduce Profiling 
OverheadOverhead

Reduce the space and time requirements by 
hash table
– Larger granularity of address
– Smaller iteration counter

Sampling
– Sample the snap shots of procedures or loops 

instead of individual references
– Use instrumentation-based sampling framework

Switch at procedures or loops
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Speculating on Data DependenceSpeculating on Data Dependence

More speculative optimizations

I1:  … = *q
I2:  *p = b

I3:  … = *q

I4:  *r = …

I5:   … = *p
I6:  *r= …

Speculate on 
this dependence

Redundancy 
elimination 
opportunity
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Speculate on Data DependencesSpeculate on Data Dependences

More speculative optimizations

I1:  … = *q
I2:  *p = b

I3:  … = *q

I4:  *r = …

I5:   … = *p
I6:  *r= …

Speculate on 
this dependence

Copy 
propagation
opportunity
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Speculate on Data DependencesSpeculate on Data Dependences

More speculative optimizations

I1:  … = *q
I2:  *p = b

I3:  … = *q

I4:  *r = …

I5:   … = *p
I6:  *r= …

Speculate on this 
dependence

Dead store
elimination 
opportunity
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Integrate Data Speculation in Traditional Integrate Data Speculation in Traditional 
OptimizationsOptimizations
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Example of Speculative SSA FormExample of Speculative SSA Form
     a1 = … 
    *p1 = 4 
     a2← χ ( a1 ) 
     b2← χ ( b1 ) 
      v2← χ ( v1 ) 
      … = a2  
      a3= 4 
              μ(a3), μ(b2), μ(v2) 
      … = *p1 
 

(a) traditional SSA graph 

     a1 = … 
    *p1 = 4 
     a2← χ ( a1 ) 
     b2← χs ( b1 ) 
      v2← χ ( v1 ) 
      … = a2  
      a3= 4 
              μ(a3), μ s(b2), μ(v2) 
      … = *p1 
 

(b) speculative SSA graph 

The points-to 
set of pointer p
obtained by 
alias profiling is 
{b}
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Improved Speculative Improved Speculative 
Optimizations FrameworkOptimizations Framework
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Compiler Optimizations for Compiler Optimizations for 
Speculative ThreadsSpeculative Threads

Without compiler optimization, there is limited TLP 
even under perfect hardware support. [Oplinger
PACT 99]
Compiler have to decide
– Which loops/regions to be transformed into thread
– Use synchronization or speculation
– How to schedule the code to improve overlaps
– What transformations to be used 
– When/How to generate recovery code
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Compiler FrameworkCompiler Framework

Program Loop 
Selection

Thread 
Partitioningnon-loops

loops

loop threads

non-loop threads

Edge / Dep
Profiling

Instruction 
Scheduling
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Loop SelectionLoop Selection

-40%
-20%

0%
20%
40%
60%
80%

100%

mcf
cra

fty

tw
olf gz

ip
bz

ip2
vo

rte
x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

Outer loop Inner loop Best

pr
og

ra
m

 s
pe

ed
up

Carefully selected loops can improve performance significantly!



2006/4/12 CTHPC 2006 - P.C.Yew 28

ExampleExample
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Example: Loop SelectionExample: Loop Selection
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ExampleExample

Partition the 
remaining part
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ExampleExample
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Thread Partition AlgorithmThread Partition Algorithm

Bi_Partition(T, T1, T2)    {
P = Form_Path(T);
for each BB b on the path P {

benefit = Perf_Estimation(P, b);
if (benefit > max_benefit)    {

max_benefit = benefit;
T1 = all BBs reachable from b;
T2 = all remaining BBs in T;

}
}

}

Bi_Partition(T, T1, T2)    {
P = Form_Path(T);
for each BB b on the path P {

benefit = Perf_Estimation(P, b);
if (benefit > max_benefit)    {

max_benefit = benefit;
T1 = all BBs reachable from b;
T2 = all remaining BBs in T;

}
}

}

Thread_Partition(Procedure P)    {
Form_Loop_Tree(P);
for each unselected loop L in the loop 

tree {
Initialize_Thread_Queue(L);
while (!Thread_Queue_Empty())    {

T = Thread_Queue_Pop();
if (Bi_Partition(T, T1, T2))    {

Thread_Queue_Push(T1);
Thread_Queue_Push(T2);

}
}

} // bottom-up traversal
}

Thread_Partition(Procedure P)    {
Form_Loop_Tree(P);
for each unselected loop L in the loop 

tree {
Initialize_Thread_Queue(L);
while (!Thread_Queue_Empty())    {

T = Thread_Queue_Pop();
if (Bi_Partition(T, T1, T2))    {

Thread_Queue_Push(T1);
Thread_Queue_Push(T2);

}
}

} // bottom-up traversal
}



2006/4/12 CTHPC 2006 - P.C.Yew 34

Speculative Code MotionSpeculative Code Motion
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Recovery Code GenerationRecovery Code Generation

Representation of recovery code is crucial
It should not affect the later compiler 
optimizations
Recovery code could be represented as a 
heavily-biased If-Then-Else structure
Generation of recovery code is rather 
straightforward with such a representation
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ConclusionsConclusions
Microprocessors have caught up with 
supercomputers in ’90 and have gone multi-core
It is non-trivial to apply current supercomputing 
technologies to general-purpose applications
New architectural support such as thread-level 
speculative execution, and new compiler techniques 
such as speculative optimizations using alias and 
data dependence profiling, even dynamic 
optimization at runtime, are crucial – as always
A new exciting era for parallel processing has 
arrived – regardless of we are prepared or not!
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Control SpeculationControl Speculation

ld.s: move the load operation across the barrier 
imposed by control dependency (branch instruction)
Check the speculation with chk.s

other instructions
br

ld

control dep

barrier

ld.s
br

chk.s
use

control dep

barrier

traditional optimizations            control speculation
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Control Speculation Control Speculation ––
Instruction SchedulingInstruction Scheduling

 ld.s r31 = [r30] 
if (c){ 
       chk.s r31, recovery
       next: 
       …. 
} 
recovery: 
        ld r31 = [r30] 
        br next 

cmp c 

ld r31 = [r30]

true,  probability 90%

false

….

bz c



2006/4/12 CTHPC 2006 - P.C.Yew 41

Data Speculation:Data Speculation:
Advance Load Address Table (ALAT)Advance Load Address Table (ALAT)

Reg No.       Address                Valid

r18               &a                    valid
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Data Speculation: ExampleData Speculation: Example

… = a
*q = ..
… = a

Original program

ld r18=[a]
store [*q] = 
ld r18=[a]

Traditional compiler code

• *q and a are possible aliases

• a is reloaded after the store of *q



2006/4/12 CTHPC 2006 - P.C.Yew 43

Data Speculation: ExampleData Speculation: Example

ld.a r18 = [a]

st [*q] = 

ld.c r18 = [a]

reg addr valid

r18           &a       valid
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Performance Improvement of Performance Improvement of 
Speculative Register PromotionSpeculative Register Promotion
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