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Abstract— Properly optimizing the setting of configura-
tion parameters can greatly improve performance, espe-
cially in the presence of changing workloads. This paper
explores approaches to online optimization of the Apache
web server, focusing on the MaxClients parameter
(which controls the maximum number of workers). Using
both empirical and analytic techniques, we show that Max-
Clients has a concave upward effect on response time
and hence hill climbing techniques can be used to find the
optimal value of MaxClients. The underlying intuition
is that MaxClients controls the trade-off between delays
in the TCP Accept Queue and delays due to contention for
operating system resources. We investigate two optimizers
that employ hill climbing—one based on Newton’s Method
and the second based on fuzzy control. A third technique
is a heuristic that exploits relationships between bottleneck
utilizations and response time minimization. In all cases,
online optimization reduces response times by a factor
of 10 or more compared to using a static, default value.
The trade-offs between the online schemes are as follows.
Newton’s method is well known but does not produce
consistent results for highly variable data such as response
times. Fuzzy control is more robust, but converges slowly.
The heuristic works well in our prototype system, but it
may be difficult to generalize because it requires knowledge
of bottleneck resources and an ability to measure their
utilizations.

Index Terms— web server; Apache; response time; op-
timization; queueing; fuzzy control

I. INTRODUCTION

The widespread use of eCommerce systems has fo-
cused attention on quality of service, especially response
time. One challenge here is adapting systems to changing
workloads by online optimization of configurations. This
paper explores approaches to such online optimization in
the Apache web server with an emphasis on techniques
that are minimally invasive and are applicable to a wide
range of parameters and systems.

TABLE I

RESPONSE TIME (SEC.) FOR DIFFERENT WORKLOADS

Workload
MaxClients Dynamic Dynamic+Static

150 50
650 1 15
900 30 2

How much can be achieved by optimizing the set-
tings of configuration parameters? Consider the Apache
MaxClients parameter, which governs the number
of requests being processed in parallel by the web
server. In Table I, we show average response times mea-
sured at different MaxClients settings under different
workloads [1]. The testbed used to collect this data is
discussed later in this paper. We see clearly that the
best MaxClients value to use depends on the type
of pages being accessed at the site. Since real-world
workloads can change rapidly, there is the potential
of obtaining order-of-magnitude improvements by doing
online optimization of such key parameters.

This paper describes a generic approach to the online
optimization of response times for the widely used
Apache web server[2]. One area of related work is
differentiated service in which the intent is to achieve
response time objectives for different classes of work. In
[3], [4], the authors use proportional-integral controllers
to achieve response time regulation and differentiation.
In [5], multiple-input multiple-output controller design
is used to regulate server CPU and memory utilization
within specified QoS value. [6] describes an approach
that combines queueing theory and control theory to
regulate response times for response time regulation.
Unfortunately, the regulation problems addressed by
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Fig. 1. General architecture for online optimization. The target
system is controlled by configuration parameters that are dynamically
changed by the optimizer in response to changing workloads.

these approaches is quite different from optimization. In
essence, regulation (e.g., ensuring target response times
for gold and silver service) determines how to “cut
the pie” whereas optimization (e.g., minimize response
time across service classes) addresses how to “make
the pie bigger” by adjusting resource allocations to the
workload. Some work has been done in the area of online
optimization of resources in computing systems. [7]
describes an Apache implementation that manages web
server resources based on maximizing revenue (e.g., re-
sponding within 8 seconds so that users are not discour-
aged). While the results are encouraging, the approach
requires substantial modifications to the Apache resource
management schemes. [8] considers maximizing SLA
profits for web server farms, but this is done in a way
that depends on having an accurate analytic model of the
system being controlled. More recently, [1] proposes a
fuzzy control approach to minimize response time using
a combination of feedback control system and qualitative
insights into the effect of tuning parameters on QoS.
Unfortunately, the convergence times are long.

Figure 1 displays the architecture we propose. The
target system (e.g., Apache) exposes one or more config-
uration parameters (e.g., MaxClients) that are dynam-
ically modified by the optimizer to optimize measured
variables (e.g., response times). In the specific case of
Apache and MaxClients, we proceed as follows. First,
we show that MaxClients has a concave upward effect
on response time and hence hill climbing techniques can
be used to find the optimal value of MaxClients. We
investigate two optimizers that employ hill climbing—
one based on Newton’s Method and the second based
on fuzzy control. A third technique is a heuristic that
exploits the observed relationships between bottleneck
utilizations and response time minimization. Newton’s
method does better than the default Apache scheme but
yields inconsistent results because response times are
variable. Fuzzy control is more robust, but converges

slowly. The heuristic works well in our prototype system,
but it may be difficult to generalize because it requires
knowledge of bottleneck resources and an ability to
measure their utilizations.

The remainder of the paper is organized as follows.
Section 2 discusses the Apache architecture and response
time measurements. Section 3 describes a queueing
system that explains how MaxClients affects re-
sponse times. Section 4 presents and evaluates several
approaches to online optimization. Our conclusions are
contained in Section 5.

II. APACHE ARCHITECTURE AND MEASUREMENTS

Apache [2] is typically structured as a pool of workers
that handle HTTP requests. Our studies use release
1.3.19 in which workers are processes, although we
believe that the central ideas are broadly applicable.

The flow of requests in Apache is displayed in Fig-
ure 2. Requests enter the TCP Accept Queue where they
wait for a worker. A worker processes a single request
to completion before accepting a new request. The
number of worker processes is limited by the parameter
MaxClients.
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Fig. 2. Apache architecture and session flow.

Many of the insights in this paper are based on
experimental results. Throughout, these experiments use
the Apache 1.3.19 server software running on a Pentium
III 600 MHz server with 256 MB RAM running the
Linux 2.4.7 kernel. We use synthetic workload gener-
ators running on a set of similar machines, connected
via a 100Mbps LAN. The distribution of files sizes
is the same as Webstone 2.5 [9]. We employ both a
static and a dynamic workload. Requests for dynamic
pages are processed by the Webstone 2.5 CGI script. A
detailed description of the Apache testbed and workload
generator can be found in [5].
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Fig. 3. Elements of the WAGON workload model. Two sessions are
shown, as depicted by the solid and dashed lines. The longer arrows
indicate the HTML text of a web page, and the short arrows indicate
requests for objects in the web page.

Further details are needed to describe the manner
in which requests are generated. Our workload model
is based on WAGON [10], which has been shown to
apply to a wide range of web requests. This model
structures the workload into multiple sessions (which
represent a series of user interactions). As illustrated in
Figure 3, a session consists of multiple page requests.
A page contains a number of embedded objects, which
is parameterized by the burst length. Thus, the workload
parameters are: session arrival rate, session length (num-
ber of clicks or web page requests in a session), burst
length (number of objects in a burst), and think time
(time between successive clicks). Table II summarizes
the parameters used in this paper, which are based on
data reported in [10] for a public web site. We use
the httperf program [11] to generate HTTP/1.1 requests
based on a synthetic web log that is generated according
to the WAGON model.

TABLE II

WORKLOAD PARAMETERS
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The metric we choose to minimize is the server-
side response time. Although client side response time
measure is the most user-relevant metric, this information
is generally not available at the web server in real-time.
Moreover, even if the client side response time can be
approximated using server side measurements and a TCP
model [12], only the server side response time can be
controlled by the server. Hence, we consider the server
side response time, in particular, per page response time
(RT) in this paper. Since delivering a page may involve
multiple requests, this quantity needs to be estimated.

We use the following equation:
687:9<;>=>7@?@ACBEDGFH7

(1)

The accept queue time (
;>=>7

) is collected from the
Linux kernel where we have added instrumentation for
measuring the average delay for connections that enter
the accept queue within a time window. The service
time (

FH7
) is measured by instrumenting the first and

last steps in the Apache request processing loop (i.e., at
the points where the request enters and the reply is sent).
The average number of embedded requests per page is
also known as the burst length and denoted as

ACB
. It can

be calculated as the number of requests serviced in all the
worker processes divided by the number of connections
serviced in the TCP accept queue. Due to persistent
connections in HTTP/1.1, an established TCP connection
remains open between consecutive HTTP requests of a
burst so that only the first request needs to set up the
TCP connection and enter the TCP accept queue. This
gives us the above equation.
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Fig. 4. Effect of MaxClients on response times.

Figure 4 displays the results of experiments in which
Apache is configured with different settings of Max-
Clients. The circles indicate mean response times,
and the vertical lines specify the standard deviations.
Note that the circles line is a pronounced concave upward
shape to this curve. Further, the curve indicates that
MaxClients has in excess of a ten-fold effect on
response times for this workload.

This concave shape can be explained in terms of
the Apache architecture. If MaxClients is too small,
there is a long delay due to waits in the TCP Accept
Queue. Indeed, it is possible that the queue overflows,
which causes requests to be rejected. On the other hand,
if MaxClients is too large, resources become over-
utilized, which degrades performance as well. In extreme



cases, there may be an internal server error if the limit
on the number of processes is exceeded. The combined
effect of these factors is that response time is a concave
upward function of MaxClients. In essence, worker
processes can be viewed as logical resources that are
needed to process a request. However, to do so, physical
resources are required, such as CPU, memory, and
input/output bandwidth.

Our interest is in online optimization and thus we
must change MaxClients dynamically. To this end, a
mechanism similar to graceful restart was implemented
to allow for a way to change MaxClients without
shutting down Apache. Doing so required having an
agent on the Apache system. This agent also provides
instrumentation such as CPU utilizations, memory uti-
lizations, and server side response times.

While this paper focuses on MaxClients, we be-
lieve that the approach taken has broader application. For
example, we are currently investigating KeepAlive-
TimeOut, another Apache parameter that determines
the time that a session may remain idle if persistent
connections are used. Other systems have configuration
parameters similar to MaxClients, such as the number
of servlet threads and EJB threads in an application
server.

III. ANALYTIC MODEL

This section develops an analytic model for how
MaxClients affects response times in the Apache web
server. We have two objectives. First, we want to demon-
strate that the concave upward effect of MaxClients
on response times can be explained in terms of a simple
model. Second, we believe that this model provides a
general framework in which other similar studies can be
done.

We model interactions with Apache using an�����������	�
���
queueing system [13]. That is, interar-

rival times are exponentially distributed with a rate of�
, there are

�
servers (Apache workers), service times

are exponentially distributed with a rate of 
�� (i.e., the
service rate depends on the number of servers), the buffer
size is

�
, and there are

�
customers. The model is

evaluated using data from our Apache testbed.
Figure 5 depicts the

�����������	�
���
queueing system

as applied to Apache using the WAGON workload
model. User sessions are modeled as the

�
customers in

the queueing system, which is assumed to be constant.
Users remain idle (in “think time”) for an exponentially
distributed period with mean � � � . At the end of a think
time, a page request is generated and enters the queue.

Worker processes 
(m=MaxClients)

TCP Accept Queue (K)

User Sessions (N)

λ µ m

Fig. 5. Modeling Apache with an ����������������� queueing network
model.

(Note that a request represents a page, not a session.)
This queue represents the TCP Accept Queue. The queue
has a finite length of

�
. Requests wait until one of the

�
servers is available, where a server represents a worker
and

� 9
MaxClients. The time a request spends in

service is exponentially distributed with rate 
�� .
We calibrate the model parameters based on the

Apache architecture and the workload model.
� Request generation rate

�
: The reciprocal of

�
is the

user think time, which is the time between bursts
(clicks) within a user session. Thus, for our testbed,
we use the (reciprocal of) the mean of the think time
distribution of the WAGON model.

� Number of servers
�

: This is the number of worker
processes in Apache, i.e., MaxClients.

� Service rate 
�� : The service rate for a page is
computed as the reciprocal of the inter-page request
time. That is,


�� 9 �A �"!$#&%�B('&)+*,%.-'D0FH7 � ?/�0'�'�1 ;3254768'�7�47�9'�:��"%
(2)

where
FH7 � is the service time for an HTTP re-

quest processed by Apache. The subscript indicates
that service time depends on the value of Max-
Clients. Once all objects in a page have been
processed, the worker waits for the minimum of
a think time and the KeepAliveTimeOut time.
We assume that the user think time distribution
generates values that are mostly larger than the
KeepAliveTimeOut value (default value is 15
seconds). We obtain burst length from the workload
model, service time is computed as an average
based on our instrumentation of the Apache request
processing loop.

� Buffer size
�

: This is the buffer size of the TCP
Accept queue. We can either get its value from
the Linux kernel, or assume it to be ; if there is
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Fig. 6. Comparison of measured and predicted response times.

almost no request lost. We assume
� 9 ; for the

simplicity of calculation, since in our experiments
no requests were found to be dropped.

� Number of customers
�

: The number of customers
in the system should approximate the number of
concurrent user sessions. This can be estimated
using Little’s Result.

� 9 F '�#�# 4 � ) 6�� %�' D0F ' #	# 4 � )�� � !�� %�4 � )
9 F '�#�# 4 � ) 6�� %�' D��9�
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?�7 - 47)	� 7�4 �9' D�� F '�#�# 4 � ) B('&)+*,%.-�
 �
���
These parameters can all be obtained from the
WAGON workload model.

Based on the
�����������	�
���

queueing formula in
[13] and the foregoing description of how to obtain
the model parameters, response time can be computed.
Figure 6 plots predicted response times using this model
and the measured values obtained from experiments
at different values of MaxClients. We see that the
model consistently overestimates the true response times,
sometimes by a large amount. Possible reasons for the
model’s inaccuracy include the distributional assump-
tions (e.g., exponential inter-arrivals and service times)
and the assumption that the number of sessions present
is constant.

Even though the model is inaccurate in an absolute
sense, it does track measured response times well. In
particular, we see that predicted response times are con-
cave upward in MaxClients. This gives us assurance
that Figure 4 is not an artifact of the measurement
environment. Further, it may be that the model can be
applied more broadly, such as to the configuration of

application servers (e.g., the maximum number of servlet
or enterprise Java Bean (EJB) threads).

Another potential application of the queueing model is
to aid in online optimization. This is possible since the
model tracks the measurement results reasonably well.
Unfortunately, we cannot use the model in this way, at
least not without additional online measurement data.
The problem is the manner in which model parameters
are obtained. Many depends on characteristics of the
workload that are not known a priori. Other model
parameters require new instrumentation, such as state-
dependent service time information to estimate service
rates.

IV. ONLINE OPTIMIZATION

This section describes ways to minimize response
times by dynamically adjusting MaxClients based
on the insight that response time is concave upward in
MaxClients. Several schemes are explored: Newton’s
Method, fuzzy control, and a heuristic. These techniques
are compared as to how well they minimize response
time and the speed of convergence to the steady state
value. The former is desirable in terms of improving
quality of service. The latter is important in order to
adapt to changing workloads.

All of the approaches considered involve feedback.
Thus, MaxClients is adjusted based on the observed
effect on response time or other metrics. An alternative
would be to employ a feed-forward scheme in which the
optimal value of MaxClients is computed based on
an analytic model. Feed-forward is appealing in that it
avoids problems with stability and speed of convergence.
However, such a scheme requires an analytic model that
(a) tracks the measured values of response time and (b)
has inputs that can be readily estimated. While the model
developed in Section 3 satisfies (a), it does not satisfy
(b). For example, the service rate 
�� depends on the
number of servers, i.e., 
 � 9����5� � , but we do not know
this function. Possibly, a model could be developed that
satisfies both (a) and (b). However, lacking such a model,
we focus on feedback approaches.

A. Newton’s Method

Figure 7 displays an architecture in which Newton’s
Method [14] is employed for online optimization of
Apache response times by dynamically adjusting Max-
Clients. Newton’s method, a widely used approach
to optimization, uses the gradient of the function to be
minimized (e.g., Figure 4) to estimate the value of Max-
Clients that minimizes response times. For example,
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Fig. 7. Architecture of online optimization of Apache using
Newton’s Method to dynamically adjust MaxClients based on
measurements of response times.

ApacheFuzzy

Response

MaxClients

RepliesRequests

Controller

Difference

TimeResponse
Time

Change in

Difference

Change in
MaxClients

Fig. 8. Architecture of online optimization of Apache using Fuzzy
Control to dynamically adjust MaxClients based on changes in
MaxClients and response times.

if � is response time and � is MaxClients, we might
use the approximation � 9 ��� � ��� � � � 
 ��� � � ?�� , where�
	��
���

are unknown constants estimated from the data
and � � is the value of MaxClients that minimizes
response time. Newton’s method is described by the
following equation

������� 9 ��� 
 ��� � ��� ��� ����� � � ��� ��� � (3)

where ��� is the value of � at discrete time
�

. Equation (3)
starts from an initial value ��� at

� 9��
. The gradient� ��� ����� is computed at ��� , and its negation indicates

the direction of steepest descent. The value
� � ��� ��� �

(the second partial derivative of
��� � � ) indicates the

update step size. The introduction of the second partial
derivative removes the local linear search, allowing a
potentially faster convergence. But this also makes the
algorithm more sensitive to measurement noise.

B. Fuzzy Control

Fuzzy control is another approach for online optimiza-
tion [1]. We explore this approach in the context of
the present study. Figure 8 displays an architecture in
which fuzzy control is employed for online optimization
of Apache response times by dynamically adjusting
MaxClients. The fuzzy controller uses changes in

MaxClients and response times to dynamically op-
timize MaxClients.

The actions of the fuzzy controller are guided by
a set of IF-THEN rules. For example, “IF change-
in-MaxClients is neglarge and change-in-response-
time is neglarge, THEN next-change-in-MaxClients is
neglarge.” The terms change-in-MaxClients and change-
in-response-time are linguistic variables; neglarge is a
linguistic value. Linguistic variables are a natural way
to handle uncertainties created by the stochastics present
in most computer systems. Linguistic variables exist
in one-to-one correspondence with numeric variables.
Fuzzy control systems provide a way to map between
numeric variables and linguistic variables (referred to as
fuzzification and de-fuzzification). More details on fuzzy
control can be found in [15].

Response time (y)

MaxClients (u)

Rule 4

Rule 1

Rule 2

Rule 3

Fig. 9. Illustration of fuzzy rules.

TABLE III

FUZZY RULES

Rule IF THEN
change in AND change in change in

MaxClients AND Response Time next MaxClients
1 neglarge AND neglarge neglarge
2 neglarge AND poslarge poslarge
3 poslarge AND neglarge poslarge
4 poslarge AND poslarge neglarge

The optimization problem we address can be easily
represented in fuzzy rules. The rules, which are listed
in Table III, are structured as follows. (They are also
illustrated in Figure 9 where the dashed arrow lines
indicate the IF premise parts and the solid arrow lines
indicate the THEN consequent parts.) The IF part deter-
mines the position on the response time curve relative
to the optimal MaxClients. For example, Rule 4
considers the case in which MaxClients is increased
and the result is a larger response time. This suggests
that we are to the right of the optimal MaxClients.
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Fig. 10. Apache measurements for a dynamic workload.

The THEN part indicates how MaxClients should
be changed—neglarge is a decrease, and poslarge is
an increase. Rule 1 and Rule 3 describe situations in
which MaxClients was last changed in the correct
direction in that the result is a decrease in response time.
Conversely, Rule 2 and Rule 4 handle “incorrect actions”,
where the previous action caused the response time to
increase. The magnitude of the change in MaxClients
determines the speed of convergence and the extent of
any oscillation at steady state. Clearly, if the curve is
steep, small changes in MaxClients are best. For a
more gradual slope, larger changes are better.

C. Saturation-Based Heuristic Optimization

This method is motivated by a desire to achieve fast
convergence while being robust to noise and the specifics
of the function being optimized.

Our heuristic is based on the following observation:
response time is minimized when MaxClients is in-
creased to the point where the CPU is 100% utilized.
This is apparent in the measurements of static and
dynamic workloads in Figure 10 and Figure 11. For
different MaxClients values the average accept queue
time and service time are measured, and the response
time is computed using Equation (1). The CPU and
memory utilizations are also measured for monitoring
system resource usage. In Figure 10, response time de-
creases as MaxClients is increased from 200 to 400,
at which point CPU utilization is approximately 100%.
In Figure 11, this saturation occurs when MaxClients
is approximately 800.

Our intuition as to why this works is as follows.
MaxClients determines a set of logical resources—
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Fig. 11. Apache measurements for a static workload.
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Fig. 12. Architecture of online optimization of Apache using a
saturation-based heuristic to dynamically adjust MaxClients based
on changes in bottleneck utilizations.

the Apache workers. These logical resources share the
same physical resources, such as CPU, memory, and
input/output bandwidth. By increasing MaxClients
up to the point at which a physical resource saturates,
we allow more of the logical resources to operate in
parallel. However, once a physical resource saturates,
further increases in the logical resource do not increase
parallelism. Instead, such increases add overhead (e.g.,
due to process switches).

The foregoing observations motivate the architecture
displayed in Figure 12 in which the heuristic controller
dynamically determines the minimum value of Max-
Clients that maximizes the utilization of the bottle-
neck resource. The major steps are given as follows.

1) Given an initial MaxClients value
� � � , mea-

sure the CPU utilization
����� � and the memory

utilization
��� � � .

2) Use a linear model to predict the MaxClients
values when CPU and memory will saturate. Note
that since the CPU and memory utilizations are
always zero when MaxClients=0, we need only



one observation to generate this prediction. The
predicted MaxClients limit values are

�����
����� �

and
�����
�
	���� , respectively (where the subscript de-

notes discrete time).
3) Set MaxClients to �


�� � ������������ 	 ������
	���� � . This
goes to a vicinity of the real optimal value of
MaxClients.

4) Keep measuring CPU and memory utilizations,
and if they vary significantly due to workload
changes, go to step 2 to find a new MaxClients
value.

Our heuristic does require measurements of utiliza-
tions for all potential bottleneck resources. There are
two issues here. First, internal metrics are sometimes
difficult to acquire in practice because of limitations
of the measurement system. (In contrast, response time
measurements can readily be provided by an external
probing station.) Second, it is often difficult to determine
which are the bottleneck resources. For example, a disk
may be 100% utilized but have no queueing delays
because it is used by only one single-threaded applica-
tion. Never-the-less, if the utilization measurements are
available and the heuristic applies, then it can provide
fast, robust convergence to the minimal response times.

D. Experimental Results

This section compares the techniques for online op-
timization in terms of the minimum value of response
time that is achieved, the speed of convergence, and
robustness.

Figure 13 compares the performance of Newton’s
Method with the default Apache scheme. The figure
contains three sub-figures, each with two plots. In each
sub-figure, the upper plot shows the trajectory of Max-
Clients, and the bottom plot displays the associated
response times. Note that Newton’s Method does im-
prove response times compared to those in the default
Apache scheme. However, because of the variability of
response times, different runs of Newton’s Method can
produce very different results. This is because obtaining
the Hessian matrix requires three samples to compute
the second derivative, at each step of the algorithm. This
increases the convergence time and also the algorithm is
more sensitive to noise in response time measurements.
Unfortunately, response times are typically quite noisy,
unless they are averaged over many samples (something
that reduces the speed with which the controller can
respond to changes in workloads). Because of this noise
sensitivity, we do not consider Newton’s Method in the
remaining comparisons.
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(a) Default Apache control scheme
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(c) Run 2

Fig. 13. Comparison of the default Apache scheme with Newton’s
method under a dynamic workload. While Newton’s method does
achieve lower response times, its behavior is not consistent due to
the variability of response times.



Next, we compare the default Apache scheme with
fuzzy control and the heuristic method presented earlier.
Figure 14 displays the results for a dynamic work-
load. (The results are structured in the same manner
as Figure 13.) We see that the heuristic converges its
MaxClients value after 2 minutes. For fuzzy control,
convergence takes approximately 14 minutes. On the
other hand, fuzzy control does achieve a smaller response
time. Figure 15 displays the results for a static workload.
Once again, the heuristic converges faster than fuzzy
control. Here, however, the steady state response time
achieved by the heuristic is about the same as that
achieved by fuzzy control.

TABLE IV

QUALITATIVE COMPARISONS OF TECHNIQUES.

Optimization Speed Robustness
Default Apache Poor Fast Good
Newton’s Method Fair Slow Poor
Fuzzy Control Good Slow Good
Heuristic Good Fast Fair

Table IV provides a qualitative comparison of the four
schemes considered. The default Apache scheme does
a poor job of minimizing response times, in large part
because this is not what it is designed to do. Newton’s
method improves on this, but it converges slow and has
poor robustness to noise. Fuzzy control is quite robust
because it makes few assumptions, but it converges
slowly. Our heuristic provides good optimization and
converges quickly, but it makes assumptions about the
bottleneck resources that may not always hold.

V. CONCLUSIONS

This paper explores approaches to online optimization
of configuration parameters of the Apache web server
with an emphasis on techniques that are minimally
invasive and are applicable to a wide range of parameters
and systems. We focus on the MaxClients parameter,
which controls the maximum number of workers. First,
we show that MaxClients has a concave upward effect
on response time and hence hill climbing techniques
can be used to find the optimal value of MaxClients.
This is demonstrated both in measurements and with an
analytic model. The underlying intuition is that Max-
Clients controls the trade-off between delays in the
TCP Accept Queue and delays due to contention for
operating system resources.

We investigate two optimizers that employ hill
climbing—one based on Newton’s Method and the sec-
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(a) Fuzzy control
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(b) Heuristic control

Fig. 14. Comparison of schemes for online optimization under a
dynamic workload.

ond based on fuzzy control. A third technique is a
heuristic that exploits relationships between bottleneck
utilizations and response time minimization. In all cases,
online optimization reduces response times by a factor
of 10 or more compared to using a static, default
value. The trade-offs between the online schemes are
as follows. Newton’s method is well known but does
not produce consistent results for highly variable data
such as response times. Fuzzy control is more robust,
but converges slowly. The heuristic works well in our
prototype system, but it may be difficult to generalize
because it requires knowledge of bottleneck resources
and an ability to measure their utilizations.

Our future work will address a number of issues.
Foremost, we want to simultaneously optimize mul-
tiple parameters. This may involve other dynamically
adjustable parameters in Apache such as KeepAlive-
TimeOut, which specifies how long the TCP connection
to be kept for a client before the connection is torn
down. Second, while we have studied the Apache web
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(a) Fuzzy Control
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(b) Heuristic control

Fig. 15. Performance comparison of schemes for online optimization
under a static workload.

sever performance tuning, there are other more complex
systems such as database servers and application servers
where online optimization have a more dramatic effect
on end-user response times. Last, we want to explore
the effect of distributed architectures, especially the
trade-off between doing local optimization with accurate
knowledge of local state versus global optimization with
somewhat dated information.
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