
To appear in Proceedings of the 2006 International Symposium on Computer Architecture (ISCA-XXXIII), Boston, MA.

Learning-Based SMT Processor Resource Distribution via Hill-Climbing

Seungryul Choi Donald Yeung
Department of Computer Science Department of Electrical and Computer Engineering

University of Maryland University of Maryland
choi@cs.umd.edu yeung@eng.umd.edu

Abstract

The key to high performance in Simultaneous Multithreaded
(SMT) processors lies in optimizing the distribution of shared re-
sources to active threads. Existing resource distribution tech-
niques optimize performance only indirectly. They infer potential
performance bottlenecks by observing indicators, like instruction
occupancy or cache miss counts, and take actions to try to alle-
viate them. While the corrective actions are designed to improve
performance, their actual performance impact is not known since
end performance is never monitored. Consequently, potential per-
formance gains are lost whenever the corrective actions do not ef-
fectively address the actual bottlenecks occurring in the pipeline.

We propose a different approach to SMT resource distribution
that optimizes end performance directly. Our approach observes
the impact that resource distribution decisions have on perfor-
mance at runtime, and feeds this information back to the resource
distribution mechanisms to improve future decisions. By evalu-
ating many different resource distributions, our approach tries to
learn the best distribution over time. Because we perform learn-
ing on-line, learning time is crucial. We develop a hill-climbing
algorithm that efficiently learns the best distribution of resources
by following the performance gradient within the resource distri-
bution space.

This paper conducts an in-depth investigation of learning-
based SMT resource distribution. First, we compare existing re-
source distribution techniques to an ideal learning-based tech-
nique that performs learning off-line. This limit study shows
learning-based techniques can provide up to 19.2% gain over
ICOUNT, 18.0% gain over FLUSH, and 7.6% gain over DCRA
across 21 multithreaded workloads. Then, we present an on-line
learning algorithm based on hill-climbing. Our evaluation shows
hill-climbing provides a 12.4% gain over ICOUNT, 11.3% gain
over FLUSH, and 2.4% gain over DCRA across a larger set of 42
multiprogrammed workloads.

1. Introduction

Simultaneous Multithreading (SMT) is an important architec-
tural technique, as evidenced by the widespread attention it has

This research was supported in part by NSF CAREER Award #CCR-0000988, by
DARPA AFRL grant #F30602-01-C-0171, and by DARPA grant #NBCH1050022.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsement, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
Air Force Research Laboratory, or the U.S. Government.

received from academia [2, 4, 20, 19, 14], and by industry’s will-
ingness to incorporate it into commercial processors [7, 6]. Given
the continued importance of chip-level multithreading, research
that improves SMT performance without increasing its power con-
sumption will remain highly relevant in future systems.

The key to high performance in SMT processors lies in opti-
mizing the distribution of resources to simultaneously executing
threads. Several resource distribution techniques have been stud-
ied in the past [2, 4, 20, 19, 14]. One shortcoming of these previous
techniques is they optimize performance only indirectly. As illus-
trated in Figure 1a, existing techniques make resource distribution
decisions based on hardware monitors of per-thread resource us-
age (e.g., instruction occupancy or cache miss counts); the hard-
ware monitors do not reflect actual performance. From this re-
source usage information, the resource distribution mechanisms
infer potential performance bottlenecks and take actions to try to
alleviate them (e.g., stop fetching a thread that has consumed too
many resources, or flush a thread that has suffered a cache miss).
While these actions are designed to improve performance, their
actual performance impact is not known since the resource distri-
bution mechanisms never directly monitor end performance.

Because resource distribution mechanisms optimize perfor-
mance only indirectly, opportunities for performance gains may be
missed for two reasons. First, resource distribution mechanisms
are designed to target a small set of important performance bot-
tlenecks; however, SMT processors exhibit a myriad of behaviors
that are highly sensitive to workload mix. Existing resource distri-
bution mechanisms cannot possibly anticipate all bottlenecks for
all workloads, missing performance opportunities in some cases.
Second, resource distribution mechanisms are designed to improve
performance in general, but they are not designed to be optimal
for any specific case. Hence, even for the anticipated performance
bottlenecks, further performance gains might still be possible.

We propose a different approach to SMT resource distribution
that optimizes end performance directly. Our approach observes
the impact that resource distribution decisions have on perfor-
mance at runtime and feeds this information back to the resource
distribution mechanisms to improve future decisions, as illustrated
in Figure 1b. By successively applying and evaluating different re-
source distributions, our approach tries to learn the best distribu-
tion over time. Learning is performed continuously to adapt when-
ever the workload’s resource needs change. Because our approach
learns based on actual performance, the resource distribution de-
cisions it makes are customized to the performance bottlenecks of
the workload, reducing missed performance opportunities. More-
over, whenever learning for a particular workload behavior suc-
ceeds, our approach finds the best resource distribution for that be-
havior. Our approach can also optimize for a specific performance
goal (e.g., throughput, speedup, or fairness) by simply using the

Figure 1. (a) Existing resource distribution tech-
niques optimize performance indirectly by mak-
ing decisions based on hardware monitors only.
(b) Learning-based resource distribution exam-
ines actual performance to learn the best resource
distribution.

1

6
4

8
8

01

1

21

4

41

7

62

0

8

16

48

80

112

144

176

208

3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

5.0

5.1

5.2

5.3

Sum of

IPC

Allowed

resource

 for mesa

Allowed

resource

 for vortex

(176,16,64)

Figure 2. IPC of mesa, vortex, and fma3d dur-
ing a 32K-cycle time interval as the fraction of re-
sources distributed to each thread is varied. The
X- and Y-axes show the resource distribution for
mesa and vortex (fma3d receives the remaining re-
sources). The arrow indicates the resource distri-
bution with peak performance.

appropriate performance metric for feedback.
Since we perform learning on-line, learning time is crucial to

the success of our approach. A key observation enabling fast learn-
ing is that performance does not change randomly as a function of
resource distribution; instead, the performance sensitivity is of-
ten “hill-shaped.” For example, Figure 2 shows the performance
of three applications–mesa, vortex, and fma3d–running simulta-
neously on an SMT processor during a time interval of 32K cy-
cles. The graph plots IPC as the fraction of resources distributed
to individual threads is varied. In the figure, performance follows
a well-defined hill shape, with a clear performance peak. From
our experience, many workloads exhibit such hill-shaped behav-
ior. We exploit this behavior by using a hill-climbing algorithm
to learn the best resource distribution. Because learning is guided
by the slope of the hill, our hill-climbing algorithm reaches the
best resource distribution after sampling only a small portion of
the resource distribution space, thus leading to low learning times.

This paper investigates SMT resource distribution techniques
that use hill-climbing to learn the best resource share. Specifically,
we apply learning to dynamically distribute key SMT proces-
sor hardware structures across simultaneously executing threads.
Our study begins by comparing an ideal off-line learning algo-
rithm against existing techniques to quantify the best performance

improvements that learning-based techniques can achieve. Our
limit study reveals an ideal learning-based technique outperforms
ICOUNT [20] by 19.2%, FLUSH [19] by 18.0%, and DCRA [2]
by 7.6% on 21 multiprogrammed workloads, demonstrating there
is significant room for learning to improve performance. Next,
we present the hill-climbing algorithm for performing learning
on-line. Our evaluation reveals hill-climbing provides an 12.4%,
11.3%, and 2.4% performance boost over ICOUNT, FLUSH, and
DCRA, respectively, on a comprehensive set of 42 multipro-
grammed workloads. Finally, we extend hill-climbing to perform
learning based on program phases, and report our preliminary ex-
perience with this phase-based technique.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work, and Section 3 studies the ideal learning-
based technique. Next, Section 4 presents and evaluates our hill-
climbing resource distribution technique, and Section 5 describes
its extension. Finally, Section 6 concludes the paper.

2. Related Work

Prior research has tried to boost SMT processor performance
by improving the distribution of hardware resources to threads.
One important approach is to optimize the selection of threads to
fetch every cycle. ICOUNT [20] and FPG [10] are examples of
such SMT fetch policies. These techniques monitor indicators of
resource usage, such as resource occupancy (ICOUNT) or branch
prediction accuracy (FPG). Every cycle, the threads using their
resources most efficiently (e.g., with low occupancy or few branch
miss-predicts) are given fetch priority. By favoring fast threads,
ICOUNT and FPG increase overall throughput.

Unfortunately, fetch policies do not effectively handle long-
latency operations, especially cache-missing loads. Once a thread
suffers a long-latency cache-missing load, continuing to fetch the
thread clogs the pipeline with stalled instructions, preventing other
threads that would otherwise gainfully use the resources from re-
ceiving them. Fetch policies like ICOUNT reduce, but do not stop,
the fetch of stalled threads, so they cannot prevent resource clog.
Several techniques address resource clog by explicitly limiting re-
source distribution to threads with long-latency memory opera-
tions. The first approach is to fetch-lock stalled threads. Tech-
niques in this category differ in how they detect the stall condi-
tion. STALL [19] triggers fetch-lock when a load remains out-
standing beyond some threshold number of cycles; DG [4] trig-
gers fetch-lock when the number of cache-missing loads exceeds
some threshold; and PDG [4] uses a cache-miss predictor to trig-
ger fetch-lock.

One problem with fetch-locking is resource clog can still oc-
cur because the stall condition is detected either too late or unre-
liably. Instead of anticipating resource clog and fetch-locking, a
second approach is to allow resource clog to occur but immedi-
ately recover by flushing the stalled instructions. This is the ap-
proach taken by FLUSH [19]. FLUSH is effective in preventing
resource clog; however, flushing is wasteful in terms of fetch band-
width and power consumption. Hybrid approaches (e.g., STALL-
FLUSH [19]) minimize the number of flushed instructions by first
employing fetch-lock, and resorting to flushing only when re-
sources are exhausted.

A third approach is to partition the processor resources. The
simplest is static partitioning [5, 13, 14], but these techniques can-
not adapt to changing workload behavior. In contrast, DCRA [2]
partitions dynamically based on memory performance. Threads
with frequent L1 cache misses are given large partitions, allow-
ing them to exploit parallelism beyond stalled memory opera-

tions. Threads that cache-miss infrequently are guaranteed some
resource share since stalled threads are not allowed beyond their
partitions. Hence, DCRA prevents resource clog by containing
stalled threads. Moreover, DCRA computes partitions based on
the threads’ anticipated resource needs, increasing distribution to
the threads that can use resources most efficiently.

Compared to previous techniques, learning-based SMT re-
source distribution is most similar to DCRA. Like DCRA, our ap-
proach also uses dynamic partitioning to address resource clog and
improve resource usage efficiency. However, a key distinction is
learning-based SMT resource distribution makes partitioning deci-
sions based on performance feedback, thus optimizing end perfor-
mance. In contrast, DCRA and other previous techniques perform
resource distribution based on hardware monitors like instruction
and cache miss counts. Hence, they optimize performance only
indirectly, potentially missing opportunities for performance gains
as discussed in Section 1. Exploiting performance feedback also
permits optimization to a user-definable performance goal–like
throughput, per-thread speedup, or fairness–by simply changing
the performance metric used to drive learning. Previous tech-
niques cannot tailor their optimizations to a specific performance
goal. Because it takes time for our learning algorithm to process
performance feedback, we update partitioning decisions periodi-
cally. Thus, our technique lies somewhere in between DCRA (up-
date every cycle) and static partitioning (fixed) in terms of its re-
sponsiveness to dynamic runtime behavior.

Finally, our approach borrows from program phase analy-
sis [16, 17]. Like these techniques, our approach breaks program
execution into sequences of fixed-size epochs to facilitate perfor-
mance analysis and feedback for runtime optimization. In partic-
ular, Dynamic Back-end Assignment (DBA) [9] uses epoch-based
feedback to drive partitioning of clustered multithreaded proces-
sors. Like DBA, we also perform partitioning based on perfor-
mance feedback; however, we control partitioning at a much finer
granularity (per resource entry instead of per cluster), and we de-
sign and evaluate a detailed algorithm for performing partitioning
in an on-line fashion.

3. Limits of Learning-Based SMT Resource Distri-
butions

We begin our investigation with a limit study. To facilitate the
study, this section develops an ideal learning algorithm that deter-
mines a pseudo-optimal resource distribution off-line via exhaus-
tive search. Our off-line learning algorithm incurs zero overhead
for computing the resource distributions.

3.1. Off-Line Exhaustive Learning

All of the SMT resource distribution techniques studied in this
paper perform learning based on phases, an approach borrowed
from existing phase detection and prediction techniques [16, 17].
We divide SMT execution into a linear sequence of epochs or
fixed-size time intervals. For each epoch, the resource distribution
mechanism specifies a partitioning of select shared processor re-
sources across the simultaneous threads. During epoch execution,
threads are allowed to consume up to (but no more than) the allot-
ted resources within their partition. Hence, partitioning guarantees
every thread receives some fraction of each shared resource.

Normally, the resource distribution mechanism decides the par-
titioning for each epoch based on performance feedback acquired
via processor statistics counters from previously executed epochs.

In contrast, our off-line exhaustive learning algorithm decides the
partitioning based on performance feedback from the currently ex-
ecuting epoch. At the beginning of each epoch, we execute the
epoch once for every possible partitioning of the shared resources.
Amongst these exhaustive trials, we select the trial with the high-
est measured performance, and advance the machine state accord-
ingly. The execution time of the best trial is charged to execution
time while the cost of sampling all other trials are ignored, and
then the process is repeated for subsequent epochs. Although such
off-line learning is impractical for real machines, its evaluation via
simulation yields insights into the performance of learning-based
SMT resource distribution.

Unfortunately, simulating off-line exhaustive learning is com-
putationally expensive because of the exhaustive trials. Due to ex-
cessive simulation times, we are able to study off-line learning for
SMT processors with 2 hardware contexts only. However, the in-
sights derived from our study carry over to larger SMT machines.
Later in Section 4.4, we will evaluate learning-based techniques
on SMT processors with more hardware contexts. In the next two
sections, we address several design issues pertaining to epochs and
hardware resource partitioning that impact the performance of off-
line exhaustive learning (as well as hill-climbing).

3.1.1. Epochs

Epoch Size. Epoch size, measured in processor cycles, is an im-
portant parameter for any phase-based technique because it affects
adaptivity. If epoch size is too large, then learning may not adapt
quickly enough to changes in the workload’s resource demands. If
epoch size is too small, then inter-epoch behavior may become too
dynamic, making learning difficult. We ran several experiments
to measure the sensitivity of performance to epoch size assuming
our hill-climbing algorithm, which we will present in Section 4.
Based on these experiments, we found a 64K-cycle epoch size
consistently yields good performance. Smaller epochs are likely to
provide higher performance for off-line exhaustive learning since
dynamic inter-epoch behavior is not a concern when learning off-
line. However, for our limit study, we are interested in characteriz-
ing the limits of on-line learning algorithms, so we use a 64K-cycle
epoch size for all of the experiments in this section.

Epoch Performance. Learning-based SMT resource distribution
uses performance feedback to make resource partitioning deci-
sions that optimize end performance. An important question is
what performance metric should we choose to drive the learning
algorithms? In the past, three performance metrics have been used
to characterize SMT performance: average IPC, average weighted
IPC [18], and harmonic mean of weighted IPC [11]. These met-
rics are defined below, where IPCi is the IPC of the ith thread
in the SMT machine, SingleIPCi is the IPC of the stand-alone
execution of the ith thread, and T is the number of threads.

Avg IPC =

∑
IPCi

T
(1)

Avg Weighted IPC =

∑
IPCi

SingleIP Ci
T

(2)

Harmonic Mean of IPC = T∑
SingleIP Ci

IPCi

(3)

Each metric reflects a different performance goal. Average IPC
quantifies throughput improvement; average weighted IPC quan-
tifies execution time reduction; and harmonic mean of weighted
IPC quantifies both performance improvement and fairness. For
evaluating off-line exhaustive learning, we will use the average

Fetch

Unit

FP Instruction

Queue

PC
Branch

Predictor

FP Rename

Register

Instruction Cache

Instruction

Fetch Queue
Decode/Register

Rename

Issue

Logic FP Units

INT/LD/ST

Units

Data Cache

Issue

Logic

Resource

Partition

Registers Committed Instruction Counters

Reorder

Buffer

<

Software Resource Scheduler

Integer Instruction

Queue

Integer Rename

Register

Resource Occupancy Counters

Down Counter

Figure 3. Block-level diagram of our SMT processor model. Shaded boxes indicate shared hardware structures
that are partitioned by learning-based resource distribution. Dotted boxes indicate additional hardware needed
for our hill-climbing algorithm, presented in Section 4.

Processor Parameters
Bandwidth 8-Fetch, 8-Issue, 8-Commit
Queue size 32-IFQ, 80-Int IQ, 80-FP IQ, 256-LSQ

Rename reg / ROB 256-Int, 256-FP / 512 entry
Functional unit 6-Int Add, 3-Int Mul/Div, 4-Mem Port

3-FP Add, 3-FP Mul/Div

Branch Predictor Parameters
Branch predictor Hybrid 8192-entry gshare/2048-entry Bimod

Meta table/BTB/RAS 8192 / 2048 4-way / 64

Memory Parameters
IL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
DL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
UL2 config 1Mbyte, 64byte block, 4 way, 20 cycle lat
Mem config 300 cycle first chunk, 6 cycle inter chunk

Table 1. SMT simulator settings.

weighted IPC metric. Later, when we evaluate hill-climbing, we
will use all three performance metrics.

3.1.2. Hardware Resource Partitioning

This paper applies learning-based resource distribution to a de-
tailed SMT processor model. Figure 3 illustrates the processor we
assume. Like other techniques that explicitly control resource dis-
tribution (e.g., DCRA), we dynamically partition several shared
hardware resources in the SMT pipeline that significantly impact
performance. Specifically, we target the integer issue queue (IQ),
integer rename registers, and reorder buffer (ROB),1 which are
shaded gray in Figure 3. In addition to controlling these struc-
tures, distributing fetch bandwidth is also crucial to SMT per-
formance. Unfortunately, it is infeasible to partition fetch using
learning-based resource distribution due to the high frequency in
which partitioning decisions must be made. Hence, we rely on the
ICOUNT fetch policy [20] to distribute fetch bandwidth across
threads.

One problem with applying learning to all of the shaded struc-
tures in Figure 3 is the resource distribution space becomes in-
tractably large. Given S shared structures, Ei entries for structure
i, and T threads, the number of unique ways to distribute the re-
sources is ΠS

i=1E
(T−1)
i . Off-line exhaustive learning must try all

of these unique cases for every epoch. To reduce the search space,
we observe that a thread’s usage of different hardware resources is
not independent; instead, the number of entries of each resource

1Most SMT processors implement private ROBs to simplify per-thread commit.
We assume a shared ROB to be consistent with DCRA [2]. Our approach would
still work for private ROBs–we would ignore the ROBs, and partition the remaining
shared resources only.

type a thread occupies is often related. (For example, a thread can
never use more rename registers than the number of ROB entries
it holds). Hence, many cases do not need to be explored. We ex-
ploit this observation in two ways. First, we assume the number of
integer IQ entries, integer rename registers, and ROB entries oc-
cupied by a thread are in proportion to one another. Rather than
partition every resource independently, our learning algorithm par-
titions a single resource only, and then applies the same partition
proportionally to all other resources. Second, we do not explicitly
partition the floating point IQ and rename registers. By partition-
ing the integer IQ, integer rename register, and ROB, we indirectly
control how many floating point resources each thread consumes,
making learning for these resources less critical.

These simplifications reduce the number of unique resource
distributions to Emax

(T−1), where Emax = maxS
i=1(Ei), mak-

ing off-line exhaustive learning significantly more tractable. How-
ever, the resource distribution space is still very large, especially
for large T . Hence, we constrain our study of off-line exhaustive
learning to SMT machines with 2 hardware contexts.

3.2. Experimental Methodology

We conduct a limit study of learning-based SMT resource dis-
tribution using our off-line exhaustive learning algorithm. Our ex-
periments are performed on a detailed event-driven simulator of
an SMT processor that models the pipeline illustrated in Figure 3.
The simulator is derived from sim-ssmt [12], an extension of the
out-of-order processor model in SimpleScalar [1], and has been
used previously to study SMT techniques [3, 8]. For our evalu-
ation, we model an 8-way issue SMT processor with 2 hardware
contexts and a 512-entry reorder buffer. The processor and mem-
ory system settings for our simulations are listed in Table 1.

We extended sim-ssmt to support dynamic partitioning of the
integer IQ, integer rename registers, and ROB. We keep a per-
thread count of the entries occupied in each resource, and allow a
thread to fetch instructions as long as it hasn’t exceeded its parti-
tion limit in any resource. If any resources become exhausted, the
corresponding thread is fetch-locked until it releases some of its
entries in the exhausted partition(s). In addition to resource parti-
tioning, we also use ICOUNT to select the threads from which to
fetch every cycle.

To implement off-line exhaustive learning from Section 3.1,
our simulator checkpoints every processor memory structure (reg-
ister file, pipeline registers, branch predictors, caches, etc.) as well
as main memory at the beginning of each epoch. Then, we run a
simulation for every partitioning of the 256 integer rename regis-
ter across 2 threads (the integer IQ and ROB partitions are set in

App Skip Rsc Freq Type App Skip Rsc Freq Type App Skip Rsc Freq Type
bzip2 1.1B 72 No Int ILP perlbmk 1.7B 59 No Int ILP eon 0.1B 82 No Int ILP
vortex 0.1B 102 High Int ILP gzip 0.2B 83 High Int ILP parser 1.0B 90 High Int ILP
gap 0.2B 208 No Int ILP crafty 0.5B 125 High Int ILP gcc 2.1B 112 High Int ILP
apsi 2.3B 127 No FP ILP fma3d 1.9B 72 No FP ILP wupwise 3.4B 161 No FP ILP
mesa 0.5B 110 No FP ILP equake 0.4B 100 No FP MEM vpr 0.3B 180 High Int MEM
mcf 2.1B 97 Low Int MEM twolf 2.0B 184 High Int MEM art 0.2B 176 No FP MEM
lucas 0.8B 64 No FP MEM ammp 2.6B 173 High FP MEM swim 0.4B 213 No FP MEM
applu 0.8B 112 No FP MEM

Table 2. SPEC CPU2000 benchmarks used to create our multiprogrammed workloads.

proportion to the integer rename register partition). To save simu-
lation time, we only try every other possible partitioning, reducing
the number of exhaustive trials to 127 per epoch. Each simulation
starts from the checkpoint and lasts for 64K cycles, the epoch size.
After the exhaustive trials complete, we run one final simulation
using the best partitioning to advance to the next epoch. The best
partitioning is chosen using the weighted IPC metric, Equation (2)
from Section 3.1.1. In addition to off-line exhaustive learning, our
simulator also models the ICOUNT, FLUSH, and DCRA policies
to facilitate a comparison against existing techniques.

Our experiments are driven by 42 multiprogrammed workloads
created from 22 SPEC CPU2000 benchmarks. Table 2 lists our
benchmarks. We use the pre-compiled alpha binaries from Chris
Weaver2 which are built with the highest level of compiler opti-
mization. All of our benchmarks use the reference inputs. From
the benchmarks, we created multiprogrammed workloads by fol-
lowing the methodology in [2, 19]. We first categorized the SPEC
benchmarks into either high-ILP or memory-intensive programs,
labeled “ILP” and “MEM,” respectively, in Table 2. Then, we
created 3 groups of 2-thread and 3 groups of 4-thread workloads.
Table 3 lists our multiprogrammed workloads. The ILP2 and ILP4
workloads group high-ILP benchmarks; the MEM2 and MEM4
workloads group memory-intensive benchmarks; and the MIX2
and MIX4 workloads group both high-ILP and memory-intensive
benchmarks. Since we simulate only 2 hardware contexts for off-
line exhaustive learning, we use the 2-thread workloads from Ta-
ble 3. Later in Section 4.4, when we evaluate hill-climbing, we
will also use the 4-thread workloads as well.

We selected simulation regions for our multithreaded work-
loads in the following way. First, we used SimPoint [15] to an-
alyze the first 16 billion instructions (or the entire execution) of
each benchmark, and picked the earliest representative region re-
ported by SimPoint. In our SMT simulations, we fast-forward
each benchmark in the multithreaded workload to its representa-
tive region. Table 2 reports the number of skipped instructions in
each benchmark during fast forwarding. Finally, we turn on de-
tailed multithreaded simulation, and simulate for 100 million “on-
line” instructions (i.e., not including the “off-line” exhaustive trials
needed to find the best partitionings). Due to the cost of simulating
the exhaustive trials, we are unable to simulate more instructions
for our limit study; however, the regions we simulate are represen-
tative thanks to the SimPoint analysis. When evaluating on-line
learning in Section 4.4, we will use larger simulation regions of 1
billion instructions. (The “Rsc” and “Freq” columns in Tables 2
and 3 will be discussed in Section 4.4.2).

3.3. Off-Line Learning Results

Figure 4 compares off-line exhaustive learning (labeled “OFF-
LINE”) against ICOUNT, FLUSH, and DCRA. The figure plots
weighted IPC versus different resource distribution techniques ap-
plied to the 2-thread multiprogrammed workloads. Comparing

2These SPEC CPU2000 alpha binaries are available at the SimpleScalar website.

App Rsc App Rsc
ILP

apsi eon 209 apsi eon fma3d gcc 392
fma3d gcc 184 apsi eon gzip vortex 393
gzip vortex 184 fma3d gcc gzip vortex 368
gzip bzip2 155 gzip bzip2 eon gcc 349

wupwise gcc 273 mesa gzip fma3d bzip2 337
fma3d mesa 182 crafty fma3d apsi vortex 425

apsi gcc 239 apsi gap wupwise perlbmk 555
MIX

applu vortex 214 ammp applu apsi eon 493
art gzip 259 art mcf fma3d gcc 457

wupwise twolf 345 swim twolf gzip vortex 581
lucas crafty 189 gzip twolf bzip2 mcf 436

mcf eon 179 mcf mesa lucas gzip 354
twolf apsi 310 art gap twolf crafty 693

equake bzip2 173 swim fma3d vpr bzip2 536
MEM

applu ammp 285 ammp applu art mcf 558
art mcf 274 art mcf swim twolf 670

swim twolf 396 ammp applu swim twolf 681
mcf twolf 281 mcf twolf vpr parser 550

art vpr 356 art twolf equake mcf 558
art twolf 360 equake parser mcf lucas 351

swim mcf 310 art mcf vpr swim 666

Table 3. Multiprogrammed workloads used in the
experiments.

OFF-LINE and DCRA, we see OFF-LINE outperforms DCRA in
all but two workloads (equake-bzip2 and applu-ammp), provid-
ing a performance gain of 7.6% on average. Comparing OFF-
LINE, FLUSH, and ICOUNT, we see OFF-LINE outperforms
ICOUNT and FLUSH in all 21 workloads, providing an average
performance gain of 19.2% and 18.0%, respectively. The largest
performance gains are achieved for the MEM workloads where
OFF-LINE outperforms ICOUNT, FLUSH, and DCRA by 21.9%,
39.4%, and 13.2%, respectively. Figure 4 demonstrates there is
significant headroom for learning-based SMT resource distribu-
tion to improve performance over existing techniques. Moreover,
this performance potential exists across a wide range of workloads.

Because each multithreaded workload in Figure 4 executes at a
different rate across the different techniques, it is hard to compare
them directly. To facilitate a more thorough side-by-side com-
parison, we “synchronized” all the techniques by exploiting the
checkpoints acquired in OFF-LINE for the exhaustive trials. At
the beginning of every epoch, we simulate ICOUNT, FLUSH, and
DCRA for 64K cycles starting from the same checkpoint used by
OFF-LINE, and record the resulting IPCs. This yields a time-
varying performance profile for each technique, as illustrated in
Figure 5. Comparing IPCs from the same epoch in Figure 5
is meaningful because all the techniques are synchronized to a
common execution point. (We also verified that synchronization
does not noticeably alter the end-to-end performance of ICOUNT,
FLUSH, and DCRA compared to Figure 4).

We performed synchronized versions of the experiments in
Figure 4, and compared time-varying performance across differ-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

apsi-

eon

fma3d-

gcc

gzip-

vortex

gzip-

bzip2

wupwis

e-gcc

fma3d-

mesa

apsi-

gcc

applu-

vortex

art-gzip wupwis

e-twolf

lucas-

crafty

mcf-

eon

twolf-

apsi

equ

ake-

bzip2

applu-

ammp

art-mcf swim-

twolf

mcf-

twolf

art-vpr art-

twolf

swim-

mcf

ILP MIX MEM

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

ICOUNT

FLUSH

DCRA

OFF-LINE

Figure 4. Comparison of off-line exhaustive learning against ICOUNT, FLUSH, and DCRA.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0 10 20 30 40 50

Epoch

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

OFF-LINE

DCRA

FLUSH

ICOUNT

Figure 5. Synchronized time-varying performance
of OFF-LINE, DCRA, FLUSH, and ICOUNT from the
art-mcf workload.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0 32 64 96 128 160 192 224 256

Resource Partition

N
o
rm

a
li
z
e
d
 W

e
ig

h
te

d
 I
P
C

 .

Hill-Width0.97

Hill-Width0.95

Hill-Width0.99

Figure 6. Variation of IPC versus partitioning in a
hypothetical epoch. Three hill-width N values are
indicated on the curve.

ent techniques. For all 21 workloads, OFF-LINE outperforms
ICOUNT and FLUSH in 100% of the epochs. OFF-LINE also
outperforms DCRA in 97.2% of the epochs averaged across all
the workloads. OFF-LINE is effective all the time. Even though
OFF-LINE uses a fixed resource partitioning over each 64K-cycle
epoch (the other techniques update resource distribution decisions
every cycle), it still achieves higher performance in practically ev-
ery epoch. These results show phase-based learning is very gen-
eral, and has the potential to consistently make higher quality re-
source distribution decisions compared to existing techniques.

3.3.1. Hill Peak Analysis

In this and the following section, we investigate the source of OFF-
LINE’s performance gains. We begin by studying performance
sensitivity inside individual epochs. Since OFF-LINE exhaus-
tively searches over all resource partitionings, we not only know
the best partitioning, but we also know exactly how performance
varies with partitioning for every epoch. Figure 6 shows this rela-
tionship for a hypothetical epoch, plotting IPC (normalized to the
maximum IPC) as a function of different partitionings of the inte-
ger rename registers. As illustrated in Figure 6, the performance
variation is typically hill shaped, with one or more peaks. (No-
tice the maximal peak may not occur at the middle of the resource

partition space). Insights can be gained by quantifying the “sharp-
ness” of the performance peak containing the best partitioning. We
define hill-widthN to be the width of the hill containing the maxi-
mal peak at some performance level, N . In Figure 6, we indicate
hill-widthN for N = 0.95, 0.97, and 0.99. Peak sharpness can
be assessed by examining hill-widthN across different N : a small
hill-widthN value for a small N indicates a sharp peak, while a
large hill-widthN value for a large N indicates a dull peak.

Figure 7 reports hill-widthN across several N (between 0.99
and 0.90) for our 2-thread multiprogrammed workloads; each bar
represents a hill-widthN value averaged across all epochs from its
corresponding workload. In Figure 7, we see 5 workloads (equake-
bzip2, mcf-eon, fma3d-mesa, gzip-bzip2, and lucas-crafty) exhibit
very dull peaks. For these workloads, partitionings that deviate by
32-64 registers or 1

8
- 1
4

th
of the total integer rename registers away

from the best partitioning still achieve 99% of peak performance
(hill-width0.99 > 32), and partitionings that deviate by roughly 96
registers or 3

8

th
of the integer rename registers away from the best

still achieve 98% of peak performance (hill-width0.98 ≈ 96). Due
to dull peaks, these 5 workloads are insensitive to non-optimal par-
titionings. Hence, as illustrated in Figure 4, OFF-LINE achieves
comparable performance to existing techniques (e.g., DCRA) in
these workloads because there is very little performance advan-
tage for learning the best partitioning. Two other workloads (gzip-
vortex and apsi-eon) exhibit moderately dull peaks, and demon-
strate similarly small OFF-LINE performance gains in Figure 4.

In contrast, the remaining 14 workloads in Figure 7 exhibit
sharp peaks. To achieve 99% of peak performance for these work-
loads, we cannot deviate by more than 8 integer rename registers
from the best partitioning (hill-width0.99 ≤ 8), and for 8 of these
14 workloads, we lose 5% of peak performance when we devi-
ate by roughly 48 registers from the best (hill-width0.95 ≈ 48).
In Figure 4, we see OFF-LINE achieves its largest performance
gains for these 14 workloads. The hill peak analysis in Fig-
ure 7 shows that the performance of most workloads is sensitive
to small resource partitioning changes due to sharp performance
peaks within individual epochs. Learning-based SMT resource
distribution techniques that can find the best partitioning in these
performance-sensitive epochs will achieve the majority of the po-
tential performance gains reported in Figure 4.

3.3.2. Qualitative Analysis

The previous section provides a quantitative analysis of OFF-
LINE’s performance gains. An important question is, qualita-
tively, what is the source of the performance variations within
epochs, and why do existing techniques miss opportunities to find
the performance peaks? We found several important cases where
existing techniques miss performance that OFF-LINE exploits.

First, OFF-LINE exploits cache-miss clustering. Cache-miss
clustering occurs whenever multiple memory loads from the same
thread appear in the instruction window and trigger cache misses

0

32

64

96

128

160

192

224

256

apsi-

eon

fma3d-

gcc

gzip-

vortex

gzip-

bzip2

wupwis

e-gcc

fma3d-

mesa

apsi-

gcc

applu-

vortex

art-gzipwupwis

e-twolf

lucas-

crafty

mcf-

eon

twolf-

apsi

equ

ake-

bzip2

applu-

ammp

art-mcf swim-

twolf

mcf-

twolf

art-vpr art-

twolf

swim-

mcf

ILP MIX MEM

H
il
l
W
id
th

Hill-Width 0.99

Hill-Width 0.98

Hill-Width 0.97

Hill-Width 0.95

Hill-Width 0.90

Figure 7. Hill-width measurements.

simultaneously. Existing techniques rarely exploit cache-miss
clustering because they avoid fetching too far past a cache miss
to prevent clogging resources (e.g., FLUSH flushes after each
cache miss and DCRA prevents fetch into other threads’ parti-
tions). However, aggressively fetching past a cache miss is de-
sirable if independent cache-missing loads can be brought into
the instruction window to exploit memory parallelism. OFF-LINE
learns the best action (contract a thread’s partition to prevent clog-
ging or aggressively increase a thread’s partition to exploit mem-
ory parallelism) via performance feedback. Existing techniques
conservatively try to prevent resource clogging, possibly missing
performance in epochs with memory parallelism.

Second, OFF-LINE exploits compute-intensive low-ILP
threads. ICOUNT, FLUSH, and DCRA tend to distribute re-
sources to threads that cache-miss infrequently, i.e. that are
compute-intensive. Existing techniques naively assume such
threads always exhibit high ILP and will efficiently use the re-
sources given to them. However, some compute-intensive threads
exhibit low ILP even though they incur very few cache misses.
We found two examples in our workloads: threads with long in-
struction dependence chains, and threads with poor branch predic-
tion. OFF-LINE contracts partitions containing compute-intensive
low-ILP threads because it learns that doing so does not reduce
their performance, freeing up larger partitions for threads that can
gainfully exploit them. Existing techniques provide too many re-
sources to compute-intensive low-ILP threads because they treat
all non-cache-missing threads the same, leading to sub-peak per-
formance.

4. Hill-Climbing SMT Resource Distribution

The limit study from Section 3 shows phase-based
performance-feedback learning applied to SMT resource distri-
bution has the potential to outperform existing SMT techniques.
In this section, we try to realize these potential performance
gains by developing a technique that performs learning on-line.
A key point motivating our approach is illustrated in Figure 2
and discussed in Section 3.3.1: within epochs, SMT performance
varies with partitioning in a hill-shaped manner. Hence, we use a
hill-climbing algorithm to follow the slope of performance hills to
directly reach the performance peaks.

4.1. Hill-Climbing Algorithm

Our hill-climbing algorithm builds on top of the off-line ex-
haustive algorithm presented in Section 3.1. Like the off-line
algorithm, hill-climbing performs learning based on epochs, and
partitions SMT hardware resources using the approach from Sec-
tion 3.1.2. However, instead of relying on perfect off-line infor-
mation to choose the best partitioning for an epoch, hill-climbing

1. #define Epoch_Size 64k
2. #define N Total number of running threads
3. #define Delta 4
4. #define eval_perf(X) Evaluate the performance of SMT during the epoch X.
5. #define max(A, n) Get the index of the maximum value in the array A[0 : n]

6. For every Epoch_Size cycles { // invoked at the epoch boundary
7. perf[epoch_id % N] = eval_perf(epoch_id);

// evaluate the performance of the previous epoch
8. if (epoch_id % N == (N – 1)) {

// move the anchor_partition every N-th epochs
9. gradient_thread = max(perf, N);
10. for (i = 0 ; i < N ; i++)
11. if (i == gradient_thread)

// move the anchor_partition in favor of gradient_thread
12. anchor_partition[i] += Delta * (N – 1);
13. else
14. anchor_partition[i] -= Delta;
15. }
16. epoch_id++;
17. for (i = 0 ; i < N ; i++)
18. if (i == epoch_id % N)

// try giving favor to thread (epoch_id % N)
19. trial_partition[i] += anchor_partition[i] + Delta * (N – 1);
20. else
21. trial_partition[i] -= anchor_partition[i] – Delta;
22. }

(a)

(b)

Figure 8. Hill-climbing algorithm pseudo-code.
Shaded box (a) chooses a new partitioning based
on samples acquired by shaded box (b) along all
possible directions from the current best partition-
ing.

guides partitioning using performance samples acquired on-line
during the execution of previous epochs.

Figure 8 presents the hill-climbing algorithm. The algorithm
consists of two parts: a sampling sequence, called a “round” (lines
16-21), and partition selection at the end of every round (lines 7-
15). An array variable, called anchor partition, stores the
best-performing partition setting currently found.3 During each
round, the performance of several partition settings “near” an-
chor partition are sampled to determine the local shape of
the performance hill. For each sample, we shift the partition-
ing away from anchor partition slightly by giving a sin-
gle thread some resources from the other T − 1 threads (lines
17-21). The amount taken from each of the T − 1 threads,
Delta, determines how far each sample shifts away from an-
chor partition; we use Delta = 4. (In Figure 8, we assume
Delta specifies the number of shifted integer rename registers; a
proportional number of IQ and ROB entries are also shifted). In
total, T samples are taken, allowing each of the T threads to take
turns receiving additional resources.

At the end of a round, the best-performing partitioning among
the T samples is identified (line 9). This best partition set-
ting lies along the direction of the positive gradient (i.e., maxi-
mal performance increase) from the anchor partition. Our

3In the very first round, anchor partition defaults to an equal partition for
every thread.

algorithm moves in this positive gradient direction by setting
anchor partition to the best-performing partitioning found
(lines 10-14). Then, the process repeats as another round be-
gins to determine the positive gradient direction for the new an-
chor partition.

Compared to off-line exhaustive learning, our hill-climbing
SMT resource distribution has two limitations. First, hill-climbing
incurs learning time to find the best partition settings. During
learning, non-optimal partitionings are used, sacrificing perfor-
mance opportunities. Second, hill-climbing may be limited by
local maxima. When performance hills contain multiple peaks,
it may be possible for hill-climbing to reach a non-optimal peak
and become trapped. In Section 4.4, we will study the effect of
both learning time and local maxima on the performance of hill-
climbing.

4.2. Implementation

The modules in dotted lines from Figure 3 show the additional
hardware on top of an SMT processor needed to implement our
hill-climbing SMT resource distribution technique. First, our tech-
nique requires committed instruction counters per thread (these
counters are available in most SMT processors already) as well as
the number of shared resources–integer IQ entries, integer rename
registers, and ROB entries–occupied by each thread. Second, our
technique requires a set of resource partitioning registers that spec-
ify the size of each thread’s partition in each of the three parti-
tioned shared resources. These partitioning registers are updated
every epoch by the hill-climbing algorithm. Third, our technique
requires fetch logic that compares the resource occupancy coun-
ters against the partitioning registers, and fetch-locks any thread
that reaches its partition limit in one or more of the partitioned
shared resources.

In addition, our technique also requires implementing the hill-
climbing algorithm in Figure 8 for updating the resource parti-
tioning registers every epoch. Because the hill-climbing algorithm
is invoked only once per epoch, we believe it can be performed
in software. For a software implementation, we envision using
a hardware counter to deliver an interrupt to one of the applica-
tion threads at the end of each epoch, and use its context to ex-
ecute the hill-climbing algorithm. In this paper, we account for
the software implementation’s runtime cost by stalling the entire
SMT processor for 200 cycles. We found a single invocation of
the hill-climbing algorithm costs roughly 26 cycles, so 200 cycles
should be sufficient, even when factoring in the time to interrupt
and save/restore the few registers needed by the hill-climbing al-
gorithm. In any case, our accounting is conservative because we
need not stall the entire machine, only one thread.

Finally, of the 3 performance metrics discussed in Sec-
tion 3.1.1, average weighted IPC and harmonic mean of weighted
IPC (Equations 2 and 3) require the stand-alone IPC of each
thread, SingleIPCi. Because SingleIPCi values are not known
a priori, the hill-climbing algorithm must learn them along with
the best partitioning. We continuously sample the stand-alone IPC
of each thread by periodically disabling the other T − 1 threads
for a single epoch and measuring the resulting IPC. To minimize
overhead, we acquire a sample every 40 epochs only; hence, each
thread’s SingleIPCi is sampled once every 40 ∗ T epochs. This
sampling cost is included in all of our experiments.

4.3. Methodology Issues

Our evaluation of hill-climbing SMT resource distribution uses
the SMT simulator described in Section 3.2. The simulator is aug-
mented with the hardware and runtime support for hill-climbing
described in Section 4.2. To drive our simulations, we use both
the 2- and 4-thread multiprogrammed workloads from Table 3.
We pick simulation windows using the methodology described
in Section 3.2, but we extend their duration to 1 billion instruc-
tions. However, comparisons against off-line learning (e.g., Sec-
tion 4.4.1) use the smaller simulation windows of 100 million in-
structions due to the complexity of simulating OFF-LINE. Lastly,
we evaluate performance using all 3 performance metrics from
Section 3.1.1. When calculating end performance with a metric
that requires SingleIPCi, we use the SingleIPCi value from an
end-to-end run of each application. When learning with a metric
that requires SingleIPCi, hill-climbing algorithm uses a dynam-
ically sampled SingleIPCi value, as described in Section 4.2.

Part of our evaluation compares hill-climbing to ideal off-line
learning algorithms. For the 2-thread workloads, we compare
against OFF-LINE from Section 3. For the 4-thread workloads,
we develop a new off-line algorithm based on hill-climbing, called
RAND-HILL. Like OFF-LINE, RAND-HILL uses check-pointing
(see Section 3.2) to search the current epoch’s resource distribu-
tion space with zero overhead to find a partition setting for the
same epoch. Instead of exhaustive search, however, RAND-HILL
performs hill-climbing multiple times. Each hill-climbing pass ex-
ecutes the algorithm in Figure 8 starting from the checkpoint and
terminates when a peak is found. Every outer-loop iteration of
the algorithm (line 6 in Figure 8), we restore machine state to the
checkpoint so that the search optimizes for the current epoch only.
When a peak is found, we start a new hill-climbing pass from a
randomly chosen anchor partition. By performing multi-
ple hill-climbing passes initiated from random points in the re-
source distribution space, RAND-HILL can find good partitioning
solutions even when multiple peaks and local maxima exist. The
search for the current epoch ends after 128 total iterations of the
algorithm’s outer-loop (line 6).

4.4. Hill-Climbing Results

Figure 9 compares hill-climbing (labeled “HILL-WIPC”)
against ICOUNT, FLUSH, and DCRA on our 42 workloads. The
comparison is made using the weighted IPC metric; hill-climbing
also uses weighted IPC as the performance feedback metric for
learning. Comparing HILL-WIPC, ICOUNT, and FLUSH, we see
HILL-WIPC outperforms both ICOUNT and FLUSH in all but
4 of our 42 workloads, providing an average performance boost
of 12.4% and 11.3%, respectively. Comparing HILL-WIPC and
DCRA, we see HILL-WIPC outperforms DCRA by 2.4% aver-
aged over the 42 workloads. This overall performance gain is
achieved non-uniformly across the different workload groups. Per-
formance gains are larger for the 2-thread workloads (3.7%) com-
pared to the 4-thread workloads (0.4%). Furthermore, within 2-
thread workloads, performance gains are larger for the MEM cat-
egory (5.1%) compared to the ILP and MIX categories (3.4%
and 2.7%, respectively). However, HILL-WIPC outperforms or
matches DCRA across all (6 total) categories in Figure 9, which is
a positive result given the size and diversity of our workload set.

Figure 10 compares all the techniques using different met-
rics both for measuring performance and for learning. The three
graphs report performance in terms of (a) weighted IPC, (b)
average IPC, and (c) harmonic mean of weighted IPC. Within

0.0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1.0

apsi-

eon

fma3d-

gcc

gzip-

vortex

gzip-

bzip2

wup

wise-

gcc

fma3d-

mesa

apsi-

gcc

applu-

vortex

art-gzip wup

wise-

twolf

lucas-

crafty

mcf-

eon

twolf-

apsi

equake-

bzip2

applu-

ammp

art-mcf swim-

twolf

mcf-

twolf

art-vpr art-

twolf

swim-

mcf

ILP MIX MEM

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

ICOUNT

FLUSH

DCRA

HILL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

apsi-

eon-

fma3d-

gcc

apsi-

eon-

gzip-

vortex

fma3d-

gcc-

gzip-

vortex

gzip-

bzip2-

eon-gcc

mesa-

gzip-

fma3d-

bzip2

crafty-

fma3d-

apsi-

vortex

apsi-

gap-

wupwise-

perlbmk

ammp-

applu-

apsi-eon

art-mcf-

fma3d-

gcc

swim-

twolf-

gzip-

vortex

gzip-

twolf-

bzip2-

mcf

mcf-

mesa-

lucas-

gzip

art-gap-

twolf-

crafty

swim-

fma3d-

vpr-bzip2

ammp-

applu-

art-mcf

art-mcf-

swim-

twolf

ammp-

applu-

swim-

twolf

mcf-

twolf-

vpr-

parser

art-

twolf-

equake-

mcf

equake-

parser-

mcf-

lucas

art-mcf-

vpr-swim

ILP MIX MEM

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

ICOUNT

FLUSH

DCRA

HILL

Figure 9. Hill-Climbing versus ICOUNT, FLUSH, and DCRA under the weighted IPC metric. Hill-Climbing uses
weighted IPC as the performance feedback metric.

(a) Weighted IPC (b) Average IPC (c) Harmonic Mean

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ILP2 MIX2 MEM2 ILP4 MIX4 MEM4

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

0.00

0.50

1.00

1.50

2.00

2.50

ILP2 MIX2 MEM2 ILP4 MIX4 MEM4

A
v
e
ra
g
e
 I
P
C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ILP2 MIX2 MEM2 ILP4 MIX4 MEM4

H
a
rm
o
n
ic
 M
e
a
n
 o
f
IP
C

ICOUNT

FLUSH

DCRA

HILL-IPC

HILL-WIPC

HILL-HWIPC

Figure 10. Hill-Climbing versus ICOUNT, FLUSH, and DCRA under the (a) weighted IPC, (b) average IPC, and (c)
harmonic mean of weighted IPC metrics. Hill-Climbing uses average IPC (HILL-IPC), weighted IPC (HILL-WIPC),
and harmonic mean of weighted IPC (HILL-HWIPC) as the performance feedback metric.

each graph, hill-climbing uses either average IPC (HILL-IPC),
weighted IPC (HILL-WIPC), or harmonic mean of weighted IPC
(HILL-HWIPC) as the performance feedback metric for learning.
Results are summarized by workload group to conserve space.
Comparing HILL-IPC, HILL-WIPC, and HILL-HWIPC across
the graphs, we see hill-climbing achieves its best performance
under a given metric when using the same metric to drive learn-
ing. When both evaluation and learning metrics are matched, hill-
climbing performs 5.9% better then when they are not matched.
This demonstrates one of the strengths of learning-based SMT re-
source distribution: the ability to directly optimize the performance
metric most important to the user. Existing techniques cannot op-
timize for a particular performance goal.

Figures 10b and c show hill-climbing achieves a performance
gain under the average IPC and harmonic mean of weighted IPC
metrics in addition to the gains already demonstrated under the
weighted IPC metric in Figure 9. Comparing HILL-IPC against
ICOUNT and FLUSH in Figure 10b, we see hill-climbing outper-
forms ICOUNT and FLUSH under average IPC in all the workload
groups, providing an average performance boost of 24.2% and
7.7%, respectively. Comparing HILL-HWIPC against ICOUNT
and FLUSH in Figure 10c, we see hill-climbing outperforms
ICOUNT and FLUSH under harmonic mean of weighted IPC
in all the workload groups as well, providing an average per-
formance boost of 19.9% and 13.3%, respectively. Comparing
HILL-IPC and DCRA in Figure 10b, we see hill-climbing outper-
forms DCRA by 5.1% under average IPC, and comparing HILL-

HWIPC and DCRA in Figure 10c, we see hill-climbing outper-
forms DCRA by 2.3% under harmonic mean of weighted IPC.

4.4.1. Comparing Against Off-Line Learning Algorithms

Figure 11 compares HILL-WIPC against our ideal off-line learn-
ing algorithms, i.e. OFF-LINE for 2-thread workloads and RAND-
HILL for 4-thread workloads, under the weighted IPC metric. We
note that while OFF-LINE represents the best that hill-climbing
can do for 2-thread workloads, a similar performance upper bound
does not exist for 4-thread workloads since RAND-HILL does not
search exhaustively. To quantify how well RAND-HILL does, we
include results for DCRA in the bottom half of Figure 11. Compar-
ing RAND-HILL and DCRA, we see RAND-HILL outperforms
DCRA in all but one 4-thread workload, achieving a 7.4% perfor-
mance boost on average. We also ran synchronized time-varying
experiments similar to Figure 5, and found RAND-HILL beats
DCRA in 96.4% of all epochs simulated. Consequently, we find
RAND-HILL consistently performs very well.

Comparing HILL-WIPC and OFF-LINE in Figure 11, we see
hill-climbing achieves 96.6% of ideal performance, and compar-
ing HILL-WIPC and RAND-HILL, we see hill-climbing achieves
94.1% of RAND-HILL’s performance, averaged across all work-
loads. The largest performance differences occur in the MEM
workloads, with some in the MIX workloads as well. For ILP
workloads, HILL-WIPC performs very close to the off-line algo-
rithms.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

apsi-

eon

fma3d-

gcc

gzip-

vortex

gzip-

bzip2

wupwis

e-gcc

fma3d-

mesa

apsi-

gcc

applu-

vortex

art-gzip wupwis

e-twolf

lucas-

crafty

mcf-

eon

twolf-

apsi

equ

ake-

bzip2

applu-

ammp

art-mcf swim-

twolf

mcf-

twolf

art-vpr art-

twolf

swim-

mcf

SM SM SM SM LG(H) SM SM SM LG(H) LG(H) SM SM LG(H) SM LG(H) LG(L) LG(H) LG(LH) LG(H) LG(H) LG(L)

SS SS SS SS SS SS SS TL JL SS SS TL SS SS SS TL SL JL TL JL JL JL TL

ILP2 MIX2 MEM2

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

HILL-WIPC OFF-LINE

Derived characteristics

from individual

application

Observed

behavior

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

apsi-

eon-

fma3d-

gcc

apsi-

eon-

gzip-

vortex

fma3d-

gcc-

gzip-

vortex

gzip-

bzip2-

eon-gcc

mesa-

gzip-

fma3d-

bzip2

crafty-

fma3d-

apsi-

vortex

apsi-

gap-

wupwise-

perlbmk

ammp-

applu-

apsi-eon

art-mcf-

fma3d-

gcc

swim-

twolf-

gzip-

vortex

gzip-

twolf-

bzip2-

mcf

mcf-

mesa-

lucas-

gzip

art-gap-

twolf-

crafty

swim-

fma3d-

vpr-bzip2

ammp-

applu-

art-mcf

art-mcf-

swim-

twolf

ammp-

applu-

swim-

twolf

mcf-

twolf-

vpr-

parser

art-

twolf-

equake-

mcf

equake-

parser-

mcf-

lucas

art-mcf-

vpr-swim

SM SM SM SM SM LG(H) LG(L) LG(H) LG(LH) LG(H) LG(LH) SM LG(H) LG(H) LG(LH) LG(LH) LG(H) LG(LH) LG(LH) SM LG(LH)

SS SS SS SS SS JL TL JL TL JL JL TL JL SS JL JL TL JL TL JL JL TL JL TL JL SS TL JL

ILP4 MIX4 MEM4

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

DCRA HILL-WIPC RAND-HILL

Derived

characteristics from

individual application

Predicted

behavior

Figure 11. Comparison of HILL-WIPC and OFF-LINE for 2-thread workloads (top graph). Comparison of DCRA,
HILL-WIPC, and RAND-HILL for 4-thread workloads (bottom graph).

To gain further insight, we compared the time-varying behav-
ior of HILL-WIPC and OFF-LINE across all of the 2-thread work-
loads. Figure 12 illustrates 5 representative cases across all of the
epochs. This data was generated by running synchronized experi-
ments using the methodology from Section 3.3. However, instead
of synchronizing existing techniques to OFF-LINE (Figure 5), we
synchronize OFF-LINE to HILL-WIPC. Each graph in Figure 12
plots the partitioning found for the integer rename registers (the in-
teger IQ and ROB are partitioned proportionally) by HILL-WIPC
(“+” symbols) and OFF-LINE (white dots) as a function of epoch
ID. In addition, for every epoch, we plot the weighted IPC for all
possible partitionings (these are visited by OFF-LINE’s exhaustive
search) using a gray scale: lighter shades represent lower perfor-
mance while darker shades represent higher performance. Hence,
by following the change in gray scale along any vertical line, we
can determine the shape of the performance hill within the corre-
sponding epoch.

Figure 12a shows the temporally-stable (TS) case. In TS, OFF-
LINE partitioning doesn’t change over time, and there are no bot-
tlenecks that limit hill-climbing’s movement; hence, after a short
time, hill-climbing reaches the best partitioning and remains there
to enjoy the highest possible performance. Figure 12b shows the
spatially-stable (SS) case. In SS, OFF-LINE partitioning changes
rapidly over time, so fast that hill-climbing cannot track it. As a
result, hill-climbing settles in between the fluctuating best parti-
tionings. However, in Figure 12b, the different best partitionings
perform similarly, as indicated by the “band” of similar gray scales
that encompass the best partitionings. In other words, these are
wide hills, and have a large hill-widthN value (see Section 3.3.1).
Hence, HILL-WIPC and OFF-LINE achieve similar performance
even though hill-climbing cannot find the absolute best.

Figure 12c shows the temporally-limited (TL) case. In TL,
OFF-LINE partitioning is stable over relatively short periods of
time, experiencing sudden large changes occasionally. For exam-
ple, Figure 12c shows a long period of low performance followed
by a short period of high performance. Hill-climbing effectively
tracks the best partitioning in the low-performing period due to

its long duration. When the best partitioning changes, it does
not remain stable long enough for hill-climbing to adjust; hence,
hill-climbing misses significant performance opportunities during
the high-performing period. The TL case illustrates the limita-
tions of finite learning time in hill-climbing. Figure 12d shows
the spatially-limited (SL) case. In SL, OFF-LINE partitioning
is relatively stable over time; however, there are multiple peaks,
as indicated by the multiple bands of non-monotonically varying
gray scales. Hill-climbing gets “stuck” on one of the non-maximal
peaks, again missing performance opportunities. The SL case il-
lustrates the limitations of local maxima in hill-climbing.

Finally, Figure 12e shows the jitter-limited (JL) case. In JL,
OFF-LINE partitioning is relatively stable. Furthermore, in Fig-
ure 12e, there is a single maximal peak (i.e., no local max-
ima). However, hill-climbing has trouble moving towards the best
partitioning because of inter-epoch jitter. Although the positive
gradient within each epoch always points towards the maximal
peak, inter-epoch jitter creates transient positive gradients between
epochs that temporarily point away from the maximal peak. These
bogus gradients fool the hill-climber, causing it to reverse course
occasionally and move away from the best partitioning.

In Figure 11, we label each of the 2-thread workloads with the
case(s) from Figure 12 that dominate the workload’s time-varying
behavior in the row marked “Observed behavior.” Figure 11 shows
HILL-WIPC closely matches OFF-LINE in TS and SS workloads,
where hill-climbing finds very good partitionings. Fortunately, SS
is quite common, allowing HILL-WIPC to perform well in many
workloads. In contrast, Figure 11 shows a noticeable performance
difference between HILL-WIPC and OFF-LINE in TL, SL, and JL
workloads, where hill-climbing has trouble finding good partition-
ings. Interestingly, SL appears in only one workload, art-mcf.
Further investigation revealed that local maxima do occur in many
of our workloads; however, they rarely persist at the same partition
setting for more than 3 or 4 epochs. We find there is some level
of jitter in all our workloads that allows the hill-climber to escape
from local maxima.

(a) Temporally-stable (swim-mcf) (b) Spatially-stable (applu-ammp)

(c) Temporally-limited (mcf-eon) (d) Spatially-limited (art-mcf) (e) Jitter-limited (swim-twolf)

OFF-LINE Partition

HILL-WIPC Partition

High Weighted IPC

Low Weighted IPC

0

32

64

96

128

160

192

224

256

100 120 140 160 180 200

Epoch

R
e
s
o
u
rc
e

P
a
rt
it
io
n

.

0

32

64

96

128

160

192

224

256

10 30 50 70 90 110

Epoch

R
e
s
o
u
rc
e

P
a
rt
it
io
n

.

0

32

64

96

128

160

192

224

256

100 120 140 160 180 200

Epoch

R
e
s
o
u
rc
e

P
a
rt
it
io
n

.

0

32

64

96

128

160

192

224

256

50 70 90 110 130 150

Epoch

R
e
s
o
u
rc
e

P
a
rt
it
io
n

.

0

32

64

96

128

160

192

224

256

10 30 50 70 90 110

Epoch

R
e
s
o
u
rc
e

P
a
rt
it
io
n

.

Figure 12. Five representative time-varying behaviors of HILL-WIPC and OFF-LINE from the 2-thread workloads:
(a) temporally-stable (TS), (b) spatially-stable (SS), (c) temporally-limited (TL), (d) spatially-limited (SL), and (e)
jitter-limited (JL).

4.4.2. Per-Application Analysis

Unfortunately, we cannot perform Figure 12’s analysis in the 4-
thread workloads due to the intractability of simulating OFF-LINE
for more than 2 threads. In this section, we predict the 4-thread
workload behaviors by analyzing individual applications.

Two application characteristics affect hill-climbing perfor-
mance: resource requirement and its time variation. We quantify
resource requirements for our benchmarks by executing them on
the SMT simulator stand-alone (without other threads), and mea-
suring IPC as we vary the number of integer rename registers from
100% down to 10%. In the column labeled “Rsc” in Table 2, we
report the number of integer rename registers needed to achieve
95% of the maximum single-thread performance for each bench-
mark. Then, in the column labeled “Rsc” in Table 3, we report the
sum of the per-application integer rename register requirements
across each workload. This estimates each workload’s resource
requirement to perform “well.” To quantify resource requirement
time variation, we perform the same experiment, but we record the
resource requirement periodically–every 64K cycles–and identify
changes between epochs. This analysis reveals 3 behaviors: high-
frequency variation (a change every 1 or 2 epochs), low-frequency
variation (a change after several epochs), or no appreciable time
variation. Each benchmark’s time variation behavior is indicated
in the column labeled “Freq” in Table 2.

For the 2-thread workloads in Figure 11, we label each work-
load at the row marked “Derived characteristics from individ-
ual application” based on its composite application characteris-
tics. Workloads whose resource requirements are ≤ 256 are
small, labeled “SM;” workloads whose resource requirements
exceed 256 are large, labeled “LG.” Large workloads are fur-
ther labeled with “H” or “L” whenever a high-frequency or low-

frequency benchmark, respectively, participates in the workload.
We find good correlation between the labels and workload behav-
iors. Small workloads (SM) almost always exhibit SS behavior.
These workloads “fit” within the SMT’s 256 rename registers and
512-entry ROB. Such resource slack leads to similar performance
between widely varying partitionings, as in Figure 12b. In con-
trast, large workloads exhibit either TL or JL behavior. We find
high-frequency workloads (LG(H)) exhibit JL behavior because
the frequent inter-epoch resource requirement changes cause the
jitter in Figure 12c; we find low-frequency workloads (LG(L)) ex-
hibit TL behavior because the periodic resource changes in mcf
(the only “Low” benchmark in Table 2) lead to the TL case in Fig-
ure 12c. Exceptional cases include wupwise-gcc, wupwise-
twolf, twolf-apsi, and applu-ammp, which are large (LG)
but exhibit SS behavior. After close examination, we found wup-
wise, apsi, and applu are insensitive to partitioning across a
wide range of partition settings. Even in small partitions, these
benchmarks achieve close to 90% of their maximum single-thread
performance. Hence, they effectively have smaller resource needs
then indicated in Table 2.

We label the 4-thread workloads in Figure 11 at the row marked
“Derived characteristics from individual application” in a simi-
lar fashion. We choose the SM or LG labels based on resource
requirements from Table 3. However, instead of using the 256
threshold, we increase the threshold to 400 to reflect the larger
number of threads in each workload. Then, we add the time vari-
ation labels (“H” and “L”) to large workloads based on the par-
ticipating benchmarks. Finally, from the “Derived characteristics
from individual application” labels in Figure 11, we predict the
workload behavior in the row marked “Predicted behavior:” SM
workloads yield SS behavior, LG(H) workloads yield JL behavior,
and LG(L) workloads yield TL behavior. We find the predicted

workload behaviors correlate to observed performance. In work-
loads with SS behaviors, HILL-WIPC closely matches RAND-
HILL. In workloads with TL or JL behaviors, HILL-WIPC does
not achieve all of the potential performance exhibited by RAND-
HILL, just like in the 2-thread workloads.

5. Phase Detection and Prediction

One of the limitations of hill-climbing is finite learning time.
A natural approach to attack the finite learning time problem is to
exploit existing phase detection and prediction techniques. Phase
detection [15] can be used to determine which epochs are similar.
Instead of re-learning a partitioning for such an epoch, we can
simply use a previously learned partitioning to save the learning
time. Phase prediction [17] can be used to predict a future epoch
so that we can apply a previously learned partitioning.

We implemented Sherwood’s Basic Block Vector (BBV) sig-
nature analysis technique [15] to perform phase detection on our
epochs. We use a BBV with 64 entries per SMT context. We also
implemented Sherwood’s phase prediction technique [17] to pre-
dict the phase ID of the next epoch. Our phase predictor stores
128 unique phase IDs, and uses a 2048-entry run-length encoded
(RLE) Markov predictor. With phase detection and prediction, we
are able to boost hill-climbing performance by only 0.4% across
all 42 of our multiprogrammed workloads. Interestingly, almost
all of the performance benefit comes from speeding up workloads
exhibiting the TL behavior, the one that exposes hill-climbing’s
learning time problem. Considering only TL workloads, we see a
2.1% performance boost. We believe this is a promising approach
to improve hill-climbing, and plan on pursuing it as future work.

6. Conclusion

This paper investigates learning-based SMT resource distribu-
tion techniques. We present an ideal off-line exhaustive search
technique that enables a limit study. Our limit study shows
learning-based SMT techniques have the potential to improve per-
formance by 19.2% over ICOUNT, 18.0% over FLUSH, and 7.5%
over DCRA. We also present a novel hill-climbing SMT resource
distribution technique which varies the resource share of multiple
threads towards the direction that improves end performance. Our
evaluation shows hill-climbing improves performance by 12.4%
over ICOUNT, 11.3% over FLUSH, and 2.4% over DCRA. Be-
cause our approach learns based on actual performance, the re-
source distribution decisions it makes are customized to the per-
formance bottlenecks of the workload. Moreover, whenever learn-
ing for a particular behavior succeeds, our approach finds the best
resource distribution for that behavior. Finally, our approach can
optimize for a specific performance goal by using the appropriate
performance feedback metric. Due to these advantages, we be-
lieve feedback-based learning is a promising approach for SMT
resource distribution.

References

[1] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version
2.0. CS TR 1342, University of Wisconsin-Madison, June 1997.

[2] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Dynami-
cally Controlled Resource Allocation in SMT Processors. In Pro-
ceedings of the 37th International Symposium on Microarchitecture,
pages 171–182. IEEE Computer Society, December 2004.

[3] G. K. Dorai and D. Yeung. Transparent Threads: Resource Allo-
cation in SMT Processors for High Single-Thread Performance. In
Proceedings of the 11th Annual International Conference on Paral-
lel Architectures and Compilation Techniques, Charlottesville, VA,
September 2002.

[4] A. El-Moursy and D. H. Albonesi. Front-End Policies for Improved
Issue Efficiency in SMT Processors. In Proceedings of the 9th Inter-
national Conference on High Performance Computer Architecture,
February 2003.

[5] R. Goncalves, E. Ayguade, and a. P. O. A. N. M. Valero. Perfor-
mance Evaluation of Decoding and Dispatching Stages in Simul-
taneous Multithreaded Architectures. In Proceedings of the 13th
Symposium on Computer Architecture and High Performance Com-
puting, September 2001.

[6] http://www.intel.com/design/Pentium4/index.htm. Intel Pentium 4
Processor. 2002.

[7] R. N. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip:
A Dual-Core Multithreaded Processor. IEEE Micro, 24(2):40–47,
2004.

[8] D. Kim and D. Yeung. Design and Evaluation of Compiler Algo-
rithms for Pre-Execution. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), San Jose, CA, October 2002.

[9] F. Latorre, J. Gonzalez, and A. Gonzalez. Back-end Assignment
Schemes for Clustered Multithreaded Processors. In Proceedings of
the 18th Annual International Conference on Supercomputing, pages
316–325, July 2004.

[10] K. Luo, M. Franklin, S. S. Mukherjee, and A. Seznec. Boosting
SMT Performance by Speculation Control. In Proceedings of the
International Parallel and Distributed Processing Symposium, San
Francisco, CA, April 2001.

[11] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput
and Fairness in SMT Processors. In Proceedings of the Interna-
tional Symposium on Performance Analysis of Systems and Soft-
ware, November 2001.

[12] D. Madon, E. Sanchez, and S. Monnier. A Study of a Simul-
taneous Multithreaded Processor Implementation. In Proceedings
of EuroPar ’99, pages 716–726, Toulouse, France, August 1999.
Springer-Verlag.

[13] D. T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A. Miller,
and M. Upton. Hyper-threading Technology Architecture and Mi-
croarchitecture. In Intel Technology Journal, 6(1), February 2002.

[14] S. E. Raasch and S. K. Reinhardt. The Impact of Resource Partition-
ing on SMT processors. In Proceedings of the 12th International
Conference on Parallel Architectures and Compilation Techniques,
September 2003.

[15] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation Points in
Applications. In Proceedings of the 10th International Conference
on Parallel Architectures and Compilation Techniques, September
2001.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally Characterizing Large Scale Program Behavior. In Proceedings
of 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, San Jose, CA, Octo-
ber 2002. ACM.

[17] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and Predic-
tion. In Proceedings of the 30th Annual International Symposium
on Computer Architecture, pages 336–347, June 2003.

[18] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic Jobschedul-
ing with Priorities for a Simultaneous Multithreading Processor. In
Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, June 2002.

[19] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a
simultaneous multithreading processor. In Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture,
pages 318–327. IEEE Computer Society, 2001.

[20] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm. Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor. In Pro-
ceedings of the 1996 International Symposium on Computer Archi-
tecture, Philadelphia, May 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

