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Abstract
End-to-end performance measurement is fundamental
to building high-performance Internet services. While
many Internet services often operate using HTTP over
SSL/TLS, current monitors are limited to plaintext HTTP
services. This paper presents sMonitor, a non-intrusive
server-side end-to-end performance monitor that can
monitor HTTPS services. The monitor passively collects
live packet traces from a server site. It then uses a size-
based analysis method on HTTP requests to infer charac-
teristics of client accesses and measures client-perceived
pageview response time in real time. We designed and
implemented a prototype of sMonitor. Preliminary eval-
uations show measurement error of less than 5%.

1 Introduction
The Internet is increasingly being used as a platform
to deliver information to remote clients in a secure and
timely manner. End-to-end performance monitoring is
fundamental to continuously supporting and developing
such Internet services. For example, performance mon-
itoring is critical for provisioning of quality of service
guarantees. Without accurate measurement of client-
perceived service quality, it will be impossible to allocate
server resources between different clients.

To effectively support the developing of Internet ser-
vices, there are three requirements in performance mon-
itoring. First, a performance monitor needs to be non-
intrusive so as to minimize its interference with opera-
tions of monitored systems. While Web server and Web
page instrumentations, as proposed in [2, 11, 19], are
easy to be deployed in small Web sites, they need to
modify Web servers and Web pages. Thus they are not
suitable for large-scale Internet services and are limited
to certain Web servers. Second, the monitor should be
able to characterize service performance perceived by all
clients without biases. Active sampling of Internet ser-
vices, such as that provided by Keynote [13], can ob-
tain detailed response time characteristics from particular
network locations. These characteristics, however, are
not representative since they use customized browsers,
which are different from that are used by real clients.

The browser-instrumentation approaches, such as Page
Detailer from IBM [12], also have the same limitations
as active sampling and are mainly for service testing and
debugging. Therefore, a performance monitor should
be close to servers to capture all traffic in and out the
servers. Third, to accommodate the increasing deploy-
ment of HTTPS services, such as e-commerce service,
the monitor should be able to measure performance of
HTTPS services as well. Although recently proposed
EtE [6] and ksniffer [17] can meet the first two require-
ments, they fail the last one since they need to parse
the HTTP headers, which are unavailable for encrypted
HTTPS traffic.

As a remedy, we present sMonitor, a non-intrusive
server-side performance monitor that is capable of mon-
itoring client-perceived end-to-end response time of
HTTPS services in real time. sMonitor resides near
monitored servers and passively collects traffic in and
out of the servers. It then applies a size-based analy-
sis method on HTTP requests to infer characteristics of
client accesses. The size analysis is based on our obser-
vations that the first HTTP request to retrieve the base
object, which normally is an HTML file, of a Web page
is normally significantly larger than the following re-
quests for the page’s embedded objects. The size dif-
ference is because they have different Accept headers.
Based on the inferred characteristics, sMonitor measures
client-perceived pageview response time. Furthermore,
sMonitor calculates the size of an HTTP request solely
based on plaintext IP, TCP, and SSL/TLS [1, 9] packet
headers. Thus there is no need to parse HTTP head-
ers and sMonitor supports performance monitoring of
HTTPS services.

This paper describes the design and implementation
of sMonitor, and presents its preliminary evaluation. To
conduct this evaluation, we used sMonitor to monitor
service performance of HTTP and HTTPS Web servers.
The evaluation results showed that the measurement er-
ror was less than 5%.

The structure of the paper is as follows. Section 2 dis-
cusses the size relationship between HTTP and HTTPS
messages. Section 3 presents the design of sMonitor and
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its implementation. Section 4 presents preliminary eval-
uations and Section 5 concludes the paper.

2 HTTP over SSL/TLS
In general, secured Internet services use either a version
of Secure Sockets Layer (SSL) protocol [9] or Transport
Layer Security (TLS) protocol [1] to encrypt HTTP mes-
sages before transmitting them over TCP connections.
Since SSL and TLS are very similar, our discussion of
SSL also applies to TLS unless specified explicitly.

In the SSL protocol, HTTP request messages are first
fragmented into blocks of 214 bytes or less. Next, com-
pression is optionally applied. A message authentication
code (MAC) over the compressed data is then calculated
using HMAC MD5 or HMAC SHA-1 algorithms [14]
and is appended to the fragment. After that, the com-
pressed message plus the MAC are encrypted using sym-
metric encryption. The final step of the SSL record pro-
tocol is to attach a 5-byte plaintext header to the begin-
ning of the encrypted fragment. The SSL record data are
then passed to lower protocols, such as TCP, for trans-
mission. In this way, with the support of SSL, all HTTP
messages are transmitted with a guarantee of their se-
crecy, integrity, and authenticity.

As is known, it is extremely hard to hide information
such as the size or the timing of messages [7]. We con-
ducted experiments to determine the size relationship be-
tween HTTP and HTTPS messages. In the experiments,
we sent HTTP requests with known sizes over SSL to
an HTTPS Web server using Microsoft’s Winiest library.
The corresponding HTTPS messages were captured us-
ing WinPcap and their sizes were measured. There are
three issues worth noting in the design of the experi-
ments.

• In our experiments, to control the size of an HTTP
request, we set the Accept header to meaningless
characters. In HTTP/1.1 protocol [8], it specifies
that a Web server should send a 406 (“not accept-
able”) response if the acceptable content type set in
a request’s Accept header cannot be satisfied di-
rectly. We found that, however, most Web servers,
including Microsoft Internet Information Services
(IIS) and Apache Web server, just ignore the un-
recognized Accept header and send the default re-
sponse. Thus the meaningless Accept header we
set in an HTTP request does not bias our experimen-
tal results.

• In order to evaluate different protocols, encryption
algorithms, and MAC algorithms, we modified the
settings of Windows according to [15]. In practice,
in IE 6.0 TLS is disabled while in IE 7.0 Beta 1 it
is enabled by default. In addition, RC4 and MD5
are always used as the first option for encryption
algorithm and MAC algorithm, respectively.

Figure 1: Size relationship between HTTP and HTTPS
messages.

• To ensure the HTTPS requests are sent to the
server instead of the local cache, we passed
flags INTERNET_FLAG_NO_CACHE_WRITE
and INTERNET_FLAG_RELOAD to function
HttpOpenRequest() to disable caching.

We conducted experiments in which the size of an
HTTP request ranges from 100 through 2000 bytes. The
size of corresponding HTTPS message is obtained by
checking the record header of the first SSL/TLS record
fragment with content type as application data. To
clearly show the size relationship between HTTP and
HTTPS messages, Fig. 1 only depicts the results where
the HTTP message size ranges from 300 through 350
bytes. In this figure, RC4 MD5 denotes that RC4 en-
cryption algorithm and MD5 MAC algorithm are used.
Legend RC4 SHA and 3DES SHA follow similar for-
mat. We obtained the cipher suite used between the client
and the server by checking their handshake messages for
session establishment, which are not encrypted.

From Fig. 1 we observe that the size difference be-
tween HTTPS and HTTP request messages is always 16
bytes and 20 bytes for RC4 MD5 and RC4 SHA, respec-
tively. It is because RC4 is a stream cipher, in which the
ciphertext has the same size as plaintext, and MD5 and
SHA calculate a 16-byte and 20-byte MAC, respectively.

In the case of 3DES SHA, we can infer the size of
an HTTP message within 8 bytes from the size of the
corresponding HTTPS message. Assuming a 360-byte
HTTPS message, since there exists a padding size byte,
only another zero or seven bytes need to be padded to
make the total an integer multiple of 8 in 3DES. Con-
sidering the 20-byte MAC calculated by SHA, the HTTP
message therefore ranges from 332 through 339 bytes. It
can be observed from Fig. 1.

In SSL 3.0, the padding added prior to encryption of
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Figure 2: Retrievals of multiple pages and embedded ob-
jects using pipelined requests over multiple connections.

an HTTP message is the minimum amount required so
that the total size of the data to be encrypted is a multiple
of the cipher’s block size. In contrast, TLS 1.0 and 1.1
(draft) define random padding in which the padding can
be any amount that results in a total that is a multiple of
the cipher’s block size, up to a maximum of 255 bytes. It
is to frustrate attacks based on size analysis of exchanged
messages. From Fig. 1 we observe that random padding
is not implemented in IE 6.0 and 7.0 Beta 1. We also
verified this observation for TLS used in Firefox.

If compression is performed, the size of HTTP re-
quests will change, which might interfere the size-based
analysis method presented in Section 3. However, from
Fig. 1 we observe that the optional compression step in
SSL/TLS is not performed. It is because no default com-
pression algorithm is defined in SSL and TLS protocols.

In summary, we can obtain the size of an HTTP re-
quest from the corresponding HTTPS message in case
of stream ciphers, such as RC4, or an estimation within
8 bytes difference in case of block ciphers, such as
DES and 3DES. This agrees with the observations made
in [21]. Therefore, we can conduct size analysis on
HTTPS traffic to measure the response time of HTTPS
services.

3 Design and Implementation of sMonitor
In general, a Web page consists of a base object and mul-
tiple embedded objects. A browser retrieves a Web page
by issuing a series of HTTP requests for all objects. The
key challenge in end-to-end performance monitoring is
to determine the beginning and the end of the retrieval
of a Web page. The determination needs to be achieved
even when multiple Web pages are retrieved by clients
using pipelined HTTP requests over multiple TCP con-
nections. The scenario is depicted in Fig. 2. More im-
portant, in HTTPS services, such determination must be
achieved without parsing HTTP headers, which are en-
crypted.

Let r0
k and ri

k denote the HTTP requests for the base

object and embedded object i of some Web page k, re-
spectively. Essential to the inference of client-perceived
response time is the identification of request r0

k, which
delimits Web page retrievals. In this section we present
the size-based analysis method to identify r0

k. As dis-
cussed in Section 2, the size-based analysis method also
works for HTTPS services.

3.1 Analysis of HTTP Accept header
Our size-based analysis method is based on the HTTP
Accept header, which is designed as part of the ef-
fort for content negotiation. However, HTTP/1.0 and
HTTP/1.1 do not specify how browsers should imple-
ment the Accept header. In this work, we focus on two
most popular Web browsers, Microsoft Internet Explorer
(IE 6.0 and 7.0 Beta 1) and Mozilla Firefox 1.0 and 1.5 in
Windows, which have more than 95% market share [16].
Notice that there is no need for the sMonitor to know the
browsers used by clients in measuring HTTPS service
performance.

In IE, the default Accept header is specified in the
registry key Accepted Documents as part of local ma-
chine’s Internet settings with size of 56 bytes. When cer-
tain applications are installed, their identifications may
be added to the registry key. In Firefox, the Accept
header can be accessed through URL about:config
and its default value is 99 bytes. There are also several
commonly used Accept headers in Firefox. Their sizes
range from 3 through 56 bytes.

Based on our experiments, we have following impor-
tant observations regarding the use of Accept header in
HTTP requests.

• In an HTTP request, the default Accept header is
normally used in IE if the requested object is to be
loaded into a known frame or in Firefox if the ob-
ject is to be loaded into any frame as the first object,
regardless of the content type of the object. Other-
wise, in IE the short header “*/*” is normally used
or in Firefox the Accept header is set according to
the object’s content type.

A known frame means it is specified using reserved
HTML target names “ self”, “ parent”, or “ top”; or the
target name can be found in the window that contains
the link or every other window. Otherwise, the frame is
unknown. A frame created using target name “ blank” is
always an unknown one.

3.2 Size analysis for request identification
Based on the observations, we found that request r0

k nor-
mally was significantly larger than request ri

k while the
difference between ri

k and ri+1
k is small. An HTTP re-

quest message begins with a request line and is followed
by a set of optional headers and optional message body.
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The large size difference between r0
k and ri

k is mainly
because the following reasons.
• r0

k has larger Accept header than ri
k. For exam-

ple, in IE, the size difference of Accept header
between default one and the short one is at least 53
bytes and can become even larger than 161 bytes if
more software is installed in the client system. In
Firefox, the size difference is at least 43 bytes and
can be as large as 93 bytes.

• For static Web objects, the request lines in r0
k and

ri
k normally have limited size for the ease of Web

site administration. For dynamically generated ob-
jects, their addresses normally follow the same pat-
tern and the sizes are very close to each other.

• The only difference between requests r0
k and ri

k nor-
mally is the Accept headers if cookie is not used.
In the case when cookie is used, a Cookie header
will be used in all requests except the first one from
a client. Since normally the first request is for base
object of a Web page, we also identify it as r0

k.
Thus, the size difference is a good indicator for dif-
ferent requests.

• Across a wide variety of measurement studies, the
overwhelming majority of Web requests use the
GET method to retrieve Web pages and invoke
scripts [10, 18]. They do not have message bodies.

Based on the observation of size difference, we pro-
pose a size-based analysis method to identify request r0

k.
Let xn denote the size of the nth HTTP request message.
Let f(x) = x denote the HTTP request size function. Its
second derivative can be approximated as

f ′′(xn) ∼= (f ′(xn + h/2)− f ′(xn − h/2))/h

= (f(xn+1)− 2f(xn) + f(xn−1))/h2 + O(h2).

Since the function is discrete, let h be 1, we have

f ′′(xn) ∼= xn+1 − 2xn + xn−1.

If f ′′(xn) < 0, then f(x) is concave down (
⋂

) and it has
a relative maximum at xn. Let t denote a configurable
threshold of the size difference between r0

k and ri
k. We

have
• request n is identified as r0

k if its second derivative
f ′′(xn) is less than t.

The selection of t should maximize the number of cor-
rectly detected r0

k and limit the number of false posi-
tive ones that would otherwise damage the accuracy of
sMonitor. We found that the Accept headers issued
by Firefox have smaller size differences than those in
IE. Based on analysis of Accept header and captured
HTTP requests, we set t as −60 bytes in sMonitor. We
find that it is a good setting through our experiments.

To measure client-perceived response time, we need
to consider following issues. First, we must consider the

time difference between sending segments from clients
and receiving them in servers and vice versa. Normally,
when a client issues request r0

k and there is no connection
between the client and the server, the client must first
contact the server for connection establishment using an
SYN segment. Request r0

k is normally issued right after
the last step of the three-way handshake. Therefore, there
is at least 1.5 round-trip time (RTT) gap before the server
receives the first r0

k segment. In the case that request r0
k

is transmitted over an established TCP connection, the
time gap then is 0.5RTT. There is also a 0.5RTT time gap
between the server sending the last packet of a response
and the client receiving the packet.

Second, in sMonitor, the end of a Web page is identi-
fied as the last non-empty server segment before another
request r0

k over the same or other connections between
the client and the server. This identification method may
cause delayed identification because there exists a time
gap between the end of a Web page and the arrival of re-
quests for next Web page. We address this issue using a
configurable time-out scheme. If there is no any new seg-
ment from either the client or the server, sMonitor deter-
mines that the Web page is ended. In sMonitor, we adopt
5 seconds by default as it is treated as good response time
of a Web page [4].

In [5], the authors marked the first packet with size
smaller than the MTU as the end of server response.
They argued that a server response is packed into a se-
ries of packets with size as the MTU except the last
one because there is not enough content to fill it. The
method, however, is problematic because the actual size
of a packet is affected by multiple factors, including the
TCP implementation in the server and network condi-
tions between the client and the server. It becomes even
worse in the case of packet retransmission and reorder-
ing. For example, assuming a server response is packed
into an MTU-size packet and a non-MTU size packet,
and they are sent to the client together without receiving
any acknowledgments. The first packet can be lost and
retransmitted after the second one. Their method then
determines false end of the server response.

Third, in sMonitor we also need to consider the ef-
fects of HTTP pipelining. In HTTP pipelining, multi-
ple requests can be issued to the server before the re-
sponse of the first request is sent out. We found that
HTTP/1.1 pipelining was becoming widely used. We
examined three-hour traffic in and out the Web server
of the college of engineering at wayne state university.
The results showed that 19.3% of HTTP requests were
pipelined. Also, pipelining is implemented in Firefox
as an experimental feature. As observed in [20], more
than 90% requests are less than 1000 bytes and most
large requests have non-GET methods for services such
as web-mail. Thus, if the segment size is the same as the
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Figure 3: The architecture of sMonitor.

MTU, sMonitor assumes that this is the first segment of
a request and more are coming. Otherwise, the monitor
marks the segment as the end of a request.

Fourth, we also need to deal with parallel download-
ing, which means a user retrieves multiple Web pages
from one server at the same time. During parallel down-
loading, the requests for these pages can intertwine each
other, which might cause false identification of the end
of a Web page. As an example, assuming that the user
accesses Web pages k and k + 1 simultaneously. In
sMonitor, all requests issued after request r0

k+1 are iden-
tified as the requests for embedded objects in page k + 1
while request ri

k may come after r0
k+1. Consequently,

the measured response time of page k is smaller than that
perceived by the user while it is opposite for page k + 1.
However, sMonitor still measures average response time
perceived by the client accurately. The parallel down-
loading of embedded objects within a Web page does
not affect the performance of sMonitor because it does
not affect the identification of the beginning of r0

k for the
Web page.

3.3 Implementation of sMonitor
A prototype of sMonitor has been implemented at user-
level as a stand-alone application in C. It captures pack-
ets in and out of the monitored servers, analyzes packet
headers to extract packet information, derives page-
related data from packet headers, and conducts per-
formance analysis. Fig. 3 presents the architecture of
sMonitor. The packet capturer collects live network
packets using pcap [22] (libpcap on Unix-like systems or
WinPcap on Windows). In the packet analyzer, sMonitor
parses the packet headers to extract HTTP transaction in-
formation, such as HTTP request sizes, and passes them
to the performance analyzer. Such information can be
obtained by parsing TCP/IP and SSL/TLS headers. The
performance analyzer derives client-perceived response
time of the monitored services.

4 Preliminary Evaluation
To evaluate the accuracy of sMonitor, we conducted two
experiments and compared the response time measured
by sMonitor with those measured on client side. In the
first experiment, we modified Surge [3] so that the first
requests for Web pages have long Accept headers. We
also modified Surge so that it records the pageview re-
sponse time. We then set up a Web server in Detroit, MI.
Surge was deployed in a node of PlanetLab in UCSD to
access the Web server. In the experiment, around 140
Web pages were retrieved from the server in 10 minutes.

(a) PlanetLab evaluation.

(b) Evaluation with real services.

Figure 4: Accuracy evaluation of sMonitor.

sMonitor was deployed on the Web server to capture the
network traffic and measure the response time.

Fig. 4(a) shows the comparison between the client-
side measurement and the sMonitor measurement. From
this figure we can clearly see that these two measure-
ments have strong linear relationship since the sMonitor
measured response times are very close to those recorded
by Surge directly. On the other hand, when the response
time is smaller than 1 second, we can see that the mea-
surement difference is relatively large. This is mainly
caused by the variance in the estimated RTT. A numeri-
cal analysis shows that the average response times mea-
sured by Surge and sMonitor are 1.00 and 0.95 seconds,
respectively. The difference is 5%.

In the second experiment, we used IE to access 44
Web pages in several real Web services, including sev-
eral banks’ Web sites. We also recorded the correspond-
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ing response time manually. The sMonitor was placed
on the client to measure the response time.

The results are plotted in Fig. 4(b). Comparing with
Fig. 4(a) we can see that the measured response times are
very accurate even when the response times are smaller
than 1 second. This is because the client-side placement
of sMonitor removes the variance in RTT estimations.
From this figure we can also see several falsely identi-
fied Web pages. For example, when the client-perceived
response time is 3.5 seconds, sMonitor measures the re-
sponse time as 0.18 seconds since it incorrectly delim-
its the beginning and ending of the Web page. Sim-
ilarly, when the client-perceived response time is 0.15
seconds, sMonitor gives the response time as 2.27 sec-
onds. However, from the figure we can see that in most
cases the Web pages are correctly delimited. The average
response times recorded manually and those by sMonitor
are 1.02 and 0.99 seconds, respectively. The difference is
3%. Therefore, from these two experiments we conclude
that sMonitor is very accurate in measuring the client-
perceived pageview response time.

5 Conclusions
In this paper we presented sMonitor to monitor end-to-
end performance of HTTPS services. We designed a
size-based analysis method on HTTP requests to char-
acterize the client access behaviors. Based on the char-
acteristics, we designed and implemented a prototype
of sMonitor. We investigated its accuracy in measuring
client-perceived response time using HTTPS and HTTP
services and found that the difference was less than 5%.

We note that the accuracy evaluation is preliminary.
The environments of real Web services are very compli-
cated. In the future, we plan to conduct comprehensive
evaluation of our approach using live Web services. The
size-based analysis method may also be improved. For
example, we used simple heuristic methods to address
the issues of parallel downloading and HTTP pipelining.
In the future, we will work on systematic solutions for
these issues.
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