
48 September 2005 QUEUE rants: feedback@acmqueue.com

The Price of The

 QUEUE September 2005 49 more queue: www.acmqueue.com

In the late 1990s, our research group at DEC was one of
a growing number of teams advocating the CMP (chip
multiprocessor) as an alternative to highly complex
single-threaded CPUs. We were designing the Piranha sys-
tem,1 which was a radical point in the CMP design space
in that we used very simple cores (similar to the early
RISC designs of the late ’80s) to provide a higher level of
thread-level parallelism. Our main goal was to achieve the
best commercial workload performance for a given silicon
budget.

Today, in developing Google’s computing infra-
structure, our focus is broader than performance alone.
The merits of a particular architecture are measured by

answering the following question: Are
you able to afford the computational
capacity you need? The high-compu-
tational demands that are inherent in
most of Google’s services have led us
to develop a deep understanding of the
overall cost of computing, and continu-

ally to look for hardware/software designs that optimize
performance per unit of cost.

This article addresses some of the cost trends in a
large-scale Internet service infrastructure and highlights
the challenges and opportunities for CMP-based systems
to improve overall computing platform cost efficiency.

UNDERSTANDING SYSTEM COST
The systems community has developed an arsenal of tools
to measure, model, predict, and optimize performance.
The community’s appreciation and understanding of
cost factors, however, remain less developed. Without
thorough consideration and understanding of cost, the
true merits of any one technology or product remain
unproven.

We can break down the TCO (total cost of ownership)
of a large-scale computing cluster into four main compo-
nents: price of the hardware, power (recurring and initial
data-center investment), recurring data-center operations
costs, and cost of the software infrastructure.

Often the major component of TCO for commercial
deployments is software. A cursory inspection of the price
breakdown for systems used in TPC-C benchmark filings
shows that per-CPU costs of just operating systems and
database engines can range from $4,000 to $20,000.2
Once the license fees for other system software compo-
nents, applications, and management software are added
up, they can dwarf all other components of cost. This is
especially true for deployments using mid- and low-end
servers, since those tend to have larger numbers of less

An Economic Case for
Chip Multiprocessing

LUIZ ANDRÉ BARROSO, GOOGLE

MultiprocessorsFO
CU

S
Performance

50 September 2005 QUEUE rants: feedback@acmqueue.com

expensive machines but can incur signifi cant software
costs because of still-commonplace per-CPU or per-server
license-fee policies.

Google’s choice to produce its own software infra-
structure in-house and to work with the open source
community changes that cost distribution by greatly
reducing software costs (software development costs still
exist, but are amortized over large CPU deployments). As
a result, it needs to pay special attention to the remaining
components of cost. Here I will focus on cost components
that are more directly affected by system-design choice:
hardware and power costs.

Figure 1 shows performance, performance-per-server
price, and performance-per-watt trends from three suc-
cessive generations of Google server platforms. Google’s
hardware solutions include the use of low-end serv-
ers.3 Such systems are based on high-volume, PC-class
components and thus deliver increasing performance for
roughly the same cost over successive generations, result-
ing in the upward trend of the performance-per-server
price curve. Google’s fault-tolerant software design meth-
odology enables it to deliver highly available services
based on these relatively less-reliable building blocks.

Nevertheless, performance per watt has remained
roughly fl at over time, even after signifi cant efforts to
design for power effi ciency.
In other words, every gain
in performance has been
accompanied by a propor-
tional infl ation in overall
platform power consump-
tion. The result of these
trends is that power-related
costs are an increasing frac-
tion of the TCO.

Such trends could
have a signifi cant impact
on how computing costs
are factored. The follow-
ing analysis ignores other
indirect power costs and
focuses solely on the cost
of energy. A typical low-
end x86-based server today
can cost about $3,000 and
consume an average of 200
watts (peak consumption

can reach over 300 watts). Typical power delivery inef-
fi ciencies and cooling overheads will easily double that
energy budget. If we assume a base energy cost of nine
cents per kilowatt hour and a four-year server lifecycle,
the energy costs of that system today would already be
more than 40 percent of the hardware costs.

And it gets worse. If performance per watt is to remain
constant over the next few years, power costs could eas-
ily overtake hardware costs, possibly by a large margin.
Figure 2 depicts this extrapolation assuming four differ-
ent annual rates of performance and power growth. For
the most aggressive scenario (50 percent annual growth
rates), power costs by the end of the decade would dwarf
server prices (note that this doesn’t account for the
likely increases in energy costs over the next few years).
In this extreme situation, in which keeping machines
powered up costs signifi cantly more than the machines
themselves, one could envision bizarre business models
in which the power company will provide you with free
hardware if you sign a long-term power contract.

The possibility of computer equipment power con-
sumption spiraling out of control could have serious
consequences for the overall affordability of computing,
not to mention the overall health of the planet. It should
be noted that although the CPUs are responsible for only

MultiprocessorsFO
CU

S

Three Successive Generations of Google Hardware

pe
rf

or
m

an
ce

hardware platform generations
A B

performance

performance/server price

performance/watt

C
0

2

4

6

8

10

12

14

16

18

The Price of Performance

FIG 1FIG 1

 QUEUE September 2005 51 more queue: www.acmqueue.com

a fraction of the total system power budget, that frac-
tion can easily reach 50 percent to 60 percent in low-end
server platforms.

THE CMP AND COMPUTING EFFICIENCY
The eventual introduction of processors with CMP tech-
nology is the best (and perhaps only) chance to avoid the
dire future envisioned above. As discussed in the opening
article of this issue (“The Future of Microprocessors,” by
Kunle Olukotun and Lance Hammond), if thread-level
parallelism is available, using the transistor and energy
budget for additional cores is more likely to yield higher
performance than any other techniques we are aware of.
In such a thread-rich environment, prediction and specu-
lation techniques need to be extremely accurate to justify
the extra energy and real estate they require, as there will
be nonspeculative instructions ready to execute from
other threads. Unfortunately, many server-class workloads
are known to exhibit poor instruction-level parallelism;4
therefore, they are a poor match for the aggressive specu-
lative out-of-order cores that are common today.

Some key workloads at Google share such behavior.
Our index-serving application, for example, retires on
average only one instruction every two CPU cycles on
modern processors, badly underutilizing the multiple
issue slots and functional units available. This is caused
by the use of data structures that are too large for on-chip
caches, and a data-dependent control fl ow that exposes

the pipeline to large DRAM latencies. Such behavior also
causes the memory system to be under utilized, since
often a new memory access cannot be issued until the
result of a previous one is available. There is enough
unpredictability in both control fl ow and memory access
streams to render speculation techniques relatively inef-
fective. This same workload, however, exhibits excellent
thread-level speedup on traditional multiprocessors,
simultaneous multithreaded systems, and CMPs.5

The Piranha implementation took the lessons from
commercial workload behavior to heart: If there are
enough threads (hardware and software), one should
never have to speculate. The eight CPU cores were a
throwback to early RISC designs: single-issue, in-order,
nonspeculative. The fi rst Piranha chip was expected to
outperform state-of-the-art CPUs by more than a factor of
two at nearly half the power consumption. What makes
this especially signifi cant is that this was achieved despite
our team having completely ignored power effi ciency as
a design target. This is a good illustration of the inherent
power-effi ciency advantages of the CMP model.

Recent product announcements also provide insights
into the power-effi ciency potential of CMP microarchitec-
tures. Both AMD and Intel are introducing CMP designs
that stay within approximately the same power envelope
of their previous-generation single-core offerings. For
example, AMD reports that its dual-core Opteron 275
model outperforms its single-core equivalent (Opteron

248) by about 1.8 times on
a series of benchmarks,6 at
a power envelope increase
of less than 7 percent.
Even if we pessimistically
assume that the whole
platform power increases
by that same amount,
the power effi ciency of
the dual-core platform
(performance per watt)
is still nearly 70 percent
better than the single-core
platform. Indeed, process
technology improvements
do play a large role in
achieving this, but the fact
remains that for the fi rst
time in many processor
generations we are looking
at dramatic power-effi -
ciency improvements.

Extrapolation of Hardware and Power Costs for Low-End Servers*

pr
ic

e
($

)

time (years)
0 1 2 3 4

hardware power
(20% growth)

power
(30% growth)

power
(40% growth)

power
(50% growth)

5
0

2000

4000

6000

8000

10000

*assumes constant performance/watt
 over the next five years FIG 2FIG 2

52 September 2005 QUEUE rants: feedback@acmqueue.com

SLOW PACE
In our first Piranha paper published in 2000 we described
chip multiprocessing as an inevitable next step in micro-
architectural evolution. Although this is no longer a
controversial view, it is nevertheless surprising that it has
taken so long for this architecture to achieve widespread
acceptance. I am particularly surprised that more aggres-
sive CMP architectures—those (like Piranha) that trade
single-threaded performance for additional thread-level
parallelism—are only now beginning to appear in com-
mercial products7 and are unlikely to be widely available
for quite some time.

The commercial introduction of CMPs seems to be
following a more measured approach in which fairly
complex cores are being slowly added to the die as the
transistor budget increases every process generation. If
CMPs have such compelling potential, why is it taking so
long for that potential to be realized? There are four main
reasons for this:

It’s the power envelope, stupid. As it turned out,
contrary to what we envisioned during the Piranha devel-
opment, design complexity and performance alone were
not compelling enough to trigger a switch to CMP archi-
tectures; power was. In order to steer away from expen-
sive cooling technologies, chip developers had to stay
within power density boundaries that became increas-
ingly difficult to meet with conventional techniques.

Marketing matters. Megahertz is a performance
metric that is easy to understand and communicate
to consumers. Although it is a very poor indicator of
application performance, the same can be said for most
popular benchmarks. When given a choice between a
bogus metric that sells and one that doesn’t, the outcome
is predictable. Unfortunately, the MHz competition has
reinforced the direction toward larger and more complex
single-threaded systems, and away from CMPs.

Execution matters. Many of us underestimated the
incredible engineering effort that went into making con-
ventional complex cores into very successful products.
Seemingly suboptimal architectures can be made into
winning solutions with the right combination of talent,
drive, and execution.

Threads aren’t everywhere yet. Although server-
class workloads have been multithreaded for years, the
same cannot be said yet for desktop workloads. Since
desktop volume still largely subsidizes the enormous cost
of server CPU development and fabrication, the lack of

threads in the desktop has made CMPs less universally
compelling. I will expand on this issue later in this article.

DREADING THREADING
Much of the industry’s slowness in adopting CMP designs
reflects a fear that the CMP opportunity depends on
having enough threads to take advantage of that oppor-
tunity. Such fear seems to be based mainly on two factors:
parallel programming complexity and the thread-level
speedup potential of common applications.

The complexity of parallel software can slow down
programmer productivity by making it more difficult to
write correct and efficient programs. Computer science
students’ limited exposure to parallel programming, lack
of popular languages with native support for parallelism,
and the slow progress of automatic compiler paralleliza-
tion technology all contribute to the fear that many
applications will not be ready to take advantage of multi-
threaded chips.

There is reason for optimism, though. The ever-grow-
ing popularity of small multiprocessors is exposing more
programmers to parallel hardware. More tools to spot
correctness and performance problems are becoming
available (e.g., thread checkers8 and performance debug-
gers9). Also, a few expert programmers can write efficient
threaded code that is in turn leveraged by many others.
Fast-locking and thread-efficient memory allocation
libraries are good examples of programming work that
is highly leveraged. On a larger scale, libraries such as
Google’s MapReduce10 can make it easier for programmers
to write efficient applications that mine huge datasets
using hundreds or thousands of threads.

While it’s true that some algorithms are hard to paral-
lelize efficiently, the majority of problem classes that
demand the additional performance of CMPs are not.
The general principle here is that, with few exceptions,
the more data one has, the easier it is to obtain parallel
speedup. That’s one of the reasons why database applica-
tions have been run as parallel workloads successfully for
well over a decade. At Google we have generally been able
to tune our CPU-intensive workloads to scale to increas-
ing numbers of hardware threads whenever needed—that
is, whenever servers with higher numbers of hardware
contexts become economically attractive.

The real challenge for CMPs is not at the server but the
desktop level. Many popular desktop applications have
not been parallelized yet, in part because they manipulate

MultiprocessorsFO
CU

S
The Price of Performance

 QUEUE September 2005 53 more queue: www.acmqueue.com

modest datasets, and in part because multithreaded CPUs
have only recently been introduced to that market seg-
ment. As more data-intensive workloads (such as speech
recognition) become common at the desktop, CMP sys-
tems will become increasingly attractive for that segment.

It is important to note that CMPs are a friendly target
platform for applications that don’t parallelize well. Com-
munication between concurrent threads in a CMP can
be an order of magnitude faster than in traditional SMP
systems, especially when using shared on-chip caches.
Therefore, workloads that require significant communica-
tion or synchronization among threads will pay a smaller
performance penalty. This characteristic of CMP architec-
tures should ease the programming burden involved in
initial parallelization of the established code base.

CMP HEADING FOR MAINSTREAM ACCEPTANCE
A highly cost-efficient distributed computing system is
essential to large-scale services such as those offered by
Google. For these systems, given the distributed nature of
the workloads, single-threaded performance is much less
important than the aggregate cost/performance ratio of
an entire system. Chip multiprocessing is a good match
for such requirements. When running these inherently
parallel workloads, CMPs can better utilize on-chip
resources and the memory system than traditional
wide-issue single-core architectures, leading to higher
performance for a given silicon budget. CMPs are also
fundamentally more power-efficient than traditional CPU
designs and therefore will help keep power costs under
control over the next few years. Note, however, that
CMPs cannot solve the power-efficiency challenge alone,
but can simply mitigate it for the next two or three CPU
generations. Fundamental circuit and architectural inno-
vations are still needed to address the longer-term trends.

The computing industry is ready to embrace chip mul-
tiprocessing as the mainstream solution for the desktop
and server markets, yet it appears to be doing so with
some reluctance. CMP parallelism is being introduced
only when it is absolutely necessary to remain within
a safe thermal envelope. This approach minimizes any
significant losses in single-threaded performance, but it
is unlikely to realize the full cost-efficiency potential of
chip multiprocessing. A riskier bet on slower cores could
have a much larger positive impact on the affordability of
high-performance systems. Q

REFERENCES
1. Barroso, L. A., Gharachorloo, K., McNamara, R.,

Nowatzyk, A., Qadeer, S., Sano, B., Smith, S., Stets, R.,

and Verghese, B. 2000. Piranha: a scalable architecture
based on single-chip multiprocessing. Proceedings of
the 27th ACM International Symposium on Computer
Architecture (June), Vancouver, BC.

2. Transaction Processing Performance Council. Execu-
tive summary reports for TPC-C benchmark filings;
http://www.tpc.org.

3. Hoelzle, U., Dean, J., and Barroso, L. A. 2003. Web
search for a planet: the architecture of the Google
cluster. IEEE Micro Magazine (April).

4. Ranganathan, P., Gharachorloo, K., Adve, S., and Bar-
roso, L.A. 1998. Performance of database workloads
on shared memory systems with out-of-order proces-
sors. Proceedings of the Eighth International Conference
on Architecture Support for Programming Languages and
Operating Systems (ASPLOS VIII), San Jose, CA.

5. See Reference 3.
6. AMD competitive server benchmarks; http://www.

amd.com/us-en/Processors/ProductInformation/0,,30_
118_8796_8800~97051,00.html.

7. Kongetira, P., Aingaran, K., and Olukotun, K. 2005.
Niagara: a 32-way multithreaded SPARC processor.
IEEE Micro Magazine (March/April); http://www
.computer.org/micro.

8. Intel Corporation. Intel thread checker; http://devel-
oper.intel.com/software/products/threading/tcwin.

9. Seward, J. Valgrind; http://valgrind.kde.org/.
10. Dean, J., and Ghemawat, S. 2004. MapReduce: simpli-

fied data processing on large clusters. Proceedings of
OSDI, San Francisco, CA.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ACKNOWLEDGMENTS
The author thanks Wolf-Dietrich Weber and Christopher
Lyle Johnson for their careful review of the manuscript.

LUIZ ANDRÉ BARROSO is a principal engineer at Google,
where he leads the platforms engineering group. He has
worked on several aspects of Google’s systems infrastruc-
ture, including load balancing, fault detection and recovery,
communication libraries, performance optimization, and the
computing platform design. Prior to Google he was on the
research staff at Compaq and DEC, where he investigated
processor and memory system architectures for commercial
workloads and co-architected the Piranha system. Barroso
holds a Ph.D. in computer engineering from USC, and a
B.Sc. and M.S. in electrical engineering from PUC-Rio, Brazil.
© 2005 ACM 1542-7730/05/0900 $5.00

