
A Compiler Framework to Support A Compiler Framework to Support
Speculative MultiSpeculative Multi--Core ProcessorsCore Processors
for Generalfor General--Purpose ApplicationsPurpose Applications

Pen-Chung Yew
游本中

Department of Computer Science and Engineering
University of Minnesota

http://www.cs.umn.edu/Agassiz

2006/4/12 CTHPC 2006 - P.C.Yew 2

OutlineOutline
Speculative multi-core processors and
general-purpose applications
A compiler framework to support speculative
execution and optimizations
Speculative optimizations for single-core
processors
Speculative optimizations for multi-core
processors
Conclusions

2006/4/12 CTHPC 2006 - P.C.Yew 3

MultiMulti--Core Processors on Technology Core Processors on Technology
Road Map Road Map

Multi-core processors on Intel’s roadmap
SMPs have been around for a long time.
What is new for multi-core?
Why general-purpose applications now?
Use thread-level parallelism (TLP) to
improve instruction-level parallelism (ILP)

2006/4/12 CTHPC 2006 - P.C.Yew 4

Use TLP to Support ILPUse TLP to Support ILP

Time

op1 op2 op3 op4

op5 op6 op7 op8

op9 op10 op11 op12

……………..

op21 op22 op23 op24

t1

t2

t3

t6

Time

t1

t2

t3

t6

op1 op2 op3 op4

op5 op6 op7 op8

op9 op10 op11 op12

…………

op21 op22 op23 op24

Th1 Th2 Th3 Th4

Multi-Core

TLP
Superscalar

ILP

2006/4/12 CTHPC 2006 - P.C.Yew 5

TLP Challenges in GeneralTLP Challenges in General--
Purpose ApplicationsPurpose Applications

Mostly Do-while loops
– Need thread-level control speculation

Parallelism exists mostly in outer loops
– Not good for VLIW (i.e. software pipelining) or vector

processing => need thread-level support
Pointers complicate alias and data dependence analysis
– Need runtime support for disambiguation and data speculation

Many small loops and doacross loops
– Need fast and low overhead communication

Small basic blocks – need to exploit both ILP and TLP
Need new approaches to apply parallel processing

for such applications!!

2006/4/12 CTHPC 2006 - P.C.Yew 6

Speculation:Speculation:
Breaking Program Dependency Breaking Program Dependency

Speculation is an effective approach to break
dependences

Optimize program execution by ignoring
infrequent data dependence edges, or taking
predicted paths
Check possible violation (mis-speculation) at
runtime
Recover if violation occurs

2006/4/12 CTHPC 2006 - P.C.Yew 7

Speculation on Intel IA64Speculation on Intel IA64

Both control and data speculation are supported on
Intel IA64
– Special instructions and hardware are provided
– ld.s, ld.a, ld.sa and ld.c, chk.a, chk.s

Memory load operation is targeted for speculation
– Memory delay is usually the bottleneck of performance
– Memory load is usually the start of speculative operations

2006/4/12 CTHPC 2006 - P.C.Yew 8

OutlineOutline
Speculative multi-core processors and
general-purpose applications
A compiler framework to support
speculative execution and optimizations
Speculative optimizations for single thread
Speculative optimizations for multi-threaded
processors
Conclusions

2006/4/12 CTHPC 2006 - P.C.Yew 9

A Compiler Framework:A Compiler Framework:
Intel Open Research Compiler (ORC)Intel Open Research Compiler (ORC)

Speculative alias and
dataflow analysis

Control flow graph
 (control speculation)

Speculative use-def chain/ SSA form
(data speculation)

Control flow
analysis

Edge/path
profile

Heuristic
rules

Alias /dependence
profile

Heuristic
rules

Speculative optimizations
 PRE based optimizations: PRE for expressions,

register promotion, global value numbering based
redundancy elimination, strength reduction, …
 Instruction scheduling
 …

2006/4/12 CTHPC 2006 - P.C.Yew 10

Main Compiler Components in Main Compiler Components in
the Frameworkthe Framework

Efficient alias and data dependence
profiling tools, or heuristic algorithms
Annotating profiled information in compiler
Speculative optimizations
Recovery code generation

2006/4/12 CTHPC 2006 - P.C.Yew 11

Alias and Data Dependence Alias and Data Dependence
ProfilingProfiling

Instrumentation-based alias profiling
Instrumentation-based data dependence
profiling
Techniques to reduce profiling overhead

• T.Chen et al, Data Dependence Profiling for Speculative Optimizations,
Proc. Of Int’l Conf on Compiler Construction (CC), March 2004

• T.Chen et al, An Empirical Study on the Granularity of Pointer Analysis in
C programs, Proc. 15th Workshop on Languages and Compilers for Parallel
Computing (LCPC15), August 2002

2006/4/12 CTHPC 2006 - P.C.Yew 12

Crucial Considerations Crucial Considerations

Program coverage: 10/90 rule
– uncovered regions => use compiler

analysis results or heuristic rules
Input sensitivity
Profiling overhead (space and time)
Using alias and data dependence profiles is
inherently speculative => need hardware
support for correct execution

2006/4/12 CTHPC 2006 - P.C.Yew 13

Alias Profiling vs. Static AnalysisAlias Profiling vs. Static Analysis

0%

50%

100%
am

m
p ar
t

bz
ip

2
cr

af
ty eo

n
eq

ua
ke ga

p
gc

c
gz

ip
m

es
a

m
cf

pa

rs
er

pe
rlb

m
k

tw
ol

f
vo

rte
x

vp
r

av
g

occur > 5%

occur < 5%

 never occur
at runtime

Most possible aliases reported by compiler
do not occur at runtime

2006/4/12 CTHPC 2006 - P.C.Yew 14

Data Dependence ProfilingData Dependence Profiling

Data dependence edges among memory
references and function calls
Detailed information
– type: flow, anti, output, or input
– probability: frequency of occurrence

When loops are targeted
– dependence distance: limited

2006/4/12 CTHPC 2006 - P.C.Yew 15

Overhead of DD ProfilingOverhead of DD Profiling

96 110 102121120

0

20

40

60

80

bzip2 crafty gap gcc gzip mcf parser perlbmk twolf vortex vpr average

X
tim

es
 s

lo
w

er

alias DD without distance DD for innermost loops DD 4-level loops

Compiler: ORC version 2.0
Machine: Itanium2, 900 MHz and 2G memory
Benchmarks: SPEC CPU2000 Int
Instrumentation optimization has been done

2006/4/12 CTHPC 2006 - P.C.Yew 16

Techniques to Reduce Profiling Techniques to Reduce Profiling
OverheadOverhead

Reduce the space and time requirements by
hash table
– Larger granularity of address
– Smaller iteration counter

Sampling
– Sample the snap shots of procedures or loops

instead of individual references
– Use instrumentation-based sampling framework

Switch at procedures or loops

2006/4/12 CTHPC 2006 - P.C.Yew 17

OutlineOutline
Speculative multi-core processors and
general-purpose applications
A compiler framework to support speculative
execution and optimizations
Speculative optimizations for single thread
Speculative optimizations for multi-threaded
processors
Conclusions

2006/4/12 CTHPC 2006 - P.C.Yew 18

Speculating on Data DependenceSpeculating on Data Dependence

More speculative optimizations

I1: … = *q
I2: *p = b

I3: … = *q

I4: *r = …

I5: … = *p
I6: *r= …

Speculate on
this dependence

Redundancy
elimination
opportunity

2006/4/12 CTHPC 2006 - P.C.Yew 19

Speculate on Data DependencesSpeculate on Data Dependences

More speculative optimizations

I1: … = *q
I2: *p = b

I3: … = *q

I4: *r = …

I5: … = *p
I6: *r= …

Speculate on
this dependence

Copy
propagation
opportunity

2006/4/12 CTHPC 2006 - P.C.Yew 20

Speculate on Data DependencesSpeculate on Data Dependences

More speculative optimizations

I1: … = *q
I2: *p = b

I3: … = *q

I4: *r = …

I5: … = *p
I6: *r= …

Speculate on this
dependence

Dead store
elimination
opportunity

2006/4/12 CTHPC 2006 - P.C.Yew 21

Integrate Data Speculation in Traditional Integrate Data Speculation in Traditional
OptimizationsOptimizations

Code
Scheduling

…Redundancy
Elimination

Copy
Propagation

Dead Store
Elimination

Code
Scheduling

…Redundancy
Elimination

Copy
Propagation

Dead Store
Elimination

Analysis Phase

Code Transformation Phase

Optimization extension to handle data dependence speculation

Traditional optimizations need to be patched to handle data
speculation

2006/4/12 CTHPC 2006 - P.C.Yew 22

Example of Speculative SSA FormExample of Speculative SSA Form
 a1 = …
 *p1 = 4
 a2← χ (a1)
 b2← χ (b1)
 v2← χ (v1)
 … = a2
 a3= 4
 μ(a3), μ(b2), μ(v2)
 … = *p1

(a) traditional SSA graph

 a1 = …
 *p1 = 4
 a2← χ (a1)
 b2← χs (b1)
 v2← χ (v1)
 … = a2
 a3= 4
 μ(a3), μ s(b2), μ(v2)
 … = *p1

(b) speculative SSA graph

The points-to
set of pointer p
obtained by
alias profiling is
{b}

2006/4/12 CTHPC 2006 - P.C.Yew 23

Improved Speculative Improved Speculative
Optimizations FrameworkOptimizations Framework

Code
Scheduling

… Redundancy
Elimination

Copy
Propagation

Dead Store
Elimination

Code
Scheduling … Redundancy

Elimination
Copy

Propagation
Dead Store
Elimination

Traditional Compiler Analysis Phase

Traditional Code Transformation Phase

Speculative Data Dependence Analysis

Data Speculative Code Motion

2006/4/12 CTHPC 2006 - P.C.Yew 24

OutlineOutline
Speculative multi-core processors and
general-purpose applications
A compiler framework to support speculative
execution and optimizations
Speculative optimizations for single thread
Speculative optimizations for multi-
threaded processors
Conclusions

2006/4/12 CTHPC 2006 - P.C.Yew 25

Compiler Optimizations for Compiler Optimizations for
Speculative ThreadsSpeculative Threads

Without compiler optimization, there is limited TLP
even under perfect hardware support. [Oplinger
PACT 99]
Compiler have to decide
– Which loops/regions to be transformed into thread
– Use synchronization or speculation
– How to schedule the code to improve overlaps
– What transformations to be used
– When/How to generate recovery code

2006/4/12 CTHPC 2006 - P.C.Yew 26

Compiler FrameworkCompiler Framework

Program Loop
Selection

Thread
Partitioningnon-loops

loops

loop threads

non-loop threads

Edge / Dep
Profiling

Instruction
Scheduling

2006/4/12 CTHPC 2006 - P.C.Yew 27

Loop SelectionLoop Selection

-40%
-20%

0%
20%
40%
60%
80%

100%

mcf
cra

fty

tw
olf gz

ip
bz

ip2
vo

rte
x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

Outer loop Inner loop Best

pr
og

ra
m

 s
pe

ed
up

Carefully selected loops can improve performance significantly!

2006/4/12 CTHPC 2006 - P.C.Yew 28

ExampleExample

A

B C

D E

GF

H

I

A two-level
nested loop

2006/4/12 CTHPC 2006 - P.C.Yew 29

Example: Loop SelectionExample: Loop Selection

A

B C

D E

GF

H

I

Generate loop
threads for
the selected
inner loops

2006/4/12 CTHPC 2006 - P.C.Yew 30

ExampleExample

Partition the
remaining part

A

B C

D E

GF

H

I

2006/4/12 CTHPC 2006 - P.C.Yew 31

ExampleExample

Further
partitioning

A

B C

D E

GF

H

I

2006/4/12 CTHPC 2006 - P.C.Yew 32

ExampleExample

A

B C

D E

GF

H

I

A

C

D

G

C

E

G

C

D

F

H

I

Sequential execution

A C

D

G

C

E

G

C

D

F

H

I

Parallel execution

2006/4/12 CTHPC 2006 - P.C.Yew 33

Thread Partition AlgorithmThread Partition Algorithm

Bi_Partition(T, T1, T2) {
P = Form_Path(T);
for each BB b on the path P {

benefit = Perf_Estimation(P, b);
if (benefit > max_benefit) {

max_benefit = benefit;
T1 = all BBs reachable from b;
T2 = all remaining BBs in T;

}
}

}

Bi_Partition(T, T1, T2) {
P = Form_Path(T);
for each BB b on the path P {

benefit = Perf_Estimation(P, b);
if (benefit > max_benefit) {

max_benefit = benefit;
T1 = all BBs reachable from b;
T2 = all remaining BBs in T;

}
}

}

Thread_Partition(Procedure P) {
Form_Loop_Tree(P);
for each unselected loop L in the loop

tree {
Initialize_Thread_Queue(L);
while (!Thread_Queue_Empty()) {

T = Thread_Queue_Pop();
if (Bi_Partition(T, T1, T2)) {

Thread_Queue_Push(T1);
Thread_Queue_Push(T2);

}
}

} // bottom-up traversal
}

Thread_Partition(Procedure P) {
Form_Loop_Tree(P);
for each unselected loop L in the loop

tree {
Initialize_Thread_Queue(L);
while (!Thread_Queue_Empty()) {

T = Thread_Queue_Pop();
if (Bi_Partition(T, T1, T2)) {

Thread_Queue_Push(T1);
Thread_Queue_Push(T2);

}
}

} // bottom-up traversal
}

2006/4/12 CTHPC 2006 - P.C.Yew 34

Speculative Code MotionSpeculative Code Motion

*p =
*p =

*p =
= *p

= *p
= *p

*p =

*p =

*p =

= *p

= *p

= *p

stall

critical path

other computation

before code motion after code motion

2006/4/12 CTHPC 2006 - P.C.Yew 35

Recovery Code GenerationRecovery Code Generation

Representation of recovery code is crucial
It should not affect the later compiler
optimizations
Recovery code could be represented as a
heavily-biased If-Then-Else structure
Generation of recovery code is rather
straightforward with such a representation

2006/4/12 CTHPC 2006 - P.C.Yew 36

ConclusionsConclusions
Microprocessors have caught up with
supercomputers in ’90 and have gone multi-core
It is non-trivial to apply current supercomputing
technologies to general-purpose applications
New architectural support such as thread-level
speculative execution, and new compiler techniques
such as speculative optimizations using alias and
data dependence profiling, even dynamic
optimization at runtime, are crucial – as always
A new exciting era for parallel processing has
arrived – regardless of we are prepared or not!

2006/4/12 CTHPC 2006 - P.C.Yew 37

ReferencesReferences
(1) J.Lin et al, A Compiler Framework for Speculative Analysis and Optimizations,

Proc. Of ACM/SIGPLAN Conf. On Programming Language Design and
Implementation (PLDI), June 2003, also in ACM Trans. On Architecture and Code
Optimization (TACO), Vol. 1, No. 3, Sept. 2004, pp. 247-271

(2) J. Lin et al, Recovery Code Generation for General Speculative Optimizations, to
appear in ACM Trans. On Architecture and Code Optimization (TACO) 2006.

(3) X.Dai et al, A General Compiler Framework for Speculative Optimizations Using
Data Speculative Code Motion, Proc. Of the 3rd Annual IEEE/ACM Int’l Symp. On
Code Generation and Optimization (CGO)

(4) T.Chen et al, Data Dependence Profiling for Speculative Optimizations, Proc. Of
Int’l Conf on Compiler Construction (CC), March 2004

(5) T.Chen et al, An Empirical Study on the Granularity of Pointer Analysis in C
programs, Proc. 15th Workshop on Languages and Compilers for Parallel
Computing (LCPC), August 2002

(6) J.Y.Tsai et al, The Superthreaded Processor Architecture, IEEE Trans on
Computers, special issue on Multithreaded Architecture, Vol. 48, No. 9, Sept 1999

2006/4/12 CTHPC 2006 - P.C.Yew 38

Supplement Slides

2006/4/12 CTHPC 2006 - P.C.Yew 39

Control SpeculationControl Speculation

ld.s: move the load operation across the barrier
imposed by control dependency (branch instruction)
Check the speculation with chk.s

other instructions
br

ld

control dep

barrier

ld.s
br

chk.s
use

control dep

barrier

traditional optimizations control speculation

2006/4/12 CTHPC 2006 - P.C.Yew 40

Control Speculation Control Speculation ––
Instruction SchedulingInstruction Scheduling

 ld.s r31 = [r30]
if (c){
 chk.s r31, recovery
 next:
 ….
}
recovery:
 ld r31 = [r30]
 br next

cmp c

ld r31 = [r30]

true, probability 90%

false

….

bz c

2006/4/12 CTHPC 2006 - P.C.Yew 41

Data Speculation:Data Speculation:
Advance Load Address Table (ALAT)Advance Load Address Table (ALAT)

Reg No. Address Valid

r18 &a valid

2006/4/12 CTHPC 2006 - P.C.Yew 42

Data Speculation: ExampleData Speculation: Example

… = a
*q = ..
… = a

Original program

ld r18=[a]
store [*q] =
ld r18=[a]

Traditional compiler code

• *q and a are possible aliases

• a is reloaded after the store of *q

2006/4/12 CTHPC 2006 - P.C.Yew 43

Data Speculation: ExampleData Speculation: Example

ld.a r18 = [a]

st [*q] =

ld.c r18 = [a]

reg addr valid

r18 &a valid

2006/4/12 CTHPC 2006 - P.C.Yew 44

Instruction Cache

Data Cache

Thread processing unit

Execution Unit

Comm. Unit

Memory
Buffer

Writeback Unit

Thread processing unit

Execution Unit

Comm. Unit

Memory
Buffer

Writeback Unit

Thread processing unit

Execution Unit

Comm. Unit

Memory
Buffer

Writeback Unit

Thread processing unit

Execution Unit

Comm. Unit

Memory
Buffer

Writeback Unit

2006/4/12 CTHPC 2006 - P.C.Yew 45

Performance Improvement of Performance Improvement of
Speculative Register PromotionSpeculative Register Promotion

0%
2%
4%
6%
8%

10%
12%
14%
16%

am
mp art

eq
ua

ke

bz
ip2 gz

ip mcf

pa
rse

r

tw
olf

Im
pr

ov
em

en
t p

er
ce

nt
ag

e

cpu cycle data access cycle loads retired

Based on alias profile and compared with –O3 with type-based
alias analysis on Intel ORC compiler

2006/4/12 CTHPC 2006 - P.C.Yew 46

7

TLP for Each Benchmark

Potential Speedup of Whole Program
by TLP

0

1

2

3

4

5

6

7

bzip2 gap gzip mcf parser vortex twolf vpr

	 A Compiler Framework to Support Speculative Multi-Core Processors�for General-Purpose Applications
	Outline
	Multi-Core Processors on Technology Road Map
	Use TLP to Support ILP
	TLP Challenges in General-Purpose Applications
	Speculation:�Breaking Program Dependency
	Speculation on Intel IA64
	A Compiler Framework:�Intel Open Research Compiler (ORC)
	Main Compiler Components in the Framework
	Alias and Data Dependence Profiling
	Crucial Considerations
	Compiler Optimizations for Speculative Threads
	Recovery Code Generation
	Conclusions
	References
	Control Speculation
	Control Speculation – �Instruction Scheduling
	Data Speculation:�Advance Load Address Table (ALAT)
	Data Speculation: Example
	Data Speculation: Example
	Performance Improvement of Speculative Register Promotion

