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In the late 1990s, our research group at DEC was one of 
a growing number of teams advocating the CMP (chip 
multiprocessor) as an alternative to highly complex 
single-threaded CPUs. We were designing the Piranha sys-
tem,1 which was a radical point in the CMP design space 
in that we used very simple cores (similar to the early 
RISC designs of the late ’80s) to provide a higher level of 
thread-level parallelism. Our main goal was to achieve the 
best commercial workload performance for a given silicon 
budget.

Today, in developing Google’s computing infra-
structure, our focus is broader than performance alone. 
The merits of a particular architecture are measured by 

answering the following question: Are 
you able to afford the computational 
capacity you need? The high-compu-
tational demands that are inherent in 
most of Google’s services have led us 
to develop a deep understanding of the 
overall cost of computing, and continu-

ally to look for hardware/software designs that optimize 
performance per unit of cost.

This article addresses some of the cost trends in a 
large-scale Internet service infrastructure and highlights 
the challenges and opportunities for CMP-based systems 
to improve overall computing platform cost efficiency.

UNDERSTANDING SYSTEM COST
The systems community has developed an arsenal of tools 
to measure, model, predict, and optimize performance. 
The community’s appreciation and understanding of 
cost factors, however, remain less developed. Without 
thorough consideration and understanding of cost, the 
true merits of any one technology or product remain 
unproven.

We can break down the TCO (total cost of ownership) 
of a large-scale computing cluster into four main compo-
nents: price of the hardware, power (recurring and initial 
data-center investment), recurring data-center operations 
costs, and cost of the software infrastructure.

Often the major component of TCO for commercial 
deployments is software. A cursory inspection of the price 
breakdown for systems used in TPC-C benchmark filings 
shows that per-CPU costs of just operating systems and 
database engines can range from $4,000 to $20,000.2 
Once the license fees for other system software compo-
nents, applications, and management software are added 
up, they can dwarf all other components of cost. This is 
especially true for deployments using mid- and low-end 
servers, since those tend to have larger numbers of less 
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expensive machines but can incur signifi cant software 
costs because of still-commonplace per-CPU or per-server 
license-fee policies. 

Google’s choice to produce its own software infra-
structure in-house and to work with the open source 
community changes that cost distribution by greatly 
reducing software costs (software development costs still 
exist, but are amortized over large CPU deployments). As 
a result, it needs to pay special attention to the remaining 
components of cost. Here I will focus on cost components 
that are more directly affected by system-design choice: 
hardware and power costs. 

Figure 1 shows performance, performance-per-server 
price, and performance-per-watt trends from three suc-
cessive generations of Google server platforms. Google’s 
hardware solutions include the use of low-end serv-
ers.3 Such systems are based on high-volume, PC-class 
components and thus deliver increasing performance for 
roughly the same cost over successive generations, result-
ing in the upward trend of the performance-per-server 
price curve. Google’s fault-tolerant software design meth-
odology enables it to deliver highly available services 
based on these relatively less-reliable building blocks.

Nevertheless, performance per watt has remained 
roughly fl at over time, even after signifi cant efforts to 
design for power effi ciency. 
In other words, every gain 
in performance has been 
accompanied by a propor-
tional infl ation in overall 
platform power consump-
tion. The result of these 
trends is that power-related 
costs are an increasing frac-
tion of the TCO.

Such trends could 
have a signifi cant impact 
on how computing costs 
are factored. The follow-
ing analysis ignores other 
indirect power costs and 
focuses solely on the cost 
of energy. A typical low-
end x86-based server today 
can cost about $3,000 and 
consume an average of 200 
watts (peak consumption 

can reach over 300 watts). Typical power delivery inef-
fi ciencies and cooling overheads will easily double that 
energy budget. If we assume a base energy cost of nine 
cents per kilowatt hour and a four-year server lifecycle, 
the energy costs of that system today would already be 
more than 40 percent of the hardware costs. 

And it gets worse. If performance per watt is to remain 
constant over the next few years, power costs could eas-
ily overtake hardware costs, possibly by a large margin. 
Figure 2 depicts this extrapolation assuming four differ-
ent annual rates of performance and power growth. For 
the most aggressive scenario (50 percent annual growth 
rates), power costs by the end of the decade would dwarf 
server prices (note that this doesn’t account for the 
likely increases in energy costs over the next few years). 
In this extreme situation, in which keeping machines 
powered up costs signifi cantly more than the machines 
themselves, one could envision bizarre business models 
in which the power company will provide you with free 
hardware if you sign a long-term power contract.

The possibility of computer equipment power con-
sumption spiraling out of control could have serious 
consequences for the overall affordability of computing, 
not to mention the overall health of the planet. It should 
be noted that although the CPUs are responsible for only 

MultiprocessorsFO
CU

S

 
Three Successive Generations of Google Hardware

pe
rf

or
m

an
ce

hardware platform generations
A B

performance

performance/server price

performance/watt

C
0

2

4

6

8

10

12

14

16

18

The Price of Performance

FIG 1FIG 1



 QUEUE  September 2005  51  more queue: www.acmqueue.com

a fraction of the total system power budget, that frac-
tion can easily reach 50 percent to 60 percent in low-end 
server platforms.

THE CMP AND COMPUTING EFFICIENCY
The eventual introduction of processors with CMP tech-
nology is the best (and perhaps only) chance to avoid the 
dire future envisioned above. As discussed in the opening 
article of this issue (“The Future of Microprocessors,” by 
Kunle Olukotun and Lance Hammond), if thread-level 
parallelism is available, using the transistor and energy 
budget for additional cores is more likely to yield higher 
performance than any other techniques we are aware of. 
In such a thread-rich environment, prediction and specu-
lation techniques need to be extremely accurate to justify 
the extra energy and real estate they require, as there will 
be nonspeculative instructions ready to execute from 
other threads. Unfortunately, many server-class workloads 
are known to exhibit poor instruction-level parallelism;4 
therefore, they are a poor match for the aggressive specu-
lative out-of-order cores that are common today.

Some key workloads at Google share such behavior. 
Our index-serving application, for example, retires on 
average only one instruction every two CPU cycles on 
modern processors, badly underutilizing the multiple 
issue slots and functional units available. This is caused 
by the use of data structures that are too large for on-chip 
caches, and a data-dependent control fl ow that exposes 

the pipeline to large DRAM latencies. Such behavior also 
causes the memory system to be under utilized, since 
often a new memory access cannot be issued until the 
result of a previous one is available. There is enough 
unpredictability in both control fl ow and memory access 
streams to render speculation techniques relatively inef-
fective. This same workload, however, exhibits excellent 
thread-level speedup on traditional multiprocessors, 
simultaneous multithreaded systems, and CMPs.5 

The Piranha implementation took the lessons from 
commercial workload behavior to heart: If there are 
enough threads (hardware and software), one should 
never have to speculate. The eight CPU cores were a 
throwback to early RISC designs: single-issue, in-order, 
nonspeculative. The fi rst Piranha chip was expected to 
outperform state-of-the-art CPUs by more than a factor of 
two at nearly half the power consumption. What makes 
this especially signifi cant is that this was achieved despite 
our team having completely ignored power effi ciency as 
a design target. This is a good illustration of the inherent 
power-effi ciency advantages of the CMP model.

Recent product announcements also provide insights 
into the power-effi ciency potential of CMP microarchitec-
tures. Both AMD and Intel are introducing CMP designs 
that stay within approximately the same power envelope 
of their previous-generation single-core offerings. For 
example, AMD reports that its dual-core Opteron 275 
model outperforms its single-core equivalent (Opteron 

248) by about 1.8 times on 
a series of benchmarks,6 at 
a power envelope increase 
of less than 7 percent. 
Even if we pessimistically 
assume that the whole 
platform power increases 
by that same amount, 
the power effi ciency of 
the dual-core platform 
(performance per watt) 
is still nearly 70 percent 
better than the single-core 
platform. Indeed, process 
technology improvements 
do play a large role in 
achieving this, but the fact 
remains that for the fi rst 
time in many processor 
generations we are looking 
at dramatic power-effi -
ciency improvements.

Extrapolation of Hardware and Power Costs for Low-End Servers* 
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SLOW PACE
In our first Piranha paper published in 2000 we described 
chip multiprocessing as an inevitable next step in micro-
architectural evolution. Although this is no longer a 
controversial view, it is nevertheless surprising that it has 
taken so long for this architecture to achieve widespread 
acceptance. I am particularly surprised that more aggres-
sive CMP architectures—those (like Piranha) that trade 
single-threaded performance for additional thread-level 
parallelism—are only now beginning to appear in com-
mercial products7 and are unlikely to be widely available 
for quite some time. 

The commercial introduction of CMPs seems to be 
following a more measured approach in which fairly 
complex cores are being slowly added to the die as the 
transistor budget increases every process generation. If 
CMPs have such compelling potential, why is it taking so 
long for that potential to be realized? There are four main 
reasons for this:

It’s the power envelope, stupid. As it turned out, 
contrary to what we envisioned during the Piranha devel-
opment, design complexity and performance alone were 
not compelling enough to trigger a switch to CMP archi-
tectures; power was. In order to steer away from expen-
sive cooling technologies, chip developers had to stay 
within power density boundaries that became increas-
ingly difficult to meet with conventional techniques.

Marketing matters. Megahertz is a performance 
metric that is easy to understand and communicate 
to consumers. Although it is a very poor indicator of 
application performance, the same can be said for most 
popular benchmarks. When given a choice between a 
bogus metric that sells and one that doesn’t, the outcome 
is predictable. Unfortunately, the MHz competition has 
reinforced the direction toward larger and more complex 
single-threaded systems, and away from CMPs.

Execution matters. Many of us underestimated the 
incredible engineering effort that went into making con-
ventional complex cores into very successful products. 
Seemingly suboptimal architectures can be made into 
winning solutions with the right combination of talent, 
drive, and execution.

Threads aren’t everywhere yet. Although server-
class workloads have been multithreaded for years, the 
same cannot be said yet for desktop workloads. Since 
desktop volume still largely subsidizes the enormous cost 
of server CPU development and fabrication, the lack of 

threads in the desktop has made CMPs less universally 
compelling. I will expand on this issue later in this article.

DREADING THREADING
Much of the industry’s slowness in adopting CMP designs 
reflects a fear that the CMP opportunity depends on 
having enough threads to take advantage of that oppor-
tunity. Such fear seems to be based mainly on two factors: 
parallel programming complexity and the thread-level 
speedup potential of common applications.

The complexity of parallel software can slow down 
programmer productivity by making it more difficult to 
write correct and efficient programs. Computer science 
students’ limited exposure to parallel programming, lack 
of popular languages with native support for parallelism, 
and the slow progress of automatic compiler paralleliza-
tion technology all contribute to the fear that many 
applications will not be ready to take advantage of multi-
threaded chips. 

There is reason for optimism, though. The ever-grow-
ing popularity of small multiprocessors is exposing more 
programmers to parallel hardware. More tools to spot 
correctness and performance problems are becoming 
available (e.g., thread checkers8 and performance debug-
gers9). Also, a few expert programmers can write efficient 
threaded code that is in turn leveraged by many others. 
Fast-locking and thread-efficient memory allocation 
libraries are good examples of programming work that 
is highly leveraged. On a larger scale, libraries such as 
Google’s MapReduce10 can make it easier for programmers 
to write efficient applications that mine huge datasets 
using hundreds or thousands of threads.

While it’s true that some algorithms are hard to paral-
lelize efficiently, the majority of problem classes that 
demand the additional performance of CMPs are not. 
The general principle here is that, with few exceptions, 
the more data one has, the easier it is to obtain parallel 
speedup. That’s one of the reasons why database applica-
tions have been run as parallel workloads successfully for 
well over a decade. At Google we have generally been able 
to tune our CPU-intensive workloads to scale to increas-
ing numbers of hardware threads whenever needed—that 
is, whenever servers with higher numbers of hardware 
contexts become economically attractive.

The real challenge for CMPs is not at the server but the 
desktop level. Many popular desktop applications have 
not been parallelized yet, in part because they manipulate 
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modest datasets, and in part because multithreaded CPUs 
have only recently been introduced to that market seg-
ment. As more data-intensive workloads (such as speech 
recognition) become common at the desktop, CMP sys-
tems will become increasingly attractive for that segment.

It is important to note that CMPs are a friendly target 
platform for applications that don’t parallelize well. Com-
munication between concurrent threads in a CMP can 
be an order of magnitude faster than in traditional SMP 
systems, especially when using shared on-chip caches. 
Therefore, workloads that require significant communica-
tion or synchronization among threads will pay a smaller 
performance penalty. This characteristic of CMP architec-
tures should ease the programming burden involved in 
initial parallelization of the established code base.

CMP HEADING FOR MAINSTREAM ACCEPTANCE
A highly cost-efficient distributed computing system is 
essential to large-scale services such as those offered by 
Google. For these systems, given the distributed nature of 
the workloads, single-threaded performance is much less 
important than the aggregate cost/performance ratio of 
an entire system. Chip multiprocessing is a good match 
for such requirements. When running these inherently 
parallel workloads, CMPs can better utilize on-chip 
resources and the memory system than traditional 
wide-issue single-core architectures, leading to higher 
performance for a given silicon budget. CMPs are also 
fundamentally more power-efficient than traditional CPU 
designs and therefore will help keep power costs under 
control over the next few years. Note, however, that 
CMPs cannot solve the power-efficiency challenge alone, 
but can simply mitigate it for the next two or three CPU 
generations. Fundamental circuit and architectural inno-
vations are still needed to address the longer-term trends.

The computing industry is ready to embrace chip mul-
tiprocessing as the mainstream solution for the desktop 
and server markets, yet it appears to be doing so with 
some reluctance. CMP parallelism is being introduced 
only when it is absolutely necessary to remain within 
a safe thermal envelope. This approach minimizes any 
significant losses in single-threaded performance, but it 
is unlikely to realize the full cost-efficiency potential of 
chip multiprocessing. A riskier bet on slower cores could 
have a much larger positive impact on the affordability of 
high-performance systems. Q
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