Scale in Distributed Systems

B. Clifford Neuman

Information Sciences Institute
University of Southern California

Abstract

In recent years, scale has become a factor of increasing importance in the design of distributed
systems. The scale of a system has three dimensions: numerical, geographical, and admin-
istrative. The numerical dimension consists of the number of users of the system, and the
number of objects and services encompassed. The geographical dimension consists of the dis-
tance over which the system 1s scattered. The administrative dimension consists of the number
of organizations that exert control over pieces of the system.

The three dimensions of scale affect distributed systems in many ways. Among the affected
components are naming, authentication, authorization, accounting, communication, the use of
remote resources, and the mechanisms by which users view the system. Scale affects reliability:
as a system scales numerically, the likelihood that some host will be down increases; as it
scales geographically, the likelihood that all hosts can communicate will decrease. Scale also
affects performance: its numerical component affects the load on the servers and the amount
of communication; its geographic component affects communication latency. Administrative
complexity is also affected by scale: administration becomes more difficult as changes become
more frequent and as they require the interaction of different administrative entities, possibly
with conflicting policies. Finally, scale affects heterogeneity: as the size of a system grows it
becomes less likely that all pieces will be identical.

This paper looks at scale and how it affects distributed systems. Approaches taken by existing
systems are examined and their common aspects highlighted. The limits of scalability in these
systems are discussed. A set of principles for scalable systems is presented along with a list of
questions to be asked when considering how far a system scales.

1 What is Scale?

In recent years scale has become an increas-
ingly important factor in the design of dis-
tributed systems.
such as the Internet have broadened the pool of
resources from which distributed systems can

Large computer networks

This work was performed while the author was com-
pleting a PhD at the University of Washington and was
supported in part by the National Science Foundation
(Grant Number CCR-8619663), the Washington Tech-
nology Centers, and Digital Equipment Corporation.

be constructed. Building a system to fully use
such resources requires an understanding of the
problems of scale.

A system is said to be scalable if it can han-
dle the addition of users and resources without
suffering a noticeable loss of performance or in-
crease in administrative complexity. Scale has
three components: the number of users and ob-

Author’s address: University of Southern California, In-
formation Sciences Institute, 4676 Admiralty Way, Ma-
rina del Rey, California 90292 USA. (bcn@isi.edu)

B. Clifford Neuman. Scale in Distributed Systems. In Readings in Distributed
Computing Systems. IEEE Computer Society Press, 1994.

jects that are part of the system, the distance
between the farthest nodes in the system, and
the number of organizations that exert admin-
istrative control over pieces of the system.

If a system is expected to grow, its ability to
scale must be considered when the system is
designed. Naming, authentication, authoriza-
tion, accounting, communication, and the use
of remote resources are all affected by scale.
Scale also affects the user’s ability to easily in-
teract with the system.

Grapevine was one of the earliest distributed
computer systems consciously designed to
scale. More recent projects such as the In-
ternet Domain Naming System (IDNS), Ker-
beros, Sprite, and DEC’s Global Naming and
Authentication Services have concentrated on
particular subsystems. Other projects have at-
tempted to provide complete scalable systems.
Among them are are Locus, Andrew, Project
Athena, Dash, and Amoeba. Scale affects the
way users perceive a system: as the number of
objects that are accessible grows, it becomes
increasingly difficult to locate the objects of in-
terest. Plan 9, Profile, Prospero, QuickSilver,
and Tilde are a few systems that address this
aspect of scale.

This paper examines the methods used to han-
dle scale in these and other systems. Section 3
discusses the problems of scale and presents
general solutions to the problems. Sections 4
through 6 look at the problems specific to in-
dividual subsystems and discuss the particu-
lar solutions used by several systems. These
solutions generally fall into three categories:
replication, distribution, and caching, defined
in Section 2 and discussed further in Sections 7
through 9. While earlier sections describe the
affect of scale on the systems themselves, Sec-
tion 10 examines some of the problems that
confront the users of large systems. The tech-
niques covered in this paper are summarized
in Section 11 as a list of suggestions to be fol-

lowed and questions to be asked when build-
ing scalable systems. Section 12 summarizes
the scope, limitations, and conclusions drawn
in this paper. Short descriptions of the sys-
tems mentioned in this paper may be found in
an appendix.

2 Definitions

There are several terms used repeatedly
throughout this paper. They are defined here

for quick reference.

When used in this paper the term system refers
to a distributed system. A distributed system
is a collection of computers, connected by a
computer network, working together to collec-
tively implement some minimal set of services.
A node is an individual computer within the
system. A site is a collection of related nodes,
a subset of the nodes in the system.

A service or resource is replicated when it has
multiple logically identical instances appearing
on different nodes in a system. A request for
access to the resource can be directed to any
of its instances.

A service is distributed when it is provided by
multiple nodes each capable of handling a sub-
set of the requests for service. Each request can
be handled by one of the nodes implementing
the service (or a subset of the nodes if the ser-
vice is also replicated). A distribution function
maps requests to the subset of the nodes that
can handle it.

The results of a query are cached by sav-
ing them at the requesting node so that they
may be reused instead of repeating the query.
Caching improves the performance of a local
node by reducing the time spent waiting for
a response. Caching improves scalability by
reducing the number of repeated queries sent
to a server. Caches employ wvalidation tech-

niques to make sure that data from the cache
are not used if the results of the query might
have changed. Caching is a temporary form of
replication.

3 The Effects of Scale

Scale affects systems in numerous ways. This
section examines the effects of scale on relia-
bility, load, administration, and heterogeneity.
These effects are felt by all parts of the system.

3.1 Reliability

As the number of components in a distributed
system increases, the likelihood decreases that
they will all be working simultaneously. As the
system scales geographically, it becomes less
likely that all components will be able to com-
municate. A system should not cease to oper-
ate just because certain nodes are unavailable.

Reliability can often be improved by increasing
the autonomy of the nodes in a system. A col-
lection of nodes is autonomous if it runs inde-
pendently from the other nodes in the system.
A failure in an autonomous system only affects
access to resources in the neighborhood of the
failure. For example, failure of a name server in
one part of a network would not prevent access
to local resources in another.

Replication can also improve the reliability of
a system. Replication allows a resource to be
used even if some of the instances are not run-
ning or are inaccessible. Replicas can be scat-
tered across the network so that a network fail-
ure is less likely to isolate any part of the sys-
tem from all of the replicas. It might also be
possible to dynamically reconfigure the set of
servers used by a client so that if a server goes
down, clients can continue with as little disrup-
tion as possible.

3.2 System Load

Scale affects system load in a number of ways.
As a system gets bigger the amount of data
that must be managed by network services
grows, as does the total number of requests for
service. Replication, distribution, and caching
are all used to reduce the number of requests
that must be handled by each server. Repli-
cation and distribution allow requests to be
spread across multiple servers, while caching
reduces repeated requests. The use of multiple
file servers, each providing storage for different
files, is an example of distribution. The exis-
tence of the same system binaries on more than
one server is an example of replication. With
replication, the choice of server can be based
on factors such as load and proximity.

3.3 Administration

The administrative dimension of scale adds its
own problems. As the number of nodes in a
system grows, it becomes impractical to main-
tain information about the system and its users
on each node; there are too many copies to
keep up-to-date. Administration of a collec-
tion of nodes is made easier when common in-
formation is maintained centrally; for example,
through a name server, authentication server,
or through a file server that provides a central
repository for system binaries.

As a system continues to grow, information
about the system changes more frequently.
This makes it less practical for a single indi-
vidual to keep it up-to-date. Additionally, as a
system crosses administrative boundaries, or-
ganizations want control over their own part
of the system. They are less willing to del-
egate that control to individuals outside their
organization. These problems can be addressed
by distribution. Responsibility for maintain-
ing pieces of the database are assigned to each

organization, and each organization maintains
that part of the databases concerning its own
systems. Section 8 describes the methods that
can be used to distribute the database.

3.4 Heterogeneity

The administrative dimension of scale com-
pounds the problem of heterogeneity. It is
likely that systems which cross administrative
boundaries will not only include hardware of
different types, but they may also be running
different operating systems or different versions
of the same operating system. It is not practi-
cal to guarantee that everyone runs exactly the
same software.

Coherence is one approach to dealing with het-
erogeneity. In a coherent system, all comput-
ers that are part of the system support a com-
mon interface. This requirement takes several
forms. All nodes might be required to sup-
port the same instruction set, but this is not
often practical. A looser requirement is that
all nodes support a common execution abstrac-
tion. Two computers share the same execution
abstraction if software that runs on one com-
puter can be easily recompiled to run on the
other. Still looser is coherence at the proto-
col level: all nodes are required to support a
common set of protocols, and these protocols
define the interfaces to the subsystems which
tie the system together. MIT’s Project Athena
[6] is an example of a system that uses coher-
ence (of the execution abstraction) to deal with
heterogeneity.

The Heterogeneous Computer Systems Project
[21] provides explicit support for heterogeneity.
A mechanism is provided that allows the use
of a single interface when communicating with
nodes that use different underlying protocols.
The HCS approach shows that it is possible to
support multiple mechanisms in heterogeneous
systems. This ability is important when differ-

ent mechanisms have different strengths and
weaknesses.

We have just seen some of the issues that affect
the scalability of a system as a whole. In the
next few sections we will examine the effects of
scale on particular subsystems.

4 Naming and Directory

Services

A name refers to an object. An address tells
where that object can be found. The binding
of a name is the object to which it refers. A
name server (or directory server) maps a name
to information about the name’s binding. The
information might be the address of an object,
or it might be more general, e.g., personal in-
formation about a user. An attribute-based
name service maps information about an ob-
ject to the object(s) matching that informa-
tion. Attribute-based naming is discussed in
Section 10.

4.1 Granularity of Naming

Name servers differ in the size of the objects
they name. Some name servers name only
hosts. The names of finer grained objects such
as services and files must then include the name
of the host so that the object can be found. A
problem with this approach is that it is difficult
to move objects. Other name servers name in-
dividual users and services. The names of such
entities do not change frequently, so the ratio
of updates to references is usually fairly low.
This simplifies the job of a name server con-
siderably. A few name servers name individual
files. There are a huge number of files and they
are often transient in nature. Supporting nam-
ing at this level requires support for frequent
updates and a massive number of queries.

An intermediate approach is used by Sprite [22]
and a number of other file systems. Groups of
objects sharing a common prefix are assigned
to servers. The name service maps the prefix
to the server, and the remainder of the name is
resolved locally by the server on which the ob-
ject is stored. An advantage of this approach is
that the name service handles fewer names, and
the prefixes change less frequently than the full
names of the objects. This also allows clients
to easily cache the mappings they have learned.
Another advantage is that names need not in-
clude the name of the server on which the ob-
ject resides, allowing groups of objects (shar-
ing a common prefix) to be moved. The main
disadvantage is that objects sharing common
prefixes must be stored together!.

The size of the naming database, the frequency
of queries, and the read-to-write ratio are all af-
fected by the granularity of the objects named.
These factors affect the techniques that can be
used to support naming in large systems.

4.2 Reducing Load

Three techniques are used to reduce the num-
ber of requests that must be handled by a name
server. The simplest is replication. By allow-
ing multiple name servers to handle the same
queries, different clients are able to send their
requests to different servers. This choice can be
based on physical location, the relative loads of
the different servers, or made at random. The
difficulty with replication lies in keeping the
replicas consistent. Consistency mechanisms
are discussed in Section 7.

Distribution is a second technique for spread-
ing the load across servers. In distribution, dif-
ferent parts of the name space are assigned to
different servers. Advantages to distribution

! Actually, a prefix can be an entire file name, but
this can only be done with a very limited number of
objects and does not scale.

are that only part of the naming database is
stored on each server, thus reducing the num-
ber of queries and updates to be processed.
Further, because the size of each database is
smaller, each request can usually be handled
faster. With distribution, the client must be
able to determine which server contains the re-
quested information. Techniques for doing so
are described in Section 8.

Caching is a third technique that reduces the
load on name servers. If a name is resolved
once, it will often need to be resolved again.
If the results are remembered, additional re-
quests for the same information can be avoided.
As will be seen later, caching is of particu-
lar importance in domain-based distribution of
Not only is the same name likely to
be used again, but so are names with common
prefixes. By caching the mapping from a prefix
to the name server handling it, future names
sharing the same prefix can be resolved with
fewer messages. This is extremely important
because, as prefixes become shorter, the num-
ber of names that share them grows. Without
the caching of prefixes, high-level name servers
would be overloaded, and would become a bot-
tleneck for name resolution. Caching is a form
of replication, and like replication, the need to
keep things consistent is its biggest difficulty.
Caching is described in greater detail in Sec-
tion 9.

names.

4.3 UID-Based Naming

Not all distributed systems use a hierarchi-
cal name service like those that have been de-
scribed. Some systems use unique identifiers to
name objects. Capability-based systems such
as Amoeba [30] fall into this category. A ca-
pability is a unique identifier that both names
and grants access rights for an object. Unique
IDs may be thought of as addresses. They usu-
ally contain information identifying the server

that maintains the object, and an identifier to
be interpreted by the server. The information
identifying the server might be an address or it
might be a unique identifier to be included in
requests broadcast by the client. A client need-
ing to access an object or service is expected
to already possess its unique identifier.

A problem with uid-based naming is that ob-
jects move, but the UlIDs often identify the
server on which an object resides. Since the
UIDs are scattered about without any way to
find them all, they might continue to exist with
incorrect addresses for the objects they refer-
ence. A technique often used to solve this prob-
lem is forwarding pointers [8]. With forward-
ing pointers, a user attempting to use an old
address to access an object is given a new UID
containing the new address. A drawback to for-
warding pointers is that the chain of links to
be followed can become lengthy. This reduces
performance, and if one of the nodes in the
chain is down, it prevents access to the object.
This drawback is solved in Emerald by requir-
ing that each object have a home site and that
the forwarding pointer at that site is kept up to
date. Another solution is for the client to up-
date the forwarding pointers traversed if sub-
sequent forwarding pointers are encountered.

Prospero [20] supports UIDs with expiration
dates. Its directory service guarantees that
the UIDs it maintains are kept up-to-date. By
using expiration dates, it becomes possible to
get rid of forwarding pointers once all possible
UIDs with the old address have expired.

4.4 Directory Services

Even in uid-based systems, it is often desirable
to translate from symbolic names that humans
use into the UIDs for the named objects. Di-
rectory service do this. Given a UID for a di-
rectory it is possible to read the contents of
that directory, to map from a symbolic name

in the directory to another UID, and to add a
symbolic name/UID pair to the directory. A
directory can contain UIDs for files, other di-
rectories, or in fact, any object for which a UID
exists.

The load on directory servers is easily dis-
tributed. There is no requirement that a sub-
directory be on the same server as its par-
ent. Different parts of a name space can re-
side on different machines. Replication can be
supported by associating multiple UIDs with
the same symbolic name, or through the use
of UIDs that identify multiple replicas of the

same object or directory.

The primary differences between a name server
and a directory server is that the directory
server usually possess little information about
A directory
server can support pieces of independent name

the full name of an object.

spaces, and it is possible for those name spaces
Both
Prospero and Amoeba use directory servers to
translate names to UlIDs.

to overlap, or even to contain cycles.

4.5 Growth and Reorganization

For a system to be scalable, it must be able to
grow gracefully. If two organizations with sep-
arate global name spaces merge, reorganize, or
otherwise combine their name spaces, a prob-
lem arises if the name spaces are not disjoint.
The problem arises because one or both name
spaces suddenly change. The new names corre-
spond to the old names, but with a new prefix
corresponding to the point in the new name
space at which the original name space was at-
tached. This causes problems for any names
which were hardcoded in programs or other-
wise specified before the change.

DEC’s Global Name Service [14] addresses this
problem by associating a unique number with
the root of every independent name space.

When a file name is stored, the number for
the root of the name space can be stored along
with the name. When name spaces are merged,
an entry is made in the new root pairing the
unique ID of each previous root with the prefix
required to find it. When a name with an as-
sociated root ID is resolved, the ID is checked,
and if it doesn’t match that for the current
root, the corresponding prefix is prepended, al-
lowing the hardcoded name to work.

5 The Security Subsystem

As the size of a system grows, security becomes
increasingly important and increasingly diffi-
cult to implement. The bigger the system, the
more vulnerable it is to attack: there are more
points from which an intruder can enter the
network; the system has a greater number of
legitimate users; and it is more likely that the
users will have conflicting goals. This is partic-
ularly troublesome when a distributed system
spans administrative boundaries. The security
mechanisms employed in different parts of a
system will have different strengths. It is im-
portant that the effects of a security breach can
be contained to the part of the system that was
broken.

Security has three aspects: authentication,
how the system verifies a user’s identity; au-
thorization, how it decides whether a user is
allowed to perform the requested operation;
and accounting, how it records what the user
has done, and how it makes sure that a user
does not use excessive resources. Account-
ing can include mechanisms to bill the user
for the resources used. Many systems imple-
ment a distributed mechanism for authentica-
tion, but leave authorization to the individual
server. Few systems provide for accounting in
a distributed manner.

5.1 Authentication

Several techniques are used to authenticate
users in distributed systems. The simplest,
the use of passwords on each host, requires
maintenance of a password database on mul-
tiple nodes. To make it easier to administer,
Grapevine [3] supported a central service to
verify passwords. Password-based authentica-
tion can be cumbersome if the user is required
to present a password each time a new service
is requested. Unfortunately, letting the work-
station remember the users password is risky.
Password based authentication is also vulnera-
ble to the theft of passwords by attackers that
can eavesdrop on the network.

Host-based authentication, as used for rlogin
and rsh in Berkeley Unix, has problems too.
In host-based authentication, the client is au-
thenticated by the local host. Remote servers
trust the host to properly identify the client.
As one loses control of the nodes in a system,
one is less willing to trust the claims made by
other systems about the identity of its users.

Encryption-based authentication does not suf-
fer from these problems. Passwords are never
sent across the network. Instead, each user
is assigned an encryption key, and that key is
used to prove the user’s identity. Encryption-
based authentication is not without its own
problems. Principals (users and servers) must
maintain a key for use with every other prin-
cipal with which they might possibly commu-
nicate. This is impractical in large systems.
Altogether, (n x m) keys are required where n
is the number of users, and m the number of
servers.

In [17] Needham and Schroeder show how the
number of keys to be maintained can be re-
duced through the use of an authentication
server (AS). An AS securely generates keys as
they are needed and distributes them to the
parties wishing to communicate. Fach party

Figure 1: Kerberos Authentication Protocol

shares a key (or key pair) with the AS.

Authentication in Kerberos [29] is based on
a modified version of the Needham and
Schroeder protocol (Figure 1). When a client
wishes to communicate with a server it con-
tacts the AS, sending its own name and the
name of the server to be contacted (1). The
AS randomly generates a session key and re-
turns it to the client encrypted in the key that
the client registered with the AS (2). Accom-
panying the encrypted session key is a ticket
that contains the name of the client and the
session key, all encrypted in the key that the
server registered with the AS.

In Kerberos the session key and ticket received
from the AS are valid for a limited time and
are cached by the client, reducing the number
of requests to the AS. Additionally, the user’s
secret key is only needed when initially logging
in. Subsequent requests during the same login
session use a session key returned by the AS in
response to the initial request.

To prove its identity to the server, the client
forwards the ticket together with a timestamp
encrypted in the session key from the ticket
(3). The server decrypts the ticket and uses
the session key contained therein to decrypt
the timestamp. If recent, the server knows that

the message was sent by a principal who knew
the session key, and that the session key was
only issued to the principal named in the ticket.
This authenticates the client. If the client
requires authentication from the server, the
server adds one to the timestamp, re-encrypts
it using the session key and returns it to the
client (4).

As a system scales, it becomes less practical
for an authentication server to share keys with
every client and server. Additionally, it be-
comes less likely that everyone will trust a sin-
gle entity. Kerberos allows the registration
of principals to be distributed across multi-
ple realms. The distribution mechanism is de-
scribed in Section 8.

The Kerberos authentication protocol is based
on conventional cryptography, but authentica-
tion can also be accomplished using public-key
cryptography. In public-key cryptography, sep-
arate keys are used for encryption and decryp-
tion, and the key distribution step of authenti-
cation can be accomplished by publishing each
principal’s public key. When issues such as re-
vocation are considered, authentication proto-
cols based on public key cryptography make
different tradeoffs, but provide little reduction
in complexity. Authentication based on public
key cryptography does, however, make a sig-
nificant difference when authenticating a single
message to multiple recipients.

5.2 Authorization

There are a number of ways distributed sys-
tems approach authorization. In one, a request
is sent to an authorization service whenever a
server needs to make an access control decision.
The authorization service makes the decision
and sends its answer back to the server. This
approach allows the access control decision to
take into account factors such as recent use of
other servers, global quotas, etc. The disad-

vantage is that it can be cumbersome and the
access control service becomes a bottleneck.

In a second approach the client is first authen-
ticated, then the server makes its own decision
about whether the client is authorized to per-
form an operation. The server knows the most
about the request and is in the best position to
decide whether it should be allowed. For exam-
ple, in the Andrew file system [12] each direc-
tory has an associated list, known as an access
control list (ACL), identifying the users autho-
rized to access the files within the directory.
When access to a file is requested, the client’s
name is compared with those in the ACL.

ACL entries in Andrew can contain the names
of groups. The use of groups allow rights to
be granted to named collections of individu-
als without the need to update multiple ACLs
each time membership in the group changes.
Each Andrew file server maintains the list of
the groups to which each user belongs and that
list is consulted before checking the ACL.

The server making an authorization decision
should be provided with as much information
as possible. For example, if authentication re-
quired the participation of more than one AS,
the names of the AS’s that took part should
be available. It should also be possible for the
server to use external sources to obtain infor-
mation such as group membership. This ap-
proach, used in Grapevine, is similar to using
an authorization service. It differs in that not
all requests require information from the group
server, and the final decision is left to the end
server.

Like Andrew, authorization in Grapevine is
based on membership in ACLs. ACLs con-
tain individuals or groups that themselves con-
tain individuals or groups. Group membership
is determined by sending to a name server a
query containing the name of the individual
and the name of the group. The name server

recursively checks the group for membership by
the individual. If necessary, recursive queries
can be sent to other name servers. One of
the most noticeable bottlenecks in Grapevine
was the time required to check membership
in large groups, especially when other name
servers were involved. [27]

External information can be made available to
a server without the need for it to contact an-
other service. The client can request crypto-
graphically sealed credentials either authoriz-
ing its access to a particular object or verifying
its membership in a particular group. These
credentials can be passed to the server in a
manner similar to that for the capability-based
approach described next. The difference from
capabilities is that these credentials might only
be usable by a particular user, or they might
require further proof that they were really is-
sued to the user presenting them. Version 5 of
Kerberos supports such credentials. Their use
is described separately in [19].

5.2.1 Capabilities

The approaches discussed so far have been
based on an access control list model for autho-
rization. A disadvantage of this model is that
the client must first be authenticated, then
looked up in a potentially long list, the lookup
may involve the recursive expansion of multi-
ple groups, and interaction may be required
with other servers. The advantages of the ac-
cess control list model are that it leaves the
final decision with the server itself, and that it
is straightforward to revoke access should that
be required.

Amoeba [30] uses the capability model for au-
thorization. In the capability model, the user
maintains the list of the objects for which ac-
cess is authorized. Each object is represented
by a capability which, when presented to a
server, grants the bearer access to the ob-

ject. To prevent users from forging capabilities,
Amoeba includes a random bit pattern. By
choosing the bit pattern from a sparse enough
address space, it is sufficiently difficult for a
user to create its own capability. A client
presents its capability when it wishes to ac-
cess an object. The server then compares the
bit pattern of the capability with that stored
along with the object, and if they match, the
access is allowed.

The advantage of the capability model is that,
once contacted by the client, the server can
make its access control decision without con-
tacting other servers. Yet, the server does
not need to maintain a large authorization
database that would be difficult to keep up-
to-date in a large system. A disadvantage is
that capabilities can only be revoked en masse.
Capabilities are revoked by changing the bit
pattern, but this causes all outstanding capa-
bilities for that object to be immediately inval-
idated. The new capability must then be reis-
sued to all legitimate users. In a large system,
this might be a significant task.

Authorization in capability-based distributed
systems is still dependent on authentication
and related mechanisms. Authentication is re-
quired when a user logs in to the system before
the user is granted an initial capability that can
be used to obtain other capabilities from a di-
rectory service. Additionally, as was the case
with passwords, capabilities can be easily in-
tercepted when they are presented to a server
over the network. Thus, they can not simply
be sent in the clear. Instead, they must be
sent encrypted, together with sufficient infor-
mation to prevent replay. This mechanism is
quite similar to that used for encryption-based
authentication.

5.3 Accounting

Most distributed systems handle accounting on
a host-by-host basis. There is a need for dis-
tributed, secure, and scalable accounting mech-
anism, especially in large systems that cross
administrative boundaries. To date, few sys-
tems have even considered the problem. The
difficulty lies in the inability to trust servers
run by unknown individuals or organizations.
The bank server [16] and accounting based on
proxies [19] are among the few approaches that
have been described.

In Amoeba, accounting is handled by bank
servers which maintain accounts on behalf of
Users transfer money to
servers, which then draw upon the balance as
resources are used. Proxy-based accounting is
tied much closer to authentication and autho-
rization. The client grants the server a proxy
allowing the server to transfer funds from the
client’s account.

users and servers.

Both approaches require support for multiple
currencies. This is important as systems span
international boundaries, or as the account-
ing service is called on to maintain information
about different types of resources. The curren-
cies can represent the actual funds for which
clients can be billed, or they can represent lim-
its on the use of resources such as printer pages
or CPU cycles. Quotas for reusable resources
(such as disk pages) can be represented as a
deposit which is refunded when the resource is
released.

Authorization and accounting depend on one
another. In one direction, the transfer of funds
requires the authorization of the owner of the
account from which funds will be taken. In
the other, a server might verify that the client
has sufficient funds (or quota) to pay for an
operation before it will be performed.

10

5.4 On Replication, Distribution

and Caching

This section has described the problems spe-
cific to scaling the security subsystems of large
systems and has discussed the mechanisms
used to solve them. Many of problems that
we saw with naming also arise with security.
As with naming, replication, distribution, and
caching are often used. When applying these
techniques in the security area, a few consider-
ations must be kept in mind.

When replicating a server that maintains secret
keys, the compromise of any replica can result
in the compromise of important keys. The se-
curity of the service is that of the weakest of
all replicas. When distribution is used, mul-
tiple servers may be involved in a particular
exchange. It is important that both principals
know which servers were involved so that they
can correctly decide how much trust to place
in the results. Finally, the longer one allows
credentials to be cached, the longer it will take
to recover when a key is compromised.

As a system grows, less trust can be placed
in its component pieces. For this reason,
encryption-based security mechanisms are the
appropriate choice for large distributed sys-
tems. Even encryption-based mechanisms rely
on trust of certain pieces of a system. By mak-
ing it clear which pieces need to be trusted,
end services are better able to decide when a
request is authentic.

6 Remote Resources

Naming and security are not the only parts of
the system affected by scale. Scale affects the
sharing of many kinds of resources. Among
them are processors, memory, storage, pro-
grams, and physical devices. The services that
provide access to these resources often inherit

scalability problems from the naming and se-
curity mechanisms they use. For example, one
can’t access a resource without first finding it.
This involves both identifying the resource that
is needed and determining its location given its
name. Once a resource has been found, authen-
tication and authorization might be required
for its use.

These services sometimes have scalability prob-
lems of their own, and similar techniques are
employed to solve them. Problems of load and
reliability are often addressed through replica-
tion, distribution, and caching. Some services
further reduce load by by shifting as much com-
putation to the client as possible; however, this
should only be done when all the information
needed for the computation is readily accessi-
ble to the client.

The services used to access remote resources
are very dependent on the underlying commu-
nications mechanisms they employ. This sec-
tion will look at the scaling issues related to
network communication in such services. To
provide an example of the problems that arise
when supporting access to remote resources, it
will then look at the effect of scale on a heavily
used resource, the network file system.

6.1 Communication

As a system grows geographically, the medium
of communications places limits on the sys-
tem’s performance. These limits must be con-
sidered when deciding how best to access a
remote resource. Approaches which might
seem reasonable given a low latency connec-
tion might not be reasonable across a satellite

link.

Because they can greatly affect the usability of
a system, the underlying communications pa-
rameters must not be completely hidden from
the application. The Dash system [1] does a

11

good job at exposing the communication pa-
rameters in an appropriate manner. When a
connection is established, it is possible for the
application to require that the connection meet
certain requirements. If the requirements are
not met, an error is returned. When one set
of required communication parameters can not
be met, it might still be possible for the appli-
cation to access the resource via an alternate
mechanism; e.g., whole file caching instead of
remote reads and writes.

Communication typically takes one of two
forms: point-to-point or broadcast. In point-
to-point communication the client sends mes-
sages to the particular server that can satisfy
the request. If the contacted server can not
satisfy the request, it might respond with the
identity of a server that can. With broadcast,
the client sends the message to everyone, and
only those servers that can satisfy the request
respond.

The advantage of broadcast is that it is easy
to find a server that can handle a request;
just send the request and the correct server
responds. Unfortunately, broadcast does not
scale well. Preliminary processing is required
by all servers whether or not they can handle a
request. As the total number of requests grows,
the load due to preliminary processing on each
server will also grow.

The use of global broadcast also limits the
scalability of computer networks. Computer
networks improve their aggregate throughput
by distributing network traffic across multiple
subnets. Only those messages that need to pass
through a subnet to reach their destination are
transmitted on a particular subnet. Local com-
munications in one part of a network is not seen
by users in another. When messages are broad-
cast globally, they are transmitted on all sub-
nets, consuming available bandwidth on each.

Although global broadcast should be avoided

in scalable systems, broadcast need not be
ruled out entirely. Amoeba [30] uses broad-
cast on its subnets to improve the performance
of local operations. Communications beyond
the local subnet uses point-to-point communi-
cation.

Multicast, a broadcast-like mechanism, can
also be used. In multicast, a single message can
be sent to a group of servers. This reduces the
number of messages required to transmit the
same message to multiple recipients. For mul-
ticast to scale, the groups to which messages
are sent should be kept small (only those re-
cipients that need to receive a message). Addi-
tionally, the network should only transmit mul-
ticast message across those subnets necessary
to reach the intended recipients.

6.2 File Systems

The file system provides an excellent example
of a service affected by scale. It is heavily used,
and it requires the transfer of large amounts of
data.

In a global file system, distribution is the first
line of defense against overloading file servers.
Files are spread across many servers, and each
server only processes requests for the files that
it stores.
storing a file given the file’s name are described
in Section 8. In most distributed systems, files
are assigned to servers based on a prefix of the
file name. For example, on a system where the
names of binaries start with “/bin”, it is likely
that such files will be assigned to a common
server. Unfortunately, since binaries are more
frequently referenced than files in other parts of
the file system, such an assignment might not
evenly distribute requests across file servers.

Mechanisms used to find the server

Requests can also be spread across file servers
through the use of replication. Files are as-
signed to multiple servers, and clients contact

12

a subset of the servers when making requests.
The difficulty with replication lies in keeping
the replicas consistent. Techniques for doing so
are described in Section 7. Since binaries rarely
change, manual techniques are often sufficient
for keeping their replicas consistent.

Caching is extremely important in network file
systems. A local cache of file blocks can be
used to make network delays less noticeable. A
file can be read over the network a block at a
time, and access to data within that block can
be made locally. Caching significantly reduces
the number of requests sent to a file server, es-
pecially for applications that read a file several
bytes at a time. The primary difficulty with
caching lies in making sure the cached data is
correct. In a file system, a problem arises if
a file is modified while other systems have the
file, or parts of the file, in their cache. Mecha-
nisms to maintain the consistency of caches are
described in Section 9.

An issue of importance when caching files is the
size of the chunks to be cached. Most systems
cache pieces of files. This is appropriate when
only parts of a file are read. Coda [26] and
early versions of the Andrew File System [12]
support whole file caching, in which the en-
tire file is transferred to the client’s worksta-
tion when opened. Files that are modified are
copied back when closed. Files remain cached
on the workstation between opens so that a
subsequent open does not require the file to
be fetched again. Approaches such as whole
file caching work well on networks with high
latency, and this is important in a geographi-
cally large system. But, whole file caching can
be expensive if an application only wants to
access a small part of a large file. Another
problem is that it is difficult for diskless work-
stations to support whole file caching for large
files. Because of the range in capabilities of the
computers and communication channels that
make up a distributed system, multiple file ac-
cess mechanisms should be supported.

7 Replication

Replication is an important tool for building
scalable distributed systems. Its use in nam-
ing, authentication, and file services reduces
the load on individual servers and improves the
reliability and availability of the services as a
whole. The issues of importance for replica-
tion are the placement of the replicas and the
mechanisms by which they are kept consistent.

7.1 Placement of Replicas

The placement of replicas in a distributed sys-
tem depends on the purpose for replicating the
resource. If a service is being replicated to im-
prove the availability of the service in the face
of network partitions, or if it is being replicated
to reduce the network delays when the service
is accessed, then the replicas should be scat-
tered across the system. Replicas should be lo-
cated so that a network partition will not make
the service unavailable to a significant number
of users.

If the majority of users are local, and if the
service is being replicated to improve the relia-
bility of the service, to improve its availability
in the face of server failure, or to spread the
load across multiple servers, then replicas may
be placed near one another. The placement
of replicas affects the choice of the mechanism
that maintains the consistency of replicas.

7.2 Consistency

A replicated object can logically be thought of
as a single object. If a change is made to the
object, the change should be visible to every-
one. At a particular point in time, a set of
replicas is said to be consistent if the value of
the object is the same for all readers. The fol-
lowing are some of the approaches that have

13

been used to maintain the consistency of repli-
cas in distributed systems.

Some systems only support replication of read-
only information. Andrew and Athena take
this approach for replicating system binaries.
Because such files change infrequently, and be-
cause they can’t be changed by normal users,
external mechanisms are used to keep the repli-
cas consistent.

Closely related to the read-only approach is
replication of immutable information. This ap-
proach is used by the Amoeba file server. Files
in Amoeba are immutable, and as a result, they
can be replicated at will. Changes to files are
made by creating new files, then changing the
directory so that the new version of the file will

be found.

A less restrictive alternative is to allow up-
dates, but to require that updates are sent to
all replicas. The limitations of this approach
are that updates can only take place when all
of the replicas are available, thus reducing the
availability of the system for write operations.
This mechanism also requires an absolute or-
dering on updates so that inconsistencies do
not result if updates are received by replicas
in different orders. A final difficulty is that a
client might fail during an update, resulting in
its receipt by only some of the replicas.

In primary-site replication, all updates are di-
rected to a primary replica which then forwards
the updates to the others. Updates may be
forwarded individually, as in Echo [11], or the
whole database might be periodically down-
loaded by the replicas as in Kerberos [29] and
the Berkeley Internet Domain Naming system
(BIND) [31], an implementation of IDNS [15].
The advantage of the primary-site approach is
that the ordering of updates is determined by
the order in which they are received at the pri-
mary site, and updates only require the avail-
ability of the primary site. A disadvantage of

the primary-site approach is that the availabil-
ity of updates still depends on a single server,
though some systems select a new primary site
if the existing primary goes down. An addi-
tional disadvantage applies if changes are dis-
tributed periodically: the updates are delayed
until the next update cycle.

For some applications, absolute consistency is
often not an overriding concern. Some de-
lay in propagating a change is often accept-
able, especially if one can tell when a response
is incorrect. This observation was exploited
by Grapevine, allowing it to guarantee only
loose consistency. With loose consistency, it
is guaranteed that replicas will eventually con-
tain identical data. Updates are allowed even
when the network is partitioned or servers are
down. Updates are sent to any replica, and
that replica forwards the update to the others
as they become available. If conflicting updates
are received by different replicas in different or-
ders, timestamps indicate the order in which
they are to be applied. The disadvantage of
loose consistency is that there is no guaran-
tee that a query returns the most recent data.
With name servers, however, it is often possi-
ble to check whether the response was correct
at the time it is used.

Maintaining a consistent view of replicated
data does not require that all replicas are up-
to-date. It only requires that the up-to-date
information is always visible to the users of
the data. In the mechanisms described so far,
updates eventually make it to every replica.
In quorum-consensus, or voting [9], updates
may be sent to a subset replicas.
tent view is maintained by requiring that all
reads are directed to at least one replica that is
up-to-date. This is accomplished by assigning
votes to each replica, by selecting two num-
bers, a read-quorum and write-quorum, such
that the read-quorum plus the write-quorum
exceeds the total number of votes, and by re-
quiring that reads and writes are directed to a

A consis-

14

sufficient number of replicas to collect enough
votes to satisfy the quorum. This guarantees
that the set of replicas read will intersect with
the set written during the most recent update.
Timestamps or version numbers stored with
each replica allow the client to determine which
data is most recent.

8 Distribution

Distribution allows the information maintained
by a distributed service to be spread across
multiple servers. This is important for several
reasons: there may be too much information
to fit on a single server; it reduces the number
of requests to be handed by each server; it al-
lows administration of parts of a service to be
assigned to different individuals; and it allows
information that is used more frequently in one
part of a network to be maintained nearby.

This section will describe the use of distribu-
tion in naming, authentication, and file ser-
vices. Some of the issues of importance for
distribution are the placement of the servers
and the mechanisms by which the client finds
the server with the desired information.

8.1 Placement of Servers

Distributed systems exhibit locality. Certain
pieces of information are more likely to be ac-
cessed by users in one part of a network than
by users in another.
distributed to servers that are near the users

Information should be

that will most frequently access the informa-
tion. For example, a user’s files could be as-
signed to a file server on same subnet as the
workstation usually used by that user. Simi-
larly, the names maintained by name servers
can be assigned so that names for nearby ob-
jects can be obtained from local name servers.
In addition to reducing network traffic, such

assignments improve reliability, since it is less
likely that a network partition will make a lo-
cal server inaccessible. In any case, it is desir-
able to avoid the need to contact a name server
across the country in order to find a resource
in the next room.

By assigning information is to servers along ad-
ministrative lines, an organization can avoid
dependence on others. When distributed along
organizational lines, objects maintained by an
organization are often said to be within a par-
ticular domain (IDNS), or a cell (Andrew).
Kerberos uses the term realm to describe the
unit of distribution when there exists an ex-
plicit trust relationship between the server and
the principals assigned to it.

8.2 Finding the Right Server

The difficulty with distribution lies in the dis-
tribution function: the client must determine
which server contains the requested informa-
tion. Hierarchical name spaces make the task
easier since names with common prefixes are
often stored together?, but it is still necessary
to identify the server maintaining that part of
the name space. The methods most frequently
used are mounts, broadcast and domain-based
queries.

Sun’s Network File System [25], Locus [32],
and Plan 9 [24] use a mount table to identify
the server on which a a named object resides.
The system maintains a table mapping name
prefixes to servers. When an object is refer-
enced, the name is looked up in the mount ta-
ble, and the request is forwarded to the appro-
priate server. In NFS, the table can be differ-
ent on different systems meaning that the same
name might refer to different objects on differ-

?In this discussion, prefix means the most significant
part of the name. For file names, or for names in DEC’s
Global Naming System, it is the prefix.
names it 1s really the suffix.

For domain

15

ent systems. Locus supports a uniform name
space by keeping the mount table the same on
all systems. In Plan 9, the table is maintained
on a per-process basis.

Broadcast is used by Sprite [22] to identify the
server on which a particular file can be found.
The client broadcasts a request, and the server
with the file replies. The reply includes the pre-
fix for the files maintained by the server. This
prefix is cached so that subsequent requests for
files with the same prefix can be sent directly
to that server. As discussed in Section 6.1, this
approach does not scale beyond a local net-
work. In fact, most of the systems that use
this approach provide a secondary name reso-
lution mechanism to be used when a broadcast
goes unanswered.

Distribution in Grapevine, IDNS, and X.500
[5] is domain-based. Like the other tech-
niques described, the distribution function in
domain-based naming is based on a prefix of
the name to be resolved. Names are divided
into multiple components. One component
specifies the name to be resolved by a par-
ticular name server and the others specify the
server that is to resolve the name. For exam-
ple, names in Grapevine consist of a registry
and a name within the registry. A name of
the form NEUMAN.UW would be stored in the
UW registry under the name NEUMAN. IDNS
and DEC’s Global Naming System both sup-
port variable depth names. In these systems,
the point at which the name and the domain
are separated can vary. In IDNS, the last com-
ponents of the name specify the domain, and
the first components specify the name within
For example, VENERA.ISI.EDU
is registered in the name server for the ISI.EDU
domain.

that domain.

To find a name server containing information
for a given domain or registry, a client sends
a request to the local name server. The local
name server sends back an answer, or infor-

client Servers

lookup a.isi.edu

\

L

A

time eduis 192.67.67.53

lookup a.isi.edu

isi.eduis 128.9.0.32
lookup a.isi.edu

\

mg.o.lm

Figure 2: Resolving a domain-based name

mation redirecting the query to another name
With the two level name space sup-
ported by Grapevine, only two queries are re-
quired: one to find the server for a given reg-
istry, and one to resolve the name. The server
for a given registry is found by looking up the
name in the Gv registry which is replicated on
every Grapevine server.

server.

The resolution of a name with a variable num-
ber of components is shown in figure 2. The
client sends a request to its local server request-
ing resolution of the host name A.ISI.EDU.
That server returns the name and address of
the EDU server. The client repeats its request
to the EDU server which responds with the
name and address for the 1SI.EDU server. The
process repeats, with successively longer pre-
fixes, until a server (in this case ISI.EDU) re-
turns the address for the requested host. The
client caches intermediate responses mapping
prefixes to servers so that subsequent requests
can be handled with fewer messages.

Domain-based distribution of names scales
well. As the system grows and queries be-
come more frequent, additional replicas of fre-

quently queried registries or domains can be

16

added. Grapevine’s two level name space,
though, places limits on scalability. Since ev-
ery name server must maintain the av registry,
and because the size of this registry grows lin-
early with the total number of name servers,
the total number of name servers that can be
supported is limited. Clearinghouse, a produc-
tion version of Grapevine, addressed this prob-
lem by supporting a three level name space.
This allows the name service to scale to a larger
number of names, but it still eventually reaches
alimit due to the size of the root or second-level
registries.

The primary disadvantage of domain-based
distribution of names is that it can take many
queries to resolve a single name. Fortunately,
with the appropriate use of caching, many of
these additional queries can be eliminated.

Domain-based distribution can also be used for
authentication. In Kerberos, principals may
be registered in multiple realms. This allows
an organization to set up its own Kerberos
server, eliminating the need for global trust.
The server’s realm is used to determine the
sequence of authentication servers to be con-
tacted. If a client in one Kerberos realm wishes
to use a server in another, it must first authen-
ticate itself to the authentication server in the

server’s realm using the AS in its own realm.

Figure 3 shows multiple-hop cross realm au-
In this figure, the
numbers on messages loosely correspond to
those in figure 1. 341 is a message authen-
ticating the client to the next Kerberos server,
accompanied with a request for credentials.
Message 2T is the same as message 2 in fig-
ure 1, except that instead of being encrypted
in the client’s key, the response is encrypted in
the session key from the ticket sent to the AS
in the previous message.

thentication in Kerberos.

The initial version of Kerberos only supported
single-hop cross-realm authentication. This re-

client

\/

A
IO

time
3+1

3+1

Figure 3: Cross-Realm Authentication

quired that each realm had to know about ev-
ery other realm with which it was to communi-
cate. This limitation does not exist in Version
5 of Kerberos, or in DEC’s global authentica-
tion system [2]. With multiple-hop cross-realm
authentication, what is known after a client has
been authenticated may be as weak as “the lo-
cal AS claims that a remote AS claims that an-
other AS has authenticated the client as A”. To
allow the end server to make an informed deci-
sion, it is necessary that it knows the complete
list of realms that took part in authenticating
the client. In global authentication this infor-
mation is part of the name of the authenticated
principal. The principal’s name is constructed
by concatenating the names of the links that
were traversed at each step in the authentica-
tion process. In Version 5 of Kerberos a list
of the transited realms is included in the cre-
dentials. Both protocols allow intermediaries
to be skipped. This not only speeds up the au-
thentication process, but it can make it more
secure.

17

9 Caching

Caching is another important tool for build-
ing scalable systems. It is a form of replica-
tion, and like replication, two issues of impor-
tance are the placement of caches, and how
they are kept consistent. The difference be-
tween replication and caching is that cached
data is a temporary replica. Updates need not
be propagated to caches. Instead, consistency
is maintained by invalidating cached data when
consistency can not be guaranteed.

9.1 Placement of Caches

Caching can occur in multiple places. Caching
is usually performed by the client, eliminating
repeated requests to network services. Caching
can also take place on the servers implement-
ing those services. For example, in addition to
caching on the workstation, Sprite [22] caches
blocks in the memory of the file server. Read-
ing a file from the memory cached copy on the
file server is often faster than reading it from
the client’s local disk. The additional caching
on the file server can improve performance be-
cause the file server might have more memory
than the client and because many of the blocks
cached on the file server might be read by mul-
tiple clients.

Caching in multiple places is also useful for
name servers. Most name servers unable to an-
swer to a query will return the address of the
name server sharing the longest prefix in com-
mon with the name being resolved. In many
cases, that might be the name server for the
root. BIND [31] may be configured so that a
local name server makes queries on behalf of
the client and caches the response (and any
intermediate responses) for use by other local
clients. This additional level of caching allows
higher levels of the naming hierarchy to be by-
passed, even if the client does not know the

server for the desired prefix. For example, if
a client in the CS.WASHINGTON.EDU domain
wishes to resolve VENERA.ISI.EDU, the local
name server could make the query to the root
name server on behalf of the client, return the
address for that name server, and cache it. If a
second host in the CS.WASHINGTON.EDU do-
main wanted to resolve A.ISI.LEDU, the local
name server would then be able to return the
address of the correct name server without an
additional query to root. For this to work,
clients must be willing to first look for infor-
mation locally instead of initially asking the
root name server.

9.2 Cache Consistency

As was the case with replication, there are
many techniques that are used to maintain the
consistency of caches. The four most common
approaches used to keep caches consistent in
distributed systems are timeouts, check-on-use
(hints), callbacks, and leases.

Timeouts are used to maintain cache consis-
tency in IDNS, DEC’s name service, Prospero,
and a number of other systems. In these sys-
tems, responses from servers always include the
time for which they may be considered valid
(time-to-live or TTL). The TTL can vary from
item to item. It will usually be long for in-
frequently changing information, and shorter
for information expected to change. Clients
can cache information until the TTL expires.
When information changes, the TTL sets an
upper bound on the time required before ev-
eryone will be using the new information. If
a change is expected in advance, the TTL can
be reduced so that the change will take effect
quickly.

If it is possible to tell when incorrect infor-
mation has been obtained, cached entries can
be treated as hints. Hints don’t have to be
kept consistent; if out of date, that fact will

18

be detected when the data is used and the en-
try can be flushed. Grapevine and QuickSilver
[4] both use hints. Hints are useful in naming
systems if an objects identifier can be stored
along with the object itself. The cached data
tells where the object can be found, but if the
object has moved, that fact will be apparent
when the client attempts to retrieve it. By
treating cached data as hints, it may be used
until a change is detected, avoiding the need
for more complicated mechanisms to keep the
cache consistent.

In some systems, the only way to check the va-
lidity of cached data is to go back to the server
that provided the information originally. For
small amounts of data, the cost of doing so is
the same as if the information were not cached
at all. For larger amounts of data, the check
takes significantly less time than transferring
the data itself. The Andrew File System [12]
originally used this form of check-on-use to de-
cide if a locally cached copy of a file could be
used. Experience showed that the checks were
the primary bottleneck, and that, in the com-
mon case, the files were unchanged. For this
reason, the next implementation (and subse-
quently Coda) used callbacks. When a file is
cached, the file server adds the caching site to
a list stored along with the file. If the file
changes, a message is sent to all sites with
copies telling them that the cached copy is no
longer valid. By requiring that clients check
the validity of files when they reboot (or if con-
tact with the file server has been lost), prob-
lems due to lost callbacks can be minimized.

Leases [10] are similar to callbacks, but there
are several important differences. A lease even-
tually expires, and a server granting a lease
guarantees that it will not make a change dur-
ing the period the lease is valid unless it first
gets approval from the lease holder. A client
holding a lease can cache the data to which
the lease applies for the term of the lease, or
until it authorizes the server to break the lease.

Tradeoffs similar to those for choosing a TTL
apply to the selection of the term of a lease.

10 The User’s View

Many mechanisms are used to help the system
deal with scale. Unfortunately, the effect of
scale on the user has received relatively little
attention. The user has finite mental capacity.
As the number of computers in a system grows,
as the system expands geographically, and as it
begins to cross administrative boundaries, the
potential exists for the size of the system to
overwhelm the user.

Mechanisms are needed to allow objects and
resources that are of interest to be organized in
a manner that allows them to be easily found
again. One doesn’t want them quickly lost in
a sea of objects and resources in which there
is little interest. It is also important that the
user be able to identify additional objects and
resources of potential interest.

Traditional systems such as Andrew, Locus
and Sprite support a uniform global name
space which uniquely names all objects. This
approach allows simple sharing of names, and
it has the advantage that it is no harder for
users to understand than the systems they pre-
viously used. Unfortunately, as systems cross
administrative boundaries it becomes difficult
to obtain agreement on what should appear
where in the name space. The solution is that
the names of sites appear at the top level and
each site names its own objects. Unfortunately,
this results in related information being scat-
tered across the global name space and users
don’t know where to look.

Even with a familiar system model, the num-
ber of objects and resources that are available
can overwhelm the user. For this reason, mech-
anisms are needed to help the user organize

19

information and to reduce the amount of infor-
mation that has to be dealt with. The solution
is to allow individual users to customize their
name space so that they see only the objects
that are of interest. This approach is taken
in Plan 9 [24], Prospero [20], Tilde [7], and
QuickSilver [4]. Naming in these systems is
often described as user-centered though, with
the exception of Prospero, it might better be
described as user-exclusive; an object must be
added to the user’s name space before it can be
named. In Prospero, it is expected that most
objects start out in a user’s name space, but
with lengthy names. When a user expresses
an interest in an object, a link is added to the
name space, bringing the object closer to the
center (root).

An objection to user-centered naming is that
the same name can refer to different objects
when used by different users. To address this
objection, Prospero supports closure: every
object in the system has an associated name
space. Names are normally resolved within the
name space associated with the object in which
the name is found.

A few systems have looked at mechanisms for
identifying objects that are needed when the
object’s full name is not known. Profile [23]
supports attribute-based naming. In attribute-
based naming, the user specifies known at-
tributes of an object instead of its name. To
be used in place of a name, enough attributes
must specified to uniquely identify the ob-
ject. In order to scale, information must be
distributed across multiple name servers. In
Profile, each user has a working set of name
servers, and each is contacted. Responses from
a name server may require further resolution
(perhaps by a different server). This successive
resolution of links is similar to the mechanism
used to resolve names in traditional distributed
systems. The key difference is that the links do
not necessarily form a hierarchy.

Alternative approaches are being examined by
the Resource Discovery Project at the Univer-
sity of Colorado. These approaches use infor-
mation already available over the network. In
one approach, resource discovery agents [28]
collect and share information with other agents
scattered across the system. A user wishing to
find a resource asks one of these agents, and
the agents route queries among themselves, ex-
ploiting the semantics of the query to limit the
activity that must take place. If the resource
is found, a response is returned to the client.

Prospero takes a slightly different approach to
identifying objects of interest. Tools are pro-
vided to allow users to customize and orga-
nize their views of the system. Prospero sup-
ports a user-centered name space and closure.
Naming of all objects and resources is handled
through a uid-based directory service. Name
spaces may overlap, and cycles are allowed.
The Prospero directory service supports filters
and union links. A filter is a program that
can modify the results of a directory query
when the path for the queried directory passes
through the filtered link. A union link allows
the results of a (possibly filtered) query to be
merged with the contents of the directory con-
taining the link.

The nature of the directory service, and its sup-
port for filters and union links allows users to
organize their own objects and those of others
in many ways. The ability for objects to have
multiple names makes it much easier to find
things: one can look for an object using the or-
ganization that best fits the information that is
known. Users and organizations set up direc-
tories within which they organize objects and
they make these directories available to others.
It is through this sharing that users find new
objects.

20

11 Building Scalable Systems

This section presents suggestions for building
scalable systems. These suggestions are dis-
cussed in greater detail in the paper and are
presented here in a form that can be used as a
guide. The hints are broken into groups corre-
sponding to the primary techniques of replica-
tion, distribution and caching.

When building systems it is important to con-
sider factors other than scalability. An excel-
lent collection of hints on the general design
of computer systems is presented by Lampson
in [13].

11.1 Replication

Replicate important resources. Replica-
tion increases availability and allows requests
to be spread across multiple servers, thus re-
ducing the load on each.

Distribute the replicas. Placing replicas in
different parts of the network improves avail-
ability during network partitions. By placing
at least one replica in any area with frequent
requests, those requests can be directed to a
local replica reducing the load on the network
and minimizing response time.

Use loose consistency. Absolute consis-
tency doesn’t scale well. By using loose consis-
tency the cost of updates can be reduced, while
changes are guaranteed to eventually make it to
each replica. In systems that use loose consis-
tency it is desirable to be able to detect out-

of-date information at the time it is used.

11.2 Distribution

Distribute across multiple servers. Dis-
tributing data across multiple servers decreases
the size of the database that must be main-
tained by each server, reducing the time needed
to search the

database. Distribution also

spreads the load across the servers reducing the
number of requests that are handled by each.

Distribute evenly. The greatest impact
on scalability will be felt if requests can be
distributed to servers in proportion to their
power. With an uneven distribution, one server
may be idle while others are overloaded.

Exploit locality. Network traffic and latency
can be reduced if data are assigned to servers
close to the location from which they are most
frequently used. The Internet Domain Naming
System does this. Fach site maintains the in-
formation for its own hosts in its own servers.
Most queries to a name server are for local
hosts. As a result, most queries never leave
the local network.

Bypass upper levels of hierarchies. In hi-
erarchically organized systems, just about ev-
eryone needs information from the root. If
cached copies are available from subordinate
servers, the upper levels can be bypassed. In
some cases, it might be desirable for a server to
answer queries only from its immediate subor-
dinates, and to let the subordinates make the
responses available to their subordinates.

11.3 Caching

Cache frequently accessed data. Caching
decreases the load on servers and the net-
Cached information can be accessed
more quickly than if a new request is made.

work.

Consider access patterns when caching.
The amount of data normally referenced to-
gether, the ratio of reads to writes, the likeli-
hood of conflicts, the number of simultaneous
users, and other factors will affect the choice of
caching mechanisms. For example, if files are
normally read from start to finish, caching the
entire file might be more efficient than caching
blocks. If conflicts between readers and writ-
ers are rare, using callbacks to maintain con-

21

sistency might reduce requests. The ability to
detect invalid data on use allows cached data
to be used until such a condition is detected.

Cache timeout. By associating a time-to-live
(TTL) with cached data an upper bound can
be placed on the time required for changes to
be observed. This is useful when only even-
tual consistency is required, or as a backup to
other cache consistency mechanisms. The TTL
should be chosen by the server holding the au-
thoritative copy. If a change is expected, the
TTL can be decreased accordingly.

Cache at multiple levels. Additional lev-
els of caching often reduce the number of re-
quests to the next level. For example, if a
name server handling requests for a local net-
work caches information from the root name
servers, it can request it once, then answer local
requests for that information instead of requir-
ing each client to request it separately. Simi-
larly, caching on file servers allows a block to
be read (and cached) by multiple clients, but
only requires one disk access.

Look first locally. By looking first for nearby
copies of data before contacting central servers,
the load on central servers can be reduced. For
example, if a name is not available from a cache
in the local system, contact a name server on
the local network before contacting a distant
Even if it is not the authority
for the name to be resolved, the local name
server may possess information allowing the
root name server to be bypassed.

name Sserver.

The more extensively something is
shared, the less frequently it should be
changed. When an extensively shared object
is changed, a large number of cached copies be-
come invalid, and each must be refreshed. A
system should be organized so that extensively
shared data is relatively stable. A hierarchi-
cal name space exhibits this property. Most
changes occur at the leaves of the hierarchy.

Upper levels rarely change.

11.4 General

Shed load, but not too much. When com-
putation can be done as easily by the client as
the server, it is often best to leave it to the
client. However, if allowing the client to per-
form the computation requires the return of
a significantly greater amount of information
(as might be the case for a database query),
it is more appropriate for the server to do the
computation. Additionally, if the result can
be cached by the server, and later provided to
others, it is appropriate to do the computation
on the server, especially if the computation re-
quires contacting additional servers.

Avoid global broadcast. Broadcast does
not scale well. It requires all systems to pro-
cess a message whether or not they need to.
Multicast is acceptable, but groups should in-
clude only those servers that need to receive

the message.

Support multiple access mechanisms.
Applications place varying requirements on ac-
cess mechanisms. What is best for one appli-
cation might not be so for another. Chang-
ing communication parameters can also affect
the choice of mechanism. Multiple mechanisms
should be supported when accessing objects
The client should choose the

method based on the prevailing conditions.

and resources.

Keep the user in mind. Many mechanisms
are used to help the system deal with scale.
The mechanisms that are used should not make
the system more difficult to understand. Even
with a familiar system model, the number of
available objects and resources can overwhelm
the user. Large systems require mechanisms
that reduce the amount of information to be
processed and remembered by the user. These
mechanisms should not hide information that

might be of interest.

22

11.5 Evaluating Scalable Systems

There are many questions to be asked when
evaluating the scalability of a distributed sys-
tem. This subsection lists some of the ques-
tions that are important. It does not provide
a formula that yields a number. In fact, differ-
ent systems scale in different ways. One sys-
tem may scale better administratively, while
another scales better numerically. There are
so many unknowns that affect scaling that ex-
perience is often the only true test of a system’s
ability to scale.

The first set of questions concerns the use of the
system. How will the frequency of queries grow
as the system grows? What percentage of those
queries must be handled by central servers?
How many replicas of the central servers are
there, is this enough, can more be added, what
problems are introduced by doing so, and are
there any bottlenecks?

The next set of questions concerns the data
that must be maintained. How does the size of
the databases handled by the individual servers
grow? How does this affect query time? How
often will information change? What update
mechanism is used, and how does it scale? How
will an update affect the frequency of queries?
Will caches be invalidated, and will this result
in a sudden increase in requests as caches are
refreshed?

The final question concerns the administrative
component of scale. Many systems require a
single authority that makes final decisions con-
cerning the system. Is this required, and is it
practical in the environment for which the sys-
tem will be used?

Asking these questions will point out some of
the problem areas in a system. This is not a
complete list. It is entirely possible that impor-
tant factors not addressed will cause a system
to stop scaling even earlier.

12 Conclusions

This paper examined the problems that arise as
systems scale. It has used examples from many
systems to demonstrate the problems and their
solutions. The systems mentioned are not the
only systems for which scale was a factor in
their design; they simply provided the most
readily available examples for the mechanisms
that were discussed. The discussion has neces-
sarily taken a narrow view of the systems that
were discussed, examining individual subsys-
tems instead of the systems as a whole. The
effects of scale, however, are felt throughout
the system.

This paper has shown how scale affects large
systems. Scale can be broken into its numeri-
cal, geographical, and administrative compo-
nents. FEach component introduces its own
problems, and the solutions employed by a
number of systems were discussed. The three
techniques used repeatedly to handle scale are
replication, distribution, and caching.

A collection of suggestions for designing scal-
able systems was presented in Section 11.
These suggestions expand upon the three pri-
mary techniques and suggest additional ways
in which they can be applied. It is hoped that
these hints will help system designers address
scale in the design of future distributed sys-
tems.

Acknowledgments

I would like to thank Brian Bershad, Robert
Cooper, Barbara Gordon, Bruce Gordon, Terry
Gray, Andrew Herbert, Richard Ladner, Ed
Lazowska, Hank Levy, Mary Ann G. Neuman,
David Notkin, John Zahorjan, and the anony-
mous referees who commented on earlier drafts
of this paper.

23

Appendix: Systems Designed with Scale in Mind

Scalability is included among the design criteria of a number of recent systems. The degree
to which these systems scale ranges from a collection of computers on a local area network,

to computers distributed across the entire Internet.

This appendix describes some of these

systems, states the degree to which each system is intended to scale, and lists some of the ways
in which the system addresses the problems of scale. Table 1 summarizes this information in

tabular form.

Amoeba, developed at Vrije Universiteit and
CWI in Amsterdam, is a capability-based dis-
tributed operating system which has been used
across long haul networks spanning multiple
organizations. Objects are referenced by capa-
bilities which include identifiers for the server
and object, and access rights for the object.
The capabilities provide both a distributed
naming and authorization mechanism. [16, 30]

The Andrew system, developed at Carnegie-
Mellon University, runs on thousands of com-
puters distributed across the university cam-
pus. Its most notable component is the An-
drew File System which now ties together
file systems at sites distributed across the
United States. Coda is a follow-on to Andrew,
improving availability, especially in the face of
network partitions. [12, 26]

MIT’s Project Athena is a system built from
thousands of computers distributed across
campus. Distributed services provide authen-
tication, naming, filing, printing, mail and ad-
ministrative functions. Kerberos was devel-
oped as part of Project Athena. [6]

Dash, under development at Berkeley, is a
distributed operating system designed for use
across large networks exhibiting a range of
Dash is notable
for exposing these characteristics by allowing

transmission characteristics.

the application to require that the connection
meet certain requirements and returning an er-
ror if those requirements cannot be met. [1]

DEC’s Global Naming System, developed
at at DEC’s Systems Research Center, was de-
signed to support naming in large networks
spanning multiple organizations. It is notable
for the attention paid to reorganization of the
name space as independent name spaces are
merged, or as the external relationship between
organizations change (e.g. mergers or acquisi-
tions). Echo is a distributed file system sup-
porting consistent replication of local parti-
tions, but with partitions tied together using
the loosely consistent Global Naming System.
DEC’s Global Authentication System is
notable for the fact that a principal’s name is
not absolute, but is instead determined by the
sequence of authentication servers used to au-
thenticate the principal. [2, 11, 14]

Grapevine was one of the earliest distributed
systems designed to scale to a large network.
It was developed at Xerox PARC to support
electronic mail, to provide a name service for
the location of network services, and to sup-
port simple password-based authentication on
a world-wide network connecting Xerox sites.

3, 27]

The Heterogeneous Computer Systems
Project at the University of Washington
demonstrated that a single interface could be
used to communicate with systems using dif-
ferent underlying protocols and data represen-
tations. This is important for large systems
when it is not practical to dictate the choice of
hardware and software across multiple sites, or
when the underlying mechanisms have different
strengths and weaknesses. [21]

24

The Internet Domain Naming System
(IDNS) is a distributed name service, run-
ning on the Internet, supporting the transla-
tion of host names to Internet addresses and
mail forwarders. Each organization maintains
replicated servers supporting the translation

of names for its own part of the name space.
[15, 31]

Kerberos is an encryption-based network
authentication system, developed by MIT’s
Project Athena, which supports authentication
of users both locally, and across organizational
boundaries. [29]

Locus, developed at the UCLA, was designed
to run on systems distributed across a local-
area network. Locus is notable as one of the
earliest distributed systems to support a uni-
form view of the file system across all nodes in
the system. [32]

SUN’s Network File System supports trans-
parent access to files stored on remote hosts.
Files are named independently on each host.
Before a remote file can be accessed, the remote
file system containing the file must be mounted
on the local system, establishing a mapping of
part of the local file name space to files on the
remote system. The NFS server maintains very
little information (state) about the clients that
use it. [25]

Plan 9 from Bell Labs, intended for use by a
large corporation, supports a process—centered3
name space, allowing users to incorporate into
their name space those parts of the global sys-
tem that are useful. [24]

Profile, developed at the University of Ari-
zona, is an attribute-based name service that
maps possibly incomplete information about
coarse-grained objects on a large network to

SPerhaps better described as process- or user-
exclusive since objects must first be added to the user’s
name space before they can be named.

the object(s) matching that information. [23]

Prospero, developed at the University of
Washington, rtuns on systems distributed
across the Internet. It supports an object-
centered view of the entire system, allowing
users to define their own virtual system by
specifying the pieces of the global system that
are of interest. Prospero’s support for closure
resolves the problems caused by the use of mul-
tiple name spaces. [20]

QuickSilver, developed at IBM’s Almaden
Research Center, is notable for its proposed
use of a user-centered® name space. In a sys-
tem spanning a large, multi-national corpora-
tion, such a name space allows users to see only
those parts of the system that concern them.

[4]

Sprite, a network operating system developed
at Berkeley, was designed for use across a local
area network. Its file system is notable for its
use of caching on both the client and the server
to improve performance, and for its use of pre-
fix tables to distribute requests to the correct
file server. [22]

The Tilde naming system, developed at Pur-
due, supports process-centered® naming. This
allows one to specify, on a per-process basis,
how names will map to pieces of the global
system. This ability provides applications with
the advantages of a global name space for those
file names that should be resolved globally,
while allowing parts of the name space to be
specified locally for file names which would be
better resolved to local files. [7]

X.500 is an ISO standard describing a dis-
tributed directory service that is designed to
store information about users, organizations,
resources, and similar entities worldwide. Scal-
ability is addressed in largely the same manner
as in the Internet Domain Name Service. [5]

25

Intended Environment The Methods Used
System Service # nodes | geographic administrative replication distribution caching
Amoeba general o0 wide-area | multiple organizations immutable capabilities yes
Andrew file system 10,000 wide-area | multiple organizations read-only cell/volume blocks
Athena general 10,000 campus university service clusters yes
Coda file system 10,000 global multiple organizations optimistic volume whole file
Dash general o0 wide-area | multiple organizations yes yes yes
DEC’s Global naming 00 global multiple organizations loose directories time-to-live
DEC’s Global authentication 00 global multiple organizations loose directories -
Echo file system o0 wide-area | multiple organizations | loose/primary volume yes
Grapevine | general 2,000 company multiple departments loose registry yes
HCS general - wide-area | multiple organizations - yes -
IDNS naming o0 global multiple organizations primary domain yes
Kerberos authentication o0 global multiple organizations primary realm tickets
Locus general 100 local department primary mount yes
NFS file system - local single organization no mount blocks
Plan 9 general 10,000 company multiple depatments no mount no
Profile naming 00 wide-area | multiple organizations | information principal client-managed
Prospero naming o0 global multiple organizations yes uid yes
Quicksilver | file system 10,000 company multiple departments no prefix immutable
Sprite file system 100 local department read-only prefix client&server
Tilde naming 100 local single organization no trees yes
X.500 naming o0 global multiple organizations yes yes yes

Table 1: Important distributed systems and the methods they use to handle scale

26

References

[1]

David P. Anderson and Domenico Ferrari.
The Dash project: An overview. Technical
Report 88/405, Computer Science Division,
Department of Electrical Engineering and
Computer Science, University of California
at Berkeley, August 1988.

Andrew D. Birrell, Butler W. Lamp-
son, Roger M. Needham, and Michael D.
Schroeder. A global authentication service
without global trust. In Proceedings of the
IEFEE Symposium on Security and Privacy,
pages 223-230, April 1986.

Andrew D. Birrell, Roy Levin, Roger M.
Needham, and Michael D. Schroeder.
Grapevine: An exercise in distributed com-
puting. Communications of the ACM,
25(4):260-274, April 1982.

Luis-Felipe Cabrera and Jim Wyllie. Quick-
Silver distributed file services: An architec-
ture for horizontal growth. In Proceedings
of the 2nd IFEE Conference on Computer
Workstations, pages 23-27, March 1988.
Also IBM Research Report RJ 5578, April
1987.

CCITT. Recommendation X.500: The Di-
rectory, December 1988.

George A. Champine, Daniel E. Geer Jr.,
and William N. Ruh. Project athena as a
distributed computer system. IFEE Com-
puter, 23(9):40-51, September 1990.

Douglas Comer, Ralph E. Droms, and
Thomas P. Murtagh. An experimental
implementation of the Tilde naming sys-
tem. Computing Systems, 4(3):487-515,
Fall 1990.

Robert J. Fowler. Decentralized Object
Finding Using Forwarding Addresses. PhD

27

[11]

[12]

[14]

thesis, University of Washington, Decem-
ber 1985. Department of Computer Science
technical report 85-12-1.

David K. Gifford. Weighted voting for repli-
cated data. In Proceedings of the 7th ACM
Symposium on Operating System Princi-
ples, pages 150-159, December 1979. Pa-
cific Grove, California.

Cary G. Gray and David R. Cheriton.
Leases: An efficient fault-tolerant mecha-
nism for distributed file cache consistency.
In Proceedings of the 12th ACM Symposium
on Operating Systems Principles, pages
202-210, December 1989.

Andy Hisgen, Andrew Birrell, Timothy
Mann, Michael Schroeder, and Garret
Swart. Availability and consistency trade-
offs in the Fcho distributed file system. In
Proceedings of the 2nd IEEE Workshop on
Workstation Operating Systems, pages 49—
54, September 1989.

John H. Howard, Michael L. Kazar,
Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Side-

botham, and Michael J. West. Scale and
performance in a distributed file system.

ACM Transactions on Computer Systems,
6(1):51-81, February 1988.

Butler W. Lampson. Hints for computer
system design. In Proceedings of the
9th ACM Symposium on Operating System
Principles, pages 33-48, 1983.

Butler W. Lampson. Designing a global
In Proceedings of the 4th
ACM Symposium on Principles of Dis-
tributed Computing, August 1985.

name service.

Paul Mockapetris. Domain names - con-
cepts and facilities. DARPA Internet RFC
1034, November 1987.

[16]

[17]

[19]

[22]

S. J. Mullender and A. S. Tanenbaum. The
design of a capability-based distributed op-
erating system. The Computer Journal,
29(4):289-299, 1986.

Roger M. Needham and Michael D.
Schroeder. Using encryption for authen-
tication in large networks of computers.
Communication of the ACM, 21(12):993~
999, December 1978.

B. Clifford Neuman. Issues of scale in large
distributed operating systems. Generals
Report, Department of Computer Science,
University of Washington, May 1988.

B. Clifford Neuman. Proxy-based autho-
rization and accounting for distributed sys-
tems. Technical Report 91-02-01, Depart-
ment of Computer Science and Engineer-
ing, University of Washington, March 1991.

B. Clifford Neuman. The Prospero File Sys-
tem: A global file system based on the Vir-
tual System Model. In Proceedings of the
Workshop on File Systems, May 1992.

David Notkin, Andrew P. Black, Edward D.
Lazowska, Henry M. Levy, Jan Sanislo, and
John Zahorjan. Interconnecting heteroge-
neous computer systems. Communications

of the ACM, 31(3):258-273, March 1988.

John K. Qusterhout, Andrew R. Cheren-
son, Frederick Douglis, Michael N. Nelson,
and Brent B. Welch. The Sprite network
operating system. Computer, 21(2):23-35,
February 1988.

Larry L. Peterson. The Profile naming ser-
vice. ACM Transactions on Computer Sys-
tems, 6(4):341-364, November 1988.

D. Presotto, R. Pike, K. Thompson, and
H. Trickey. Plan 9: A distributed sys-
tem. In Proceedings of Spring 1991 Fu-
rOpen, May 1991.

28

[25]

[26]

[27]

[30]

[31]

R. Sandberg, D. Goldberg, S. Kleiman,
D. Walsh, and B. Lyon. Design and imple-
mentation of the Sun Network File System.
In Proceedings of the Summer 1985 Usenix
Conference, pages 119-130, June 1985.

Mahadev Satyanarayanan. Scalable, se-
cure, and highly available distributed file
access. [EEE Computer, 23(5):9-21, May
1990.

Michael D. Schroeder, Andrew D. Birrell,
and Roger M. Needham. Experience with
Grapevine: The growth of a distributed
system. ACM Transactions on Computer
Systems, 2(1):3-23, February 1984.

M. F. Schwartz. The networked resource
discovery project. In Proceedings of the
IFIP XI World Congress, pages 827-832,
August 1989. San Francisco.

J. G. Steiner, B. C. Neuman, and J. L
Schiller. Kerberos: An authentication ser-
vice for open network systems. In Pro-
ceedings of the Winter 1988 Useniz Confer-
ence, pages 191-201, February 1988. Dal-
las, Texas.

Andrew S. Tanenbaum, Robbert van Re-
nesse, Gregory J.
Sharp, Sape J. Mullender, Jack Jansen,
and Guido van Rossum. Experience with

Hans van Staveren,

the Amoeba distributed operating system.
Communications of the ACM, 33(12):47-
63, December 1990.

Douglas B. Terry, Mark Painter, David W.
Riggle, and Songnian Zhou. The Berkeley
internet domain server. In Proceedings of

the 1984 Useniz Summer Conference, pages
23-31, June 1984.

B. Walker, G. Popek, R. English, C. Kline,
and G. Thiel. The Locus distributed op-
erating system. In Proceedings of the 9th
ACM Symposium on Operating Systems
Principles, pages 49-70, October 1983.

