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Abstract

SPECweb99 has become the de-facto standard
workload generator used to evaluate Web server
performance in the computer industry. In this pa-
per, we examine how well SPECweb99 captures the
server performance characteristics that have been
identified by the research community, such as URL
popularity and the distributions of request methods,
response codes, and transfer sizes. We compare
these characteristics generated by SPECweb99 both
with those reported in the literature and against a
set of sample Web server logs, and find that the
workload generator has a varying record depend-
ing on the characteristic. In particular, SPECweb99
suffers from failing to capture conditional GET re-
quests, which significantly affects both the response
code statistics and the transfer size distributions.
We conclude with some recommendations to im-
prove the accuracy of the benchmark in the future.

1 Introduction

A central component of the response time seen by
Web users is the performance of the origin server
that provides the content. There is great interest,
therefore, in quantifying the performance of Web
servers: How quickly can they respond to requests?
How well do they scale with load? Are they capable
of operating under overload, i.e., can they maintain
some level of service even when the requested load
far outstrips the capacity of the server?

Obtaining the answers to these questions can be
an involved process. While a server must satisfy
certain feature requirements (e.g., supporting Java
or PHP), operators want to have some notion of

how the server will perform, in order to do capac-
ity planning. This in turn leads to purchasing de-
cisions which are influenced by benchmarks. Many
benchmarking programs are available for a wide va-
riety of applications, such as databases and scien-
tific programs, and Web servers are no exception.

Web server benchmarks are typically known as
load generators, since the way they measure per-
formance is to masquerade as clients and generate
a synthetic load of HTTP requests for the server.
Figure 1 shows a typical experimental setup, where
clients running a workload generator program sub-
mit requests to a Web server. The idea is that, by
measuring how the server performs in a controlled
environment, operators will hopefully have a rea-
sonably good notion of how that server will per-
form in the real world. In turn, by comparing the
numbers for competing Web servers, operators can
determine which will perform better. Of course, a
Web server is more than simply the HTTP server
software; a workload generator can be used to com-
pare the performance of the same software running
on two different pieces of hardware, or to com-
pare two different operating systems running on the
same hardware.

Many Web server benchmarks have appeared over
the years, including WebStone [34], SPECweb96
[15], S-Client [7], SURGE [8], httperf [29],
SPECweb99 [15], TPC-W [33], WAGON [26], and
WaspClient [30]. As people’s understanding of
Web server behavior has expanded over time, so
have the server benchmarks evolved and been im-
proved. In addition to providing broad perfor-
mance statistics, such as throughput in HTTP op-
erations/second, many benchmarks attempt to ad-
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dress characteristics that earlier ones ignored or
were not aware of. For better or worse, however,
people and organizations tend to settle on a single
benchmark for comparative purposes. In the case of
Web server benchmarks, particularly for hardware
vendors, this benchmark is SPECweb99.

In this paper, we quantify how well SPECweb99
captures server workload characteristics such as
request methods, response codes, URL popular-
ity, and transfer size distributions. We find that
SPECweb99 has a varying record depending on the
characteristic, as we describe in detail below.

The remainder of this paper is organized as follows.
In Section 2 we describe the SPECweb99 workload
generator. Section 3 we present our methodology
for comparisons. Section 4 presents our results in
detail. Section 5 overviews related work. In Sec-
tion 6 we summarize our findings and offer recom-
mendations for ways for SPECweb99 to improve its
accuracy.

2 SPECweb99

SPECweb99 has become the de-facto standard
workload generator used in the computer industry
for performance evaluation, robustness testing, and
evaluating server optimizations. The popularity of
SPECweb99 as a benchmark can be seen by the
volume of results published at the SPEC Web site.
At the time of this writing, 141 results have been
published in under 3 years, which include hardware
vendors such as Compaq, Dell, Fujitsu, HP, IBM,
and Sun; operating systems such as AIX, HPUX,

Linux, Solaris, and Windows NT; and Web server
software such as Apache, IIS, Netscape Enterprise,
and Tux. In contrast, for example, TPC-W has only
14 submissions from 3 vendors.

SPECweb99 is produced by the Systems Perfor-
mance Evaluation Consortium (SPEC), an industry-
backed non-profit corporation whose role is to
provide independent benchmarks for comparative
purposes. SPEC provides a number of bench-
marks, such as SPECSFS97 for file systems,
SPECCPU2000 for processor performance, and
SPECweb99 for Web servers. SPEC is supported
by its member corporations, such as HP, IBM, and
Sun, and its benchmarks are decided on by a con-
sensus process of the members. This process, while
open to all members who make a financial contri-
bution to SPEC, is closed to the general public. In
addition, the source code to the benchmark is only
available to member institutions or through a fee,
which is typically discounted for non-profit organi-
zations such as universities. In order for vendors to
advertise the results of their SPECweb99 runs, they
are required to submit their numbers to the SPEC
Web site where the results are published.

Instead of a conventional performance metric such
as server throughput or response time, the primary
metric used by SPECweb99 is “number of simulta-
neous conforming connections.” According to the
web site:

“SPECweb99 measures the maxi-
mum number of simultaneous connec-
tions requesting the predefined bench-
mark workload that a web server is able
to support while still meeting specific
throughput and error rate requirements.
The connections are made and sustained
at a specified maximum bit rate with a
maximum segment size intended to more
realistically model conditions that will be
seen on the Internet during the lifetime of
this benchmark.” [15]

To ensure that connections are conforming,
SPECweb99 monitors the bandwidth available to



Name: Chess Olympics IBM World Cup Dept. Store IBM SPEC
1997 1998 1998 1998 2000 2001 web99

Desc.: Kasparov- Sporting Corporate Sporting Online Corporate Workload
Deep Blue Event Site Presence Event Site Shopping Presence Generator
Event Site

Period: 2 weeks in 1 day in 1 day in 31 days in 12 days in 1 day in 1 hour in
May 1997 Feb. 1998 June 1998 June 1998 June 2000 Feb. 2001 June 2002

Hits: 1,586,667 11,485,600 5,800,000 1,111,970,278 13,169,361 12,445,739 10,481,768
KBytes: 14,171,711 54,697,108 10,515,507 3,952,832,722 54,697,108 28,804,852 151,495,102
Clients: 256,382 86,021 80,921 2,240,639 86,021 319,698 16
URLs: 2,293 15,788 30,465 89,997 15,788 42,874 55,054

Table 1: Logs used in examples

each connection and enforces both an upper and
lower bound on that bandwidth, in order to emu-
late modem-connected clients. The lower bound is
320000 bits/sec or roughly 39 KB/sec; if a connec-
tion achieves lower than that bandwidth the run is
discarded as “non-conforming.” The upper bound
is 400000 bits/sec or roughly 48 KB/sec; if the con-
nection gets greater bandwidth the connection calls
sleep() for the remainder of time that the connection
“should” have taken.

SPEC has taken a number of steps to prevent “gam-
ing” the benchmarking process and enforce a cer-
tain degree of realism. For example, the link-layer
maximum transmission unit (MTU) must not be
larger than 1500 bytes, presumably since over the
wide-area Internet, it is virtually impossible to find
a path MTU of greater than the Ethernet frame size.
Enforcing this as the maximum prevents distorting
results by using media that allow larger MTUs such
as ATM or Gigabit Ethernet with Jumbo Frames.
Similarly, SPEC enforces a maximum segment life-
time (MSL) of 60 seconds, which is used to manage
the duration of TCP’s TIME WAIT state. Shrinking
this value can artificially inflate server performance
numbers [6]. Although RFC 793 [32] suggests an
MSL value of 2 minutes, SPECweb99 uses a value
of 60 seconds since that is what is used in “most
BSD derived UNIX implementations.”

While settling on a single Web server benchmark
such as SPECweb99 allows relatively “apple-to-
apple” comparisons, it has the disadvantage that a
single particular benchmark may not capture the

performance characteristics that are relevant to a
particular Web site. While “relevant” may be a rel-
ative term, over time a certain number of charac-
teristics have been discovered to be shared across a
wide variety of Web sites. A straightforward ques-
tion thus arises: how well does SPECweb99 capture
the performance attributes that have been observed
across a large number of sites?

3 Methodology

Our approach is to take various characteristics or
performance metrics identified by the literature and
compare them to those produced by SPECweb99.
Characteristics are derived from the server logs
generated from a SPECweb99 run. Then, for each
characteristic, we conclude how well it is captured
by SPECweb99.

The server used to produce the SPECweb99 log is
an 8-way 900 MHz Pentium III symmetric multi-
processor (SMP), running Apache 2.0.36 and the
Linux kernel version 2.4.17. The server has 32GB
RAM and 4 Gigabit Ethernet adapters. Sixteen 866
MHz Pentium III PCs were used as clients to gen-
erate a load of 2500 concurrent connections.

To help illustrate the comparisons, we also present
examples of the same characteristics derived from
several logs. Table 1 gives an overview of the logs
used in the examples, several of which are taken
from high-volume web sites that were managed by
IBM. One log, taken from an online department
store, is taken from a site hosted by but not de-



Request Chess Olymp. IBM W. Cup Dept. IBM SPEC
Method 1997 1998 1998 1998 2000 2001 web99
GET 92.18 99.37 99.91 99.75 99.42 97.54 95.06
HEAD 03.18 00.08 00.07 00.23 00.45 02.09 00.00
POST 00.00 00.02 00.01 00.01 00.11 00.22 04.93

Table 2: HTTP Request Methods (percent)

signed or managed by IBM. We also include most
of the 1998 World Cup logs [4], which are publi-
cally available at the Internet Traffic Archive. Due
to the size of these logs, we limit our analysis to the
busiest 4 weeks of the trace, June 10th through July
10th (days 46 through 76 on the web site).

Since our analysis is based on web logs, certain in-
teresting characteristics cannot be examined. For
example, persistent connections, pipelining, net-
work round-trip times and packet loss all have sig-
nificant affects on both server performance and
client-perceived response time. These character-
istics are not captured in Apache Common Log
format and typically require more detailed packet-
level measurements using a tool such as tcpdump.
These sorts of network-level measurements are dif-
ficult to obtain due to privacy and confidentiality
requirements.

An important caveat worth reiterating is that any
one Web site may not be representative of a par-
ticular application or workload. For example, the
behavior of a very dynamic Web site such as eBay,
which hosts a great deal of rapidly changing con-
tent, is most likely very different from an online
trading site like Schwab, which conducts most of its
business encrypted using the Secure Sockets Layer
(SSL). Several example Web sites given here were
all run by IBM, and thus may share certain traits not
observed by previous researchers in the literature.
As we will see, however, the characteristics from
the IBM sites are consistent with those described in
the literature.

Dynamic content [3, 12, 13, 23] is becoming a
central component of modern transaction-oriented
Web sites. SPECweb99 is unusual compared to
most other workload generators in that 30 percent

of the requests it produces are for dynamically gen-
erated content. While dynamic content generation
is clearly a very important issue, there is currently
no consensus as to what constitutes a “representa-
tive” dynamic workload, and so we do not evaluate
SPECweb99 in this respect.

4 Results

In this Section we present our results in detail.

4.1 Request Methods

The first trait we examine is how well request meth-
ods are captured by SPECweb99. Several meth-
ods were defined in the HTTP 1.0 standard [10]
(e.g., HEAD, POST, DELETE), and multiple others
were added in the 1.1 specification [20, 21] (e.g.,
OPTIONS, TRACE, CONNECT). While a server
should, of course, implement all methods required
to support a particular HTTP standard, a workload
generator should seek to recreate the request meth-
ods that are seen most frequently at a Web site.

Table 2 shows the percentage of request methods
seen in the various logs. Here, only those methods
which appear a non-trivial fraction are shown, de-
fined in this case as greater than one hundredth of
a percent. GET requests are the primary method by
which documents are retrieved; the method “means
retrieve whatever information ... is identified by
the Request-URI” [10]. The HEAD method is
similar to the GET method except that only meta-
information about the URI is returned. The POST
method is a request for the server to accept infor-
mation from the client, and are typically use for
for filling out forms and invoking dynamic content
generation mechanisms. While different logs have
slightly varying breakdowns, the vast majority of



Response Chess Olymp. IBM W.Cup Dept. IBM SPEC
Code 1997 1998 1998 1998 2000 2001 web99
200 OK 85.32 76.02 75.28 79.46 86.80 67.73 100.00
206 Partial Content 00.00 00.00 00.00 00.06 00.00 00.00 00.00
302 Found 00.05 00.05 01.18 00.56 00.56 15.11 00.00
304 Not Modified 13.73 23.25 22.84 19.75 12.40 16.26 00.00
403 Forbidden 00.01 00.02 00.01 00.00 00.02 00.01 00.00
404 Not Found 00.55 00.64 00.65 00.70 00.18 00.79 00.00

Table 3: Server Response Codes (percent)

methods are GET requests, with a smaller but no-
ticeable percentage being HEAD or POST meth-
ods. This is consistent with findings in the literature
[25].

Table 2 also shows the percentage of methods used
by SPECweb99. The majority of requests gener-
ated by SPECweb99 are GET requests, although
the ratio, 95 percent, is slightly lower than those
from 3 of the 4 real logs, which range from 97 to
99 percent. While the logs have a small percentage
of HEAD methods, SPECweb99 does not generate
any HEAD requests at all. Finally, the number of
POST requests, while relatively small at 5 percent,
is 2 orders of magnitude greater than the fraction
seen in the real sites, which have POST methods on
the order of hundredths of a percent. SPECweb99
uses POSTs heavily for its dynamic content request
generation. However, the mismatch here implies ei-
ther that SPECweb99 is over-estimating the amount
of dynamic content on a Web site, or that sites use
other methods for that purpose, e.g., a GET request
for a URL with a cgi-bin prefix.

Since SPECweb99 generates a first-order approxi-
mation of request methods, we conclude that it does
a passable job in terms of capturing this metric.
However, some refinement, particularly in terms of
generating HEAD requests, seems necessary.

4.2 Response Codes

The next characteristic we study are the response
codes generated by the server. Again, the HTTP
specifications define a large number of responses,
the generation of which depends on multiple factors
such as whether or not a client is allowed access

to a URL, whether or not the request is properly
formed, etc. However, certain responses are much
more frequent than others.

Table 3 shows those responses seen in the logs that
occur with a non-trivial frequency, again defined as
greater than one hundredth of a percent. We see that
the majority of the responses are successful trans-
fers, i.e., the 200 OK response code.

Perhaps the most interesting aspect of this data is,
however, the relatively large fraction of 304 Not
Modified responses. This code is typically gener-
ated in response to a client generating a GET re-
quest with the If-Modified-Since option, which pro-
vides the client’s notion of the URL’s last-modified
time. This request is essentially a cache-validation
option and asks the server to respond with the full
document if the client’s copy is out of date. Other-
wise, the server should respond with the 304 code
if the copy is OK. As can be seen, between 12 and
23 percent of responses are 304 codes, indicating
that clients re-validating up-to-date content is a rel-
atively frequent occurrence, albeit in different pro-
portions at different Web sites.

Other responses, such as 403 Forbidden or 404 Not
Found, are not very frequent, on the order of a tenth
of a percent, but appear occasionally. The IBM
2001 log is unusual in that roughly 15 percent of
the responses use the 302 Found code, which is
typically used as a temporary redirection facility.
While we are unaware of the cause of this behavior,
we believe it is a rudimentary content distribution
mechanism.
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Figure 2: Document Popularity

Table 3 also shows the response codes generated
during the SPECweb99 run. Here, we see that all
responses are 200 OK codes. While it might be
argued that certain error codes such as Forbidden
or Not Found should not be included in a bench-
mark, the relative frequency of 304 responses indi-
cates that they are normal part of Web server behav-
ior and should be captured by a workload generator.
Thus we conclude that SPECweb99 is not represen-
tative in this respect.

4.3 Object Popularity

Numerous researchers [2, 5, 16, 31] have observed
that, in origin Web servers, the relative probability
with which a web page is accessed follows a Zipf-
like distribution. That is,

���������
	�����

where ������� is the probability of a request for a docu-
ment with rank � , and 	 is a constant (depending on
� and the number of documents) that ensures that
the sum of the probabilities is one. Rank is defined
by popularity; the most popular document has rank
1, the second-most popular has rank 2, etc. When
� equals 1, the distribution is a true Zipf; when � is

another value the distribution is considered “Zipf-
like.” Server logs tend to have � values of one or
greater; proxy server logs have lower values rang-
ing from 0.64 to 0.83 [11].

Figure 2 shows the fraction of references based on
document rank generated from the sample Web logs
and the log produced by SPECweb99. Note that
both the X and Y axes use a log scale. As can be
seen, all the curves follow a Zipf-like distribution
fairly closely, except towards the upper left of the
graph and the lower right of the graph.

This Zipf property of document popularity is sig-
nificant because it shows the effectiveness of doc-
ument caching. For example, one can see that by
simply caching the 100 most popular documents,
assuming these documents are all cacheable, the
vast majority of requests will find the document in
the cache, avoiding an expensive disk I/O opera-
tion.

Since the curve for SPECweb99 follows the Zipf-
like distribution as closely as the other curves, we
say the SPECweb99 benchmark captures this char-
acteristic effectively.
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Figure 3: Document Size (CDF)

4.4 File Sizes

The next characteristic we examine is the range of
sizes of the URLs stored on a Web server. File sizes
give a picture of how much storage is required on a
server, as well as how much RAM might be needed
to fully cache the data in memory. Which distribu-
tion best captures file size characteristics has been
a topic of some controversy. There is consistent
agreement that sizes range over multiple orders of
magnitude and that the body of the distribution (i.e.,
that excluding the tail) is Log-Normal. However,
the shape of the tail of the distribution has been
debated, with claims that it is Pareto [16], Log-
Normal [19], and even that the amount of data avail-
able is insufficient to statistically distinguish the the
two [22].

Figure 3 shows the CDF of file sizes seen in the
logs, as well as those from SPECweb99. Note that
the X axis is in log scale. As can be seen, sizes
range from 1 byte to 10 megabytes, varying across
7 orders of magnitude. In addition, the distributions
show the rough ‘S’ shape of the Log-Normal distri-
bution.

Figure 3 also shows the CDF of file sizes from
SPECweb99. While the distribution is roughly
Log-Normal, it does not vary as widely as the
curves from the logs. This is because the smallest
file requested in SPECweb99 contains 102 bytes,
and the largest 921600 bytes. Perhaps more signifi-
cantly, the curve is significantly less “smooth” than
the curves from the logs. The SPECweb99 curve
has interpolation lines present, whereas the curves
from the real logs consist only of actual data points.
This is because the SPECweb99 file set generated
on the server has only 36 distinct file sizes, whereas
files on real Web sites exhibit much greater variety.

As mentioned earlier, a metric of frequent inter-
est in the research community is the “tail” of the
distribution. While the vast majority of files are
small, the majority of bytes transferred are found
in large files. This is sometimes known as the “Ele-
phants and Mice” phenomenon. To see how well
SPECweb99 captures this property, we graphed the
complement of the cumulative distribution func-
tion, or CCDF, of the logs. These are shown in
Figure 4. The Y values for this graph are essen-
tially the complement of the corresponding Y val-
ues from Figure 3. Unlike Figure 3, however, note
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Figure 4: Document Size (CCDF)

here that the Y-axis uses a log scale to better illus-
trate the tail. We observe that all the logs have max-
imum files in the range of 1 to 10 MB, with the ex-
ception of the Department Store log, which has no
file size greater than 99990 bytes.

Figure 4 also shows the CCDF from SPECweb99.
As can be seen, the tail exhibited by SPECweb99
does not reach as far as the tails from most of the
other logs, except for the Department Store log.
Again, this is because SPECweb99 does not request
any files greater than 921600 bytes.

To summarize, SPECweb99 does capture the broad
characteristics of file size distributions, by varying
across several orders of magnitude and exhibiting a
Log-Normal distribution. However, it fails to cap-
ture the deeper aspects of the distributions, such as
smoothness and length in the tail. We thus conclude
that, in this case, SPECweb99 does a passable job,
albeit one that could be improved.

4.5 Transfer Sizes

A metric related to Web file sizes is Web transfer
sizes, or the size of the objects sent “over the wire.”

Transfer sizes are significant since they connote
how much bandwidth is used by the Web server to
respond to clients. In Apache Common Log For-
mat, transfer size is based on the amount of con-
tent sent, and does not include the size from any
HTTP headers or lower-layer bytes such as TCP or
IP headers. Thus, here transfer size is based on the
size of the content transmitted. The distribution of
transfer sizes is thus influenced by the popularity of
documents requested, as well as by the proportion
of unusual responses such as 304 Not Modified and
404 Not Found.

Figure 5 shows the CDF of the object transfers from
the logs. As can be seen, transfers tend to be small;
for example, the median transfer size from the IBM
2001 log is roughly 230 bytes! An important trend
is to note that a large fraction of transfers are for
zero bytes, as much as 28 percent in the 1998 IBM
log. The vast majority of these zero-byte transfers
are the 304 Not Modified responses noted above in
Section 4.2. When a conditional GET request with
the If-Modified-Since option is successful, a 304 re-
sponse is generated and no content is transferred.
Other return codes, such as 403 Forbidden and 404
Not Found, also result in zero-byte transfers, but
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Figure 5: Transfer Size (CDF)

they are significantly less common. The exception
is the IBM 2001 log, where roughly 15 percent of
the 302 Found responses contribute to the fraction
of zero-byte transfers.

Figure 5 also includes the transfer size distribution
from SPECweb99. In this case, the curve does not
match well the other curves from the logs. In ad-
dition to the smoothness discrepancy noted in Sec-
tion 4.4, the sizes tend to be larger than observed
from the logs. For example, the median transfer
size is 5120 bytes, compared to the 230 bytes in the
IBM 2001 log. Perhaps most significantly, since
SPECweb99 does not produce any conditional GET
requests with the If-Modified-Since header, no 304
responses are generated, and thus zero-byte trans-
fers do not occur. This has a significant impact on
server performance, since in the case where a 304
is generated, the server will have less work to do, as
the file will not be sent to the client.

Figure 6 shows the transfer size distributions when
304 responses are removed from the logs. The
original SPECweb99 transfer distribution is also in-
cluded. As can be seen, removing the 304 responses
reduces the number of zero-byte transfers signifi-

cantly. From this perspective, SPECweb99 appears
more representative, although the transfer sizes still
tend to be higher than those from the logs, at least
in the body of the distribution.

Figure 7 shows the CCDF of the transfer sizes,
in order to illustrate the “tail” of the distributions.
Note again that the Y axis uses a log scale. The
graph looks similar to Figure 4, perhaps since these
transfers are so uncommon that weighting them by
frequency does not change the shape of the graph,
as it does with the bulk of the distribution in Figure
5. As in Figure 4, the tail from SPECweb99 drops
off earlier than the tails from the other logs, with
the exception again of the Department Store log.

Since the transfer sizes produced by SPECweb99
are so disparate from those seen in the logs, we con-
clude that the workload generator is not representa-
tive in terms of this metric.

4.6 HTTP Version

Another question we are interested in is what sort of
HTTP protocol support is available in SPECweb99.
While HTTP 1.1 was first standardized in 1997
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Protocol Chess Olymp. IBM W. Cup Dept. IBM SPEC
Version 1997 1998 1998 1998 2000 2001 web99
HTTP 1.0 95.30 78.56 77.22 78.62 51.13 51.08 30.00
HTTP 1.1 00.00 20.92 18.43 21.35 48.82 48.30 70.00
Unclear 04.70 00.05 04.34 00.02 00.05 00.06 00.00

Table 4: HTTP Protocol Versions (percent)

[20], the protocol has undergone some updating
[21, 25] and in some ways is still being clarified
[24, 28]. The transition from 1.0 to 1.1 is a com-
plex one, requiring support from browsers, servers,
and any proxy intermediaries as well.

Table 4 shows the HTTP protocol version that the
server used in responding to requests. A clear trend
is that over time, more requests are being serviced
using 1.1. However, SPECweb99 99 appears to uti-
lize 1.1 more heavily than the real sites do. In the
most recent logs, from 2000 and 2001, HTTP 1.1
is used in just under half the responses, whereas
SPECweb99 uses HTTP 1.1 for 70 percent of the
responses. This is because the SPECweb99 code
utilizes HTTP 1.1-style persistent connections for
70 percent of the connections, and submits between
5 and 15 requests on each connection before closing
it. SPECweb99 does not currently support more ad-
vanced HTTP 1.1 features such as pipelining, range
requests, or chunked encoding. While real sites will
most likely reach and pass the 70 percent mark,
SPECweb99 was perhaps overly optimistic about
the prospects for deploying 1.1, especially for the
time it was released, in August of 1999.

Given the depth and complexity of the HTTP 1.1
protocol, the numbers above only scratch the sur-
face of how servers utilize HTTP 1.1. Many fea-
tures have been added in 1.1, including new mecha-
nisms, headers, methods, and response codes. How
these features are used in practice is still an open
issue, and as mentioned earlier, server logs are in-
sufficient to fully understand HTTP 1.1 behavior.
Thus, we make no claims about “representative-
ness” here, but include the numbers for interest.

4.7 Request Inter-Arrival Times

The final metric we examine is the inter-arrival time
between requests. Previous research [5, 4, 25] has
tended to look at the inter-arrival times between re-
quests from the same users, where users are typ-
ically identified by the remote IP address. Since
the SPECweb99 log has only 16 IP addresses, we
do not look at inter-arrival times in that way here.
Instead, we look at inter-arrival times between suc-
cessive requests across all users. This gives an idea
of the load or intensity of the traffic.

One problem with the Apache Common Log for-
mat is that entries have a time granularity of only
one second. Thus, it is impossible to distinguish
the inter-arrival times of multiple requests that ar-
rive within the same second. To approximate the
inter-arrival times in these cases, we assume that
arrivals are evenly spread within one second. For
example, if the log shows 5 requests arrive in the
same second, we treat that as 5 data points for 200
millisecond inter-arrival times. While somewhat ar-
bitrary, we feel it does give an indication of the in-
tensity of the traffic.

Figure 8 shows the CDF of the inter-arrival times
generated from the logs. Note that the X axis is
in log scale. Inter-arrival times appear to follow a
log-normal distribution, with different logs exhibit-
ing different average times. The busiest traces, the
World Cup and Olympic logs, for example, have
median inter-arrival times of 1.9 and 1.6 millisec-
onds respectively, whereas the 2000 Department
Store log median time is 55 milliseconds.

Figure 8 also shows the CDF of the inter-arrival
times generated from the SPECweb99 logs. Here
the median inter-arrival time is 0.14 milliseconds,
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an order of magnitude smaller than the busiest sites
in the traces.

SPECweb99 is useful in this context in that it can
generate a request rate that is much higher than is
observed in even the busiest web sites. However,
it may not capture the effects of long-lived client
sessions. More importantly, connection and session
duration are most likely underestimated, since net-
work characteristics such as loss and delay are un-
accounted for.

Since the research literature uses a different no-
tion of inter-arrival times, we again make no claims
about the accuracy of SPECweb99 in this context.

5 Related Work

Web server workload generation has been a topic of
interest for several years. In this section we provide
a brief overview of the area.

The first well-known workload generator was Web-
Stone [34], which was released in 1995. It did only
simple request generation for 5 unique files, rang-
ing from 500 bytes to 5 MB.

In 1996, SPEC released their first-generation
workload generator, titled SPECweb96 [14].
SPECweb96 introduced the notion of scaling with
load and made an attempt to be more representative,
claiming the workload was based on logs from sev-
eral active sites. No validation was presented, how-
ever, and SPECweb96 had a relatively small set of
file sizes in 4 categories.

S-Client [7] introduced the notion of open-loop
workload generation. Most workload generators
are closed-loop in that they are tightly coupled to
the server in that they are measuring, by waiting
to generate a new request only after a response has
been received. By generating requests at a rate or-
thogonal to the capacity of the server, S-Client can
generate loads that overload the server.

SURGE [8] was the first workload generator that
paid special attention to reproducing server work-
load characteristics such as document popularity,
embedded references, and transfer size. SURGE
originally only captured HTTP 1.0 traffic, but was
subsequently extended to implement persistent con-
nections and pipelining [9].



httperf [29] is a workload generator which has the
main goal of extensibility and broad correctness
testing. httperf allows a wide variety of options and
configurations to probe a range of scenarios on the
server. httperf also includes the open-loop model
used by S-Client.

WaspClient [30] is a hybrid workload generator
built by using the workload model from SURGE
with the request generation engine from S-Client.
WaspClient was used to evaluate server perfor-
mance in wide-area conditions, rather than over a
LAN.

TPC-W [33] is a specification for generating a
workload for a full Web site, as opposed to just
a single Web server. It seeks to model an on-
line bookstore similar to Amazon.com, and thus
stresses components such as the Java-based appli-
cation server and the back-end database. TPC-W
is only a specification, however; no source code is
provided. While TPC-W is likely a growing influ-
ence on Web server performance evaluation, it does
not yet have the critical mass from hardware ven-
dors that SPECweb99 does. For example, at the
time of this writing, the TPC-W web site lists only
14 submissions from 3 vendors.

6 Conclusions and Future Work

We have presented a range of Web server work-
load characteristics and examined how well they
are captured by the industry-standard benchmark
SPECweb99. The accuracy of SPECweb99 varies
depending on the characteristic; for example, doc-
ument popularity is captured well, whereas transfer
size is modeled relatively poorly. In order to im-
prove the accuracy of the benchmark, two main is-
sues need to be addressed.

First, conditional GET requests with the If-
Modified-Since header should be included. This
will both allow more representative response codes
and capture small transfers more effectively. This
will require augmenting the workload generator to
keep track of last modified times returned by the
server and include those times in subsequent condi-
tional GET requests. While this can be done using

a simple statistical model, a more accurate method
will require a model of object cachability and mod-
ification times.

Second, the file and transfer size distributions need
to be improved. The range of file sizes should
be increased, in order to “fill out” the distribution
to make it more smooth. At the same time, av-
erage file sizes should shrink to better match the
smaller transfer sizes exhibited by real sites. Fi-
nally, the file size distribution should be extended
to better capture the “tail” of the distribution and
very long transfers. The largest file currently used
in SPECweb99 is less than 1 MB; it should be at
least 10 MB.

Several possibilities exist for future work; we
briefly outline them here.

SURGE [8] was designed to reproduce many of the
characteristics described in this paper. While we
have focused on SPECweb99 due to its popularity
in industry, a clear next step would be to evaluate
SURGE using the same metrics.

HTTP 1.1 introduces a number of new mechanisms
to the Web, such as pipelining, chunked encod-
ing, and range requests. As HTTP 1.1 deploy-
ment widens and its use on servers increases, a
well-grounded and quantified understanding of how
these features are used in practice will be needed. In
turn, workload generators such as SPECweb99 will
need to accurately capture the use of these mecha-
nisms if they are to remain representative.

Similarly, Web sites that use dynamic content re-
mains a relatively unexplored area. Workload char-
acterization studies are required in order to better
understand the behavior of these sites. Unfortu-
nately, this will not be easy, as commercial Web
site owners wish to protect both their users’ pri-
vacy and their business application software. They
will be reluctant to share information that they view
as a competitive trade secret, such as application
servlets and back-end databases.
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