
Grace: Safe and Efficient Concurrent Programming

Emery D. Berger Ting Yang Tongping Liu Divya Krishnan Gene Novark

Dept. of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003

emery,tingy,tonyliu,divya,gnovark@cs.umass.edu

Abstract
The shift from single to multiple core architectures means that, in
order to increase application performance, programmers must write
concurrent, multithreaded programs. Unfortunately, multithreaded
applications are susceptible to numerous errors, including dead-
locks, race conditions, atomicity violations, and order violations.
These errors are notoriously difficult for programmers to debug.

We present Grace, a runtime system for multithreaded programs
written in C/C++ that provides good scalability and performance
while eliminating a range of concurrency errors. With Grace, mul-
tithreaded programs behave as if all threads were run sequentially.
Grace exploits available CPU resources by combining speculative
thread execution, supported by a novel virtual memory based trans-
actional memory system, together with a sequential commit proto-
col that guarantees sequential semantics. We show that Grace en-
sures the correctness of otherwise-buggy multithreaded programs.
Across a suite of CPU-intensive multithreaded applications, Grace
often achieves performance and scalability comparable to unsafe
thread libraries.

1. Introduction
While the past two decades have seen dramatic increases in pro-

cessing power, the problems of heat dissipation and energy con-
sumption now limit the ability of hardware manufacturers to speed
up chips by increasing their clock rate. This phenomenon has led
to a major shift in computer architecture, where complex, deeply-
pipelined single-core CPUs have been replaced by multicore CPUs
consisting of a number of processing cores.

The implication of this switch is that the performance of sequen-
tial applications is no longer increasing with each new generation
of processors, because the individual processing components are
not getting faster. On the other hand, applications rewritten to use
multiple threads can take advantage of these available computing
resources to increase their performance by executing their compu-
tations in parallel across multiple CPUs.

Unfortunately, writing multithreaded programs is challenging:
concurrent multithreaded applications are susceptible to a wide
range of errors that are notoriously difficult to debug. For exam-
ple, multithreaded programs that fail to employ a canonical locking
order can deadlock [14]. Because the interleavings of threads are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

non-deterministic, programs that do not properly lock shared data
structures can suffer from race conditions [23]. A related problem
is atomicity violations, where programs may lock and unlock in-
dividual objects but fail to ensure the atomicity of multiple object
updates [19, 10]. Another distinct class of concurrency errors is or-
der violations, when a program depends on an execution sequence
of threads that the scheduler may not ensure [21].

Contributions: This paper introduces Grace, a runtime system
that enables safe and efficient concurrent programming for an im-
portant class of multithreaded applications, namely those that use
fork-join parallelism. Grace manages the execution of these mul-
tithreaded programs so that they become behaviorally equivalent
to their sequential counterparts: every thread spawn becomes a se-
quential function invocation, and locks and thread joins become no-
ops. This execution model eliminates the concurrency errors that
arise due to multithreading (see Table 1). By treating lock opera-
tions as no-ops, Grace eliminates deadlocks caused by cyclic lock
acquisition. By committing state changes deterministically, Grace
eliminates race conditions. By executing all threads atomically,
Grace eliminates atomicity violations. Finally, by always execut-
ing threads in program order, it greatly reduces the risk of order
violations.

To exploit available computing resources (multiple CPUs or
cores), Grace employs a combination of speculative thread execu-
tion, supported by a novel virtual-memory based software trans-
actional memory system, together with a commit protocol that
ensures sequential semantics. Grace’s VM-based software trans-
actional memory uses page-protection and virtual memory map-
ping to provide fast transactional support on conventional hard-
ware. Under Grace, threads execute optimistically, writing their
updates speculatively. As long as the threads do not conflict, that
is, they do not have read-write dependencies on the same memory
location, then Grace can safely commit their effects. In case of a
conflict, Grace commits the earliest thread in a conflicting set of
threads, and re-executes the later threads.

We evaluate Grace on a suite of CPU-intensive, multithreaded
benchmarks, which all exhibit fork-join parallelism, as well as a se-
lection of concurrency bugs taken from the literature. We show that
Grace achieves comparable scalability and performance to the stan-
dard (unsafe) threads library across most of our benchmark suite,
while ensuring the correct execution of otherwise-buggy concur-
rent code.

While Grace cannot prevent those concurrency errors that ex-
tend beyond the program itself, such as file system deadlocks, we
believe that Grace represents a significant step towards enabling
programmers to write multithreaded CPU-intensive applications
without compromising correctness.

Concurrency Error Cause Prevention by Grace
Deadlock cyclic lock acquisition locks converted to no-ops
Race condition unguarded updates all updates committed deterministically
Atomicity violation unguarded, interleaved updates threads run atomically
Order violation threads scheduled in unexpected order threads execute in program order

Table 1. The concurrency errors that Grace addresses, their causes, and how Grace eliminates them.

// Run f(x) and g(y) in parallel.
t1 = spawn f(x);
t2 = spawn g(y);
// Wait for both to complete.
sync;

Figure 1. A multithreaded program (using Cilk syntax for clarity).

// Run f(x) to completion, then g(y).
spawn f(x);
spawn g(y);
sync;

Figure 2. The sequential counterpart of Figure 1, with concurrency
operations elided (shown here in gray).

The remainder of this paper is organized as follows. Section 2
presents the sequential semantics that Grace provides. Section 3
presents the VM-based software transactional memory mechanism
that Grace uses to enable speculative execution with low overhead.
Section 4 describes the commit protocol that enforces sequential
semantics, and explains how Grace supports I/O together with op-
timistic concurrency. Section 5 presents a variety of experimental
results, including a detailed experimental evaluation through a se-
ries of microbenchmarks, a benchmark suite of concurrent, mul-
tithreaded computation kernels, and a suite of programs with con-
currency errors. Section 6 surveys related work, Section 7 describes
future directions, and Section 8 concludes.

2. Sequential Semantics
To illustrate the effect of running Grace, we use the example shown
in Figure 1, which for clarity uses Cilk-style thread operations
rather than the actual pthreads API that Grace supports. Here,
spawn creates a thread to execute the argument function, and
sync waits for all threads spawned in the current scope to com-
plete.

This example program executes the two functions f and g asyn-
chronously (as threads), and then waits for them to complete. If f
and g share state, this execution could result in atomicity viola-
tions or race conditions; if these functions acquire locks in differ-
ent orders, then they could deadlock. Now consider the version of
this program shown in Figure 2, where all calls to spawn and sync
(show in gray) are simply ignored.

The second program is the serial elision [5] of the first—all par-
allel function calls have been elided. The result is a serial program
that, by definition, cannot suffer from concurrency errors. Because
the executions of f(x) and g(y) are not interleaved and execute
deterministically, atomicity violations or race conditions are im-
possible. Similarly, the ordering of execution of these functions is
fixed, so there cannot be order violations. Finally, a sequential pro-
gram does not need locks, so eliding them prevents deadlock.

2.1 Programming Model
Grace supports the subset of concurrent programs that exhibit what
is known as fork-join parallelism. Such programs can create threads
(which may also create sub-threads), and then wait for them to com-
plete. These programs have a straightforward sequential counter-
part, namely, the serial elision described above.

However, Grace does not support arbitrary concurrent pro-
grams. In particular, Grace does not support programs with either
of the two following characteristics: (1) a program thread runs
infinitely (or until program termination), or (2) threads perform
inter-thread communication, e.g., via synchronization primitives
like condition variables. Such programs are inherently concurrent:
their serial elision does not result in a program that exhibits the
same semantics. For example, a multithreaded execution of two
infinite threads f() and g() would eventually execute some part
of g() (assuming fairness), while in the serial elision, g() would
never execute.

We believe that the loss of expressiveness imposed by this re-
striction is minimal for Grace’s target class of applications, namely,
applications running CPU-intensive operations (e.g., games and
other applications with available task or data-based concurrency).
Anecdotal experience suggests that, in such a context, program-
mers primarily use these constructs to control concurrency (e.g.,
to manage thread pools) rather than to divide up work for maximal
concurrency. 1 In any event, we believe it can be reasonable to trade
reduced expressiveness for ease of use.

3. VM-Based Transactional Memory
Grace achieves concurrent speedup of multithreaded programs by
executing threads speculatively, and then committing their updates
in program order (described in detail in Section 4). A key challenge
is how to enable thread speculation without imposing substantial
performance overheads.

What is needed here is some form of transactional memory [15,
26]. Unfortunately, no existing or proposed transactional mem-
ory system provides the features that Grace requires: support for
long-lived transactions, full isolation of updates from other threads
(a.k.a. strong atomicity [6]), support for I/O, and low overhead.
Software transactional memory is optimized for extremely short
transactions (typically demarcated with atomic clauses), often
precludes the use of I/O inside transactions, and incurs substan-
tial (around 3X) overhead for fully-isolated memory updates in-
side transaction. Proposed hardware transactional memory systems
can provide far lower overhead, but also preclude the use of I/O
and bound the number of memory addresses read or written in any
transaction.

To meet its requirements, Grace employs a novel virtual-
memory based software transactional memory. First, it supports
fully-isolated transactions of arbitrary length (in terms of the num-
ber of memory addresses read or written). Second, its performance
overhead is amortized over the length of the transaction rather than
incurred on every access, so that threads that run for more than a
few milliseconds effectively run at full speed. Third, it supports
threads with arbitrary operations, including irrevocable I/O calls

1 Cliff Click, personal communication.

thread
begin

reads writescommitted (shared) pages & version numbers

{} {}

{1} {}

{1,4} {}

{1,4} {4}

protected

read-only

unprotected
(copy-on-write)

uncommitted (private) pages

1 3 1 4 8 2 4

3

3

3

8

8

1 3 1 4 9 2 4

thread
end

Figure 3. An overview of thread execution in Grace. Processes emulate threads (Section 3.1) with private mappings to mmapped files that
hold committed pages and version numbers for globals and the heap (Sections 3.2 and 3.3). Threads run concurrently but are committed in
sequential order: each thread waits until its logical predecessor has terminated in order to preserve sequential semantics (Section 4). Grace
then compares the version numbers of the read pages to the committed versions. If they match, Grace commits the writes and increments
version numbers; otherwise, it discards the pages and rolls back.

(see Section 4). Finally, this transactional memory system works
with existing applications and on commodity hardware.

3.1 Processes as Threads
Our key insight is that we can implement efficient light-weight
software transactional memory by treating threads as processes:
instead of spawning new threads, Grace forks off new processes.
Because each “thread” is in fact a separate process, it is possible
to use standard memory protection functions and signal handlers to
track reads and writes to memory. Grace tracks accesses to memory
at a page granularity, trading imprecision of object tracking for
speed. Because only the first read or write to each page needs to
be tracked, all subsequent operations can proceed at full speed.

To create the illusion that these processes are executing in a
shared address space, Grace uses memory mapped files to share the
heap and globals across processes. Each process has two mappings
to the heap and globals: a shared mapping that reflects the latest
committed state, and a local (per-process), copy-on-write mapping
that each process uses directly. In addition, Grace establishes a
shared and local map of an array of version numbers. Grace uses
these version numbers—one for each page in the heap and global
area—to decide when it is safe to commit updates.

3.2 Globals
Grace uses a fixed-size file to hold the globals, which it locates in
the program image through linker-defined variables. In ELF exe-
cutables, the symbol end indicates the first address after uninitial-
ized global data. Grace uses an ld-based linker script to identify
the area that indicates the start of the global data. In addition, this
linker script instructs the linker to page align and separate read-
only and global areas of memory. This separation reduces the risk
of false sharing by ensuring that writes to a global object never
conflict with reads of read-only data.

3.3 Heap
Grace also uses a fixed-size mapping (currently 512MB) to hold
the heap. It embeds the heap data structure into the beginning of
the memory-mapped file itself. This organization elegantly solves
the problem of rolling back memory allocations. Grace rolls back
memory allocations just as it rolls back any other updates to heap
data. Any conflict causes the heap to revert to an earlier version.

However, a naı̈ve implementation of the allocator would give
rise to an unacceptably large number of conflicts: any threads that
perform memory allocations would conflict. For example, consider
a basic freelist-based allocator. Any allocation or deallocation up-
dates a freelist pointer. Thus, any time two threads both invoke
malloc or free on the same-sized object, one thread will be
forced to roll back because both threads are updating the page hold-
ing that pointer.

To avoid this problem of inadvertent rollbacks, Grace uses a
scalable “per-thread” heap organization that is loosely based on
Hoard [3] and built with Heap Layers [4]. Grace divides the heap
into a fixed number of sub-heaps (currently 16). Each thread uses a
hash of its process id to obtain the index of the heap it uses for all
memory operations (malloc and free).

This isolation of each thread’s memory operations from the
other’s allows threads to operate independently most of the time.
Each sub-heap is initially seeded with a page-aligned 64K chunk of
memory. As long as a thread does not exhaust its own sub-heap’s
pool of memory, it will operate independently from any other sub-
heap. If it runs out of memory, it obtains another 64K chunk from
the global allocator. This allocation only causes a conflict with
another thread if that thread also runs out of memory during the
same period of time.

This allocation strategy has two benefits. First, it minimizes the
number of false conflicts created by allocations from the main heap.
Second, it reduces false sharing because each thread uses entirely
different pages to satisfy object allocation requests. Thus, objects
allocated by one thread are never on the same pages as objects
allocated by another thread.

To further reduce false sharing, Grace’s heap rounds up large
object requests (8K or larger) to a multiple of the system page size
(4K), ensuring that large objects never overlap, regardless of which
thread allocated them.

3.4 Transaction Execution
Figure 3 presents an overview of Grace’s execution of a thread as
a transaction. Before the program begins, Grace establishes shared
and local mappings for the heap and globals. It also establishes
the mappings for the version numbers associated with each page
in both the heap and global area. Because these pages are zero-
filled on-demand, this mapping implicitly initializes the version
numbers to zero. A page’s version number is incremented only

on a successful commit, so it is equivalent to the total number of
successful commits of a given page to date.

3.4.1 Starting a Transaction
Grace initiates a transaction at the beginning of program execution
and at the start of every thread. When a transaction begins, Grace
saves the execution context (program counter, registers, and stack
contents) and sets the protection of every page to PROT NONE, so
that any access triggers a fault. It also clears both its read set and
write set, which hold the addresses of every page read or written
during a transaction.

3.4.2 Transaction Execution
During each transaction, Grace tracks accesses to pages by han-
dling SEGV protection faults. The first access to each page is treated
as a read. Grace adds the page address to the read set, and then
sets the protection for the page to read-only. If the application later
writes to the page, Grace adds the page to the write set, and then re-
moves all protection from the page. Thus, in the worst case, a thread
incurs two minor page faults for every page that it visits. While pro-
tection faults and signals are expensive, their cost is quickly amor-
tized even for relatively short-lived threads (e.g., a millisecond or
more).

3.4.3 Ending a Transaction
At the end of each transaction—the end of main() or an individ-
ual thread—Grace attempts to commit the transaction’s updates.
It first checks to see whether the read set is empty. If so, it im-
mediately ends the transaction. While this situation may appear to
be unlikely, it is common when multiple threads are being created
inside a for loop, and thus the application is only reading local
variables from registers. Allowing transactions to commit in this
case is an important optimization, because otherwise, Grace must
pause the thread until its immediate predecessor—the last thread it
has spawned—has committed. As Section 4 explains, this step is
required to provide sequential semantics.

3.4.4 Committing a Transaction
After the preceding thread has ended, Grace establishes locks on
all files holding memory mappings with flock() and proceeds
with a commit. Notice that this serialization only occurs during
commits; thread execution is entirely concurrent.

Grace first performs a consistency check, comparing the version
numbers for every page in the read set against the committed
versions. If they all match, it is safe for Grace to commit the
writes, which it does by copying the contents of the page into the
corresponding page in the shared image. It then relinquishes the file
locks and resumes execution.

3.4.5 Aborting a Transaction
If any of the version numbers do not match, Grace must abort the
current execution. Grace issues an madvise(MADV DONTNEED)
call on all of the private mappings, which discards any updates and
forces all new accesses to use memory from the shared (committed)
pages. It then unlocks the file maps and re-executes the thread,
copying the saved stack over the current stack and then jumping
into the previously saved execution context.

4. Sequential Commit
Grace’s virtual memory based transactional memory system pro-
vides strong isolation of threads, ensuring that each one executes
atomically. However, transactional memory on its own does not
guarantee sequential semantics because it does not prescribe any
order for these threads.

To provide the appearance of sequential execution of the
threads, Grace not only needs to provide isolation of each thread,
but also must enforce a particular commit order. Grace employs a
simple commit algorithm that provides the effect of a sequential
execution.

Grace’s commit protocol maintains the following invariant: a
thread is only allowed to commit after all of its logical predecessors
have completed. The commit algorithm itself is simple. When a
thread spawns a child thread, the parent thread stores the child
thread ID in a local variable. The parent then continues execution
until the end of the thread or if it joins another thread. At this time,
if the parent thread has read any memory from the heap or globals
(see Section 3.4.3), it waits on a semaphore that the child thread
sets when it exits. After the child thread has committed, the parent
can attempt to commit its state.

It is straightforward to show that this protocol is required to en-
force sequential semantics. Assume that some parent did not need
to wait for its immediate child to complete. If so, the parent could
commit any updates it makes after the thread spawn, inverting the
effect of a sequential execution.

4.1 Transactional I/O
Grace’s commit protocol not only guarantees sequential semantics
but has an additional important benefit. Because Grace imposes an
order on thread commits, at any point in time, there is always one
thread running that is guaranteed to be able to commit its state:
the earliest thread in program order. This property ensures that a
Grace program does not suffer from livelock caused a failure of any
thread to make progress, a property of many transactional memory
proposals.

While Grace is able to prevent a number of concurrency errors,
it cannot eliminate errors due to interactions beyond the program
itself. For example, Grace cannot detect or prevent errors like file
system deadlocks (e.g., through flock()) or due to message-
passing dependencies on distributed systems.

This fact allows Grace to overcome an even more important lim-
itation of most proposed transactional memory systems: it enables
the execution of I/O operations in a system with optimistic concur-
rency. Because some I/O operations are irrevocable (e.g., network
reads after writes), most I/O operations appear to be fundamentally
at odds with speculative execution. The usual approach is to ban
I/O from speculative execution, or to arbitrarily “pick a winner” to
obtain a global lock prior to executing its I/O operations. Another
option would be to employ operating system support for specula-
tion as in Speculator by Nightingale et al., but this can only support
bounded speculative operations [24].

In Grace, each thread buffers its I/O operations and commits
them at the same time it commits its updates to memory. However,
if a thread attempts to execute an irrevocable I/O operation, Grace
forces it to wait for its immediate predecessor to commit. Grace
then checks to make sure that its current state is consistent with the
committed state. Once both of these conditions are met, the current
thread is then guaranteed to commit when it terminates. Grace then
allows the thread to perform the irrevocable I/O operation, which is
now safe because the thread’s execution is guaranteed to succeed.

5. Evaluation
Our evaluation answers the following questions:

1. What is the class of programs that work best with Grace?

2. How well does Grace perform on CPU-intensive computation
kernels?

3. How effective is Grace against a range of concurrency errors?

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 64 128 256 512 1024

S
pe

ed
up

 a
ga

in
st

 s
eq

ue
nt

ia
l e

xe
cu

tio
n

Thread length (ms)

(a) Impact of grain size (speedup)

Grace
pthread

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 8 16 32 64 128 256 512 1024

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Thread Execution Length (ms)

(b) Impact of grain size (normalized to pthread)

Grace
pthread

Figure 4. Impact of thread running time on performance: (a) speedup over a sequential version, (b) normalized execution time with respect
to pthreads.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 4 16 64 256 1024

S
pe

ed
up

 a
ga

in
st

 s
eq

ue
nt

ia
l e

xe
cu

tio
n

Number of pages dirtied (in logscale)

(a) Impact of footprint (speedup)

Thread Size: 200ms

Thread Size: 50ms

Thread Size: 10ms

Grace (10ms)
pthread (10ms)

Grace (50ms)
pthread: (50ms)
Grace: (200ms)

pthread: (200ms)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 4 16 64 256 1024

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Number of pages dirtied (in logscale)

(b) Impact of footprint (normalized to pthread)

Grace: thread size (10ms)
Grace: thread size (50ms)

Grace: thread size (200ms)
pthread

Figure 5. Impact of thread running time on performance (time=10ms, 50ms and 200ms): (a) speedup over a sequential version, (b)
normalized execution time with respect to pthreads.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

S
pe

ed
up

Rollback Rate (%)

Impact of Rollback Rate

Grace
Pthread

Figure 6. Impact of shared updates, corresponding to the probabil-
ity that any thread will have to be rolled back, versus a pthreads
baseline that never rolls back. Even at relatively high rollback rates,
Grace is able to take advantage of multiple cores.

5.1 Experimental Methodology
We perform our evaluation on a quiescent dual-processor with 8
gigabytes of RAM. Each processor is a 4-core 64-bit Intel Xeon

running at 2.33 Ghz and equipped with a 4MB L2 cache. We
compare Grace to the Linux pthreads library (NPTL), on Linux
2.6.23 with GNU libc version 2.5.

5.2 Microbenchmarks
To understand the kind of concurrent applications that work best
with Grace, we developed a microbenchmark that allows us to
explore the effect of changing three key parameters: grain size, the
running time of each thread; footprint, the number of pages updated
by a thread; and degree of sharing, the proportion of shared pages
updated by each thread.

These parameters isolate Grace’s overheads. First, the shorter a
thread’s execution, the more the increased cost of thread spawns
in Grace (process creation) should dominate. Second, increasing
the number of pages accessed by a thread stresses the cost of
Grace’s page protection and signal handling. Finally, large numbers
of updates of shared state forces Grace to rollback and re-execute
threads in order to preserve sequential semantics.

Grain size: We first evaluate the impact of the length of thread
execution on Grace’s performance. We execute a range of tests,
where each thread runs for some fixed number of milliseconds
performing arithmetic operations in a tight loop. Notice that this
benchmark only exercises the CPU and the cost of thread creation
and destruction, because it does not reference heap pages or global
data. Each experiment is configured to run for a fixed amount of
time: nTh× len×nIter = 16 seconds, where nTh is the number of

threads (16), len is the thread running time, and nIter is the number
iterations.

Figure 4 shows the effect of thread running time on perfor-
mance. Because we expected the higher cost of thread spawns to
degrade Grace’s performance relative to pthreads, we were sur-
prised to view the opposite effect. We discovered that the operating
system’s scheduling policy plays an important rule in this set of
experiments.

When the size of each thread is extremely small, neither Grace
nor pthreads make effective use of available CPUs. In both
cases, the processes/threads finish so quickly that the load balancer
is not triggered and so does not run them on different CPUs. As
the thread running time becomes larger, Grace tends to make better
of CPU resources, sometimes up to 20% faster. We believe this is
because the Linux CPU scheduler attempts to put threads from the
same process on one CPU to exploit cache locality, which limits
its ability to use more CPUs, but is more liberal in its placement
of processes across CPUs. However, once thread running time
becomes large enough (over 50ms) for the load balancer to take
effect, both Grace and pthread scale well. Figure 4(b) shows that
Grace has competitive performance compared to pthreads, and
the overhead of process creation is never larger than 2%.

Footprint: In order to evaluate the impact of per-thread foot-
print, we extend the previous benchmark so that each thread also
writes a value onto a number of private pages, which only exercises
Grace’s page protection mechanism without triggering rollbacks.
We conduct an extensive set of tests, ranging thread footprint from
1 pages to 1024 pages (4MB). This experiment stresses is the worst
case scenario for Grace, since each write triggers two page faults.

Figure 5 summarizes the effect of thread footprint over three
representative thread running time settings: small (10ms), medium
(50ms) and large (200ms). When the thread footprint is not
too large (≤ 64 pages), Grace has comparable performance to
pthreads, with no more than a 5% slowdown. As the thread
footprint continues to grow, the performance of Grace starts to de-
grade due the overhead of page protection faults. However, it stays
within an acceptable range for the medium and large thread run-
time settings. The overhead of page protection faults only becomes
prohibitively large when the thread footprint is large relative to the
running time, which is unlikely to be representative of compute-
intensive threads.

Degree of sharing: We next measure the impact of sharing
on Grace’s performance, by having the microbenchmark trigger
a range of different rollback rates—that is, the probability that
any given thread will need to rollback and re-execute. Figure 6
shows the resulting impact on speedup (each thread runs for 50
milliseconds).

When the rollback rate is low, Grace’s performance remains
close to that of pthreads. The higher the rollback rate, the worse
Grace’s performance, dropping from nearly a 6-way speedup at
5% to a 2-way speedup at 30%. This result suggests that Grace
is most effective for applications with relatively low rollback rates,
although it does continue to increase throughput even at relatively
high rollback rates.

5.3 CPU-Intensive Benchmarks
We next evaluate Grace’s performance on real computation ker-
nels with a range of benchmarks, listed in Table 2. One bench-
mark, matmul—a recursive matrix-matrix multiply routine—
comes from the Cilk distribution. We hand-translated this program
to use the pthreads API (essentially replacing Cilk calls like
spawn with their counterparts). The remaining benchmarks are
multithreaded applications from the Phoenix benchmark suite [25].
These benchmarks represent kernel computations and were de-
signed to be representative of compute-intensive tasks from a range

12.97

10.80
5

6

7

8

up

CPU�intensive�benchmarks

pthreads Grace

0

1

2

3

4

histogram kmeans linear_regression matmul pca string_match

Sp
ee
du

Benchmarks

Figure 7. Performance of multithreaded benchmarks running with
pthreads and Grace on a dual quad-core system. Grace generally
performs nearly as well as the pthreads version while ensuring
correct execution.

Benchmark Description
histogram Analyzes images’ RGB components

kmeans Iterative clustering of 3-D points

linear regression Computes best fit line for set of points

matmul Recursive matrix-multiply [11]

pca Principal component analysis on matrix

string match Searches file for encrypted word

Table 2. CPU-intensive multithreaded benchmark suite.

of domains, including enterprise computing, artificial intelligence,
and image processing. We use the pthreads-based variants of
these benchmarks with the largest available inputs.

While Grace ran these programs correctly, we made minor mod-
ifications to them to avoid false sharing that would otherwise pre-
clude scalability. For matmul, we made a one-line change to the
code to increase the base matrix size of the recursion. This modi-
fication not only reduces false sharing across the threads—critical
to avoid excessive rollbacks—but also improves the baseline per-
formance of the benchmark by around 8% by improving its cache
utilization.

Most of the remaining changes were local modifications to
avoid false sharing, requiring the addition or modification of just
one or two lines of code. In several of the benchmarks, we re-
placed some heap allocations with stack allocations—especially of
the pthread t data structure—to reduce the risk of conflicts. The
most pervasive change was adding padding to the data structure
used to pass in thread arguments. Increasing the size of this struc-
ture to 4K eliminated most of the rollbacks, allowing them to scale.

The most substantial change we made was to the pca bench-
mark. This benchmark divides work dynamically across a number
of threads, with each thread updating a global variable that indi-
cates which row of a matrix to process next. When executing with
Grace, which preserves the effect of a serial execution, the first
thread would end up performing all of the computations. To enable
the program to scale, we statically partition the work by providing
each thread with a range of rows to compute. This modification had
little impact on the pthreads version but dramatically improved
the scalability with Grace. These changes required the addition of
16 lines of code.

Figure 7 shows the result of running these applications, graphed
as their speedup over a serial execution. The Grace-based versions
achieve comparable performance while at the same time guaran-

Bug type Benchmark description
deadlock Cyclic lock acquisition

race condition Race condition example from Lucia et al. [22]

atomicity violation Atomicity violation drawn from MySQL [21]

order violations Order violation from Mozilla 0.8 [20]

Table 3. Error benchmark suite.

teeing the absence of concurrency errors. The average speedup for
Grace is 6.2X, while the average speedup for pthreads is 7.13X.

There are two notable outliers. The first one is pca, which
exhibits superlinear speedups both for Grace and pthreads. The
superlinear speedup is due to improved cache locality caused by
the division of the computation into smaller chunks across multiple
threads.

The more interesting case is the kmeans benchmark. While
kmeans achieves a modest speedup with pthreads (3.65X),
it is the only benchmark we tested that exhibits no speedup with
Grace (1.02X). The problem is false sharing on the heap. The
kmeans benchmark iteratively clusters points in 3-dimensional
space, repeatedly updating several arrays that track the number of
points assigned to each cluster as well as the cluster itself. Because
of the large number of points (100,000) and the small size of the
point data structure (3 integers), padding it to avoid false sharing
is not practical. While it would be possible to modify kmeans
to achieve scalability with Grace, this modification would entail
a substantial modification. As currently written, kmeans falls into
the space of problems for which Grace is not a reasonable approach.

5.4 Concurrency Bug Benchmarks
To verify Grace’s ability to cope with concurrency bugs, we com-
piled a bug suite primarily drawn from actual bugs described in
previous work on error detection and listed in Table 3 [20, 21, 22].
Because concurrency errors are by their nature non-deterministic
and occur only for particular thread interleavings, we inserted de-
lays (via the usleep function call) at key points in the code.
These delays dramatically increase the likelihood of encountering
these errors, allowing us to compare the effect of using Grace and
pthreads.

5.4.1 Deadlocks
Figure 8 illustrates a deadlock error caused by cyclic lock acquisi-
tion. This example spawns two threads that each attempt to acquire
two locks A and B, but in different orders: thread 1 acquires lock A
then lock B, while thread 2 acquires lock B then lock A. When us-
ing pthreads, these threads deadlock if both of them manage to
acquire their first locks, because each of the threads is waiting to ac-
quire a lock held by the other thread. Inserting usleep after these
locks makes this program deadlock reliably under pthreads.
However, because Grace’s atomicity and commit protocol lets it
treat locks as no-ops, this program never deadlocks with Grace.

5.4.2 Race conditions
We next adapt an example from Lucia et al. [22], removing the lock
in the original example to trigger a race. Figure 9 shows two threads
both executing increment, which increments a shared variable
counter. However, because access to counter is unprotected,
both threads could read the same value and so can lose an update.
Running this example under pthreads with an injected delay
always exhibits this race, printing 0,0,1,1. By contrast, Grace
prevents the race by executing each thread deterministically, and
always outputs the sequence 0,1,1,2.

thread1 () {
lock (A);
// usleep();
lock (B);
// ...do something
unlock (B);
unlock (A);

}

thread2 () {
lock (B);
// usleep();
lock (A);
// ...do something
unlock (A);
unlock (B);

}

Figure 8. Deadlock example. This code has a cyclic lock acquisi-
tion pattern that triggers a deadlock under pthreads while run-
ning to completion with Grace.

// shared variable
int counter = 0;

increment() {
print (counter);
int temp = counter;
temp++;
// usleep();
counter = temp;
print (counter);

}

thread1() { increment(); }
thread2() { increment(); }
}

Figure 9. Race condition example: the race is on the variable
counter, where the first update can be lost. Under Grace, both
increments always succeed.

5.4.3 Atomicity Violations
To verify Grace’s ability to cope with atomicity violations, we
adapted an atomicity violation bug taken from MySQL’s InnoDB
module, described by Lu et al. [21]. In this example, shown in
Figure 10, the programmer has failed to properly protect access
to the global variable thd. If the scheduler executes the statement
labeled S3 in thread 2 immediately after thread 1 executes S1, the
program will dereference NULL and fail.

Inserting a delay between statements S1 and S2 causes every
execution of this code with pthreads to segfault because of a
NULL dereference. With Grace, threads always appear to execute
atomically, so the program always performs correctly.

5.4.4 Order violations
Finally, we consider order violations, which were recently identi-
fied as a common concurrency error by Lu et al. [21]. An order vi-
olation occurs when the program runs correctly under one ordering
of thread executions, but incorrectly under a different schedule. No-
tice that order violations are orthogonal to atomicity violations: an
order violation can occur even when the threads are entirely atomic.

Figure 11 presents a case where the programmer’s intended
order is not guaranteed to be obeyed by the scheduler. Here, if
thread 2 manages to write into proc info before it has been

// thread1
S1: if (thd->proc_info) {

// usleep();
S2: fputs (thd->proc_info,..)

}

// thread2
S3: thd->proc_info = NULL;

Figure 10. An atomicity violation from MySQL [21]. A faulty
interleaving can cause this code to trigger a segmentation fault due
to a NULL dereference, but by enforcing atomicity, Grace prevents
this error.

char * proc_info;

thread1() {
// ...
// usleep();
proc_info = malloc(256);

}

thread2() {
// ...
strcpy(proc_info,"abc");

}

main() {
spawn thread1();
spawn thread2();

}

Figure 11. An order violation bug. If thread 2 executes before
thread 1, it writes into unallocated memory. Grace ensues that
thread 2 always executes after thread 1, avoiding this error.

int foo;

thread1() {
foo = 0;
}

main() {
S1: spawn thread1();

// usleep();
S2: foo = 1;

// ...
assert (foo == 0);

}

Figure 12. An order violation that Grace cannot fix. Here, the
intended effect violates sequential semantics, so the error is not
fixed but occurs reliably.

allocated by thread 1, it will cause a segfault. However, because
the scheduler is unlikely to be able to schedule thread 2 before
thread 1 has executed the allocation call, this code will generally
work correctly. Nonetheless, it will occasionally fail, and injecting
usleep() forces it to fail reliably. With Grace, this microbench-
mark always always runs correctly, because Grace ensures that the
spawned threads exhibit sequential semantics. Thus, thread 2 can
commit only after thread 1 completes, preventing the order viola-
tion.

Interestingly, while Grace prescribes the order of program ex-
ecution, Figure 12 shows that the expected order might not be the
order that Grace enforces. In this example, modeled after an or-
der violation bug from Mozilla, the pthreads version is almost
certain to execute statement S2 immediately after S1; that is, well
before the scheduler is able to run thread1. The final value of
foo will therefore almost always be 0.

However, in the rare event that a context switch occurs imme-
diately after S1, the thread may get a chance to run first, leaving
the value of foo at 1 and causing the assertion to fail. Such a bug
would be unlikely to be revealed during testing and could lead to
failures in the field that would be exceedingly difficult to locate.

However, with Grace, the final value of foo will always be
1, because that result corresponds to the result of a sequential
execution of thread1. While this result might not have been the
one that the programmer expected, using Grace would have made
the error both obvious and repeatable, and thus easier to fix.

6. Related Work
The literature relating to concurrent programming is vast. We
briefly describe the most closely-related work here.

Transactional memory
The area of transactional memory, first proposed by Herlihy
and Moss for hardware [15] and for software by Shavit and
Touitou [26], is now a highly active area of research. Larus and
Rajwar’s book provides an overview of recent work in the area [18].

Fraser and Harris’s transaction-based atomic blocks [13] are a
programming construct that has been the model for many subse-
quent language proposals. However, the semantics of these lan-
guage proposals are surprisingly complex. For example, Shpeisman
et al. [27] show that proposed “weak” transactions can give rise to
unanticipated and unpredictable effects in programs that would not
have arised when using lock-based synchronization. With Grace,
program semantics are straightforward and unsurprising.

Grossman has drawn an analogy between transactional memory
and garbage collection [12], pointing out similar mechanisms and
approaches, but the analogy between garbage collection and Grace
is closer. Garbage collection presents the programmer with a sim-
ple memory model, providing the illusion of an infinite store but
reclaiming memory without the need for programmer intervention.
Likewise, Grace presents the programmer with a simple program-
ming model, providing the illusion of a sequential execution, while
implementing it with concurrency under the covers.

6.1 Concurrent programming models
Cilk [11] is a multithreaded extension of the C programming lan-
guage. Like Grace, Cilk focuses on the use of multiple threads for
CPU intensive workloads, rather than server applications. Unlike
Grace, which works with C or C++ binaries, Cilk is restricted to
C. Cilk also relies on the programmer to avoid race conditions and
other concurrency errors, and there has been work on dynamic tools
to locate these errors [2, 7], while Grace automatically prevents
them.

A proposed variant of Cilk called “Transactions Everywhere”
adds transactions to Cilk by having the compiler insert cutpoints
(transaction end and begin) at various points in the code, including
at the end of loop iterations. While this approach reduces the
exposure to concurrency errors, it does not prevent them, and data
race detection in this model has been shown to be an NP-complete
problem [16].

Automatic mutual exclusion, or AME, is a recently-proposed
programming model currently being implemented at Microsoft Re-
search Cambridge. It is a language extension to C# that assumes

that all shared state is private unless otherwise indicated [17]. These
guarantees are weaker than Grace’s, in that AME programmers can
still generate code with concurrency errors. AME has a richer con-
current programming model than Grace that makes it more flexible,
but precludes a sequential interpretation. In fact, the semantics of
AME are complicated enough to warrant publication in POPL [1].
By contrast, Grace’s semantics are straightforward and thus likely
easier for programmers to understand.

von Praun et al. present Implicit Parallelism with Ordered
Transactions (IPOT), that describes a programming model, like
Grace, that supports speculative concurrency and enforces deter-
minism [28]. However, unlike Grace, IPOT requires a completely
new programming language, with a wide range of constructs in-
cluding variable type annotations and constructs to support spec-
ulative and explicit parallelism. In addition, IPOT would require
special hardware and compiler support, while Grace operates on
existing C/C++ programs that use standard thread constructs.

The most closely related work to Grace in terms of its program-
ming model is safe futures for Java, by Welc et al. [29]. A future
denotes an expression that may be evaluated in parallel with the
rest of the program; when the program uses the expression’s value,
it waits for the future to complete execution before continuing. As
with Grace’s threads, safe futures ensure that the concurrent exe-
cution of futures provides the same effect as evaluating the expres-
sions sequentially. However, the safe future system assumes that
writes are rare in futures (by contrast with threads), and uses an
object-based versioning system optimized for this case. It also re-
quires compiler support and integration with a garbage-collected
environment.

Grace’s use of virtual memory primitives to support specula-
tion is a superset of the approach used by behavior-oriented par-
allelism (BOP) [9]. BOP allows programmers to specify possibly
parallelizable regions of code in sequential programs, and uses a
combination of compiler analysis and the strong isolation proper-
ties of processes to ensure that speculative execution never prevents
a correct execution. While BOP seeks to increase the performance
of sequential code by enabling safe, speculative parallelism, Grace
provides sequential semantics for multithreaded programs, which
it executes concurrently. Unlike BOP, however, Grace does not re-
quire programmer intervention.

7. Future Work
Our current implementation of Grace leaves plenty of room for
optimization. We outline our planned directions here, first in the
runtime space, and then with compiler support.

The current runtime system immediately spawns as many
threads as the program requests. In addition to potentially consum-
ing excessive resources, this approach runs the risk of impairing
sequential performance in the worst-case. Consider an execution
where each thread conflicts with every other thread. If the number
of threads spawned exactly matches the number of available cores,
then the first thread in serial order will always be able to proceed
at full speed. However, if there are many more threads than cores,
the first thread will have to share its processing with these other
“doomed” threads, degrading performance. We plan to alter our
runtime system to throttle thread creation, so that it never creates
more threads than available processors.

While conflicts cause rollbacks, they also provide information
that can be fed back into the runtime system so it can intelligently
reschedule threads. For example, the runtime system could partition
threads into conflicting sets, and then only schedule the first thread
(in serial order) from each of these sets. This algorithm would
maximize the utilization of available parallelism by preventing
repeated rollbacks.

Another desirable enhancement to the runtime system would
allow Grace to report memory areas that are the source of frequent
conflicts. This information can guide programmers as they tune
their programs for higher performance.

We are also considering custom memory allocation algorithms
to eliminate false sharing. We plan to leverage a mechanism pro-
posed by Dhurjati and Adve that places individual objects at differ-
ent offsets on a different virtual pages, with multiple virtual pages
mapped to the same physical page to conserve space [8]. While this
mechanism was designed to detect dangling pointer errors, we can
use it to prevent false sharing in Grace’s page-based transactional
memory system.

Finally, we believe that Grace’s sequential semantics provides
the opportunity for novel compiler optimizations. For example,
Grace’s sequential semantics could enable cross-thread optimiza-
tions that can hoist small conflicting memory operations out of mul-
tiple threads and combine them into a sequential operation in the
final thread in a sequence.

8. Conclusion
This paper presents Grace, a runtime system that eliminates a broad
class of concurrency errors, including deadlocks, race conditions,
atomicity violations, and order violations. Grace is a plug-in sub-
stitute for the pthreads library and is especially well-suited for
fine to medium-grained CPU-intensive concurrent computations. It
works with existing C and C++ programs that use fork-join paral-
lelism. It achieves good scalability and performance on multicore
systems, while ensuring the absence of a wide range of difficult-to-
debug errors.

We view Grace as analogous to “garbage collection for concur-
rency.” Garbage collection effectively eliminates a range of mem-
ory errors while incurring a cost that is acceptable in many (but not
all) contexts. Similarly, we believe that Grace shows promise as a
runtime system approach to increase productivity and application
reliability by eliminating most concurrency errors.

9. Acknowledgements
The authors would like to thank Ben Zorn for his valuable feedback
during the development of the ideas that led to Grace, and to Luis
Ceze for graciously providing benchmarks. This material is based
upon work supported by Intel, Microsoft Research, and the Na-
tional Science Foundation under CAREER Award CNS-0347339
and CNS-0615211. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of

transactional memory and automatic mutual exclusion. In POPL ’08:
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 63–74, New York,
NY, USA, 2008. ACM.

[2] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson.
On-the-fly maintenance of series-parallel relationships in fork-
join multithreaded programs. In SPAA ’04: Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and
architectures, pages 133–144, New York, NY, USA, 2004. ACM.

[3] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A scalable memory allocator for multithreaded applications.
In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-IX), pages 117–128, New York, NY, USA, Nov. 2000.
ACM.

[4] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. In Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2001), pages 114–124, New York, NY, USA,
June 2001. ACM.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
J. Parallel Distrib. Comput., 37(1):55–69, 1996.

[6] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing
transactions: The subtleties of atomicity. In WDDD ’05: 4th Workshop
on Duplicating, Deconstructing, and Debunking, June 2005.

[7] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F.
Stark. Detecting data races in cilk programs that use locks. In SPAA
’98: Proceedings of the tenth annual ACM symposium on Parallel
algorithms and architectures, pages 298–309, New York, NY, USA,
1998. ACM.

[8] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer
uses in production servers. In DSN ’06: Proceedings of the
International Conference on Dependable Systems and Networks,
pages 269–280, Washington, DC, USA, 2006. IEEE Computer
Society.

[9] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, pages 223–234, New York, NY, USA,
2007. ACM.

[10] C. Flanagan and S. Qadeer. A type and effect system for atomicity.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages 338–349,
New York, NY, USA, 2003. ACM.

[11] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. SIGPLAN Not., 33(5):212–223,
1998.

[12] D. Grossman. The transactional memory / garbage collection
analogy. In OOPSLA ’07: Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented programming systems and
applications, pages 695–706, New York, NY, USA, 2007. ACM.

[13] T. Harris and K. Fraser. Language support for lightweight trans-
actions. In OOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications, pages 388–402, New York, NY, USA,
2003. ACM.

[14] J. W. Havender. Avoiding deadlock in multitasking systems. IBM
Systems Journal, 7(2):74–84, 1968.

[15] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In ISCA ’93: Proceedings of
the 20th annual international symposium on Computer architecture,
pages 289–300, New York, NY, USA, 1993. ACM.

[16] K. Huang. Data-race detection in transactions-everywhere parallel
programming. Master’s thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, June
2003.

[17] M. Isard and A. Birrell. Automatic mutual exclusion. In HotOS XI:
11th Workshop on Hot Topics in Operating Systems, Berkeley, CA,
May 2007.

[18] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool, 2006.

[19] R. J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[20] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
MUVI: automatically inferring multi-variable access correlations
and detecting related semantic and concurrency bugs. In SOSP
’07: Proceedings of the Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles, pages 103–116, New York, NY, USA,
2007. ACM.

[21] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
In ASPLOS XIII: Proceedings of the 13th international conference
on Architectural support for programming languages and operating
systems, pages 329–339, New York, NY, USA, 2008. ACM.

[22] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting
and surviving atomicity violations. In ISCA ’08: Proceedings of the
35th Annual International Symposium on Computer Architecture,
New York, NY, USA, June 2008. ACM Press.

[23] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some
issues and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–
88, 1992.

[24] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in
a distributed file system. ACM Trans. Comput. Syst., 24(4):361–392,
2006.

[25] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and multi-
processor systems. In Proceedings of the 13th Intl. Symposium on
High-Performance Computer Architecture (HPCA), feb 2007.

[26] N. Shavit and D. Touitou. Software transactional memory. In
PODC ’95: Proceedings of the fourteenth annual ACM symposium
on Principles of distributed computing, pages 204–213, New York,
NY, USA, 1995. ACM.

[27] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
isolation and ordering in STM. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and
implementation, pages 78–88, New York, NY, USA, 2007. ACM.

[28] C. von Praun, L. Ceze, and C. Caşcaval. Implicit parallelism
with ordered transactions. In PPoPP ’07: Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 79–89, New York, NY, USA, 2007. ACM.

[29] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java.
In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN
Conference on Object oriented Programming, Systems, Languages,
and applications, pages 439–453, New York, NY, USA, 2005. ACM.

