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Abstract
We investigate the origin and components of net-

work server latency under various loads and find that
filesystem-related kernel queues exhibit head-of-line
blocking, which leads to bursty behavior in event de-
livery and process scheduling. In turn, these problems
degrade the existing fairness and scheduling policies in
the operating system, causing requests that could have
been served in memory, with low latency, to unneces-
sarily wait on disk-bound requests. While this batching
behavior only mildly affects throughput, it severely de-
grades latency. This problem manifests itself in fairness
and service quality degradation, a phenomenon we call
service inversion.

We show a portable solution that avoids these prob-
lems without kernel or filesystem modifications, We
modify two different Web servers to use this approach,
and demonstrate a qualitatively different change in their
latency profiles, generating more than an order of magni-
tude reduction in latency. The resulting systems are able
to serve most requests without being tied to disk perfor-
mance, and they scale better with improvements in pro-
cessor speed. These results are not dependent on server
software architecture, and can be profitably applied to
experimental and production servers.

1 Introduction

Much of the performance-related research in network
servers has focused on improving throughput, with less
attention paid to latency [6, 13]. In an environment
with large numbers of users accessing the Web over slow
links, the focus on throughput was understandable, since
perceived latency was dominated by wide area network
(WAN) delays. Additionally, early servers were often
unable to handle high request rates, so throughput re-
search directly affected service availability. The devel-
opment of popular throughput-centric benchmarks, such
as SPECWeb96 [19] and WebStone [12], also gave de-
velopers extra incentive to improve throughput.

Several trends are reducing the non-server latencies,
thereby increasing the relative contribution of server-
induced latency. Improvements in server-side network

connectivity reduce server-side network delays, while
growing broadband usage reduces client-side network
delays. Content distribution networks, which replicate
content geographically, reduce the distance between the
client and the desired data, reducing round-trip latency.
With latencies between most major cities in the main-
land US on the order of tens of milliseconds, server in-
duced latency could be a significant portion of end-user
perceived latency. Some recent work addresses the issue
of measuring end-user latency [3, 15], with optimization
approaches mostly focusing on scheduling [5, 9, 20, 21].

However, comparatively little is understood about
trends in network server latencies, or how system com-
ponents affect them. Current research generally assumes
that server latency is largely caused by queuing delays,
that it is inherent to the system, and that scheduling tech-
niques are the preferred solution to address them. Un-
fortunately, these assumptions are not explicitly tested,
complicating attempts to systematically address issues
of latency. Based on these observations, our goal is
to understand the root causes of network server latency
and address them, so that server latency can be im-
proved. A better understanding of latency’s origins can
also help other research, such as improving Quality-of-
Service (QoS) or scheduling policies.

By instrumenting the kernel, we find that Web servers
can incur latency blocked in filesystem-related system
calls, even when the needed data is in physical memory.
As a result, requests that could have been served from
main memory are forced to wait unnecessarily for disk-
bound requests. This batching behavior may have little
impact on throughput, it can significantly affect latency.
It causes head-of-line blocking in the OS and manifests
itself as other problems, such as a degradation of the ker-
nel’s service policies that are designed to ensure fairness.
By examining individual request latencies, we find that
this blocking reduces the fairness of response orders, a
phenomenon we call service inversion, where short re-
quests are often served with much higher latencies than
much larger requests. We also find that this phenomenon
increases with load, and that it is responsible for most of
the growth in server latency under load.



By addressing the blocking issues both in the applica-
tion and the kernel, we improve response time by more
than an order of magnitude, and demonstrate qualita-
tively different change in the latency profiles. The re-
sulting servers also exhibit much lower service inversion
and better fairness. These latency profiles in our result-
ing servers generally scale with processor speed, where
cached requests are no longer bound by disk-related is-
sues. In comparison, experiments using the original
servers only show that server throughput improves with
increases in processor speed, but not server latency. We
believe that our solution is more portable than redesign-
ing kernel locking, and that our findings also apply to
Web proxies, where more disk activity is required and
the working sets generally exceed physical memory.

The rest of the paper is organized as follow: In Sec-
tion 2, we present the servers used throughout this paper,
test environment, workloads, and methodology. In Sec-
tion 3 we identify the latency problems and explain their
causes. We introduce a new metric to quantify the effects
in Section 4. In Section 5, we discuss how we address
these problems, describe the resulting servers, present
the experimental results on the new servers, and exam-
ine latency scalability with processor speeds. We discuss
related work in Section 6 and conclude in Section 7.

2 Background

In this section we provide some background on our previ-
ous work, and describe the network servers, experimen-
tal setup, workloads and methodology since we begin our
analysis with experimental measurements of the servers.
Our earlier work on performance debugging tools [17]
examined blocking in servers, but did not specifically try
to understand the origins of latency, our main contribu-
tion in this work.

2.1 Server Software

To test the common scenario as well as a more ag-
gressive case, we use two different servers with differ-
ent software architectures and design goals. To repre-
sent widely-deployed general-purpose servers, we use
the multi-process Apache server [1], version 1.3.27. To
test high-performance servers, we use the event-driven
Flash Web Server [13], a research system with aggressive
optimizations. Where appropriate, we test two versions
of Flash – one using the standard select() system
call for event delivery, as well as one that uses the more
scalable kevent() event-delivery mechanism coupled
with the zero-copy sendfile() system call.

The Apache server utilizes blocking system calls and
relies on the operating system’s scheduling policy to pro-
vide parallelism, while Flash uses event delivery mecha-
nism to multiplex all client connections. Flash consists of

Processor P-II P-III P4 Xeon
Speed (MHz) 300 933 3000
Bcopy bandwidth (MB/s) 93 265 624
Read bandwidth (MB/s) 213 555 1972
Memory latency (ns) 245 101 116

Table 1: Server hardware information – hardware char-
acteristics of three generations of the Intel Pentium pro-
cessor, with some values measured by lmbench [11]

a single main process using non-blocking sockets, and a
small set of helper processes performing disk-related op-
erations. To increase performance, it aggressively caches
open files, memory-mapped data, and application-level
metadata. In contrast, Apache dedicates one process per
connection, and performs very little caching in order to
reduce resource consumption.

In our experiments, both servers are configured for
maximum performance. In Flash, the file cache size is set
to 80% of the physical memory, with remaining param-
eters automatically adjusted. We also aggressively con-
figure Apache – periodic process shutdown is disabled,
reverse lookups are disabled, the maximum number of
processes is raised to 2048, and access logging is dis-
abled in both servers.

2.2 Experimental Setup

Our main test platform is a uniprocessor 3.06GHz
Pentium-4 with 1GB physical memory, one 5600 RPM
Maxtor IDE disk, and a single Netgear GA621 gigabit
Ethernet network adaptor. We use six 1.3 GHz AMD
Duron machines as clients, with 256 MB of memory per
machine. The network is a Netgear FS518 Gigabit Ether-
net switch. All machines are configured to use the default
(1500 byte) MTU. We use the FreeBSD 4.6 operating
system, with all tunable parameters set for high perfor-
mance – 128K max sockets, 64K file descriptors per pro-
cess, 64KB socket buffers, 80K mbufs, 40K mbuf clus-
ters, and 16K inode cache entries. We also investigate
latency scalability using three hardware platforms which
span three processor generations and an order of magni-
tude increase in raw clock speed. To equalize as many
factors as possible, all machines use the same disk and
network interface. The details of our server machines
are shown in Table 1, with measured values provided by
lmbench [11].

2.3 Workloads

In order to use a widely-understood workload while still
maintaining tractability in the analysis, we focus on a
static content workload modeled on the SPECWeb96 and
SPECWeb99 [19] benchmarks. These workloads are
modeled after the access patterns of multiple Web sites,



Data Set Top Top Top Top
Size 50 % 90 % 95 % 99 %
1024 2.1 39.5 64.6 138.3
2048 3.0 72.9 123.6 262.8
3072 4.4 101.8 181.2 385.7
4096 4.9 131.8 235.0 505.0

Table 2: SPECWeb’s popularity distributions. All sizes
shown in MB. Sizes do not scale linearly with the to-
tal data set size because directories are weighted using a
Zipf popularity distribution

with file sizes ranging from 100 bytes to 900 KB, and
are the de facto standards in industry, with more than 200
published results. File popularity is explicitly modeled –
half of all accesses are for files in the 1KB-9KB range,
with 35% in the 100-900 byte range, 14% in the 10KB-
90KB range, and 1% in the 100KB-900KB range, yield-
ing an average dynamic response size of roughly 14 KB.
Each directory in the system contains 36 files (roughly
5 MB total), and the directories are chosen using a Zipf
distribution with an alpha value of 1. The strong bias to-
ward small files leads to the result that the most popular
files consume very little aggregate space. Table 2 illus-
trates this heavy-tail feature well – the most popular 99%
of the requests occupy at most 14% of the size of data set.

SPECWeb normally self-scales, increasing both data
set size and number of simultaneous connections with the
target throughput. However, this approach complicates
comparisons between different servers, so we use fixed
values for both parameters. To facilitate comparisons
with previous work such as Haboob [21] and Knot [20],
we use their parameters of a 3GB data set and 1024 si-
multaneous connections. With this data set size, most
requests can be served from memory while a small por-
tion will cause disk access. We also adopt the persis-
tent connection model from these tests, with clients is-
suing 5 requests per connection before closing it. With
these parameters, we maintain per-client throughput lev-
els comparable to SPECWeb99’s quality-of-service re-
quirements.

2.4 Measurement Methodology

To understand how load affects response time, we mea-
sure latencies at various requests rates. Each server’s
maximum capacity is determined by having all clients
issue requests in an infinite-demand (saturation) model,
which is defined as load level of 1, and then relative rates
are reported as load fractions relative to the infinite de-
mand capacity of each server. This process simplifies
comparison across servers, though it may bias toward
servers with low capacity. Response time is measured by
recording the wall-clock time between the client starting
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Figure 1: CDF of number of ready events (the return val-
ues from select()) in Flash

the HTTP request and receiving the last byte of the re-
sponse. We normally report mean response time, but we
note that it can hide the details of the latency profiles,
especially under workloads with widely-varying request
sizes. So, in addition to mean response time, we also
present the 5th, 50th (median) and 95th percentiles of
the latency distribution. Where appropriate, we also pro-
vide the cumulative distribution function (CDF) of the
client-perceived latencies.

3 Blocking in Web Servers

In this section we investigate the origins of the high la-
tency we saw on the earlier tests. By instrumenting the
kernel, we trace much of the root cause to blocking in
filesystem-related system calls. This blocking affects the
queuing model for the services, causing a policy degra-
dation when head-of-line blocking occurs. We present
evidence that this behavior is occurring in both Flash and
Apache, although via different mechanisms.

3.1 Observing Blocking in Flash

Using our workloads, we find that the main Flash process
is blocking inside the kernel on operations other than the
select() or kevent() and the system shows idle
CPU time. While CPU idle time is not surprising for a
workload that accesses disk, the main process in Flash
should never block – all the disk activity should be chan-
neled to the helpers.

Examining the number of ready file descriptors re-
turned per invocation of select() or kevent() pro-
vides more evidence of blocking. These calls form the
main loop of an event-driven server, and are invoked as
many times as needed as long as the system is active.
Event handlers take corresponding actions based on the
returned file descriptor value and action indicator. The
number of ready descriptors returned by the select()
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Figure 2: Scheduler burstiness (via the instantaneous run
queue lengths) in Apache for 256 and 1024 server pro-
cesses

or kevent() call reflects the queue length which will
be processed by event handlers. The CDF of the number
of ready descriptors is shown in Figure 1, and indicates
that these calls typically return a large number of ready
events per call. For select(), the median number of
ready descriptors is 12, the mean is 61 and the maximum
length is more than 600. More than 25% of the invoca-
tions return over 100 ready descriptors. The distribution
for kevent() is similar.

In this workload, the CPU should never be idle – even
if the amount of work available decreases, the main loop
should call select() or kevent() more often, de-
creasing the number of ready descriptors per call. Only
when one ready descriptor is returned per call should the
CPU exhibit any idle time. However, given the idle time
and the observed blocking, we can see that the blocking
is causing both the CPU idle time and the batching. Even
though descriptors are ready for servicing and idle CPU
exists, the blocking system calls are artificially limiting
performance and increasing latency.

3.2 Inferring Blocking in Apache

Directly observing a similar problem in Apache is more
difficult because any of its processes may block on disk
activity, and its multiple-process design exploits the fact
that the OS will schedule another process when the run-
ning process blocks. While conventional wisdom holds
that such blocking is necessary and affects only the re-
quest being handled, excess blocking may hinder paral-
lelism and cause high latency.

Since Apache does not have easily-testable invariants
regarding blocking such as Flash does, we use another
mechanism to infer it. We can use the observation that
blocking in Flash increases the burstiness of system ac-
tivity to find a similar behavior in Apache. In particu-
lar, we note that if resource contention occurs in Apache,

Read
Request

Find
File

Read File
Send DataStart EndGet

Conn

Figure 3: HTTP request processing steps

it would block other processes requesting the same re-
source, and the release of a resource would involve sev-
eral processes becoming runnable at the same time. We
expect that as more processes are involved, burstiness in-
creases as does run queue variability.

We instrument the OS scheduler to report the number
of runnable Apache processes, and test in two config-
urations. We use 256 and 1024 maximum server pro-
cesses, an infinite-demand workload, and 1024 clients.
Both configurations show roughly the same throughput,
due to the infinite-demand model and LAN clients. In
Figure 2, we show what percentage of the Apache pro-
cesses are runnable at any given time.

In both cases, the distribution is very bimodal – most
of the time, either no Apache processes are runnable or
most of them are. The burstiness, when many processes
suddenly become runnable at once, is more evident in the
1024 process case – all processes are blocked roughly
one-third of the time, and over 80% of the processes are
in the runnable queue over 40% of the time. The 256 pro-
cess case is only slightly less bursty, with the run queue
generally containing 60-80% of the total processes. Note
that all processes being blocked does not imply the entire
system is idle – disk and interrupt-driven network activ-
ity is still being performed in the kernel’s “bottom-half.”

3.3 Causes of Blocking

Our earlier work on developing the DeBox tool [17]
identified the call sites in Flash where blocking occurred,
but did not investigate the mechanisms by which it oc-
curred. Among the problems, we identified that the
Flash server would sometimes block in the “find file”
step of the HTTP processing pipeline shown in Figure 3.
This step involves performing a series of open() and
stat() calls to traverse the URL’s components in the
filesystem. This blocking was unexpected because of
the way Flash opens files – it invokes a helper process
to perform the steps first, and then the helper notifies
the main process, which repeats the process. In this
case, the helper had presumably just finished this pro-
cess, so all of the necessary metadata should have been
memory-resident when the main process performed the
same actions. This blocking occurs even if the filesys-
tem is mounted asynchronous or read-only, ruling out
synchronous metadata writes.

Further investigation reveals that the metadata locking
problem is due to lock contention during disk access. In
particular, we find that one of the problems is lock con-
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Figure 4: Apache Latency Profile. The relative load of
1.0 equals 241 Mb/s
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Figure 5: Flash Latency Profile. The relative load of 1.0
equals 336 Mb/s

tention when the main process and the helper access a
shared file path. When this happens, the helper usually
is doing disk I/O but still holding the vnode name lock to
ensure the consistency of the corresponding entry. The
decision to make this lock exclusive instead of read-only
appears to be a design decision to simplify the associated
code – in most types of code, the probability of lock con-
tention would be low, so making this lock exclusive sim-
plifies the code. We further validate this theory by con-
firming that the blocking occurs even when access time
modifications are disabled and even when the filesystem
is mounted read-only.

The problem of metadata handling is not FreeBSD-
specific. We observe little lock contention in Linux but
have observed metadata cache misses commonly occur-
ring when the data set exceeds the physical memory size,
causing blocking in otherwise cached requests.

The degree of this problem is significant in FreeBSD
due to an interaction between a number of implementa-
tion choices. The choices and possible motivation for
each are as follows:

• Exclusive vnode locks – FreeBSD often uses exclu-
sive vnode locks, presumably to reduce complexity
and also to avoid possible deadlock scenarios re-
lated to lock promotion.

• Directory walk locks – When walking a directory
to find a file, the OS acquires the child directory’s
lock before releasing the parent’s lock.

• Locks during disk access – If getting the child’s
inode requires a disk access, the parent’s lock is
held during the disk access. Releasing locks and
re-acquiring them after the disk access causes extra
work, and is subject to problems if a higher-level
path component changes during the disk access.

These choice are independently reasonable, but their
combination leads to the unintended blocking. In partic-

ular, if multiple processes are trying to resolve similar
paths, and one blocks on an inode access, the others can
block waiting on an exclusive lock for the shared parent.
If more processes try to resolve the same path, they can
block higher in the file tree waiting on other readers to
release lower-level exclusive locks. A single inode read
can then cause many readers to become unblocked, lead-
ing to a burst of activity in the form of ready processes.

The metadata locking problem also explains what oc-
curs in Apache and why it has gone unnoticed for so
long. Since Apache does not cache open file descrip-
tors, every request processed must perform this same set
of steps. The design relies on the OS’s own metadata
caching to avoid these steps requiring excessive disk ac-
cess, but without any information about which accesses
should be cached, Apache developers can not determine
when blocking during an open() call is unexpected.

3.4 Response Time Effects

To measure server latency characteristics on disk-bound
workloads and show the impact of the underlying block-
ing problems, we run the servers with request rates of
20%, 40%, 60%, 80%, 90%, and 95% of their respec-
tive infinite-demand rates. The results, shown in Fig-
ures 4 and 5, show some interesting trends. While the
general shape of the mean response curves is not surpris-
ing, some important differences emerge when examining
the others. Apache’s median latency curve is much flat-
ter, but rises slightly at the 0.95 load level (95% of the
infinite-demand rate). The mean latency for Apache be-
comes noticeably worse at that level, with a value com-
parable to that of Flash, while Apache’s latency for the
95th percentile grows sharply.

Some insight into the latency degradation for these
servers can be gained by examining the spread of re-
quest latencies at the various load levels, shown in Fig-
ures 6 and 7. Both servers exhibit latency degradation as
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the server load approaches infinite demand, with the me-
dian value rising over one hundred times. Two features
which appear to be related to the server architecture and
blocking effects are immediately apparent – the relative
smoothness of the Flash curves, and the seemingly lower
degradation for Apache at or below load levels of 0.95.
By multiplexing all client connections through a single
process, the Flash server introduces some batching ef-
fects, particularly when blocking occurs. This batching
causes even the fastest responses to be delayed. As a re-
sult, Flash returns very few responses in less than 10ms
when the load exceeds 95%, whereas Apache still de-
livers over 60% of its responses within that time. We
believe that under low lock contention, Apache’s mul-
tiple processes allow in-memory requests to be serviced
very quickly without interference from other requests. At
higher loads, locking becomes more significant, and only
18% of requests can be served within 10ms.

However, this portion of the CDF does not explain
Apache’s worse mean response times, for which the ex-
planation can be seen in the tail of the CDFs. Though
Apache is generally better in producing quick responses
under load, latencies beyond the 95th percentile grow

sharply, and these values are responsible for Apache’s
worse mean response times. Given the slow speed of
disk access, these tails seem to be disk-related rather than
purely queuing effects. Given the high cost of disk access
versus memory speeds, these tails dominate the mean re-
sponse time calculations.

3.5 Response Time vs. Data Set Size

A deeper investigation of the effect of data set size
on server latency provides more insight into the block-
ing problems as well as a surprising result. Figures 8
shows mean and median latencies as functions of data set
size. The mean latency remains relatively flat for the in-
memory workload, but begins to grow when the data set
size exceeds the physical memory of the machine, 1GB.
This increase in mean latency is expected, since these
filesystem cache misses require disk access, and the disk
latency will raise the mean.

The increase in median latency is quite surprising for
this workload – the measured cache hit rate is more than
99%, suggesting that most requests should be comfort-
ably served out of the filesystem cache. The cache hit
rate is in line with what we showed in Table 2. These
tests confirm that the small amount of cache miss activ-
ity is interfering with accesses that should be cache hits.

This observation is problematic, because it implies
that, for non-trivial workloads, server latency is tied to
disk performance, even for cached requests. Without
server or operating system modification, latency scalabil-
ity is therefore tied to mechanical improvements, rather
than faster improvements in electronic components. The
expected latency behavior would have been precisely the
opposite – that as the number of disk accesses increased,
and the overall throughput decreased, the median latency
would actually decrease since fewer requests would be
contending for the CPU at any time. Queuing delays re-
lated to CPU scheduling would be mitigated, as would
any network contention effects.
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ished before processing on C even starts.

4 Service Inversion

The most significant effect of this blocking behavior is
unnecessary delays in serving queued requests. In par-
ticular, cached requests that could have been served in
memory and with low latency are forced to wait on disk-
bound requests, similar to the priority inversion problem
in scheduling. We term this phenomenon “service in-
version” since the resulting latencies would be inverted
compared to the ideal latencies. In this section, we study
this phenomenon and propose an approach to quantify
the service inversion value.

Since certain request processing steps operate inde-
pendently of the server process, any blocking that occurs
early in request processing can affect the system’s fair-
ness policies. Specifically, the networking code is split
in the kernel, with the sockets-related operations occur-
ring in the “top half”, which is invoked by the applica-
tion. The “bottom half” code is driven by interrupts, and
performs the actual sending of data. So, when an applica-
tion is blocked, any data that has already been sent to the
networking code can still operate in the kernel’s “bottom
half.” Likewise, since the disk helpers in Flash operate as
separate processes, they can continue to operate on their
current request even when the main process is blocked.

Head-of-line blocking in the literature is usually stud-
ied in the network scheduling context. To understand the
blocking scenario in the OS and how it causes service
inversion, consider the scenario in Figure 9, where three
requests arrive simultaneously, with the middle request
causing the process to block. Assume it is blocked by
an open() call, which takes place before the data reads
occurs (if needed) and before any data is sent to the net-
working code. If the first and third requests are cached,
they would normally be served at nearly the same time.
However, the first request may get sent to the networking
code, and the third request would then have to wait until
the process is unblocked. The net effect is that the third

series size range percentage
1 0.1 - 0.5 KB 25.06%
2 0.6 - 4 KB 28.05%
3 5 - 6 KB 23.55%
4 7 - 900KB 23.34%

Table 3: Workload categories for latency breakdowns.
Percentages shown are the dynamic request frequencies
for the given file sizes in the SPECWeb99 workload.

request suffers from head-of-line blocking. The system’s
fairness policies, particularly the scheduling of network
packets, are not given a chance to operate since the three
requests do not reach the networking code at the same
time.

If the requests before the blocked requests are larger
than the ones that follow, we label the resulting phe-
nomenon service inversion. The occurrence of this be-
havior is relatively simple to detect at the client – the
latencies for small requests would be higher than the la-
tencies for larger requests.

4.1 Identifying Service Inversion

To qualitatively understand the prevalence of service in-
version, we take the latency CDFs from Figures 6 and 7
and split them by decile. Since SPECWeb biases to-
ward small files and more than 95% of the requests could
fit into physical memory, ideal response times would be
roughly proportional to transfer sizes. By examining the
different response sizes within each decile, we can es-
timate the extent of reordering. To simplify the visual-
ization, we group the responses by sizes into four series
such that their dynamic frequencies are roughly equal.
The details of this categorization are shown in Table 3.

The graphs in Figures 10 and 11 show the composi-
tion of responses by decile for the two servers, with the
leftmost bar corresponding to the fastest 10% of the re-
sponses and the rightmost representing the slowest 10%.
These graphs are taken from the latency CDFs at a load
level of 0.95.

In a perfect scenario with no service inversion, the first
2.5 bars would consist solely of responses in Series 1,
followed by 2.5 bars from Series 2, etc. However, both
graphs show responses from the different series spread
across all deciles, suggesting both servers exhibit service
inversion. One surprising aspect of these plots is that the
Series 1 values are spread fairly evenly across all deciles,
indicating that even the smallest files are often taking as
long as some of the largest files.

Some inversion is to be expected from the characteris-
tics of the workload itself, since directories are weighted
according to a Zipf-1 distribution. With roughly 600 di-
rectories in our data set, the last directory receives 600



Figure 10: Apache CDF breakdown by decile at load
level 0.95

Figure 11: Flash CDF breakdown by decile at load level
0.95

times fewer requests than the first. So, even though files
100KB or greater account for only 1% of the requests
(35 times fewer than the smallest files), the directory
bias causes the largest files in the first directory to be
requested about 17 times as frequently as the smallest
files in the final directory. While the large files still re-
quire much more space, an LRU-style replacement in the
filesystem cache could cause these large files to be in
memory more often. In practice, this effect is relatively
minor, as we will show later in the paper.

4.2 Quantifying Service Inversion

While the latency breakdowns by decile qualitatively
show the system’s unfairness, a more quantitative eval-
uation of service inversion can be derived from the CDF.
We construct the formula based on the following obser-
vation: Given responses A, B, C, D, E with sizes A <
B < C < D < E. If the observed response times have
the same order as the response sizes, we say that no ser-
vice inversion has occurred, and the corresponding value
should be zero. On the contrary, if the response times are
in the reverse order of their sizes, then we say that the
server is completely inverted, and give it a value of 1.

The insight into calculating the inversion is as follows:
we want to determine how perturbed a measured order
is, compared with the order of the response sizes. Per-
turbation is the difference in position of a response in
the ordered list of response times versus its position in a
list ordered by size, where the per-response distances are
summed for the entire list. We then normalize this versus
the maximum perturbation possible. A particular service
inversion value is given by:

n∑

i=1

Distance(i)/bn2/2c (1)

where distance is absolute value of how far the re-
quest is from the ideal scenario, and bn2/2c is the to-

Relative load level
0.20 0.40 0.60 0.80 0.90 0.95

Apache 0.14 0.23 0.28 0.51 0.54 0.58
Flash 0.25 0.35 0.45 0.52 0.56 0.58

Table 4: Service inversion versus load level

tal distance of requests in the reverse order of their
sizes, which is the maximum perturbation possible. In
the above example, assume the observed latency order
is B, C, A, D, E. By comparing with the ideal order,
A, B, C, D, E, we see the distance of file B is 1, C
is 1, A is 2, and D, E are 0. The inversion value is
4/12 = 0.33. Since this measurement requires only the
response sizes and latencies, as long as the distribution
of sizes is the same, it can be used to compare two dif-
ferent servers or the same server at multiple load levels.
To handle the case of multiple requests with the same re-
sponse size, we calculate distance by comparing the N th

observed position with the N th ideal position for each
response of the same size.

By measuring service inversion as a function of load
level, we discover that this effect is a major contributor to
the latency increase under load. Table 4 shows the quan-
tified inversion values for both servers, and demonstrates
that while inversion is relatively small at low loads, it
exceeds half of the worst-case value as the load level in-
creases. The latencies at the higher load levels therefore
not only suffer from queuing delays, but also service in-
version delays from blocking. We will show in the next
section that the delays stemming from blocking and ser-
vice inversion are in fact the dominant source of delay.

5 The New Servers & Results

In this section we describe our solution and evaluate the
resulting systems. We analyze the effects on capacity,
latency, and service inversion, and demonstrate that our



Figure 12: Flashpache architecture

new servers overcome the latency and blocking problems
previously observed. In our earlier work on DeBox [17],
we modified the Flash Web server to avoid blocking. We
briefly describe those changes to provide the context for
our new results with Apache.

Since the blocking has multiple origins, we believe a
portable user-level process is preferable to invasive ker-
nel changes. Accordingly, we modify both servers to re-
duce blocking. Our new contribution in this respect is to
identify how Apache can be easily modified to take ad-
vantage of the same kinds of changes that helped Flash.
Additionally, we focus on latency and service quality
evaluation of the resulting servers, in order to understand
how the new techniques work.

Our earlier changes to Flash focus on detecting
and avoiding blocking, or moving blocking out of the
main server process. The open() and stat() calls
are moved entirely out of the main process, and the
helpers return file descriptors and metadata informa-
tion to the main process using the sendmsg() sys-
tem call. Thus, the main process can operate contin-
uously without blocking. Data copying is eliminated
by using sendfile() instead of writev(), and the
memory-mapping calls that were used in conjunction
with writev() are eliminated. Finally, some other
changes are made to sendfile() to reduce its mem-
ory usage and eliminate disk access. We term the result-
ing server New-Flash.

5.1 Flashpache

Due to the differences in software architecture, we can-
not directly employ the same techniques that we used
in New-Flash to improve Apache. However, given our
earlier measurements on Apache, we can deduce that
filesystem-related calls are likely to block, and with these
as candidates, we can leverage the lessons from Flash.
Since Apache does not cache file descriptors, each pro-
cess calls open() on every request, and this behavior
results in a much higher rate of these calls.

We modify Apache to offload the URL-to-file trans-
lation step, in which metadata-related system calls oc-
cur. This step is handled by a new “backend” process, to
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Figure 13: CDFs of # of ready events for Flash variants,
infinite-demand workload

which all of the Apache processes connect via persistent
Unix-domain sockets. The backend employs a Flash-like
architecture, with a main process and a small number of
helpers. The main process keeps a filename cache like
the one in the Flash server, and schedules helpers to per-
form cache miss operations. The backend is responsible
for finding the requested file, opening the file, and send-
ing the file descriptor and metadata information back to
the Apache processes. Upon receiving a valid open file
descriptor from the backend, the Apache process can re-
turn the associated data to the client. Since the backend
handles URL lookup for all Apache processes, it is possi-
ble to combine duplicated requests and even preload data
blocks into the filesystem cache before passing control
back to the Apache processes, thus reducing the number
of context switches and the chances of blocking.

We call this new server Flashpache, to reflect its hy-
brid architecture. The changes involved in this process
are relatively small and isolated – fewer than 100 lines
of code are modified in Apache, and half of this count is
code taken directly from New-Flash. The backend pro-
cess is similarly derived from parts of New-Flash, and
consists of roughly 200 lines of code changes.

This architecture, shown in Figure 12, eliminates un-
necessary blocking in two ways. First, in Flashpache,
most of the disk access is performed by a small num-
ber of helper processes controlled by the backend, re-
ducing the amount of locking contention. This observa-
tion is confirmed by the fact that less blocking occurs in
Flashpache than in Apache with the same workload. Sec-
ond, since the backend caches metadata information and
keeps files open, it effectively prevents metadata cache
entries from being evicted when memory pressure is an
issue. However, we do not observe the CPU reduction
from caching as the main source of the benefit – the in-
terprocess communication cost between the Apache pro-
cesses and the backend is almost equivalent to or even a
little higher than the original system calls.
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Figure 14: Scheduler burstiness in Flashpache for 256
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Figure 15: Response times for new servers with different
data set sizes and infinite-demand workload
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Figure 16: Latency profile of New-Flash (Flash profile
shown in Figure 5). Load level 1.0 equals 450 Mb/s
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Figure 17: Latency profile of Flashpache (Apache profile
shown in Figure 4). Load level of 1.0 equals 273 Mb/s

Latency (ms) Capacity
median mean 90% (Mb/s)

Flash 67.4 181.0 362.0 336.0
fd pass 11.5 50.0 71.2 395.0

no mmap 1.8 93.5 92.9 437.5
New-Flash 1.6 29.3 6.6 450.0

Apache 6.6 180.2 414.7 241.1
Flashpache 1.1 12.0 5.7 272.9

Table 5: Latencies & capacities for all servers

5.2 Latency Results

We analyze the latency of the new servers by repeating
our earlier experiments to understand latency and block-
ing. We begin by repeating the burstiness measurement,
which indicates that blocking-induced burstiness has also
been reduced or eliminated in both servers. In Figures 13
and 14, we see that in New-Flash, the mean number of
events per call has dropped from 61 to 1.6, and the me-
dian has dropped from 12 to 2. Likewise, Flashpache no
longer exhibits bimodal behavior at the scheduler level,
instead showing roughly 20% of all processes ready at

any given time. In both cases, the request batching and
associated idle periods are eliminated.

We evaluate step-by-step improvements to Flash with
the results shown in Table 5. Included are the figures for
the original Flash, as well as the intermediate steps of
file descriptor passing (fd pass) and removing memory-
mapped files (no mmap). Throughputs are measured
with infinite-demand and response times are measured
at 0.95 load level. We can see that the overall capacity
of Flash has increased by 34% for this workload, while
Apache’s capacity increases by 13%.

The more impressive result is the reduction in latency,
even when run at these higher throughputs. Flash sees
improvements of 40x median, 6x mean, and 54x in 90th

percentile latency. Eliminating metadata-induced block-
ing has improvements of 5.8x median, and 3.6x mean,
and eliminating blocking in sendfile() reduces a
factor of 3 in mean latency. Apache sees improvements
of 6x median, 15x mean, and 72x in 90th percentile la-
tency. The one seemingly odd result, an increase in mean
latency from fd-pass to no-mmap, is due to an increase
in blocking, since the removal of mmap() also results



Figure 18: CDF breakdown for New-Flash on 3.0 GB
data set, load level 0.95
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Figure 19: Service inversion of original and modified
servers

Figure 20: CDF breakdown for New-Flash on in-
memory workload, load level 0.95

Figure 21: CDF breakdown for Flashpache on 3.0 GB
data set, load level 0.95

in losing the mincore() function, which could pre-
cisely determine memory residency of pages. The New-
Flash server obtains this residency information via a flag
in sendfile(), which again eliminates blocking.

Not only do the new servers have lower latencies, but
they also show qualitatively different latency character-
istics. Figure 15 shows that median latency no longer
grows with data set size, despite the increase in mean la-
tencies. Mean latency still increases due to cache misses,
but the median request is a cache hit in all cases. Fig-
ures 16 and 17 show the latency CDFs for 5th percentile,
mean, median, and 95th percentile with varying load.
Though the mean latency and 95th percentile increase,
the 95th percentile shows less than a tripling versus its
minimum values, which is much less than the two orders
of magnitude observed originally. The other values are
very flat, indicating that most of the requests are served
with the same quality at different load levels. More im-
portantly, the 95th percentile CDF values are lower than
the mean latency, because the time spent on the largest
requests (the last 5%) is much higher than the time spent
on other requests, as expected from Table 2.

5.3 Service Inversion Improvements

In order to verify the unfairness of the new servers, we
further examine the latency breakdown by decile for the
0.95 relative load level and the service inversion at dif-
ferent load levels. Figure 18 shows the percentage of
each file series in each decile for New-Flash, and we ob-
serve some interesting changes compared to the original
server. The smallest files (series 1) dominate the first two
deciles, the largest files (series 4) dominate the last two
deciles, and the series 3 responses are clustered around
the fifth decile. This behavior is much closer to the ideal
than what we saw earlier. Some small responses still ap-
pear in the last column, but these may stem from files
with low popularity incurring cache misses. Also com-
plicating matters is that the absolute latency value is now
below 10ms for 98% of the requests, so the first nine
deciles are very compressed. This observation is verified
by calculating the service inversion value.

Figure 19 shows the change of the inversion value
with the load level. Compared to the old system, we re-
duce the inversion by over 40%, suggesting requests are
treated more fairly in the new system. The fact that the



Figure 22: In-memory workload (0.5 GB) latencies of
Apache and Flash across three processor generations

Figure 23: Disk-bound workload (3.0 GB) latencies of
Apache and Flash across three processor generations

Pentium II Pentium III Pentium 4
In-memory workload (0.5GB) capacity in Mb/s
Apache 107.3 248.4 437.6

Flash 210.3 466.0 787.0
Disk-bound workload (3.0GB) capacity in Mb/s

Apache 98.8 174.1 241.1
Flash 134.1 256.4 336.0

Flashpache 103.3 198.9 272.9
New-Flash 140.4 358.0 450.0

Table 6: Capacities of original and modified servers
across three processor generations and two workloads

inversion value still increases with the load is a matter for
further investigation. However, this may be a limitation
of our service inversion calculation itself.

By comparing service inversion for this workload with
that of a completely in-memory workload, we can see
how far we are from a nearly “ideal” scenario. In par-
ticular, we are still concerned whether filesystem cache
misses are responsible for the service inversion. Fig-
ure 20 shows the latency breakdown for a workload with
a 500MB data set. The difference between it and the
New-Flash breakdown are visible only after careful ex-
amination. The numerical value for the in-memory case
is 0.33, while the New-Flash result is 0.35, suggesting
that if any inversion is due to cache misses, its measured
effects are minimal. The Flashpache breakdown, shown
in Figure 21, is similar. The values for Flashpache and
its original counterpart are also shown in Figure 19, and
we can see that our modifications have almost halved the
inversion under high load.

5.4 Latency Scalability

To understand how latencies are affected by processor
speed, we use three generations of hardware with vari-
ous processor speed but sharing most of the other hard-

Figure 24: Disk-bound workload (3.0 GB) latencies of
New-Flash and Flashpache across three generations

ware components. Details about our server machines
are shown in Section 2. We begin our study by mea-
suring the infinite-demand capacity of the two original
servers while adjusting the data set size. The results,
shown in Table 6, indicate that in-memory capacity of
both Apache and Flash scales well with processor speed.
But once the data set size exceeds physical memory, per-
formance degrades. Even though the heavy-tailed 3GB
Web workload only requires reasonable amount of disk
activity, we observe the two faster processors have idle
CPU, suggesting performance is tied to disk performance
on this workload.

A more detailed examination of server latency is
shown in Figures 22 and 23. These two graphs represent
an in-memory workload and a disk-bound workload, re-
spectively, and show the mean latencies for both server
packages across all three processors. Measurements are
taken at various load levels, and show a remarkable con-
sistency – at the same relative load levels, both Apache
and Flash exhibit similar latencies, the in-memory laten-
cies are much lower than the disk-bound latencies, and
the latencies show only minor improvement with pro-



cessor speed. Figure 24 shows the scalability of our
new servers across processors – even with much lower
Pentium-II latencies, improvements in processor speed
now reduce latency on both servers. This result confirms
that once blocking is avoided, the servers can take more
advantage of improvements in hardware performance.

In summary, both new servers demonstrate lower ini-
tial latencies, slower latency growth, and better decrease
of latency with processor speed. These servers are no
longer dominated by disk access times, and should scale
with improvements in processors, memory, etc. The fact
that these changes eliminate over 80% of the latency an-
swers the question about latency origins – these latencies
were dominated by blocking, rather than request queu-
ing.

6 Related Work

Performance optimization of network servers has been
an important research area, with much work focused on
improving throughput. Some addressed coarse-grained
blocking – e.g. Flash [13] demonstrated how to avoid
some disk-related blocking using non-blocking system
calls. Much evaluation about disk I/O associated over-
heads has focused on Web proxies [10]. Some of the
most aggressive designs have used raw disk, eliminated
standard interfaces, and eliminated reliable metadata in
order to gain performance [18]. In comparison, we have
shown that no kernel or filesystem changes are necessary
to achieve much better latency, and that these techniques
can be retrofitted to legacy servers with low cost.

More recently, much attention is paid to latency mea-
surement and improvement. Rajamony & Elnozahy [15]
measure the client-perceived response time by instru-
menting the documents being measured. Bent and
Voelker explore similar measurements, but focus on how
optimization techniques affect download times [3]. Im-
provement techniques have been largely limited to con-
nection scheduling, with most of the attention focused
on the SRPT policy [4, 5]. Our work examines the root
cause of the blocking, and our solutions subsume any
need for application-level connection scheduling. Our
new servers use the existing scheduling within the op-
erating system, and the results suggest that eliminating
the obstacles yields automatic improvement with exist-
ing service and fairness policies.

Synchronization-related locking has been a major
concern in parallel programming research. Rajwar et
al. [16] proposed a transactional lock-free support for
multi-threaded systems. The reasons of locking in our
study have a broader range and differ in application do-
main. While head-of-line blocking is a well-known phe-
nomenon in the network scheduling context, e.g. Puente
et al. [14] and Jurczyk et al. [8] studied various blocking

issues in network environment, we demonstrate that this
phenomenon also exists in network server applications
and has severe effects on user-perceived latency.

This paper also takes a different approach to fairness
than other work, and the difference may be important in
some contexts. The SEDA approach [21] tried to sched-
ule requests based on size, but no measurements are pre-
sented on the effectiveness of the scheduling itself. In-
terestingly, despite the four orders of magnitude vari-
ation in SPECWeb’s file sizes, SEDA handles 80% of
requests in 200-1000ms, with a median of over 500ms,
over 10 times slower than Flash or Apache. This uni-
formly slow response time gives it a high score on the
Jain fairness index [7] when fairness is evaluated on a
per-client basis. On a per-request level, however, we be-
lieve that shorter responses should be served faster, and
believe that our service inversion metric is more useful.
With coast-to-coast latencies in the continental US on
the order of 100ms, and with news sites (Yahoo, CNN,
etc.) routinely having over 100 embedded objects per
page, SEDA’s server-induced latency would be a notice-
able problem for real Web use.

At the other extreme, Bansal & Harchol-Balter [2] in-
vestigate the unfairness of the SRPT scheduling policy
under heavy-tailed workloads and draw the conclusion
that the unfairness of their approach is barely notice-
able. By addressing the latency issues directly rather
than scheduling around them, our approach removes the
need for the application to explicitly schedule connec-
tions. Network scheduling can still be used, particularly
for traffic shaping, prioritization, etc.

Finally, we should mention that the FreeBSD SMPng
effort, which is released as FreeBSD 5, has completely
rewritten much of the locking in FreeBSD, using finer-
granularity locks to improve performance on multipro-
cessor machines. Additionally, some of the filesystem
locking appears to have introduced read-shared locks in
addition to exclusive locks. These locks could reduce the
chance of lock convoys in pathname resolution, eliminat-
ing some of the blocking we observed. While we would
like to evaluate the behavior of this system, we have been
unable to operate it under sufficient load without kernel
panics or significant performance degradation.

7 Conclusion

In this paper, we have examined server latency and traced
the root of much of the problem to head-of-line blocking
within filesystem-related kernel queues. This behavior
may have little impact on throughput, but severely de-
grades latency and service quality. By examining indi-
vidual request latencies, we find that this blocking gives
rise to a phenomenon we call service inversion, where
requests are served unfairly.



By addressing the blocking issues both with the
Apache and the Flash server, we improve latency by
more than an order of magnitude, and demonstrate a
qualitatively different change in the latency profiles. We
performed these changes in user space, in a portable
manner, without requiring any modification to the ker-
nel or filesystem layout. Without much effort or ex-
tensive modification, we were able to take advantage of
these changes in a widely-deployed legacy server. The
resulting servers also exhibit lower burstiness, and more
fair request handling. Their latency values scale better
with improvements in processor speed than their origi-
nal counterparts, making them better candidates for fu-
ture improvements. Finally, our results suggest that most
server-induced latency is tied to blocking effects, rather
than queuing.

In addition to the practical benefits of this research, the
delivery of servers with much better latency properties,
this work also improves on our fundamental understand-
ing of the interactions between the filesystem, applica-
tion, and workloads. By addressing the root causes of
latency increase in network servers, we believe that we
can enhance research in other areas, such as improving
quality of service or scheduler policies.
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