
An Architecture for Highly Concurrent, Well-Conditioned Internet Services

by

Matthew David Welsh

B.S. (Cornell University) 1996
M.S. (University of California, Berkeley) 1999

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David Culler, Chair
Professor Eric Brewer
Professor Marti Hearst

Fall 2002

The dissertation of Matthew David Welsh is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2002

An Architecture for Highly Concurrent, Well-Conditioned Internet Services

Copyright 2002

by

Matthew David Welsh

1

Abstract

An Architecture for Highly Concurrent, Well-Conditioned Internet Services

by

Matthew David Welsh

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor David Culler, Chair

This dissertation presents an architecture for handling the massive concurrency and load

conditioning demands of busy Internet services. Our thesis is that existing programming models and

operating system structures do not adequately meet the needs of complex, dynamic Internet servers,

which must support extreme concurrency (on the order of tens of thousands of client connections)

and experience load spikes that are orders of magnitude greater than the average. We propose a new

software framework, called thestaged event-driven architecture(or SEDA), in which applications

are constructed as a network of event-driven stages connected with explicit queues. In this model,

each stage embodies a robust, reusable software component that performs a subset of request pro-

cessing. By performing admission control on each event queue, the service can be well-conditioned

to load, preventing resources from being overcommitted when demand exceeds service capacity.

SEDA employs dynamic control to tune runtime parameters (such as the scheduling parameters of

each stage) automatically, as well as to manage load, for example, by performing adaptive load

shedding.

In this dissertation, we show that the SEDA design yields higher performance than tra-

ditional service designs, while exhibiting robustness to huge variations in load. We begin by eval-

uating existing approaches to service design, including thread-based and event-driven concurrency

2

mechanisms, and demonstrate that these approaches fail to meet the concurrency and load condi-

tioning demands of busy network services. Next, we present the SEDA design, and motivate its

use through a set of design patterns that describe how to map an Internet service onto the SEDA

structure. We also derive a performance model for SEDA-based Internet services based on queueing

networks; this model is used to highlight the performance and load aspects of the architecture, as

well as to drive design decisions affecting the decomposition of services into stages.

We present an implementation of an Internet services platform, calledSandstorm, based

on the SEDA architecture. Sandstorm is constructed entirely in Java and makes use of nonblocking

I/O primitives for sustaining high concurrency. We evaluate the use of SEDA through several ap-

plications, including a high-performance HTTP server, a packet router for the Gnutella peer-to-peer

file sharing network, and a Web-based e-mail service using dynamic scripting and database access.

Finally, we describe several control-based mechanisms for automatic tuning and load conditioning

of busy Internet services in the SEDA design, including thread pool sizing, event batching, and

queue-based admission control for overload management. Our results show that SEDA is an effec-

tive design approach for complex Internet services, yielding high performance and robust behavior

under heavy load.

Professor David Culler
Dissertation Committee Chair

i

If you want to be free,

Get to know your real self.

It has no form, no appearance,

No root, no basis, no abode,

But is lively and buoyant.

It responds with versatile facility,

But its function cannot be located.

Therefore when you look for it,

You become further from it;

When you seek it,

You turn away from it all the more.

Rinzai Gigen Zenji (d. 886)

ii

Contents

List of Figures vi

1 Introduction and Motivation 1
1 Introduction: The rise of Internet services .2
2 Thesis summary .4
3 Background: Internet service properties .5

3.1 High concurrency . 6
3.2 Dynamic content . 6
3.3 Robustness to load .7

4 Trends in the Internet service design space .10
4.1 Rapid evolution of service logic .10
4.2 General-purpose hosting platforms .10

5 Thesis summary and contributions .11
6 Dissertation roadmap .13

2 Background and Related Work 15
1 Concurrency programming models .16

1.1 Thread-based concurrency .16
1.2 Bounded thread pools .19
1.3 Resource management challenges of threading21
1.4 Event-driven concurrency .22
1.5 Structured event queues .29

2 Challenges posed by OS virtualization .31
2.1 Approaches to customized resource management35

3 Approaches to overload management .36
3.1 Resource containment .36
3.2 Admission control .39
3.3 Control-theoretic approaches to resource management42
3.4 Service degradation .44

4 Summary .45

iii

3 The Staged Event-Driven Architecture 48
1 Design overview .48
2 Stages as robust building blocks .50

2.1 Events and batching .51
2.2 Event handlers .51
2.3 Threading model .52

3 Applications as a network of stages .54
3.1 Haboob: An example SEDA application55
3.2 Service structuring issues .55

4 Dynamic resource control .57
5 Overload protection .58
6 Design patterns for structured service design .59

6.1 Definitions .60
6.2 TheWrappattern . 60
6.3 ThePipelineandPartition patterns . 61
6.4 TheCombinepattern . 64
6.5 TheReplicatepattern . 65

7 Additional design principles .66

4 A Performance Model for SEDA-based Services 69
1 Introduction: Basic queueing models .70
2 Modeling resource contention and thread limitations73

2.1 Load-dependent service centers .74
2.2 Solving the load-dependent service center76

3 Open Jackson networks of load-dependent service centers78
4 Examples .81

4.1 TheCombineandPipelinepatterns . 81
4.2 ThePartition pattern . 83
4.3 TheReplicatepattern . 84

5 Summary and limitations .86

5 Sandstorm: A SEDA-based Internet Services Prototype 88
1 Sandstorm overview .88

1.1 Use of the Java language .89
1.2 Event handler overview .90

2 Sandstorm design principles .91
2.1 Thread management .91
2.2 Event queue management .92
2.3 Event processing requirements .93

3 Implementation details .94
3.1 Queue elements and event handlers .94
3.2 Stage graph construction .95
3.3 Queues and admission controllers .96
3.4 Timers and signals .99
3.5 Profiling and debugging .99

iv

4 Resource controllers .101
4.1 Thread pool controller .101
4.2 Batching controller .104
4.3 Other controllers .106

5 NBIO: Nonblocking I/O facilities for Java .107
6 Asynchronous I/O primitives .108

6.1 Asynchronous socket I/O .108
6.2 Asynchronous file I/O .112

7 Design example: HTTP protocol library .113
8 Evaluation .114

8.1 Code size and complexity .114
8.2 Sandstorm microbenchmarks .115
8.3 Asynchronous sockets performance .116

9 Summary .117

6 Application Evaluation 119
1 Haboob: A high-performance HTTP server .120

1.1 Haboob architecture .120
1.2 Design rationale .122
1.3 Benchmark configuration .123
1.4 Performance analysis .127

2 Gnutella packet router .130
2.1 Architecture .131
2.2 Protection from slow sockets .132
2.3 Load conditioning behavior .132

3 Arashi: A dynamic Web-based e-mail service .135
3.1 Arashi architecture .135
3.2 PyTeC service construction language .138
3.3 Database connection pooling .138
3.4 Benchmark configuration .140
3.5 Throughput and response time measurements141

4 Summary .143

7 Adaptive Overload Management 144
1 Background .145

1.1 Performance metrics .145
1.2 Overload exposure through admission control146

2 Overload control mechanisms .147
2.1 Response time controller design .148
2.2 Service degradation .150
2.3 Class-based differentiation .150

3 Evaluation .152
3.1 Controller operation .152
3.2 Overload control with increased user load154
3.3 Overload control under a massive load spike156

v

3.4 Service degradation experiments .157
3.5 Service differentiation .159

4 Summary .162

8 Lessons and Future Work 163
1 Reflections on the SEDA programming model .163

1.1 Simplification of event-driven design .164
1.2 Disadvantages of SEDA .166

2 Future Work .167
2.1 Directions in dynamic resource control167
2.2 Generalizing overload management .168
2.3 Towards a service-oriented operating system169
2.4 Using SEDA in a cluster environment .170

9 Conclusions 172

Bibliography 175

vi

List of Figures

1 The effect of sudden load on a Web server:This is a graph of the Web server logs
from the USGS Pasadena Field Office Web site after an earthquake registering 7.1
on the Richter scale hit Southern California on October 16, 1999. The load on the
site increased almost 3 orders of magnitude over a period of just 10 minutes. Before
the earthquake, the site was receiving about 5 hits per minute on average. The gap
between 9am and 12pm is a result of the server’s log disk filling up. The initial burst
at 3am occurred just after the earthquake; the second burst at 9am when people in
the area began to wake up the next morning. (Web server log data courtesy of Stan
Schwarz, USGS.). 8

2 Threaded server design:Each incoming request is dispatched to a separate thread,
which performs the entire processing for the request and returns a result to the
client. Edges represent control flow between components. Note that other I/O op-
erations, such as disk access, are not shown here, but are incorporated within each
threads’ request processing.. 16

3 Threaded server throughput degradation: This benchmark measures a simple
threaded server that dispatches a separate thread for each concurrent request in the
system. After receiving a request, each thread performs an 8 KB read from a disk
file; all threads read from the same file, so the data is always in the buffer cache.
Threads are pre-allocated in the server to eliminate thread startup overhead from
the measurements, and requests are generated internally to negate network effects.
The server is implemented in C and is running on a 4-way 500 MHz Pentium III
with 2 GB of memory under Linux 2.2.14. As the number of concurrent requests in-
creases, throughput initially increases until about 8 threads are in use. Adding addi-
tional threads causes throughput to degrade substantially. Response time becomes
unbounded as request queue lengths increase; for comparison, we have shown the
ideal linear response time curve (note the log scale on the horizontal axis).. . . . 18

4 Event-driven server design:This figure shows the flow of events through an event-
driven server. The main thread processes incoming events from the network, disk,
and other sources, and uses these to drive the execution of many finite state ma-
chines. Each FSM represents a single request or flow of execution through the
system. The key source of complexity in this design is the event scheduler, which
must control the execution of each FSM.. 23

vii

5 Finite state machine for a simple HTTP server request:This figure depicts a
static HTTP server request as a finite state machine (FSM) as used in an event-
driven system. Each state represents some aspect of request processing, and edges
represent transitions between states, triggered by incoming events or the completion
of the processing for a given state.. 24

6 Event-driven server throughput: This benchmark measures an event-driven ver-
sion of the server from Figure 3. In this case, the server uses a single thread to
process tasks, where each task reads 8 KB from a single disk file. Although the
filesystem interface provided by the operating system used here (Linux 2.2.14) is
blocking, because the disk data is always in the cache, this benchmark estimates the
best possible performance from a nonblocking disk I/O layer. As the figure shows,
throughput remains constant as the load is increased to a very large number of tasks
(note the change in the horizontal axis scale from Figure 3), and response time is
linear (note the log scale on the horizontal axis).. 25

7 Performance degradation of nonblocking sockets:This graph shows the aggre-
gate bandwidth through a server making use of either nonblocking or blocking
socket interfaces. Each client opens a connection to the server and issues bursts
of 1000 8 KB packets; the server responds with a single 32-byte ACK for each
burst. All machines are 4-way Pentium III systems running Linux 2.2.14 connected
using Gigabit Ethernet. Two implementations of the server are shown: one makes
use of nonblocking sockets with the/dev/poll mechanism for event delivery,
and the other makes use of blocking sockets and a bounded thread pool to emulate
asynchrony. The latter implementation allocates one thread per socket for reading
packets, and uses a fixed-size thread pool of 120 threads for writing packets. The
threaded implementation could not support more than 400 simultaneous connec-
tions due to thread limitations under Linux, while the nonblocking implementation
degrades somewhat due to lack of scalability in the network stack.. 33

8 Staged event-driven (SEDA) HTTP server:This is a structural representation
of Haboob, the SEDA-based Web server, described in detail in Chapter 6. The
application is composed as a set ofstagesseparated byqueues. Edges represent
the flow of events between stages. Each stage can be independently managed, and
stages can be run in sequence or in parallel, or a combination of the two. The use of
event queues allows each stage to be individually load-conditioned, for example, by
performing admission control on its event queue. For simplicity, some event paths
and stages have been elided from this figure.. 49

9 A SEDA Stage: A stage consists of anincoming event queue, a thread pool, and
an application-suppliedevent handler. The stage’s operation is managed by a set of
controllers, which dynamically adjust resource allocations and scheduling.. 50

10 The Wrapdesign pattern. 60
11 The Pipelinedesign pattern.. 62
12 The Partition design pattern. 63
13 The Combinedesign pattern. 64
14 The Replicatedesign pattern. 65

viii

15 M/M/m queueing system:Requests arrive at the system according to a Poisson
arrival process with average rateλ, andm servers process each request with an
exponentially distributed service time with mean1/µ. 71

16 Mean response time for an M/M/m queueing system:This graph shows the mean
response time (time in queue plus service time) for requests entering an M/M/m
queueing system with an average service rateµ = 3.0, under a varying average
arrival rate λ and 1, 2, or 3 servers. As the graph shows, the system becomes
unstable asλ→ mµ. 73

17 Load-dependent servicing rate as a function of the number of threads:This
graph shows sample plots for the base service rateµm for two different settings
of the parametersα, β, andm′. In the upper curve, asm increases, performance
increases until the natural parallelism limitα is reached, and degrades oncem′

has been exceeded. In the lower curve,m′ < α, so performance degradation begins
earlier, although additional threads still benefit performance untilα has been reached.75

18 Mean response time of a load-dependent M/M/m queueing system:This graph
shows the mean response time as a function of the mean arrival rateλ and number
of threads for a simulated load-dependent M/M/m queueing system withµ = 0.05,
α = 4, m′ = 15, andβ = 0.01. With a small number of threads, the system is
underprovisioned so response time is large. With a large number of threads, the
overhead of the threading systemφ dominates, driving response time up.. 78

19 Open Jackson queueing network:An example Jackson queueing network con-
sisting of five service centers with respective exponential service time distributions
µi, µj , µk, µl, andµm. Poisson job arrivals enter the system at service centersi
and j with respective average ratesri and rj . Pij represents the probability of a
request being routed between service centersi andj; Pi,out is the probability of a
job leaving the system after being processed at service centeri. 79

20 Effect of stage pipelining: This figure shows the response time as a function of
the arrival rateλ for two servers: (a) a single M/Er/m server where the service
time is the sum of two exponentially distributed steps withµ = 0.07; and (b) two
M/M/m stages in tandem where each stage has an exponentially distributed service
time withµ = 0.07. In (a), the number of threads in the stage ranges from 1 to 4;
in (b), the number of threads in each stage ranges from 1 to 2. As the figure shows,
adding threads to the M/Er/m server scales the peak rateλ, while in the M/M/m
case, only when both stages are well-provisioned does the pipeline avoid overload.82

21 Effect of stage partitioning: This figure shows the response time as a function
of the arrival rateλ for two servers. (a) shows a single server where each request
requires initial processing (µA = 0.9), followed by either a “slow” (bottleneck) step
(µB = 0.02) or a “fast” step (µC = 0.07). 50% of the requests require processing
at the bottleneck. (b) shows the effect of thePartition pattern, in which request
processing is performed by a tree of three stages, with initial processing at the root;
the “slow” and “fast” steps are performed in separate stages at the leaves. In (a),
adding threads to the stage increases the maximum stable arrival rateλ, while in
(b), it suffices to add threads only to “slow” stage, up to a certain point when the
“fast” stage becomes the bottleneck.. 84

ix

22 Replicated queueing system:This figure shows two queueing systems with identi-
cal processing capacity but with different performance characteristics. (a) shows a
single stage with multiple threads each processing requests from a single queue. (b)
shows multiple single-threaded stages each with their own queue.. 85

23 Performance effect of replication: This figure shows the response time as a func-
tion of the arrival rateλ for two servers: (a) Two M/M/m stages in tandem, the first
with an exponential service rate ofµ1 = 2.9 and a single thread, and the second
with an exponential service rate ofµ2 = 0.02 and either 2, 4, or 8 threads; (b) A
tree of stages consisting of a single stage at the root withµ1 and a single thread
as above, and with 2, or, or 8 stages at the leaves each with service rateµ2 and a
single thread. Requests have an equal probability of being routed to each of the leaf
stages. As the figure shows, adding threads to a stage has roughly the same effect
on the maximum stable arrival rate as replicating a single-threaded stage, though
the replicated system exhibits higher response times under lighter load.. 86

24 Sandstorm architecture. Sandstorm is an implementation of SEDA in Java. The
system provides a management interface for creating, destroying and configuring
stages; a profiling and debugging interface; and several pre-built stages providing
asynchronous I/O, timers, and various protocol libraries. Nonblocking socket I/O is
provided with theNBIO library, which implements native code bindings to OS calls
such aspoll(2) and nonblocking sockets. Asynchronous file I/O is accomplished by
wrapping blocking I/O calls in a stage.. 89

25 Core Sandstorm classes.This table shows the core classes in the Sandstorm imple-
mentation of SEDA. Each of these interfaces is implemented either by the applica-
tion designer (in the case ofEventHandlerIF), or by the Sandstorm implementation
itself. By defining system functionality in terms of these interfaces, it is straight-
forward for a service designer to provide an alternate implementation of various
components of the runtime.. 94

26 The Sandstorm sink interface. This interface represents the enqueue end of a
Sandstorm event queue. Methods are provided to enqueue events (with and without
rejection notification), return the number of pending events, perform transactional
enqueues, and manipulate the queue’s admission control predicate.. 97

27 Transactional enqueue example.This code excerpt demonstrates Sandstorm’s
transactional enqueue support, implementing an “all or nothing” enqueue oper-
ation across two queues.. 98

28 Visualization of stage connectivity:This graph was automatically generated from
profile data taken during a run of a Sandstorm-based Gnutella server, described in
Chapter 6. In the graph, boxes represent stages, ovals represent classes through
which events flow, and edges represent event propagation. The main application
stage isGnutellaLogger , which makes use ofGnutellaServer to manage
connections to the Gnutella network. The intermediate nodes represent Gnutella
packet-processing code and socket connections.. 100

x

29 Sandstorm resource controllers: This figure depicts two of the resource con-
trollers in Sandstorm that adjust the resource allocation and behavior of each stage
to keep the application within its operating regime. Thethread pool controllerad-
justs the number of threads executing within the stage based on perceived demand,
and thebatching controlleradjusts the number of events processed by each iteration
of the event handler to optimize throughput and response time.. 101

30 Sandstorm thread pool controller: This graph shows the operation of the thread
pool controller for one of the stages in the Haboob Web server, described in Chap-
ter 6. The controller adjusts the size of each stage’s thread pool based on the length
of the corresponding event queue. In this run, the queue length was sampled every
2 seconds and a thread was added to the pool if the queue length exceeded 100
events. Here, a maximum per-stage limit of 20 threads was imposed. Threads are
removed from the pool when they are idle for more than 5 seconds. The three bursts
of activity correspond to an increasing number of clients accessing the Web server;
as the figure shows, as the demand on the stage increases, so does the number of
threads allocated to it. Likewise, as demand subsides, threads are removed from the
pool. .102

31 Thread pool thrashing detection:This figure shows the operation of the thrashing
detection mechanism in the Sandstorm thread pool controller, which serves to bound
the maximum size of each stage’s thread pool to avoid performance degradation.
Here, a single stage is continuously overloaded, processing CPU-bound requests,
some of which require entering a critical section. In (a), no thrashing detection is
enabled, so the thread pool controller continues to add threads to the stage despite
performance degradation. In (b), the thrashing detection mechanism maintains a
small thread pool size that sustains high throughput.. 103

32 Sandstorm batching controller: This graph shows the operation of the batching
controller for a simple benchmark consisting of a single stage processing a contin-
uous stream of events. The stage’s event handler has an optimal batching factor
of 200 events: the first event in each batch performs a complex operation (gener-
ating 10,000 random numbers), which is amortized across up to 199 other events
in the same batch. If the batching factor is either less than or greater than 200
events, throughput will degrade as the complex operation must be performed more
frequently. The controller first reduces the batching factor to just below the optimal
value, and then increases the batching factor until it approaches the peak through-
put. .106

33 SEDA-based asynchronous sockets layer:The Sandstorm sockets interface con-
sists of three stages:read, write, and listen. Thereadstage responds to network
I/O readiness events and reads data from sockets, pushing new packets to the ap-
plication stage. Thewrite stage accepts outgoing packets and schedules them for
writing to the appropriate socket. It also establishes new outgoing socket connec-
tions. Thelistenstage accepts new TCP connections and pushes connection events
to the application.. .109

xi

34 Sandstorm code size.This table shows the number of classes, methods, and non-
commenting source statements (NCSS) in each package of the Sandstorm implemen-
tation. .115

35 Asynchronous sockets layer performance:This graph shows the performance
of the SEDA-based asynchronous socket layer as a function of the number of si-
multaneous connections. Each client opens a connection to the server and issues
bursts of 8KB packets; the server responds with a single 32-byte ACK for each burst
of 1000 packets. All machines are connected via switched Gigabit Ethernet and
are running Linux 2.2.14. The SEDA-based server makes use of nonblocking I/O
primitives provided by the operating system. Performance is compared against a
compatibility layer that makes use of blocking sockets and multiple threads to emu-
late asynchronous I/O. The thread-based layer was unable to accept more than 400
simultaneous connections, because the number of threads required would exceed
the per-user thread limit in this version of Linux.. 116

36 Haboob HTTP server architecture: This is a structural representation of the
SEDA-based Web server,Haboob.The server consists of a graph of stages for pro-
cessing both static and dynamic HTTP requests. The server maintains a cache of
recently accessed static pages, and a Python-based scripting language (PyTeC) is
used to process dynamic pages. For simplicity, some event paths and stages have
been elided from this figure.. .121

37 Haboob Web server throughput: This figure shows the throughput of the Haboob
Web server compared to Apache and Flash. From 1 to 1024 clients are accessing a
fileset of 3.31 GBytes with a think time of 20 ms between requests. Haboob achieves
roughly 10% higher throughput than Apache and Flash, and all three servers main-
tain high throughput despite increasing load. Also shown is the Jain fairness index
delivered by each server. A fairness index of 1 indicates that the server is equally
fair to all clients; smaller values indicate less fairness. The Haboob and Flash
servers yield very high fairness under increasing loads, while Apache’s fairness de-
grades considerably due to its failure to rapidly accept incoming TCP connections
when saturated.. .126

38 Web server response times with 1024 clients:This figure shows the cumulative
response time distribution for Haboob, Apache, and Flash with 1024 clients. While
Apache and Flash exhibit a high frequency of low response times, there is a heavy
tail, with the maximum response time corresponding to several minutes. This is due
to exponential backoff in the TCP SYN retransmit timer: Apache accepts only 150
connections, and Flash accepts only 506, despite 1024 clients requesting service.
Note the log scale on the horizontal axis.. 127

39 Haboob Web server performance summary:This table summarizes the perfor-
mance of the Haboob, Apache, and Flash Web servers for 64 clients and 1024
clients. Note that the average response time for each server is nearly identical,
though the maximum response times vary widely.. 128

xii

40 Web server response times with 64 clients:This figure shows the cumulative re-
sponse time distribution for Haboob, Apache, and Flash with 64 clients. Under light
load, all three servers exhibit roughly identical response time distributions. This is
in contrast to Figure 38, which shows that Apache and Flash exhibit a great deal of
unfairness to clients when heavily loaded. Note the log scale on the horizontal axis.129

41 Gnutella packet router latency: These graphs show the average latency of ping
and query packets passing through the Gnutella packet router with increasing in-
coming packet rates. Query packets (15% of the packet mix) induce an artificial
server-side delay of 20 ms. (a) shows the latency with a single thread processing
packets. Note that the latency increases dramatically as the offered load exceeds
server capacity; at 1000 packets/sec, the server ran out of memory before a latency
measurement could be taken. (b) shows the latency with the thread pool controller
enabled. Note that for 100 and 200 packets/sec, no threads were added to the appli-
cation stage, since the event queue never reached its threshold value. This explains
the higher packet latencies compared to 400 and 1000 packets/sec, for which 2
threads were added to the stage.. .133

42 Thread pool controller operation in the Gnutella packet router: This figure
shows the queue length of theGnutellaRouterstage over time for a load of 1000
packets/sec, with the thread pool controller active. As the figure shows, the con-
troller added a thread to the stage at each of the two points, which alleviated the
overload situation. .134

43 Architecture of the Arashi e-mail service: Arashi is based on the Haboob Web
server, and shares many stages with it. TheHttpRecvstage directs requests either
to the Haboob page cache (for static pages) or to one of several dynamic page
stages. Dynamic pages are implemented inPyTeC, a Python-based scripting lan-
guage. Each request type is handled by a separate stage, and these stages are
subject to admission control to prevent overload.. 136

44 Screenshot of the Arashi e-mail service:Arashi allows users to read e-mail through
a Web browser interface. Many traditional e-mail reader features are implemented,
including message search, folder view, sorting message lists by author, subject, or
date fields, and so forth.. .137

45 Simplified PyTeC source code for an Arashi request:This figure shows the
source code for an Arashi “message display” operation. The code consists of
Python embedded in HTML, which performs database access operations as well
as calls to Python and Java libraries.. 139

46 State transition probabilities for the Arashi client load generator: This table
shows the probability of an emulated user transitioning from a given state (listed in
the left column) to a new state (in the top row). These probabilities are based on
traces from the Berkeley departmental IMAP server. The set of possible transitions
out of a given state is limited by the request types that a user can generate from that
state; for example, after listing the set of folders, the only possible transition is to
select a new folder. For thedeleteand refile states, the user always transitions to
the previous page visited.. .140

xiii

47 Arashi server performance: This figure shows the throughput (in terms of requests
per second) and 90th-percentile response time for the Arashi e-mail service as a
function of increasing user load. As the figure shows, a modest load is able to
saturate the service, leading to increasingly large response times as load increases
beyond the saturation point. Throughput does not degrade as user load is increased
beyond saturation. .141

48 Response time based on request type:This figure shows the 90th-percentile re-
sponse time for each request type in the Arashi e-mail service for loads of 16 and
1024 users. The response time depends heavily on the complexity of the user re-
quest; while login requests are processed quickly, searching messages for a small
string is very resource-intensive.. .142

49 Response time controller design:The controller observes a history of response
times through the stage, and adjusts the rate at which the stage accepts new requests
to meet an administrator-specified 90th-percentile response time target.. 148

50 Parameters used in the response time controller.. 149
51 Multiclass overload controller design:For each request class, the controller mea-

sures the 90th-percentile response time, and adjusts the rate at which the stage ac-
cepts new requests of each class. When overload is detected, the admission rate for
lower-priority classes is reduced before that of higher-priority classes.. 151

52 Overload controller operation: This figure shows the operation of the SEDA over-
load controller for one of the stages in the Arashi e-mail service during a large load
spike. A load spike of 1000 users enters the system at aroundt = 70 and leaves
the system aroundt = 150. The response time target is set to 1 sec. The overload
controller responds to a spike in response time by exponentially decreasing the ad-
mission rate of the stage. Likewise, when the measured response time is below the
target, the admission rate is increased slowly. Notice the slight increase in the ad-
mission rate aroundt = 100; this is an example of the proportional increase of the
admission rate based on the error between the response time measurement and the
target. The spikes in the measured response time are caused by bursts of requests
entering the stage, as well as resource contention across stages.. 153

53 Overload control in Arashi: This figure shows the 90th-percentile response time
for the Arashi e-mail service with and without the overload controller enabled. The
90th-percentile response time target is 10 sec. Also shown is the fraction of rejected
requests with overload control enabled. Note that the overload controller is operat-
ing independently on each request type, though this figure shows the 90th-percentile
response time and reject rate averaged across all requests. As the figure shows, the
overload control mechanism is effective at meeting the response time target despite
a many-fold increase in load. .154

xiv

54 Per-request-type response times with overload control:This figure shows the
90th-percentile response time for each request type in the Arashi e-mail service for
loads of 16 and 1024 users, with the overload controller enabled using a response
time target of 10 sec. Although request types exhibit a widely varying degree of
complexity, the controller is effective at meeting the response time target for each
type. With 1024 users, the performance target is exceeded forsearchrequests, due
to their relative infrequency. Compare these values with Figure 48 in Chapter 6,
which shows response times without overload control enabled.. 155

55 Overload control under a massive load spike:This figure shows the 90th-percentile
response time experienced by clients using the Arashi e-mail service under a mas-
sive load spike (from 3 users to 1000 users). Without overload control, response
times grow without bound; with overload control (using a 90th-percentile response
time target of 1 second), there is a small increase during load but response times
quickly stabilize. The lower portion of the figure shows the fraction of requests
rejected by the overload controller.. 156

56 Effect of service degradation:This figure shows the 90th-percentile response time
experienced by clients accessing a simple service consisting of a single bottleneck
stage. The stage is capable of degrading the quality of service delivered to clients
in order to meet response time demands. The 90th-percentile response time target
is set to 5 seconds. Without service degradation, response times grow very large
under a load spike of 1000 users. With service degradation, response times are
greatly reduced, oscillating near the target performance level.. 158

57 Service degradation combined with admission control:This figure shows the
effect of service degradation combined with admission control. The experiment is
identical to that in Figure 56, except that the bottleneck stage re-enables admission
control when the service quality is at its lowest level. In contrast to the use of ser-
vice degradation alone, degradation coupled with admission control is much more
effective at meeting the response time target.. 159

58 Multiclass experiment without service differentiation: This figure shows the
operation of the overload control mechanism in Arashi with two classes of 128 users
each accessing the service. The high-priority users begin accessing the service at
time t = 100 and leave att = 200. No service differentiation is used, so all users
are treated as belonging to the same class. The 90th-percentile response time target
is set to 10 sec. The controller is able to maintain response times near the target,
though no preferential treatment is given to higher-priority users as they exhibit an
identical frequency of rejected requests.. 160

59 Multiclass service differentiation: This figure shows the operation of the mul-
ticlass overload control mechanism in Arashi with two classes of 128 users each.
Service differentiation between the two classes is enabled and the 90th-percentile
response time target for each class is 10 sec. The high-priority users begin access-
ing the service at timet = 100 and leave att = 200. As the figure shows, when
the high-priority users become active, there is an initial load spike that is compen-
sated for by penalizing the admission rate of the low-priority users. Overall the
low-priority users receive a large number of rejections than high-priority users.. . 161

xv

Acknowledgments

First and foremost, I would like to thank David Culler, my advisor and mentor, for lending

his extensive experience and incredibly broad vision to this thesis work, as well as all of my research

at Berkeley. David has an amazing way of cutting to the core of complex subjects and focusing on

the important details. David is also unafraid to work on very hard problems, as well as to drastically

change research directions—traits that I can only hope have rubbed off on me.

I owe a great deal of thanks to Eric Brewer, one of the principal investigators on the Ninja

project, under which much of my research at Berkeley was conducted. Eric always seems to have

something insightful and interesting to say about any given research problem, and I am grateful to

have his critique on this thesis. I am also indebted to Marti Hearst for her valuable feedback on this

dissertation, as well as for early comments on the SEDA project.

I have had the pleasure of working with a number of talented undergraduate students over

the years, and several of them have contributed substantial code to the SEDA project. Eric Wagner

implemented the PyTeC service construction language and ported Sandstorm’s sockets interface to

JDK 1.4. Dennis Chi did a heroic job implementing the asynchronous TLS/SSL library described

in Chapter 6. Jerrold Smith ported the nonblocking I/O layer to Windows 2000.

Other thanks are due to Steve Czerwinski for providing the IMAP traces used to develop

the client load generator in Chapter 6; Stan Schwarz at the USGS Pasadena Field office for pro-

viding the Web server logs in Chapter 2; and Mor Harchol-Balter at CMU for her course notes and

thorough review of Chapter 4. Many of the experiments in this dissertation were carried out on

the UC Berkeley Millennium cluster, and would not have been possible without the support of Eric

Fraser, Matt Massie, and Albert Goto.

Many others at Berkeley and elsewhere provided much advice and feedback on my work

over the years. In particular, Joe Hellerstein offered a good deal of critical analysis of my research,

and the occasional (much-needed) grilling. Steve Gribble was deeply involved in many aspects of

this research, providing countless hours of discussion, debate, and counsel during my first few years

xvi

at Berkeley.

I owe a great deal of inspiration to Thorsten von Eicken and Dan Huttenlocher, who

found numerous ways to keep me busy while I was an undergrad at Cornell. I will never forget

being boxed in by six workstations, running my first ATM network benchmarks, and wiring an

oscilloscope to the PCI bus to get measurements for a paper. My fellow grad students, including

Jason Hill, Phil Buonadonna, Fredrick Wong, Rich Martin, Brent Chun, Kamin Whitehouse, and

Phil Levis, provided a constant source of entertainment and encouragement that kept me going

through the many ups and downs of the graduate student experience.

Amy Bauer, my best friend, partner in crime, and fiancée, helped me in more ways than

I can possibly recount here, and I am eternally grateful for her love and support. Last but not least,

my parents are the ones to thank for getting me here in the first place—it all started with that VIC-20

we bought when I was nine.

This research was supported by several grants, fellowships, and equipment donations from

the Defense Advanced Research Projects Agency, the National Science Foundation, Intel Corpora-

tion, Nortel Networks, and Royal Philips Electronics.

1

Chapter 1

Introduction and Motivation

This dissertation presents an architecture for handling the massive concurrency and load

conditioning demands of busy Internet services. Our thesis is that existing programming models and

operating system structures do not adequately meet the needs of complex, dynamic Internet servers,

which must support extreme concurrency (on the order of tens of thousands of client connections)

and experience load spikes that are orders of magnitude greater than the average. We propose a

new software framework, called thestaged event-driven architecture(or SEDA), in which appli-

cations are constructed as a network of event-driven stages connected with explicit queues [147].

In this model, each stage embodies a robust, reusable software component that performs a subset

of request processing. By performing admission control on each event queue, the service can be

well-conditioned to load, preventing resources from being overcommitted when demand exceeds

service capacity. SEDA employs dynamic control to tune runtime parameters (such as the schedul-

ing parameters of each stage) automatically, as well as to manage load, for example, by performing

adaptive load shedding. In this dissertation, we show that the SEDA design yields higher perfor-

mance than traditional service designs, while exhibiting robustness to huge variations in load.

2

1 Introduction: The rise of Internet services

The explosive growth of the Internet in the last few years has given rise to a vast range

of new services being deployed on a global scale. No longer dominated by Web sites with static

content, Internet services span a diverse range of categories including stock trading, live media

broadcasts, online shopping, instant messaging, peer-to-peer file sharing, and application hosting. In

contrast to static content sites, this new class of dynamic services requires significant computational

and I/O resources to process each request. An increasingly complex array of systems are involved in

delivering these services, including Web servers, caches, middle-tier application servers, databases,

and legacy systems. At the same time, exponential growth of the Internet population is placing

unprecedented demands upon the scalability and robustness of these services. Yahoo! receives over

1.2 billion page views daily [150], and AOL’s Web caches service over 10 billion hits a day [6].

Internet services have become critical both for driving large businesses as well as for per-

sonal productivity. Global enterprises are increasingly dependent upon Internet-based applications

for e-commerce, supply chain management, human resources, and financial accounting. Many in-

dividuals consider e-mail and Web access to be indispensable lifelines. This growing dependence

upon Internet services underscores the importance of their availability, scalability, and ability to

handle large loads. Such popular sites as EBay [94], Excite@Home [55], and E*Trade [18] have

had embarrassing outages during periods of high load. An extensive outage at E*Trade resulted in a

class-action lawsuit against the online stock brokerage by angry customers [130]. Likewise, during

a week-long outage of MSN Messenger [148], many users expressed a great amount of desperation

and hostility from being disconnected from the instant-messaging service. As more people begin to

rely upon the Internet for managing financial accounts, paying bills, and potentially even voting in

elections, it is increasingly important that these services perform well and are robust to changes in

load.

This challenge is exacerbated by the burstiness of load experienced by Internet services.

Popular services are subjected to huge variations in demand, with bursts coinciding with the times

3

that the service has the most value. The well-documented “Slashdot Effect”1 shows that it is not un-

common to experience more than 100-fold increases in demand when a site becomes popular [142].

The events of September 11, 2001 provided a poignant reminder of the inability of Internet ser-

vices to scale: virtually every Internet news site was completely unavailable for several hours due

to unprecedented demand following the terrorist attacks on New York and Washington. CNN.com

experienced a two-and-a-half hour outage with load exceeding 20 times the expectedpeak[83]. Al-

though the site team managed to grow the server farm by a factor of 5 by borrowing machines from

other sites, even this was not sufficient to deliver adequate service during the load spike. CNN.com

came back online only after replacing the front page with a text-only summary in order to reduce

load [22].

Apart from these so-called flash crowds, sites are also subject to denial-of-service attacks

that can knock a service out of commission. Such attacks are increasingly sophisticated, often being

launched simultaneously from thousands of sites across the Internet. Denial-of-service attacks have

had a major impact on the performance of sites such as Buy.com, Yahoo!, and whitehouse.gov [86],

and several companies have been formed to help combat this problem [85].

The number of concurrent sessions and hits per day to Internet sites translates into a large

number of I/O and network requests, placing enormous demands on underlying resources. Unfor-

tunately, traditional operating system designs and common models of concurrency do not provide

graceful management of load. Commodity operating systems focus on providing maximal trans-

parency by giving each process the abstraction of a virtual machine with its own CPU, memory,

disk, and network. Processes and threads are traditionally used for concurrency, but these mech-

anisms entail high overheads in terms of memory footprint and context switch time. Although

simplifying the programming model, transparent resource virtualization prevents applications from

making informed decisions, which are vital to managing excessive load.

1This term is often used to describe what happens when a site is hit by sudden, heavy load. This term refers to the
technology news siteslashdot.org , which is itself hugely popular and often brings down other less-resourceful sites
when linking to them from its main page.

4

2 Thesis summary

This dissertation proposes a new design framework for highly concurrent server appli-

cations, called thestaged event-driven architecture(SEDA).2 SEDA combines the use of threads

and event-based programming models to manage the concurrency, I/O, scheduling, and resource

management needs of Internet services. In SEDA, applications are constructed as a network of

stages, each with an associatedincoming event queue. Each stage represents a robust building block

that may be individually conditioned to load by thresholding or filtering its event queue. In addi-

tion, making event queues explicit allows applications to make informed scheduling and resource-

management decisions, such as reordering, filtering, or aggregation of requests.

An important aspect of SEDA is that it relies onfeedback-driven controlfor managing

resources and adapting to overload conditions. This approach avoids the use of static resource

limits and “knobs”, subject to error-prone manual configuration, that can have a serious impact on

performance. Rather, SEDA-based services are instrumented to observe their own performance,

using feedback to adjust resource allocations and perform admission control when the service is

overloaded. In this way, dynamic control keeps the service within its ideal operating regime despite

fluctuations in load.

This dissertation describes the design, architecture, and implementation of a SEDA-based

Internet services platform. This platform provides efficient, scalable I/O interfaces as well as several

resource-control mechanisms, including thread pool sizing and adaptive load shedding. We present

a queue-theoretic performance model for SEDA-based systems that formally describes the effects of

application structure, queue management, and thread allocations. This model serves as a guideline

for SEDA service developers to understand the performance of a given application design.

Our prototype of SEDA, called Sandstorm, is implemented in Java and exhibits good

performance and scalability, even surpassing two popular Web servers implemented in C. We also

develop a family of overload control mechanisms based on adaptive admission control and service

2Sedais also the Spanish word forsilk.

5

degradation. These mechanisms allow the service to meet administrator-specified performance tar-

gets despite enormous load spikes.

We evaluate the SEDA framework through several applications, including a high-

performance HTTP server, a packet router for the Gnutella peer-to-peer file sharing network, and a

Web-based e-mail service making use of dynamic scripting and database access. We present perfor-

mance and scalability results demonstrating that SEDA achieves robustness over huge variations in

load and outperforms other service designs.

We argue that using SEDA, highly concurrent applications are easier to build, more ef-

ficient, and more robust to load. With the right set of interfaces, application designers can focus

on application-specific logic, rather than the details of concurrency and resource management. The

SEDA design is based on the concept of exposing overload to an Internet service, allowing it to

adapt and participate in load-management decisions, rather than taking the more common view that

overload protection is only the responsibility of the underlying operating system. At the same time,

the SEDA design attempts to shield application designers from many complex aspects of system

architecture, such as thread management and scheduling. Our goal is to strike the right balance be-

tween exposing resource control and burdening the application designer with unneeded complexity.

3 Background: Internet service properties

The Internet presents a systems problem of unprecedented scale: that of supporting mil-

lions of users demanding access to services that must be responsive, robust, and always available.

This work is motivated by three fundamental properties of Internet services: massive concurrency

demands, an increasing trend towards complex, dynamic content, and a need to be extremely robust

to load. In this section we detail each of these properties in turn.

6

3.1 High concurrency

The growth in popularity and functionality of Internet services has been astounding.

While the Web itself is growing in size, with recent estimates anywhere between 1 billion [64]

and 2.5 billion [114] unique documents, the number of users on the Web is also growing at a stag-

gering rate. In April 2002, Nielsen//NetRatings estimates that there are over 422 million Internet

users worldwide [104], and a study in October 2000 [48] found that there are over 127 million adult

Internet users in the United States alone.

As a result, Internet applications must support unprecedented concurrency demands, and

these demands will only increase over time. As of December 2001, Yahoo! serves 1.32 billion pages

a day, and delivers over 19.1 billion messages through its e-mail and instant messenger services

monthly [150]. Internet traffic during the 2000 U.S. presidential election was at an all-time high,

with ABC News reporting over 27.1 million pageviews in one day, almost 3 times the peak load

that the site had ever received. Many news and information sites were reporting a load increase

anywhere from 130% to 500% over their average [92].

3.2 Dynamic content

The early days of the Web were dominated by the delivery of static content, mainly in the

form of HTML pages and images. More recently, dynamic, on-the-fly content generation, which

requires significant amounts of computation and I/O to generate, has become more widespread.

A typical dynamic Internet service involves a range of systems, including Web servers, middle-

tier application servers, and back-end databases, to process each request. The processing for each

request might include encryption and decryption (e.g., if the SSL protocol is being used); server-

side scripting using frameworks such as Java 2 Enterprise Edition (J2EE) [123] or PHP [134];

database access; or access to legacy systems such as mainframes (still commonly used for airline

ticketing). In contrast to static Web pages, dynamic services require greater resources, and the

resource demands for a given service are difficult to predict. Moreover, the content generated by a

7

dynamic Internet service is often not amenable to caching, so each request demands a large amount

of server resources.

The canonical example of a highly dynamic Internet service is a large “mega-site” such

as Yahoo! [149], which provides a wide range of services, including a search engine, real-time chat,

stock quotes, driving directions, and access to online retailers. In addition to consumer-oriented

sites, specialized business-to-business applications, ranging from payroll and accounting to site

hosting, are becoming prevalent. The trend towards dynamic content is also reflected in industry

standard benchmarks for measuring Web server performance, such as SPECweb99 [119], which

includes a significant dynamic content-generation component as part of the standard workload.

Another aspect of the increased demand on Internet services is that the size of Web content

is growing, with streaming media, MP3 audio files, videos, and large software downloads becoming

increasingly common. In October 2000, not long before the Napster file-trading service was shut

down, CNET [78] reported 1.3 billion MP3 files were exchanged over the service in one month,

with over 640,000 users downloading songs at any given time. Apart from placing new demands on

networks, this growth in content requires that Internet services be responsible for dedicating large

numbers of resources for storing and serving vast amounts of data.

3.3 Robustness to load

Demand for Internet services can be extremely bursty, with the peak load being orders of

magnitude greater than the average load. Given the vast user population on the Internet, virtually

any site can be suddenly inundated with a surge of requests that far exceed its ability to deliver

service. The media has reported on numerous examples of popular Internet sites being brought

down by excessive load. We have already discussed the effects of the September 11 attacks on news

sites. In September 1998, the U.S. Government released Ken Starr’s report on President Clinton

on the Internet, causing seven government sites to be swamped with requests from over 20 million

users [34]. During the February 1999 Internet broadcast of a Victoria’s Secret Fashion show, over

8

0

10

20

30

40

50

60

70

80

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

H
its

 p
er

 s
ec

on
d

Time

USGS Web server load

Figure 1: The effect of sudden load on a Web server:This is a graph of the Web server logs
from the USGS Pasadena Field Office Web site after an earthquake registering 7.1 on the Richter
scale hit Southern California on October 16, 1999. The load on the site increased almost 3 orders
of magnitude over a period of just 10 minutes. Before the earthquake, the site was receiving about
5 hits per minute on average. The gap between 9am and 12pm is a result of the server’s log disk
filling up. The initial burst at 3am occurred just after the earthquake; the second burst at 9am
when people in the area began to wake up the next morning. (Web server log data courtesy of Stan
Schwarz, USGS.)

1.5 million users logged in simultaneously to view the broadcast, causing the site to melt down

under the overload. According to Keynote systems, a Web site monitoring firm, only 2 percent of

requests to the site succeeded during the live show [19].

As a more concrete example, Figure 1 shows the load on the U.S. Geological Survey

Pasadena Field Office Web site after a large earthquake hit Southern California in October 1999.

The load on the site increased almost 3 orders of magnitude over a period of just 10 minutes,

causing the Web server’s network link to saturate and its disk log to fill up [142]. Note that this

figure shows only the number of requests that were successfully logged by the server; due to the

overload, it is likely that an even larger number of requests were present but not recorded. During

the load spike, the system administrator who was responsible for the Web site was unable to login

9

to the system remotely to clear up the disk log, and had to physically reboot the machine in order to

regain control.

The most common approach to dealing with heavy load is to overprovision resources. In

the case of a Web site, the administrators simply buy enough Web server machines to handle the

peak load that the site could experience, and load balance across them. However, overprovisioning

is infeasible when the ratio of peak to average load is very high; it is not practical to purchase 100

or 1000 times the number of machines needed to support the average load case. This approach also

neglects the cost issues which arise when scaling a site to a large “farm” of machines; the cost of

managing a large cluster of machines is no doubt much higher than the multiplicative cost of the

machines themselves.

Given that we cannot expect most Internet services to scale to peak demand, it is critical

that services are designed to bewell-conditioned to load. That is, when the demand on a service

exceeds its capacity, a service should not overcommit its resources and degrade in a way that all

clients suffer. Rather, the service should be aware of overload conditions and attempt to adapt to

them, either by degrading the quality of service delivered to clients, or by (predictably) shedding

load, such as by giving users some indication that the service is saturated. It is far better for an

overloaded service to inform users of the overload than to silently drop requests.

Nevertheless, replication is a key aspect of service scalability, and is commonly employed

using both scalable clusters to obtain replication within a service site [45], as well as in the wide

area, as with content-distribution networks [5, 39, 49]. Despite such scaling, we expect the indi-

vidual nodes within a scalable system to experience large load spikes. Our goal in this thesis is to

complement the use of replication by addressing the problem of load management within an individ-

ual node. Therefore we focus on developing a general framework for authoring highly concurrent

and well-conditioned service instances that can potentially be deployed in a replicated system.

10

4 Trends in the Internet service design space

The systems challenge associated with robust Internet service design is magnified by two

trends that increase the generality of services: rapid evolution of service logic and the drive for

general-purpose platforms for hosting services.

4.1 Rapid evolution of service logic

Internet services experience a high rate of change and innovation, driven by the constantly

evolving Internet marketplace. Popular sites are constantly adding new functionality to stay com-

petitive, a trend which is supported by the increasing ease of Internet service development using

simplified Web scripting languages such as PHP [134] and Java servlets [127]. It is excessively

time-consuming to carefully engineer and tune each new service component to deal with real-world

loads, and as a result, deployment of new service functionality often takes precedence over robust-

ness.

4.2 General-purpose hosting platforms

Internet services are increasingly hosted on general-purpose facilities, rather than on plat-

forms that are specifically engineered for a particular service. A number of companies, such as Ex-

odus, EDS, and ProTier, are now providing managed Internet hosting services, which are based in

replicated Internet data centers with carefully managed hardware and software platforms. Accord-

ingly, the Internet services market is dominated by generic frameworks, often based upon scalable

workstation clusters running commodity operating systems, using a standard software platform such

as Java 2 Enterprise Edition (J2EE) [123]. In this environment, service authors have little control

over the underlying medium upon which the service will be deployed and run.

As these trends continue, we envision that a rich array of novel services will be authored

and pushed into the infrastructure where they may become successful enough to scale to millions of

users. Several investigations are addressing the high-level aspects of service authorship, including

11

naming, lookup, composition, and versioning [36, 53, 59, 122, 128]. Our focus is on the perfor-

mance and robustness aspect of the problem: achieving well-conditioned performance on a wide

range of services subject to huge variations in load, while preserving ease of authorship. We ar-

gue that the right way to approach this problem is through a generic service platform that manages

load in a manner that is cleanly separated from the service-specific logic, while giving services an

indication of load and the ability to participate in load-management decisions.

5 Thesis summary and contributions

Much work has focused on performance and robustness for specific services [4, 61, 106,

151]. However, with services becoming increasingly dynamic and flexible, the engineering burden

required to make services robust to heavy demands becomes excessive. Few tools exist that aid

the development of highly concurrent, well-conditioned services; our goal is to reduce this com-

plexity by providing general-purpose mechanisms that aid software developers in obtaining these

properties.

An additional hurdle to the construction of Internet services is that there is little in the

way of a systematic approach to building these applications, and reasoning about their performance

or behavior under load. Designing Internet services generally involves a great deal of trial-and-error

on top of imperfect OS and language interfaces. As a result, applications can be highly fragile—any

change to the application code or the underlying system can result in performance problems, or

worse, total meltdown.

The goal of this thesis is to design a generic software architecture that can:

• Handle the massive concurrency demands of Internet services;

• Deal gracefully with large variations in load;

• Generalize to a broad class of Internet services; and,

• Simplify the construction of services by decoupling load management from service logic.

12

In this dissertation, we present the design an implementation of thestaged event-driven architecture

(or SEDA), a software platform designed to meet these goals. We present a detailed application and

performance study, demonstrating that SEDA yields higher performance than traditional service

designs, allows services to be well-conditioned to overload, and simplifies service design.

This dissertation makes the following contributions:

The Staged Event-Driven Architecture: The focus of this work is on the SEDA architecture,

which decomposes a complex Internet service into a network of event-drivenstagesconnected with

explicit queues. We present a detailed look at related approaches to concurrency and load manage-

ment, proposing the SEDA approach as a general-purpose model for Internet service design. Also,

we present a set ofdesign patternsthat describe how to map a given Internet service onto the SEDA

design to achieve high performance, robustness to load, and code modularity. To round out our dis-

cussion of SEDA, we present a queue-theoretic performance model that describes the behavior of

SEDA-based services in terms of request load, service time distribution, stage graph structure, and

thread allocations. This model can be used by a system designer to understand the various factors

that affect SEDA performance.

The SandstormInternet service platform: We describe a Java-based implementation of SEDA,

calledSandstorm, that provides a rich set of programming interfaces for developing SEDA-based

services. Sandstorm is intended to reduce the complexity of service development by hiding the

details of thread allocation, scheduling, and resource control from application code. Sandstorm

provides built-in interfaces for stage graph construction, asynchronous network and file I/O, and

per-stage resource control.

Feedback-driven overload control: We investigate a family of overload prevention techniques

based on per-stage admission control. These mechanisms automatically shed load from an over-

loaded service by monitoring stage performance and adapting admission control parameters ac-

13

cordingly. We present techniques for meeting a 90th-percentile response time target, class-based

service differentiation, and application-specific service degradation.

Detailed application evaluation: Finally, we present a detailed evaluation of several significant

applications built using the Sandstorm runtime. These includeHaboob, a high-performance Web

server; a packet router for the Gnutella peer-to-peer file sharing network; andArashi, a Web-based

e-mail service. Our results show that SEDA-based services exhibit high performance and are well-

behaved under extreme variations in load. The Haboob Web server outperforms the popular Apache

and Flash Web servers, which are implemented in C, and exhibits a great deal of fairness to clients.

The Gnutella packet router is capable of driving a load of over 20,000 packets a second, and is

used to demonstrate the use of automatic resource tuning to overcome an artificial bottleneck in the

service. The Arashi e-mail service is an example of a complex service making use of dynamic page

generation and database access. Arashi is used to evaluate the feedback-driven overload control

mechanisms in a number of scenarios, including graceful degradation under a massive load spike.

6 Dissertation roadmap

The rest of this dissertation is organized as follows.

In Chapter 2, we present the motivation and background for this work, discuss previous

work in Internet service construction, and describe the shortcomings of existing approaches to con-

currency and load management for Internet services. Chapter 3 describes the SEDA architecture in

detail, and presents a set of design patterns that one can use to map a service from the traditional

single-task model into the SEDA design. Chapter 4 presents a performance model for SEDA based

on results from queueing theory, which is useful for motivating an intuition for the performance of

SEDA-based applications.

In Chapter 5, we present the design and implementation of Sandstorm, our SEDA-based

Internet services platform. Sandstorm has been used to build a number of complex Internet services,

14

which are described in Chapter 6. This chapter also presents a detailed performance study of several

SEDA applications, demonstrating scalability and robustness to load. In Chapter 7 we present a

feedback-driven approach to overload management through the use of adaptive admission control

and service degradation. This chapter explores a range of load conditioning mechanisms that can

be employed in SEDA, and discusses the tradeoff between load shedding and application-specific

adaptivity to overload.

Finally, in Chapters 8 and 9, we present reflections on the SEDA design, outline several

areas for future work, and conclude.

15

Chapter 2

Background and Related Work

This chapter develops the lineage of the SEDA approach by outlining the previous steps

towards solving the performance, scalability, and robustness problems faced by Internet services.

The key requirements and challenges for Internet service design have been discussed in the previous

chapter. In summary, the primary goals of an Internet service are to support massive concurrency (in

the form of many simultaneous requests or user connections); an extremely dynamic environment

in terms of the request distribution as well as the resources required to process each request; and

predictable, well-conditioned performance despite large variations in offered load.

Related work towards supporting these goals can be broadly categorized as follows. We

begin by discussing the two most common programming models for expressing concurrency: thread-

based (or process-based) concurrency, which is generally used for ease of programming, and event-

driven concurrency, which is used for scalability and performance. SEDA draws together these two

approaches and proposes a hybrid model that exhibits features of both. Next, we discuss resource

virtualization and identify several specific problems raised by existing operating system designs

with respect to resource management. Finally, we describe existing approaches to load manage-

ment in busy Internet services and argue that dynamic control is the right way to manage resources

in this regime.

16

dispatchernetwork dispatch

request 1

request 2

request 3

request 4

request N

networksend result

Figure 2: Threaded server design: Each incoming request is dispatched to a separate thread,
which performs the entire processing for the request and returns a result to the client. Edges repre-
sent control flow between components. Note that other I/O operations, such as disk access, are not
shown here, but are incorporated within each threads’ request processing.

1 Concurrency programming models

A critical aspect of service design is the means by which concurrency is represented, as

services must support many simultaneous requests from a large and ever-changing population of

users. Internet services push the envelope in terms of the degree of concurrency required; a typical

site may experience tens of thousands (or more) of simultaneous user sessions. The highly dynamic

nature of incoming requests also raises challenges for resource provisioning, as the resource needs

of individual requests are difficult to predict. In this section we discuss the two most commonly em-

ployed concurrent programming models: thread-based concurrency and event-driven concurrency.

1.1 Thread-based concurrency

The most commonly used design for server applications is the thread- or process-per-

request model, as embodied in systems such as RPC packages [129], Java Remote Method Invoca-

tion [125], and DCOM [95]. This model is well-supported by modern languages and programming

environments, and threading primitives are provided by virtually every commodity operating sys-

tem.

17

A thread is a context for computation, typically consisting of a program counter, set of

registers, private stack, address space, and operating system or language state associated with the

thread, such as scheduling and accounting data structures. Multiple threads can share a single

address space, thereby communicating directly through shared data structures. Aprocessis simply

a thread with its own private address space.

Throughout this thesis, we make no distinction between a thread and a process; we con-

sider the two to be identical for the purposes of concurrency and load management, although threads

are more flexible in that they can share an address space. It is often the case that threads are more

scalable than processes, though this performance gap seems to be narrowing. Whereas in earlier

operating systems, there was a strong distinction made between (relatively) light-weight threads

and heavy-weight processes, in modern operating systems this distinction is evaporating due to

the widespread incorporation of threading mechanisms into the kernel. For example, in the Linux

operating system a thread and a process are virtually identical save for the address space ownership.

In the thread-per-request model, shown in Figure 2, each accepted request is dispatched

to a thread which processes it. Synchronization operations, such as locks and semaphores, are used

to protect shared resources and data structures that may be accessed during request processing. The

operating system allows system resources to be time-shared across multiple requests, and overlaps

computation and I/O, by transparently context switching between threads.

The thread-per-task model is relatively easy to program, allowing the application devel-

oper to implement request processing as a “straight-line” code path, which executes (virtually) in

isolation from all other requests in the system. The existence of other requests is only evident when

dealing with shared resources or state.

Threads raise a number of challenges for Internet service design in terms of resource

management and scalability. The most serious issue with threads is that they do not provide adequate

control over resource usage; we will discuss this problem in Section 1.4. First, we focus on the

problem that many thread implementations exhibit serious scaling issues, making them impractical

18

0

5000

10000

15000

20000

25000

30000

1 4 16 64 256 1024
0

50

100

150

200

250

300

350

400

T
hr

ou
gh

pu
t,

ta
sk

s/
se

c

�

La
te

nc
y,

 m
se

c

�

Number of threads

Throughput
Latency

Linear (ideal) latency

Figure 3:Threaded server throughput degradation:This benchmark measures a simple threaded
server that dispatches a separate thread for each concurrent request in the system. After receiving
a request, each thread performs an 8 KB read from a disk file; all threads read from the same file,
so the data is always in the buffer cache. Threads are pre-allocated in the server to eliminate thread
startup overhead from the measurements, and requests are generated internally to negate network
effects. The server is implemented in C and is running on a 4-way 500 MHz Pentium III with 2
GB of memory under Linux 2.2.14. As the number of concurrent requests increases, throughput
initially increases until about 8 threads are in use. Adding additional threads causes throughput
to degrade substantially. Response time becomes unbounded as request queue lengths increase;
for comparison, we have shown the ideal linear response time curve (note the log scale on the
horizontal axis).

for large-scale Internet services.

It is important to stress that threads are primarily designed to support timesharing. Thread-

based concurrency entails high overheads as the number of threads grows to be large, which can

lead to disastrous results for performance. As the number of threads grows, the system experiences

increases in scheduling overheads, memory pressure due to thread footprints, cache and TLB misses,

and contention for shared resources, such as locks. As a concrete example, Figure 3 shows the

performance of a simple threaded server as the number of threads increases. Although the number

of threads that the server can support before experiencing performance meltdown would be large

for general-purpose timesharing, it is not adequate for the tremendous concurrency requirements of

19

an Internet service.

A considerable amount of prior work has attempted to reduce the overheads associated

with thread-based concurrency. The majority of this work approaches the problem from the point

of view of lightweight threading for shared-memory multiprocessors, in which a separate thread

is spawned for any operation (such as a function call) that can be logically performed in paral-

lel. Although this approach can reduce the overhead of a thread system designed specifically for

compute-bound applications, it typically does not benefit threads that perform arbitrary system calls

or I/O, or that hold locks during blocking operations. For example, Lazy Task Creation [99], Lazy

Threads [50], and Stack Threads [131] optimistically perform thread creation as a sequential func-

tion call within the context of the current thread, lazily allocating a new thread context only when

the spawned operation blocks. In an Internet service, however, threads are often long-running and

may perform numerous blocking operations during their lifetime. Lightweight threading techniques

designed for parallel computation do not address the more general class of multithreading used by

Internet services.

1.2 Bounded thread pools

To avoid performance degradation due to the overuse of threads, a number of systems

adopt a coarse form of resource management that serves to bound the number of threads associated

with a service, commonly referred to asthread pooling. In this approach, requests are dispatched to

a bounded pool of threads. When all threads in the pool are busy processing requests, new requests

are queued for service. Request queueing can be accomplished in several ways, and the form of

queueing can have a serious impact on client-perceived performance.

A number of Web servers use a thread-per-connection model in which each thread pro-

cesses a single client TCP connection; this is the model used by Apache [8], Microsoft Internet

Information Server [96], and Netscape Enterprise Server [103]. Web application servers such as

BEA Weblogic [15] and IBM WebSphere [62] also use the thread-per-connection approach. In this

20

model, each thread processes a single client TCP connection to the service. When all threads are

busy, additional connections are not accepted by the server. Under heavy load, this can cause the op-

erating system queues for pending connections to fill, in turn causing the client’s connection request

(SYN packet) to be dropped by the server. Because TCP uses an exponentially increasing timeout

for retransmitting connection attempts, this can lead to very long delays on the client side: several

minutes may pass before a retried connection is established or aborted. This effect also leads to

great deal ofunfairnessto clients, as clients that happen to have their connections accepted rapidly

will continue to receive good service, while others will wait for long periods of time to establish a

connection. Given that many modern Web browsers open multiple simultaneous connections to a

service, it is often the case that every connection must receive good service for the user to experience

acceptable response times. We study this effect in detail in Chapter 6.

A better model for thread pooling is to queue new requests within the service, where they

can be served according to a policy dictated by the service itself, rather than by the underlying net-

work. Queueing requests within the service also facilitates the early classification or prioritization

of requests for overload management, as discussed in Section 3. This approach has been adopted

by several Web servers, such as Web2k [17].

If used correctly, bounded thread pools are an effective means to represent concurrency in

an Internet service. However, the thread pool approach as described here presents several significant

challenges. The first problem is choosing the right thread pool size. Most systems use a static

(administrator-specified) limit on the maximum number of threads, though this depends greatly on

the resource usage of each request and the workload experienced by the service. Setting the thread

limit too low underutilizes resources, while setting the limit too high can cause severe degradation

under heavy load.

Another issue with thread pooling is that it is possible for all threads in the pool to be-

come consumed with long-running requests, thereby starving other requests that may have higher

priority or fewer resource requirements. Depending on the characteristics of the workload and the

21

implementation of the service, the actual number of threads required may therefore be very large.

Consider a case where a fixed-size thread pool is used to process requests, and additional requests

are processed in FIFO order from a queue. If all threads are busy processing long-running requests

(say, blocked on I/O or access to a bottleneck resource such as a database), then no additional

requests—regardless of priority or resource requirements—can be processed. The issue here is that

the concurrency model provides no mechanism to allow a busy thread to be preempted for a shorter

or higher-priority request.

1.3 Resource management challenges of threading

Even if the performance overhead of threading could be eliminated, we argue that threads

are fundamentally an inappropriate mechanism for concurrency and resource management in In-

ternet services. In the thread-per-request model, important information about the application’s re-

source usage and request stream are hidden within the thread scheduler; it is generally not possible

for a service to inspect or control the operation of the thread system to perform load conditioning.

Likewise, the thread scheduler has very limited information about the application’s behavior and

resource needs.

For example, consider a service that uses a thread-per-task concurrency model with a

(hypothetical) scalable threading system. If a large number of requests block on a shared resource,

such as a disk, the corresponding threads queue up within the thread scheduler; there is no way for

the application to be aware of or effect the bottleneck. In this case, it might be desirable to shed

load by performing admission control on the requests that require access to the bottleneck resource.

However, the server is unable to inspect the internal request stream to implement such a policy.

Moreover, once a request has been dispatched to a thread, the only load-management operations

that can be performed are to kill the thread (aborting its processing regardless of progress) or to

change its scheduling priority (in the extreme case, putting it to sleep for some time). This interface

makes it difficult to implement effective load-management policies, such as offloading a resource

22

bottleneck or rejecting requests that fail to meet a performance target.

One way to effect greater control over the operation of threads would be to instrument the

application code with explicit control points. For example, before accessing a potential resource

bottleneck, each thread would invoke a function that guards access to the resource, allowing an

alternate action to be performed if the resource is saturated. Another approach is to give applica-

tions greater control over the internals of the threading system by allowing applications to specify

their own scheduling algorithm, either by implementing thread dispatch at user level (in the case

of scheduler activations [7]) or by pushing application-specific thread management code into the

kernel (in the case of Strands [118]). However, these mechanisms are intended to allow applications

to specify scheduling algorithms that have infrequently changing policies, not for implementing

complex load conditioning policies based on detailed runtime information.

In many ways, these various techniques represent a departure from the simplicity of the

thread-per-request model. We claim that it is better to consider an approach to concurrency that is

more suited to Internet service design than to lash complex policies onto existing approaches.

1.4 Event-driven concurrency

The scalability limits of threads have led many developers to eschew them almost entirely

and employ an event-driven approach to managing concurrency. In this approach, shown in Figure 4,

a server consists of a small number of threads (typically one per CPU) that loop continuously,

processing events of different types from a queue. Events may be generated by the operating system

or internally by the application, and represent triggers that some form of processing needs to occur:

network and disk I/O readiness and completion notifications, timers, or other application-specific

events.

In the event-driven approach, each request in the system is represented as afinite state

machine(FSM) or continuation. Each state of the FSM represents a set of processing steps to be

performed on the request. For example, the FSM for a static Web page request might contain the

23

scheduler

network

disk

request FSM 1

request FSM 2

request FSM 3

request FSM 4

request FSM N

Figure 4:Event-driven server design:This figure shows the flow of events through an event-driven
server. The main thread processes incoming events from the network, disk, and other sources, and
uses these to drive the execution of many finite state machines. Each FSM represents a single
request or flow of execution through the system. The key source of complexity in this design is the
event scheduler, which must control the execution of each FSM.

following states, as shown in Figure 5:

1. Read request from network;

2. Parse request (e.g., process HTTP headers);

3. Look up disk file corresponding to request;

4. Read file data;

5. Format reply packet;

6. Write reply to network.

When an event arrives corresponding to some request, it is dispatched to one of the (small number)

of threads, which processes the request according to its current state. The processing for each state is

generally very short and runs to completion; when processing is complete, the FSM may transition

to a new state, and the thread is dispatched to the next request FSM. A request may remain in the

24

start accumulate
request

network
read

network
read

parse
request

request
done find

file
done

disk
read

file
found

format
replyno such

file

disk
read

done

send
reply

done

not
done

finishdone

Figure 5: Finite state machine for a simple HTTP server request:This figure depicts a static
HTTP server request as a finite state machine (FSM) as used in an event-driven system. Each
state represents some aspect of request processing, and edges represent transitions between states,
triggered by incoming events or the completion of the processing for a given state.

same state across multiple event arrivals. For example, an HTTP request described by the FSM given

above may remain in the “read request from network” state until all network packets corresponding

to the request have been received.

An event-driven system multiplexes the operation of many request FSMs over a small

number of threads by “context switching” across requests after each iteration of the request-processing

loop. This requires that the processing required for each state be short and not block, for example,

when performing I/O. For this reason, event-driven systems make use ofnonblocking I/O interfaces

that operate in a split-phase fashion: the application performs a I/O operation (for example, reading

data from a socket) that returns immediately whether the I/O request has completed or not. If the

operation completes at a later time, the operating system generates an I/O completion event that

the FSM scheduler can use to continue request processing. The dispatching of events to FSMs is

therefore very similar to thread scheduling, and an event-driven system effectively implements its

own application-level scheduling policy. Event-driven concurrency is typically more scalable than

thread-driven concurrency, as the FSM state representing each request is much smaller than a thread

context, and many of the overheads involving large numbers of threads are avoided.

If designed correctly, event-driven systems can support very high levels of concurrency,

and experience little performance degradation as the number of simultaneous requests increases.

Figure 6 shows the throughput achieved with an event-driven implementation of the service from

Figure 3. The efficiency gain of the event-driven approach is mainly due to the reduced overhead

25

0

5000

10000

15000

20000

25000

30000

35000

1 32 1024 32768 1048576
0

10000

20000

30000

40000

T
hr

ou
gh

pu
t,

ta
sk

s/
se

c

�

La
te

nc
y,

 m
se

c

�

Number of tasks in pipeline

Throughput
Latency

Linear (ideal) latency

Figure 6: Event-driven server throughput: This benchmark measures an event-driven version
of the server from Figure 3. In this case, the server uses a single thread to process tasks, where
each task reads 8 KB from a single disk file. Although the filesystem interface provided by the
operating system used here (Linux 2.2.14) is blocking, because the disk data is always in the cache,
this benchmark estimates the best possible performance from a nonblocking disk I/O layer. As the
figure shows, throughput remains constant as the load is increased to a very large number of tasks
(note the change in the horizontal axis scale from Figure 3), and response time is linear (note the
log scale on the horizontal axis).

of representing request state as a lightweight continuation, rather than as a heavyweight thread

context. As the number of requests increases, the server throughput increases until the pipeline fills

and the bottleneck (the CPU in this case) becomes saturated. If the number of requests is increased

further, excess work is absorbed as a continuation in the server’s event queue; this is in contrast

to the thread-per-request model in which a new thread is forked for each incoming request. The

throughput remains constant across a huge range in load, with the latency of each task increasing

linearly.

It is important to note that while event-driven systems are highly efficient in terms of

managing concurrency, it is still possible for such a system to exhibit performance degradation due

to other resource bottlenecks in the system. For example, if each request consumes a great deal of

26

memory, then admitting too many simultaneous requests can lead to VM thrashing. Therefore the

event-driven design only addresses the concurrency aspect of scaling service capacity.

The event-driven design is used by a number of systems, including the Flash [106],

thttpd [4], Zeus [151], and JAWS [61] Web servers, and the Harvest [25] Web cache. Each of these

systems uses event-driven concurrency in a slightly different way; here we focus on the Flash Web

server as the canonical example that closely represents the implementation of the other systems.

Flash consists of a set of event handlers that respond to particular types of events, for

example, read-readiness or write-readiness on a particular socket. The main server process runs in

a loop, collecting events (using the UNIXselect()system call) and invoking the appropriate event

handler for each event using a function call. Flash can be configured to use multiple server pro-

cesses, for example, to take advantage of multiprocessor systems. Because most UNIX systems do

not provide nonblocking file I/O interfaces, Flash makes use of a pool of ofhelper processes, which

issue (blocking) I/O operations and signal an event to the main process upon completion. Helper

processes are also used for pathname conversions (mapping URLs and symbolic links onto absolute

pathnames for file access), listing the contents of directories, and dynamic page generation. The

rationale is that these operations are filesystem-intensive and may block the main server processes,

so it is desirable to perform them asynchronously. Flash uses UNIX domain sockets to commu-

nicate between the processes, rather than shared memory, which requires relatively high overhead

as the operating system must be involved in interprocess communication. This design also allows

completion events from a helper process to be picked up in the main process’sselect()loop.

The Harvest Web cache is very similar in design: it is single-threaded and event-driven,

with the exception of the FTP protocol, which is implemented by a separate process. In this case,

a helper process is used not because FTP is inherently blocking, but rather due to the difficulty of

writing an asynchronous FTP implementation.

The use of helper processes in Flash and Harvest underscores the occasional need for an

event-driven system to resort to blocking operations, either to reduce complexity or to make use

27

of legacy interfaces and libraries. Most event-driven systems developad hocmechanisms for inte-

grating blocking code into the service, requiring careful management of thread/process resources to

perform the dispatch.

The tradeoffs between threaded and event-driven concurrency models have also been stud-

ied in the JAWS Web server [60, 61]. The focus in JAWS is on the software engineering and reusabil-

ity aspects of Web server design, and makes heavy use ofdesign frameworks[41]. JAWS consists

of a framework for Web server construction allowing the concurrency model, protocol processing

code, cached filesystem, and other components to be customized. JAWS uses theProactor pattern

to represent event dispatching and completion notification; the resulting design is very similar to

Flash. To our knowledge, JAWS has only been evaluated under light loads (less than 50 concurrent

clients) and has not addressed the use of adaptivity for conditioning under heavy load.

This body of work has realized the importance of using scalable primitives to support

large degrees of concurrency. However, these systems have been constructed to support a specific

application, such as as serving static Web pages, and have not approached the problem of concur-

rency and load management for a broad class of Internet services. The focus has been primarily on

achieving the highest levels of raw performance and scalability, and less on managing variations in

load or handling extreme overload conditions.

Event-driven design raises a number of challenges for the application developer. An im-

portant limitation of this model is that it requires event-handling code to be short and run to com-

pletion, to avoid stalling the event-processing threads, and to ensure fairness across a large number

of requests. This typically requires that nonblocking, asynchronous I/O interfaces be used. While

much prior work has explored scalable I/O interfaces [12, 13, 84, 111, 113], and nonblocking socket

interfaces are common, many operating systems do not provide true nonblocking I/O for disk ac-

cess. Flash, Harvest, and other systems address this challenge using separate threads or processes

to perform long-running operations asynchronously. However, it is also possible for event-handling

threads to block due to other events, such as interrupts, page faults, or garbage collection, so much

28

care must be taken in the event-driven model to avoid stalling the system due to one of these un-

avoidable events.

A related issue is that of scheduling and ordering of event processing within the applica-

tion. An event-driven system effectively implements its own scheduler that carefully multiplexes

many request FSMs over limited thread resources, and must consider request prioritization, fairness,

and resource consumption. The design of the event scheduler is one of the most subtle aspects of an

event-driven system and is often tailored for a specific application with known resource demands for

each request. However, this can lead to very brittle system design, as any changes to the application

code may necessitate a redesign of the event scheduler. We refer to this design as amonolithicevent-

driven system, since service logic, scheduling, and resource management are bundled together in an

application-specific way.

For these reasons, event-driven systems are often considered to be difficult to engineer,

tune, and reason about. One of our goals in SEDA is to obtain the performance and scalability ben-

efits of event-driven concurrency, but to develop a structured framework that eases the development

of such systems. Also, event-driven concurrency by itself does not address the issue of overload

management and resource control; this is the other major goal of the SEDA framework.

The classic work on the threads-versus-events dichotomy is Lauer and Needham’s paper

from 1978 [81]. This work carefully discusses the differences between “processes” and “procedures”—

here, “processes” corresponds to event-driven concurrency while “procedures” corresponds to thread-

ing. The main claim is that the process-based and procedure-based models are duals of each other,

in that any program implemented in one model canjust as efficientlybe implemented in the other.

The paper presents a simple transformation from one concurrency model to the other and argues that

the only reasons to choose processes over procedures (or vice versa) are based on external factors,

such as which is more straightforward to program in a given environment.

While we agree with the basic argument, and it is clearly possible to transform a system

between thread-based and event-driven concurrency models, we dispute the claim that performance

29

can be preserved across the mapping. The main issue that this work overlooks is the complexity of

building scalable, general-purpose multithreading; while in a simplistic sense, threads and events are

identical, in practice threads embody a great deal of additional complexity that limit their scalability.

Also, Lauer and Needham were not concerned with the difficulty of managing extreme loads in an

environment such as an Internet service, which weighs the argument in favor of the event-driven

approach.

1.5 Structured event queues

To counter the complexity and brittleness of event-driven design, a number of systems

have proposed variants of the model. A common aspect of these designs is to structure an event-

driven application using a set of event queues to improve code modularity and simplify application

design.

One of the starting points of the SEDA design was the I/O core framework [54] used by the

Ninja system at UC Berkeley. This framework was used in Gribble’s Distributed Data Structures

(DDS) [52] layer and initial versions of the vSpace [139] cluster-based service platform. In the

Ninja I/O core, a limited number of threads is used to process requests flowing through the system,

and blocking socket and disk I/O operations are converted into asynchronous, split-phase operations

using a dedicated pool of threads, similar to the Flash use of helper processes. One of the limitations

of this design was that true nonblocking I/O was not used for socket connections, so the I/O core

makes use of one thread per socket for reading data from the network, and a (large) pool of threads

for writing data to the network—thereby limiting the number of simultaneous socket connections

that can be handled. This is not a serious issue for DDS, since it requires only a small number of

socket connections within a cluster. However, for general-purpose Internet services, such as those

hosted by vSpace, this is an important restriction.

In the I/O core, each software component exports an event-handling interface with a sin-

gle method that accepts an event to process. Applications are constructed by composing these

30

components together using either an upcall interface (in which one component directly invokes the

event-handling method of another component) [31] or using a queue (in which one component en-

queues an event to be processed asynchronously by another component). The basic programming

model makes no distinction between upcalls and queues, requiring application designers to be very

careful when composing two event-processing components. If an upcall is used, then a component

that performs a long, resource-intensive operation will stall the caller until its return. Likewise,

enqueueing an event for asynchronous processing entails additional context switch and synchro-

nization overhead. The SEDA model was developed with the goal of generalizing and improving

upon this basic framework, in addition to applying it to a wider class of services. In Chapter 8 we

elaborate on the differences between SEDA and the Ninja I/O core.

The Click modular packet router [77] is another example of a system making use of struc-

tured event queues. In Click, packet processing components are implemented as separate code

modules each with private state. Like the Ninja I/O core, Click components can be composed using

direct function calls or queues. One of the most critical aspects of application design is determining

how components should be composed. Click is targeted at a specific application (packet routing)

and uses a single thread to process all queues; a multiprocessor extension to Click [26] uses a thread

for each processor and performs load-balancing across threads.

A primary goal in Click is to optimize per-packet routing latency, so it is often desirable to

have a single thread call directly through multiple packet-processing components to avoid queueing

and scheduling delays. For this design to be feasible, Click makes the assumption that modules

have bounded processing times, leading to a relatively static determination of resource-management

policies. In Click, there are effectively no long blocking operations, so asynchrony is used only for

decoupling the execution of multiple packet-processing components; for example, a queue is often

used for temporary packet storage before an outgoing network interface.

StagedServer [80] also makes use of modules communicating using explicit event queues.

Like SEDA, this work introduces the notion of a stage as the unit of request processing within

31

a server application. StagedServer’s goal is to maximize processor cache locality by carefully

scheduling the order in which stages are executed, as well as the order in which requests within

a stage are processed. This is accomplished usingcohort scheduling, which batches the execution

of related aspects of request processing. For example, requests within a stage are processed in

last-in-first-out order, increasing the likelihood that recently processed request data is in the cache.

Work Crews [137] is another system that makes use of structured event queues and limited

numbers of threads to manage concurrency. Work Crews deals with the issue of exploiting potential

(compute-bound) parallelism within a multiprocessor system while avoiding the creation of large

numbers of threads. A Work Crew consists of a bounded number of worker threads (typically one

per CPU) that dispatch work requests from a single queue. Rather than forking a new thread to

subdivide a parallel operation, a help request is placed onto the queue for servicing by a worker

thread. Work Crews supports various synchronization primitives allowing task processing to be

subdivided in various ways and to collect the results from dispatched help requests. This work

identified the importance of limiting thread contexts due to resource contention, and the value of

exposing queues for performance gains: in this case, allowing workers to process tasks serially when

additional processors are unavailable for parallel execution. The ALARM concurrency mechanism

proposed by Vajracharva and Chavarrı́a-Miranda [135] is very similar to Work Crews.

Each of these systems employs structured event queues to solve a specific problem, such

as packet processing, cache locality, or multiprocessor scheduling. Our goal in SEDA is to extend

this approach to provide a general framework that addresses the concerns of large-scale Internet ser-

vices: massive concurrency, load management, request-processing efficiency, and code modularity.

2 Challenges posed by OS virtualization

An additional hurdle to the design of well-conditioned services is the lack of resource

control exposed by commodity operating system designs. The design of most current operating

systems is primarily derived from a heritage of multiprogramming: allowing multiple applications,

32

each with distinct resource demands, to share a single set of resources in a safe and efficient manner.

As such, existing OSs strive to virtualize hardware resources, and do so in a way that is transparent

to applications. Applications are rarely, if ever, given the opportunity to participate in system-wide

resource management decisions, or given indication of resource availability in order to adapt their

behavior to changing conditions. Virtualization fundamentally hides the fact that resources are

limited and shared [145].

The focus on resource virtualization in existing operating systems presents a number of

challenges for scalability and load conditioning:

Concurrency limitations: Internet services must efficiently multiplex many computational and

I/O flows over a limited set of resources. Given the extreme degree of concurrency required, ser-

vices are often willing to sacrifice transparent virtualization in order to obtain higher performance.

However, contemporary operating systems typically support concurrency using the process or thread

model, and as discussed earlier, these abstractions entail high overheads.

I/O Scalability limitations: The I/O interfaces exported by existing OSs are generally designed

to provide maximum transparency to applications, often at the cost of scalability and predictability.

Most I/O interfaces employ blocking semantics, in which the calling thread is suspended during a

pending I/O operation. Obtaining high concurrency requires a large number of threads, resulting in

high overhead.

In order to sidestep the scalability limits of threads, nonblocking I/O interfaces are often

used. Nonblocking socket interfaces are common, though most commodity operating systems still

do not provide nonblocking I/O interfaces for disk access. Many nonblocking I/O interfaces tend to

degrade in performance as the number of I/O flows grows very large [13, 111, 74, 97]. Likewise,

data copies on the I/O path (themselves an artifact of virtualization) have long been known to be a

performance limitation in network stacks [112, 140, 141].

This problem has led to the development of a range of scalable I/O primitives [13, 40,

33

0

25

50

75

100

125

150

175

200

225

250

1 4 16 64 256 1024 4096 16384

B
an

dw
id

th
, M

bi
t/s

ec

Number of connections

(Can’t run beyond 400 connections)

Nonblocking sockets with /dev/poll
Blocking sockets with thread pool

Figure 7: Performance degradation of nonblocking sockets:This graph shows the aggregate
bandwidth through a server making use of either nonblocking or blocking socket interfaces. Each
client opens a connection to the server and issues bursts of 1000 8 KB packets; the server responds
with a single 32-byte ACK for each burst. All machines are 4-way Pentium III systems running Linux
2.2.14 connected using Gigabit Ethernet. Two implementations of the server are shown: one makes
use of nonblocking sockets with the/dev/poll mechanism for event delivery, and the other makes
use of blocking sockets and a bounded thread pool to emulate asynchrony. The latter implementation
allocates one thread per socket for reading packets, and uses a fixed-size thread pool of 120 threads
for writing packets. The threaded implementation could not support more than 400 simultaneous
connections due to thread limitations under Linux, while the nonblocking implementation degrades
somewhat due to lack of scalability in the network stack.

71, 84, 107, 111, 113], although these mechanisms can also face scalability challenges if the un-

derlying operating system is not designed to support massive scalability. To demonstrate this

fact, we have measured the performance of the nonblocking socket interface in Linux using the

/dev/poll [111] event-delivery mechanism, which is intended to provide a greater degree of

scalability than the standard UNIXselect()andpoll() interfaces [74]. As Figure 7 shows, the perfor-

mance of the nonblocking socket layer still degrades somewhat when a large number of connections

are established; we believe this is due to inherent scalability limitations in the Linux TCP/IP stack.

Also shown is the same benchmark using blocking I/O and a bounded thread pool to perform I/O,

which exhibits very severe performance degradation.

34

Transparent resource management: Internet services must be in control of resource usage in

order to make informed decisions affecting performance. Virtualization implies that the OS will

attempt to satisfy any application request regardless of cost, and the performance aspects of the

operating system’s interfaces are often hidden from applications.

For example, a request to allocate a page of virtual memory may require other pages to

be swapped out to disk; this can cause a very serious performance problem if the number of VM

pages requested exceeds the size of physical memory, a problem known asthrashing. Likewise, the

existence of (or control over) the filesystem buffer cache is typically not exposed to applications.

This can have a serious impact on application performance if the resource usage and access patterns

used by the application do not map well onto the operating systems’ policies. This is one of the

major issues with operating system design often cited by database designers [121].

Internet services do not have the luxury of paying an arbitrary penalty for processing such

requests under heavy resource contention. In many cases it is necessary for a service to prioritize

request processing based on resource availability. For instance, a service may be able to process

“cheap” requests during a period of high load while “expensive” requests (those requiring many

resources) are delayed or rejected. Unfortunately, without knowledge of or control over the resource

management policies of the OS, it is difficult for an application to implement such a policy.

An interesting way around this problem is to adopt a “gray box” approach, as proposed

by Arpaci-Dusseau [10], in which the application infers the underlying OS policies and adapts its

behavior to optimize for them. Burnettet al. use this idea to optimize the order in which Web page

requests are serviced based on knowledge of the OS buffer cache policy [23].

Coarse-grained scheduling: The thread-based concurrency model yields a coarse degree of con-

trol over resource management and scheduling decisions. Although it is possible to control the

prioritization or runnable status of an individual thread, this is often too blunt of a tool to implement

effective load conditioning policies. Instead, it is desirable to control the flow of requests through a

particular resource.

35

As an example, consider the page cache for a Web server. To maximize throughput and

minimize latency, the server might prioritize requests for cache hits over cache misses; this is a

decision that is being made at the level of the cache by inspecting the stream of pending requests.

Such a policy would be difficult, although not impossible, to implement by changing the scheduling

parameters for a set of threads, each representing a different request in the server pipeline. The

problem is that this model only provides control over scheduling of individual threads, rather than

over the ordering of requests for a particular resource.

2.1 Approaches to customized resource management

A number of systems have attempted to remedy this problem by exposing greater resource

control to applications. Scheduler activations [7], application-specific handlers [143], user-level

virtual memory managers [58, 93], and operating systems such as SPIN [16], Exokernel [70], and

Nemesis [87] are all attempts to augment limited operating system interfaces by giving applications

the ability to specialize the policy decisions made by the kernel.

Application-specific handlers allow applications to push fast message handling code into

the kernel, allowing data-copying overheads to be avoided, as well as customized protocols to be

implemented. User-level VM systems allow the application to tailor the virtual memory paging

policy, for example, by managing control over the set of physical pages allocated to a process. SPIN

and Exokernel take these ideas much further, allowing the resource-management policies of the OS,

including scheduling, memory management, and I/O, to be tailored for a specific application. In

SPIN, applications can push safe code (in the form of Modula-3 components) into the kernel, while

Exokernel takes the approach of using a minimal kernel to safely export resources to applications

to control. Nemesis is an operating system designed for delivering quality-of-service guarantees to

applications, and uses ideas similar to Exokernel in terms of fine-grained multiplexing of system

resources, and allowing applications to participate in resource-management decisions.

These systems have realized the need to give applications greater control over resource

36

usage, though they do not explicitly focus on providing customized resource management for the

purposes of overload control. Much of the design of these systems is still based on the multi-

programming mindset, in that the focus continues to be on safe and efficient (though customized)

resource virtualization, rather than on high concurrency and graceful management of load. In addi-

tion, we think it is a worthwhile question to consider whether it is possible to build effective resource

control on top of a commodity operating system, without resorting to a major redesign of the OS.

The approach taken in SEDA can be thought of as a middleware layer between the application and

the operating system, monitoring application behavior and effecting control over resource consump-

tion. However, giving the application greater control over resource management is an interesting

area for future work, and we expect that SEDA would benefit from the techniques proposed by

systems such as Exokernel and Nemesis. We return to this issue in Chapter 8.

3 Approaches to overload management

Overload is an inescapable reality for popular Internet services, and several approaches

to overload management in Web services have been proposed. In this section we survey the field

of Internet service overload control, discussing prior work as it relates to four broad categories:

resource containment, admission control, control-theoretic approaches, and service degradation.

3.1 Resource containment

The classic approach to resource management in Internet services is static resource con-

tainment, in whicha priori resource limits are imposed on an application or service to avoid over-

commitment. We categorize all of these approaches asstatic in the sense that some external entity

(say, the system administrator) imposes a limit on the resource usage of a process, application, or

other resource-owning entity. Although resource limits may change over time, they are typically

not driven by monitoring and feedback of system performance; rather, the limits are arbitrary and

rigid.

37

In a traditional thread-per-connection Web server design, the only overload mechanism

generally used is to bound the number of processes (and hence the number of simultaneous con-

nections) that the server will allocate. When all server threads are busy, the server stops accepting

new connections; this is the type of overload protection used by Apache [8]. There are three serious

problems with this approach. First, it is based on a static thread or connection limit, which has a

complex relationship with the performance of the service based on user load, the length of time

a given connection is active, and request type (e.g., static versus dynamic pages). Secondly, not

accepting new TCP connections gives the user no indication that the site is overloaded: the Web

browser simply reports that it is still waiting for a connection to the site. This wait time can grow

to be very long, as TCP uses an exponentially increasing timeout for establishing new connections,

meaning that several minutes may pass before the connection attempt is aborted. Finally, this ap-

proach is extremely unfair to clients, as some clients will be able to establish connections quickly,

while others will experience large backoff delays.

Zeus [151] and thttpd [4] provide mechanisms to throttle the bandwidth consumption for

certain Web pages to prevent overload, based on a static bandwidth limit imposed by the system

administrator for certain classes of requests. A very similar mechanism has been described by

Li and Jamin [88]. In this model, the server intentionally delays outgoing replies to maintain a

bandwidth limit, which has the side-effect of tying up server resources for greater periods of time

to deliver throttled replies.

Somewhat related to the issue of bandwidth throttling is the use of network scheduling

techniques to give priority to some responses over others. One technique that has been explored is

the use of shortest-remaining-processing-time (SRPT), alternately called shortest-connection-first

(SCF) scheduling [35, 57, 116]. In this technique, packets for connections with less remaining

outgoing data are scheduled first for network transmission. In [116], Schroeder and Harchol-Balter

investigate use of SRPT network scheduling for managing overload; they show that under a heavy-

tailed request size distribution, SRPT greatly reduces response times and does not penalize long

38

responses. Their study is limited to static responses and does not look at extreme overload cases

where some other form of overload control (such as admission control) would be needed in addition

to network scheduling.

Another style of resource containment is that typified by a variety of real-time and mul-

timedia systems. In this approach, resource limits are typically expressed as reservations or shares,

as in “processP getsX percent of the CPU.” In this model, the operating system must be careful to

account for and control the resource usage of each process. Applications are given a set of resource

guarantees, and the system prevents guarantees from being exceeded through scheduling or forced

termination. Examples of systems that have explored reservation- and shared-based resource limits

include Scout [100], Nemesis [87], Resource Containers [11], and Cluster Reserves [9].

This kind of resource containment works well for real-time and multimedia applications,

which have relatively static resource demands that can be expressed as straightforward, fixed limits.

For example, a multimedia streaming application has a periodic time deadline that it must meet to

(say) continue displaying video at a given framerate. For this class of applications, guaranteeing

resource availability is more important than ensuring high concurrency for a large number of varied

requests in the system. Moreover, these systems are focused on resource allocation to processes or

sessions, which are fairly coarse-grained entities. In an Internet service, the focus is on individual

requests, for which it is permissible (and often desirable) to meet statistical performance targets

over a large number of requests, rather than to enforce guarantees for particular requests.

In general, resource containment has the fundamental problem that it is generally infeasi-

ble to determine ideala priori resource limitations in a highly dynamic environment. Setting limits

too low underutilizes resources, while setting them too high can lead to oversaturation and serious

performance degradation under overload. Returning to the example of bounding the number of si-

multaneous connections to a Web server, the right limit depends greatly on load: for static Web page

accesses, a limit of several thousand or more connections may be acceptable; for resource-intensive

dynamic content, the feasible limit may be on the order of tens of connections. More critically, given

39

the rapidly evolving nature of application code (and hence resource usage) in a typical Internet ser-

vice, it seems likely that any fixed “solution” for the ideal resource limits will change whenever the

service logic changes.

3.2 Admission control

Another way to approach overload management in Internet services is to perform ad-

mission control, in which the system restricts the set of requests entering the system according to

some policy. Admission control has been effectively employed in networks, for example, to provide

quality-of-service guarantees to applications by restricting the set of flows that are admitted to the

network [21, 20]. Several approaches to per-request and per-session admission control for Internet

services have been proposed.

Many of these systems areparameter based, in that they operate based on fixed parameters

that define the admission control policy. Like resource containment, admission control can lead to

inflexible overload management if it is driven by static policies that are not ultimately tied to the

performance of the service and the resource usage of admitted requests. Also, many of these systems

consider only static Web page loads, and others are studied only in simulation.

Another common aspect of these approaches is that they often reject incoming work to

a service by refusing to accept new client TCP connections. As we have discussed previously, we

argue that this is an inappropriate way to perform load shedding, as it gives users no indication of

overload, and leads to even longer client-perceived response times. Such an approach pushes the

burden of dealing with excess demand for a service into the network.

Iyer et al. [65] describe a simple admission control mechanism based on bounding the

length of the request queue within a Web server. Load shedding is accomplished by dropping in-

coming connections when the queue length exceeds an administrator-specified discard threshold,

and new connections are allowed when the queue length falls below an abatement threshold. Al-

ternatively, the system can inform a Web proxy to delay new requests, though this only pushes the

40

problem of connection management to the proxy. This work analyzes various settings for the dis-

card and abatement thresholds, though does not specify how these thresholds should be set to meet

any given performance target.

In [30], Cherkasova and Phaal presentsession-basedadmission control, which performs

an admission decision when a new session arrives from a user, rather than for individual requests

or connections. In many Internet services, it is undesirable to reject requests from users that have

already established an active session with the service; this work realizes the importance of sessions

as the unit of load management. The proposed technique is based on CPU utilization and causes

new sessions to be rejected (by sending an explicit error message to the client) when CPU utilization

exceeds a given threshold. The paper presents simulation studies that explore the tradeoffs of several

parameter settings.

Many approaches to overload management are performed entirely in the application or

in a user-level middleware component that does not require specific operating system functionality

to accomplish its goals. In contrast, Voigtet al.[138] present several kernel-level mechanisms for

overload management: restricting incoming connections based on dropping SYN packets; parsing

and classification of HTTP requests in the kernel; and ordering the socket listen queue by request

URL and client IP address. SYN rate policing is accomplished using static token-bucket parameters

assigned to IP address ranges. Ordering the socket listen queue according to request type or IP ad-

dress causes the Web server to give priority to certain requests over others. However, this technique

would not appear to be effective for a Web server that rapidly accepts all pending connections (as

is the case in SEDA). Here, the admission control rules are statically determined, and the question

arises as to how well these different techniques work together in a realistic setting. Another traffic-

shaping approach is described in [69], which drives the selection of incoming packet rates based on

an observation of system load, such as CPU utilization and memory usage.

Web2K [17] brings several of these ideas together in a Web server “front-end” that per-

forms admission control based on request type or user class (derived from IP address, cookie in-

41

formation, and so forth). Incoming connections are rapidly accepted, which avoids dropped SYN

packets, and requests are read and placed onto an internal queue based on priority. An unmodified

Web server (in this case, Apache) pulls requests from these queues through a provided library. Ad-

mission control is performed that attempts to bound the length of each priority queue; as in [65], the

issue of determining appropriate queue thresholds is not addressed. The admission control scheme

makes use of a simple controller that predicts how many requests of each priority class can be ac-

cepted based on past observations, though we believe this mechanism could be greatly simplified

(for example, using the technique from [65]). A form of session-based admission control is used in

that requests from old sessions are prioritized before new ones.

In each of these systems, the problem arises that it is difficult to map from low-level ob-

servations of system resource availability (such as queue length or CPU utilization) to performance

targets that are meaningful to users or system administrators. Relationships between an Internet

service provider and a customer (e.g., a client or hosted service) are often expressed in terms of a

service level agreement(SLA) that is based on client-perceived performance, not the internal activity

of the service. A simple example of an SLA might be “for each request that meets a response-time

bound ofT we will payD dollars.” To effectively meet these kinds of SLAs, admission control

techniques need to take client-perceived performance into account.

Several systems have taken such an approach. In some cases, control theory is used to de-

sign and tune an admission control technique; we describe a number of control-theoretic approaches

together in Section 3.3. PACERS [28] is a capacity-driven admission control technique that deter-

mines the number of requests to admit based on expected server capacity in each time period. By

admitting a limited number of requests during some time periodT , the response time of each re-

quest is bounded byT . Requests are prioritized and higher-priority requests are admitted before

lower-priority requests. This paper only deals with simulation results using a simple service model

in which static page requests require processing time that is linear in the page size, and dynamic

page requests consume constant time. The mechanism described here seems overly complex, and

42

details on request classification and the actual rejection mechanism are not discussed.

A related technique, proposed by the same group, allocates requests to Apache server

processes to minimize per-class response time bounds [27]. A weight is assigned to each class of

requests to maximize a “server productivity” function, defined in terms of the number of pending

requests in each class, a (fixed) per-class processing-time requirement, and a (fixed) delay bound.

The paper is very unclear on implementation details and how the assigned weights are actually

employed. This paper considers only static Web pages and silently drops requests if delay bounds

are exceeded, rather than explicitly notifying clients of overload. This technique appears to be

similar to [89], discussed in Section 3.3 below.

Finally, Kanodia and Knightly [72] develop an approach to admission control based on

the use ofservice envelopes, a technique used in networking to characterize the traffic of multiple

flows over a shared link. Service envelopes capture the server’s request rate and service capacity

without requiring detailed modeling techniques. The admission control technique attempts to meet

response-time bounds for multiple classes of service requests, so is more closely tied to the kind

of SLAs that real systems may employ. However, the technique is only studied under a simple

simulation of Web server behavior.

3.3 Control-theoretic approaches to resource management

Control theory [105] provides a formal framework for reasoning about the behavior of

dynamic systems and feedback-based control. A number of control-theoretic approaches to perfor-

mance management of real systems have been described [108, 90], and in this section we survey

several control-theoretic techniques specifically focused on overload control for Internet services.

Abdelzaher and Lu [3] describe a control-based admission control scheme that attempts

to maintain a CPU utilization target ofln 2. This particular value is derived from results in real-

time scheduling theory, which do not seem to apply in a standard operating system (which is the

evaluation environment used in the paper). A proportional-integral (PI) controller is designed using

43

a very simplistic linear model of server performance, based on request rate and network bandwidth.

Apart from ignoring caching, resource contention, and a host of other effects, this model is limited

to static Web page accesses. The paper does not elaborate on exactly how requests are rejected.

An alternative approach to overload management is proposed by the same group in [89].

Here, the overload control technique is based on allocating server processes (assuming a thread-per-

connection server design, e.g., Apache) to each class of pending connections, where classification is

performed by client IP address. The controller attempts to maintain a givenrelative delaybetween

classes: for example, a low-priority class experiences twice the delay of a high-priority class. This

is an interesting choice of performance metric, and it is unclear whether such an SLA would ever

be used in practice. A PI controller is designed and white-noise system identification (a technique

commonly employed in controller design for physical systems) is used to determine a second-order

model of system performance.

Finally, Diaoet al. describe a control-based mechanism for tuning Apache server param-

eters to meet resource utilization targets [37]. A multi-input-multi-output (MIMO) PI controller

design is presented that adjusts both the number of server processes and the per-connection idle

timeout in the Apache server to obtain given levels of CPU and memory utilization. Recall that in

Apache, reducing the number of server processes leads to increased likelihood of dropped incoming

connections; while this technique effectively protects server resources from oversaturation, it results

in poor client-perceived performance. This paper considers a static Web page workload and uses

system identification techniques from control theory to derive a linear model of server performance.

Although control theory provides a useful set of tools for designing and reasoning about

systems subject to feedback, there are many challenges that must be addressed in order for these

techniques to be applicable to real-world systems. One of the biggest difficulties in applying classic

control theory to complex systems is that good models of system behavior are often difficult to

derive. Unlike physical systems, which can often be described by linear models or approximations,

Internet services are subject to poorly understood traffic and internal resource demands. As a result,

44

Internet services tend to be highly nonlinear, which limits the applicability of standard modeling and

control techniques. The systems described here all make use of linear models, which may not be

accurate in describing systems with widely varying loads and resource demands. Moreover, when a

system is subject to extreme overload, we expect that a system model based on low-load conditions

may break down.

Many system designers resort toad hoccontroller designs in the face of increasing system

complexity. Although such an approach does not lend itself to formal analysis, careful design

and tuning may yield a robust system regardless. Indeed, the congestion-control mechanisms used

in TCP were empirically determined, though some recent work has attempted to apply control-

theoretic concepts to this problem as well [73, 75]. A benefit toad hoccontroller design is that it

does not rely on complex models and parameters that a system designer may be unable to understand

or to tune. A common complaint of classic PID controller design is that it is often difficult to

understand the effect of gain settings.

3.4 Service degradation

Rather than rejecting requests, an overloaded Internet service could take an alternate ac-

tion that requires fewer resources, but delivers a lower fidelity of service to the client. We use

the termservice degradationto describe a class of overload management policies that take this

approach.

The most straightforward form of service degradation is to reduce the quality of static Web

content, such as by reducing the resolution or compression quality of images delivered to clients.

This approach has been considered in a number of projects [45, 2, 24], and has been shown to be an

effective form of overload control. In many cases the goal of image quality degradation is to reduce

network bandwidth consumption on the server, though this may have other effects as well, such as

memory savings.

A more sophisticated example of service degradation involves replacing entire Web pages

45

(with many inlined images and links to other expensive objects) with stripped-down Web pages that

entail fewer individual HTTP requests to deliver. This is exactly the approach taken by CNN.com

on September 11, 2001, when server load spiked to unprecedented levels following terrorist attacks

on the World Trade Center and the Pentagon. CNN replaced its front page with simple HTML

page that that could be contained in a single Ethernet packet [83]. However, this was an extreme

measure that was put in place manually by the system administrators. A better approach would

be to degrade service gracefully and automatically in response to load. In [24], for example, the

Web server degrades the compression quality of JPEG images when bandwidth utilization exceeds

a target.

In some cases it is possible for a service to make performance tradeoffs in terms of the

freshness, consistency, or completeness of data delivered to clients. Brewer and Fox [44] describe

this tradeoff in terms of theharvestandyield of a data operation; harvest refers to the amount of

data represented in a response, while yield (closely related to availability) refers to the probability

of completing a request. It is often possible to achieve better performance from an Internet service

by reducing the harvest or yield requirements of a request. For example, a Web search engine could

reduce the amount of the Web database searched when overloaded, and still produce results that are

good enough such that a user may not notice any difference.

One disadvantage to service degradation is that many services lack a “fidelity knob” by

design. For example, an e-mail or chat service cannot practically degrade service in response to

overload: “lower-quality” e-mail and chat have no meaning. In these cases, a service must resort

to admission control, delaying responses, or one of the other mechanisms described earlier. Indeed,

rejecting a request through admission control is the lowest quality setting for a degraded service.

4 Summary

In this chapter we have surveyed the two main challenges for this dissertation: scaling

to extreme levels of concurrency and maintaining robust performance under heavy load. The tra-

46

ditional thread-based programming model exhibits problems along both axes, in that such systems

typically do not scale well and yield little control over resource usage, as required for load condi-

tioning. Although explicit event-driven concurrency mechanisms mitigate many aspects of the scal-

ability issue, they entail a great deal of complexity in terms of application design and scheduling.

Also, event-driven concurrency alone does not address the more general issue of load management;

it simply alleviates the scalability limitations of the threaded design.

Graceful management of load is hindered by resource virtualization, which makes it dif-

ficult for a service to observe or react to overload conditions, as physical resource limits are hidden.

A number of systems have explored ways to expose greater information and control over resource

usage to applications, though few of these techniques have specifically looked at the problem of

massive scale and dynamicism in an Internet service environment.

A critical aspect of service design is overload prevention, which comes in many forms.

The most widely used approaches are based on static resource limits (e.g., bounding the number

of connections to a service) or admission control (e.g., bounding the rate at which new requests

enter the service). Static resource limitations are inflexible, and it is difficult to determine how such

limits should be set. Many overload control schemes are based on metrics such as CPU utilization

or queue length, which are not tied to client-perceived performance.

A better way to approach overload is based on feedback and control, in which the system

observes its own behavior and adjusts resource usage or admission control parameters to meet some

performance target. A number of systems have taken such an approach, using eitherad hoccon-

troller designs, or more formal techniques based on control theory. Control theory raises a number

of challenges when applied to complex software systems, though the tools it provides may be useful

even if complete system models cannot be derived.

Finally, an alternative to rejection of work in an overloaded service is to degrade the

quality of service delivered to clients. This can be performed in a number of ways, such as by

reducing the quality of images or the freshness of data. However, not all services can be effectively

47

shielded from overload using degradation, so other techniques must be employed as well.

Bringing all of these ideas together, the goal of this thesis is to design ageneral-purpose

framework for handling massive concurrency and load in complex Internet services. Much of the

prior work described here as addressed aspects of this problem, often in the context of specific

applications under limited conditions (e.g., a Web server for static pages). Our focus is on pro-

viding a framework that can host a wide range of dynamic Internet services and manage much of

the complexity of service construction, tuning, and conditioning to heavy load conditions. The

SEDA approach, described in the following chapters, incorporate aspects of many of the techniques

described here, including efficient event-driven concurrency; structured queues for modularity; self-

monitoring for detecting overload conditions; as well as feedback, admission control, and service

degradation for prevention of overload.

48

Chapter 3

The Staged Event-Driven Architecture

In this chapter we propose a new software architecture, thestaged event-driven architec-

ture (SEDA), which is designed to enable high concurrency, load conditioning, and ease of engi-

neering for Internet services. SEDA decomposes an application into a network ofstagesseparated

by event queues. SEDA makes use ofdynamic resource controlto allow applications to adapt to

changing load and resource conditions. An overview of the SEDA approach to service design is

shown in Figure 8.

1 Design overview

Before presenting the SEDA architecture in detail, here we present a high-level overview

of the main aspects of the design:

Efficient, event-driven concurrency: To support massive degrees of concurrency, SEDA relies

on event-driven techniques to represent multiple flows through the system. This design makes use

of a small number of threads, rather than one thread per request. Nonblocking I/O primitives are

used to eliminate common sources of blocking.

49

dynamic pages

cache miss

I/O completion

static pages

packet
parse

SSL/TLS
processing

read
packet

connection
accept

handle
cache miss

file
I/O

dynamic
page gen

send
response

URL
dispatch cache

check

Figure 8:Staged event-driven (SEDA) HTTP server:This is a structural representation of Ha-
boob, the SEDA-based Web server, described in detail in Chapter 6. The application is composed
as a set ofstagesseparated byqueues. Edges represent the flow of events between stages. Each
stage can be independently managed, and stages can be run in sequence or in parallel, or a com-
bination of the two. The use of event queues allows each stage to be individually load-conditioned,
for example, by performing admission control on its event queue. For simplicity, some event paths
and stages have been elided from this figure.

Dynamic thread pooling: To relax the rigid scheduling and nonblocking requirements for event-

driven concurrency, SEDA uses a set ofthread pools, one per stage, to drive execution. This not

only frees the application programmer from having to implement event scheduling (as the operating

system handles scheduling threads), but also allows event-handling code to block for brief periods

of time, as additional threads can be allocated to a stage.

Structured queues for code modularity and load management: By partitioning an application

into a set of stages with explicit queues between them, application designers can focus on the service

logic and concurrency management for individual stages, “plugging” them together into a complete

service later. Queues decouple the execution of each stage, allowing stages to be developed indepen-

dently. Queues provide a point of control over the request stream in a service, as requests flowing

across stages can be inspected and managed by the application. Likewise, admission control can be

performed on a per-stage basis.

50

Outgoing
Events

Event Queue Event Handler

Thread Pool

Controllers

Figure 9: A SEDA Stage: A stage consists of anincoming event queue, a thread pool, and an
application-suppliedevent handler. The stage’s operation is managed by a set ofcontrollers, which
dynamically adjust resource allocations and scheduling.

Self-tuning resource management: Rather than mandatea priori knowledge of application re-

source requirements and client load characteristics, SEDA makes use of feedback and control to

automatically tune various resource usage parameters in the system. For example, the system de-

termines the number of threads allocated to each stage based on perceived concurrency demands,

rather than relying on a hard-coded value set by the programmer or administrator.

2 Stages as robust building blocks

The fundamental unit of processing within SEDA is thestage. A stage is a self-contained

application component consisting of anevent handler, anincoming event queue, and athread pool,

as depicted in Figure 9. Each stage is managed by one or morecontrollers that affect resource

consumption, scheduling, thread allocation, and admission control, as described below. Threads

within a stage operate by pulling abatchof events off of the incoming event queue and invoking the

application-supplied event handler. The event handler processes each batch of events, and dispatches

zero or more events by enqueueing them on the event queues of other stages.

51

2.1 Events and batching

Eacheventprocessed by a stage is typically a data structure representing a single client

request to the Internet service, for example, an HTTP request for a Web page. However, events may

represent other information relevant to the operation of the service, such as a network connection

being established, the firing of a timer, or an error condition. Throughout this thesis we often use

the termseventandrequestinterchangeably, though technically arequestis generated by a client,

while other types of events may be generated by the service internally.

The SEDA programming model exposes batches of events, rather than individual events,

to the application. This allows the application to exploit opportunities for processing multiple events

together, which can lead to higher performance. For example, if the event handler is able to amor-

tize an expensive operation across multiple events, throughput can be increased. Likewise, data

and cache locality may benefit if the processing for multiple events shares common code and data

structures [80].

2.2 Event handlers

In SEDA, a service designer implements anevent handlerfor each stage, which represents

the core service-processing logic for that stage. An event handler is simply a function that accepts

a batch of events as input, processes those events, and (optionally) enqueues outgoing events onto

other stages. The event handler itself does not have direct control over threads within a stage,

the input queue, and other aspects of resource management and scheduling. In some sense, event

handlers are passive components that are invoked by the runtime system in response to event arrivals,

and the runtime makes the determination of when and how to invoke the event handler.

The motivation for this design is separation of concerns: by separating core application

logic from thread management and scheduling, the runtime system is able to control the execution

of the event handler to implement various external resource-management policies. For example,

the number and ordering of events passed to the event handler is controlled by the runtime, as is

52

the allocation and scheduling priority of threads operating within the stage. Our goal is to simplify

service design by providing resource management within a generic framework that frees service

developers from much of the complexity of load conditioning. However, this approach does not

strip applications of all control over the operation of the service: within a stage, applications may

make decisions as to request prioritization, ordering, or service quality.

2.3 Threading model

Threads are the basic concurrency mechanism within SEDA, yet their use is limited to

a small number of threads per stage, rather than allocating a separate thread per request in the

system. This approach has a number of advantages. First, the use of threads relaxes the constraint

that all event-processing code be non-blocking, allowing an event handler to block or be preempted

if necessary. In a traditional event-driven system, all blocking operations must explicitly capture

the state of the computation and restore it when the operation completes. In SEDA, threads act as

implicit continuations, automatically capturing the execution state across blocking operations.

SEDA applications createexplicit continuationswhen they dispatch an event to another

stage; the benefit of this approach is that continuation management can be performed by the appli-

cation when it is most convenient (i.e., at stage-boundary crossings) rather than at any time during

the event handler’s operation. Creating such a continuation typically consists of allocating a (small)

event data structure to represent the operation to be performed by the next stage, and filling it in

with whatever state the stage will need to process it. In many cases the same event structure can be

passed along from stage to stage, as stages perform transformations on its state.

Blocking effectively reduces the number of active threads within a stage, thereby degrad-

ing the stage’s request-processing rate. To maintain high concurrency, additional threads may be

allocated to a stage that exhibits blocking. However, to avoid overuse of threads (and attendant

performance degradation), it is necessary that the number of threads needed to overlap blocking

operations not be too large. In general this means that most blocking operations should be short,

53

or that long blocking operations should be infrequent. Page faults, garbage collection, and occa-

sional blocking calls to the operating system typically do not require a large number of threads to

maintain a high degree of concurrency. As discussed below, SEDA relies on nonblocking I/O prim-

itives to eliminate the most common sources of blocking. In addition, our implementation of SEDA

automatically reduces the number of threads allocated to a stage when throughput degradation is

detected.

The second benefit of this thread model is that SEDA can rely upon the operating system

to schedule stages transparently on the underlying hardware. This is in contrast to the monolithic

event-driven design, in which the service designer must determine the order and policy for dispatch-

ing events. In SEDA, the use of threads allows stages to run in sequence or in parallel, depending

on the operating system, thread system, and scheduler. Given the small number of threads used in a

typical SEDA application, it is acceptable to use kernel-level threads, which (unlike many user-level

threads packages) can exploit multiple CPUs in a multiprocessor system.

The alternative to operating-system-managed scheduling would be for the SEDA runtime

to schedule event handlers directly on the physical CPUs in the system. This difficulty with this

approach is that it causes SEDA to duplicate most of the functionality of the OS scheduler, and

to handle all aspects of blocking, preemption, prioritization, and so forth. However, this approach

would yield a great degree of control over the ordering and prioritization of individual requests or

stages in the system. Although there may be some benefit in exploring alternative scheduler designs

for SEDA, our experiences with OS threads have been good and not necessitated application-level

scheduling. In this dissertation we focus on the use of preemptive, OS-supported threads in an SMP

environment, although this choice is not fundamental to the SEDA design.

It is not strictly necessary for each stage to have its own private thread pool; an alternate

policy would be to have a single global thread pool and allow threads to execute within different

stages based on demand. To simplify the discussion, we focus on the case where each stage contains

a private thread pool, noting that other policies can be approximated by this model. Other thread

54

allocation and scheduling policies are interesting areas for future work, and we discuss them in more

detail in Chapter 8.

3 Applications as a network of stages

A SEDA application is constructed as a network of stages, connected by event queues.

Event handlers may enqueue events onto another stage by first obtaining a handle to that stage’s

incoming event queue (through a system-provided lookup routine), and then invoking anenqueue

operation on that queue.

An important aspect of queues in SEDA is that they are subject toadmission control. That

is, a queue may reject an enqueued event in order to implement some resource-management policy,

such as preventing response times from growing above a threshold. A rejected enqueue operation

is signaled immediately to the originating stage, for example, by returning an error code. Enqueue

rejection acts as an explicit overload signal to applications and should be used by the service to

adapt behavior in some way. The particular admission control mechanism used, and the response

to a queue rejection, depends greatly on the overload management policy and the application itself.

This is discussed in more detail in Section 5 below.

The network of stages may be constructed either statically (where all stages and connec-

tions between them are known at compile or load time) or dynamically (allowing stages to be added

and removed at runtime). There are advantages and disadvantages to each approach. Static network

construction allows the service designer (or an automated tool) to reason about the correctness of

the graph structure; for example, whether the types of events generated by one stage are actually

handled by stages downstream from it. Static construction may also permit compile-time optimiza-

tions, such as short-circuiting an event path between two stages, effectively combining two stages

into one and allowing code from one stage to be inlined into another. TheCombinedesign pattern,

described in Section 6.4 below, formalizes the effect of this transformation.

Dynamic network construction affords much more flexibility in application design, per-

55

mitting new stages to be added to the system as needed. For example, if some feature of the service

is rarely invoked, the corresponding stages may only be instantiated on demand. Our implementa-

tion of SEDA, described in Chapter 5, makes use of dynamic stage graph construction and imposes

few restrictions on how stages are composed.

3.1 Haboob: An example SEDA application

Figure 8 illustrates the structure of an example SEDA-based service, the Haboob Web

server described in detail in Chapter 6. The service consists of a number of stages for handling

network I/O, parsing HTTP requests, managing a cache of recently accessed pages, and so forth.

Several stages, such as the network and file I/O interfaces, provide generic functionality that could

be used by a range of services. These generic interfaces are described further in Chapter 5. Other

stages, such as the static Web page cache, are specific to the Haboob service.

3.2 Service structuring issues

The particular structure of the Haboob server, and indeed any SEDA-based service, is

based on a number of factors. Important issues to consider include performance, load conditioning,

and code modularity. In Section 6 we present a set of design patterns that captures these tradeoffs

in service design.

A fundamental tradeoff to consider is whether two request-processing code modules should

communicate through a queue (i.e., implemented as separate stages), or directly through a function

call (implemented as one stage). For raw performance reasons, it may be desirable to use direct

invocation to avoid the synchronization and scheduling overhead of dispatching an event to a queue.

This is the approach taken in Scout [100] and Click [77], which focused on reducing the latency of

requests flowing through the system.

However, the use of queues has a number of benefits, including isolation, independent

load management, and code modularity. Introducing a queue between two code modules decouples

56

their execution, providing an explicit control boundary. The execution of a thread is constrained

to a given stage, bounding its execution time and resource usage to that consumed within its own

stage. A thread may only pass data across the boundary by enqueueing an event for another stage.

As a result, the resource consumption of each stage can be controlled independently, for example,

by performing admission control on a stage’s event queue. An untrusted, third-party code module

can be isolated within its own stage, limiting adverse effects of interference with other stages in the

system.

Queues are also an excellent mechanism for structuring complex applications. Rather

than exposing a typed function-call API, stages accept events of certain types and emit events of

certain types; there need not be a one-to-one matching of event reception and emission. Stages

are therefore composed using aprotocol, rather than merely type-matching of function arguments

and return values, admitting a flexible range of composition policies. For example, a stage might

aggregate data across multiple events over time, only occasionally emitting a “summary event” of

recent activity. Matching of event types across a queue interface need not be strict; for instance, a

stage could transparently pass along event types that it does not understand.

Queues also facilitate debugging and performance analysis of services, which have tra-

ditionally been challenges in complex multi-threaded servers. Monitoring code can be attached to

the entry and exit points of each stage, allowing the system designer to profile the flow of events

through the system and the performance of each stage. It is also straightforward to interpose proxy

stages between components for tracing and debugging purposes. Our implementation of SEDA is

capable of automatically generating a graph depicting the connectivity of stages and the number of

events passing through each queue. The prototype can also generate visualizations of event queue

lengths, memory usage, and other system properties over time.

57

4 Dynamic resource control

A key goal of enabling ease of service engineering is to shield programmers from the

complexity of performance tuning. In order to keep each stage within its ideal operating regime,

SEDA makes use ofdynamic resource control, automatically adapting the behavior of each stage

based on observed performance and demand. Abstractly, a controller observes runtime character-

istics of the stage and adjusts allocation and scheduling parameters to meet performance targets.

Controllers can operate either with entirely local knowledge about a particular stage, or work in

concert based on global state.

A wide range of resource control mechanisms are possible in the SEDA framework. One

example is tuning the number of threads executing within each stage. If all operations within a

stage are nonblocking, then a stage would need no more than one thread per CPU to handle load.

However, given the possibility of short blocking operations, additional threads may be needed to

maintain concurrency. Likewise, allocating additional threads to a stage has the effect of giving that

stage higher priority than other stages, in the sense that it has more opportunities to execute. At the

same time, it is important to avoid overallocating threads, which leads to performance degradation.

Therefore the ideal number of threads per stage is based on the stage’s concurrency demands a

well as overall system behavior. Rather than allocate a static number of threads to each stage,

our implementation of SEDA, described in Chapter 5, uses adynamic thread pool controllerto

automatically tune thread allocations.

Another example is adjusting the number of events contained within each batch passed to

a stage’s event handler. A large batch size allows for increased locality and greater opportunity to

amortize operations across multiple events, while a small batch size more evenly distributes work

across multiple threads in a stage. In the prototype, a controller is used to tune the batch size based

on the measured performance of each stage. Both of these mechanisms are described in more detail

in Chapter 5.

Dynamic control in SEDA allows the application to adapt to changing conditions despite

58

the particular algorithms used by the underlying operating system. In some sense, SEDA’s con-

trollers are naive about the resource management policies of the OS. For example, the SEDA thread

pool sizing controller is not aware of the OS thread scheduling policy; rather, it influences thread

allocation based on external observations of application performance. Although in some cases it

may be desirable to exert more control over the underlying OS—for example, to provide quality of

service guarantees to particular stages or threads—we believe that the basic resource management

mechanisms provided by commodity operating systems, subject to application-level control, are

adequate for the needs of Internet services. We return to this issue in Chapter 8.

5 Overload protection

Apart from tuning runtime parameters, another form of resource management in SEDA

is overload control. Here, the goal is to prevent the service from exhibiting significantly degraded

performance under heavy load due to overcommitting resources. As a service approaches saturation,

the response times exhibited by requests can grow exponentially. To address this problem it is often

desirable to shed load, for example, by sending explicit rejection messages to users, rather than

cause all users to experience unacceptable response times.

Overload protection in SEDA is accomplished through the use of fine-grained admission

control at each stage, which can be used to implement a wide range of policies. Generally, by

applying admission control, the system can limit the rate at which that stage accepts new requests,

allowing performance bottlenecks to be isolated. A simple admission control policy might be to

apply a fixed threshold to each stage’s event queue; unfortunately, it is very difficult to determine

what the ideal thresholds should be to meet some performance target.

A better approach is for stages to monitor their performance (for example, response-time

distributions) and trigger rejection of incoming events when some performance threshold has been

exceeded. Alternately, an admission controller could assign a cost to each event in the system,

and prioritize low-cost events (e.g., inexpensive static Web page requests) over high-cost events

59

(e.g., expensive dynamic pages). SEDA allows the admission control policy to be tailored for each

individual stage, and admission control can be disabled for any stage.

A fundamental property of SEDA service design is that stages must be prepared to deal

with enqueue rejection. Rejection of events from a queue indicates that the corresponding stage

is overloaded, and the service should use this information to adapt. This explicit indication of

overload differs from traditional service designs that treat overload as an exceptional case for which

applications are given little indication or control. In SEDA, overload management is a first-class

primitive in the programming model.

Rejection of an event from a queue does not imply that the user’s request is rejected from

the system. Rather, it is the responsibility of the stage receiving a queue rejection to perform some

alternate action. This action depends greatly on the service logic. For example, if a static Web

page request is rejected, it is usually sufficient to send an error message to the client indicating that

the service is overloaded. However, if the request is for a complex operation such as executing a

stock trade, it may be necessary to respond in other ways, such as by transparently re-trying the

request at a later time. More generally, queue rejection can be used as a signal todegrade service,

by performing variants of a service that require fewer resources.

We defer a detailed discussion of overload control in SEDA to Chapter 7. There, we

present mechanisms that control the 90th-percentile response time exhibited by requests through

the system. We also present a technique for class-based service differentiation that drops lower-

priority requests over higher-priority requests, and demonstrate the use of service degradation.

6 Design patterns for structured service design

Our initial investigation into the spectrum of concurrency models from Chapter 2 indicates

the need for systematic techniques for mapping an application design onto an implementation that

provides efficiency and robustness despite the inherent limits of the underlying operating system.

Here, we propose a set ofdesign patterns[46] that may be applied when constructing SEDA-based

60

services. A design pattern is a specification for a recurring solution to a standard problem [115].

The process of mapping complex Internet services onto the SEDA model can be represented as a

set of design patterns to achieve certain performance and robustness goals.

6.1 Definitions

We define ataskas the fundamental unit of work to be performed by a service in response

to a given client request. Abstractly, a task consists of a set of processingstepsthat may involve

computation, I/O, network communication, and so forth. For example, a Web server responding

to a request to retrieve a static HTML page must first parse the request URL, look up the page

in the local cache, read the page from disk (if necessary), and send a formatted response to the

client. The steps of a task can either be executed in sequence or in parallel, or a combination of

the two. By decomposing a task into a series of steps, it is possible to distribute those steps over

multiple physical resources, and reason about the control flow of each task for load-balancing and

fault-isolation purposes.

We begin with a simple formulation of a service in which each request is processed by a

separate thread. This is the standard approach to service design, as discussed in Chapter 2. Our goal

in this section is to show how to map thethread-per-taskprocessing model onto a scalable, robust

service using the SEDA framework.

6.2 TheWrappattern

Thread Per Task

Event Handler

Thread Pool

Wrap

Figure 10:The Wrapdesign pattern.

The Wrap pattern places a queue in

front of a set of threads performing task pro-

cessing, thereby “wrapping” the task process-

ing logic into a SEDA stage. Each thread pro-

cesses a single task through some number of

steps, and may block. TheWrap operation

61

makes the resulting stage robust to load, as the number of threads inside of the stage can now

be fixed at a value that prevents thread overhead from degrading performance, and additional tasks

that cannot be serviced by these threads will accumulate in the queue.

Wrap is the basic stage construction primitive in our design framework. The simplest

SEDA-based server is one that consists of a single stage with a bounded thread pool and request

queue. Wrap is identical to thread pooling as described in Chapter 2; a typical example is the

Apache [8] Web server, which uses a static pool of UNIX processes to perform request processing.

In Apache, the request queue is implemented using theaccept()system call; as discussed previously,

this can lead to dropped TCP connections if the listen queue fills up.

Wrapping the entire service logic in a single stage is typically too coarse-grained of an

approach to effect adequate performance and load conditioning properties. This is because such an

approach only exposes control to two variables: the number of threads in the stage, and the admis-

sion control policy over the single request queue. To carefully manage resource bottlenecks within

the service, it is often desirable to control the flow of requestswithin a service, for example, by

identifying those requests which cause performance degradation and perform selective load shed-

ding upon them. As discussed in Chapter 2, a single thread pool and request queue does not yield

enough “external” control over the behavior of the service logic. Decomposing a service into multi-

ple stages permits independent resource provisioning and load conditioning for each stage. This is

the purpose of the remaining design patterns.

6.3 ThePipelineand Partition patterns

ThePipelinepattern takes a single stage and converts it into a chain of multiple stages in

series, introducing event queues between them. Abstractly, if the task processing within the original

stage consists of processing stepsS1, S2, andS3, Pipelinecan be used to convert this into three

stages each performing a single step.

62

Event Handler

Thread Pool

Event Handler

Thread Pool

Event Handler

Thread Pool

S1 S2 S3

Event Handler

Thread Pool

S1
S2
S3

Pipeline

Figure 11:The Pipelinedesign pattern.

The Partition pattern takes a sin-

gle stage and converts it into a tree of multi-

ple stages in parallel. This transformation is

generally applied at a branching point in the

stage’s task processing; if a stage performs

processing stepsS1 followed by a branch to ei-

therS2 or S3, thenPartition converts this into

a tree of three stages, whereS1 feeds events to

stagesS2 andS3.

The PipelineandPartition patterns have a number of uses. First, they can be used to

isolate blocking or resource-intensive code into its own stage, allowing it to be independently pro-

visioned and conditioned to load. Breaking the processing for a task into separate stages allows

the size of the thread pool to be tailored for that stage, and allows that stage to be replicated across

separate physical resources (as we will see below) to achieve greater parallelism. This approach

also allows admission control decisions to be made based on the resource needs of each particular

stage.

Consider a use ofPartition that converts a stage performing the logical operations

1. Do taskS1;

2. If some condition holds, do taskS2;

3. Otherwise, do taskS3.

into three stages, as shown in Figure 12. Say thatS2 performs a blocking operation that takes a

long time to complete, and that for some request load becomes a bottleneck requiring the use of

admission control. Without applyingPartition, it would be necessary to apply admission control

on the single stage performing stepsS1, S2, S3, without any information on which requests actually

performed stepS2. However, by placing this code in its own stage, requests that flow only through

63

stagesS1 andS3 are unaffected; admission control can be performed onS2 separately from the rest

of the service.

Event Handler

Thread Pool

S1

Event Handler

Thread Pool

S2

Event Handler

Thread Pool

S3

Event Handler

Thread Pool

S1

||
(S2

S3)

Partition

Figure 12:The Partition design pattern.

Pipeline and Partition can increase

performance by causing the execution of

service-processing code to be “batched” for

greater cache locality. As the performance gap

between cache and main memory increases,

improving cache locality may yield important

performance gains. The impact of cache local-

ity on server performance was the chief moti-

vation for the StagedServer [80] design, which

resembles SEDA in some respects. In a thread-

per-task system, the instruction cache tends to

take many misses as the thread’s control passes through many unrelated code modules to process

the task. When a context switch occurs (e.g., due to thread preemption or a blocking I/O call), other

threads will invariably flush the waiting thread’s state out of the cache. When the original thread

resumes execution, it will need to take many cache misses in order to bring its code and state back

into the cache. In this situation, all of the threads in the system are competing for limited cache

space.

Applying thePipelineandPartition patterns can increase data and instruction cache lo-

cality to avoid this performance hit. Each stage can process a convoy of tasks at once, keeping the

instruction cache warm with its own code, and the data cache warm with any shared data used to

process the convoy. In addition, each stage has the opportunity to service incoming tasks in an order

that optimizes for cache locality. For example, if queues are serviced in last-in-first-out order, as

proposed by [80], then the tasks that arrived most recently may still be in the data cache.

64

Finally, isolating code into its own stage facilitates modularity and independent code de-

velopment. Because stages communicate through an explicit task-passing interface, it is straight-

forward to experiment with new implementations of a stage, or to introduce a proxy stage between

two other stages. In contrast to the thread-per-task model, in which a single thread may invoke

many code modules to process a task, isolating service components within separate stages isolates

performance bottlenecks or failures in a given stage. Decomposition also has the benefit of greatly

reducing code complexity, which is often an issue for monolithic event-driven systems. The fact that

each stage uses its own thread pool to drive execution allows the underlying thread system to make

scheduling decisions across a set of stages, rather than having to implement an application-specific

scheduler within a monolithic event loop.

6.4 TheCombinepattern

S1

Event Handler

Thread Pool

S2

Event Handler

Thread Pool

S2

S1Event Handler

Thread Pool
S3

Event Handler

Thread Pool

Event Handler

Thread Pool

S3

S2 − S3 continuations

Combine

Figure 13:The Combinedesign pattern.

The Combinepattern combines two

stages into a single stage. It is the inverse of

the PipelineandPartition stages, and is used

to aggregate the processing of separate stages.

One benefit of this pattern is to reduce code

complexity. Consider a set of three sequential

stages (S1, S2, andS3), resulting from the use

of Pipeline, as shown in Figure 13. IfS1 and

S3 perform closely related actions, such as the dispatch and completion of an asynchronous oper-

ation toS2, then it makes sense to combine the logic for these stages into a single stage. Also,

combining stages conserves threads, as multiple components share a single thread pool. For exam-

ple, if S1 andS3 are CPU bound, both stages need no more than one thread per CPU; there is no

value in allocating a separate pool to each stage.Combinehas benefits for locality as well. IfS1

andS3 share common data structures or code, then combining their processing into a single stage

65

may improve cache locality, leading to higher performance.

6.5 TheReplicatepattern

TheReplicatepattern replicates a given stage, introducing a failure boundary between the

two copies, possibly by instantiating the new stage on a separate set of physical resources. Whereas

PipelineandPartition are used to achieve functional decomposition of a stage,Replicateis used to

achieve parallelism and fault isolation. The canonical use ofReplicateis to distribute stages in a

SEDA-based application across a set of physical nodes, for example, in a workstation cluster. This

allows the processing capacity of the service to scale with the number of nodes in the cluster, and

increases fault tolerance by allowing stage replicas to fail independently on separate nodes.

Event Handler

Thread Pool

Event Handler

Thread Pool

Event Handler

Thread Pool

Replicate

Figure 14:The Replicatedesign pattern.

By replicating a stage across phys-

ical resources, the combined processing ca-

pability of the replicas is increased; this can

be used to eliminate a bottleneck in the sys-

tem by devoting more resources to the repli-

cated stage. For example, if a stage is CPU

bound and is unable to deliver expected per-

formance with available resources,Replicate

can be used to harness additional CPUs across

multiple nodes of a cluster. Replication can also be used to introduce a failure boundary between

copies of a stage, either by running them on separate machines, or even within different address

spaces on the same machine.

Stage replication raises concerns about distributed state management. The failure of a

network link within a cluster can lead to partitioning, which is troublesome if stages residing on dif-

ferent cluster nodes need to maintain consistent state. There are several ways to avoid this problem.

One is to employ one of various distributed consistency or group membership protocols [101, 136].

66

Another is to engineer the cluster interconnect to eliminate partitioning. This is the approach taken

by DDS [52] and the Inktomi search engine [63].

Although we include replication of stages in our design framework, this dissertation fo-

cuses on the properties of SEDA as they pertain to a single-node Internet service. However, it is

relatively straightforward to replicate a SEDA-based service, for example, by implementing event

queues using network connections between cluster nodes. This is the approach taken by the Ninja

vSpacesystem [139], which makes use of the SEDA design in a cluster environment.

7 Additional design principles

Apart from the design patterns presented above, there are several other principles that

should be considered when engineering an Internet service under the SEDA design framework.

Avoiding data sharing: The data associated with tasks within the service should be

passed by value, rather than by reference, whenever possible. Data sharing between two stages

raises a number of concerns. Consistency of shared data must be maintained using locks or a sim-

ilar mechanism; locks can lead to race conditions and long acquisition wait-times when contended

for, which in turn limits concurrency. Also, passing data by reference is problematic when two

stages are located in different addresses spaces or machines. Although Distributed Shared Mem-

ory (DSM) [1] can be used to make cross-address-space sharing transparent, DSM mechanisms are

complex and raise concurrency concerns of their own. Data sharing also requires stages to agree

upon who is responsible for deallocating data once it is no longer used. In a garbage-collected en-

vironment (within a single address space) this is straightforward; without garbage collection, more

explicit coordination is required. Perhaps most importantly, data sharing reduces fault isolation. If

a stage fails and leaves shared data in an inconsistent state, any other stages sharing that data must

be able to recover from this situation or risk failure themselves.

An alternative to passing by value is to pass by reference with the originator relinquishing

access. Another means of reducing data sharing is to space-partition application state, in which

67

multiple stages process their own private partition of the application state, rather than sharing state

and using locks to maintain consistency.

Stateless task processing:A statelessstage is one that maintains no internal state that

needs to be maintained across the processing of multiple tasks. Note that a stateless stage may still

make use ofper-task state, for example, state carried in the data structure representing a request.

Although stateless processing may be difficult to achieve in practice, it has several benefits. A

stateless stage can be lock-free, as no state is shared between threads within the stage or other

stages. In addition, a stateless stage can be easily created or restarted on demand, for example, in

response to a load spike or failure.

Avoiding fate sharing: In a clustered environment where disjoint physical resources are

available, it is important to avoidfate sharingof different stages. If two stages share physical

resources, they also share their fate: that is, if the physical resources fail (e.g., the cluster node

crashes), both stages will also fail. To avoid fate sharing, replicas of the same stage should be kept

on separate physical nodes, or at least in separate address spaces on the same node.

Another form of fate sharing isload sharing, in which the performance of two stages are

subject to dependent load conditions. For example, if one replica of a stage fails, other replicas will

be require to take on its load in order to maintain throughput. Likewise, the resource consumption of

one stage on a node can affect the resources available to other stages on that node. SEDA attempts to

mitigate this issue by applying load conditioning and admission control to each stage independently,

with the goal of avoiding resource starvation.

Well-formed structure: One should consider whether a service constructed using the

SEDA framework iswell-formed, that is, that it meets certain criteria that enable the system to

function properly. Many such constraints are easy to state: for example, a stage with an empty

thread pool will clearly not make progress. Two stages that are composed through a queue need to

agree on the types of events that are produced and consumed by the participants.

In general, the structure of a SEDA application should not allow deadlock or starvation.

68

Deadlock can occur for various reasons. For example, if two stages share common resources or

state, then the use of locks can lead to deadlock, unless the stages agree on a well-defined order for

acquiring and releasing exclusive access. Cycles in a SEDA stage graph are generally unproblematic

as long as certain properties are satisfied. For example, consider a stage cycle such as that shown

in Figure 13, arising from the use ofCombine. If the rightmost stage (S2) becomes a bottleneck

requiring admission control, and the leftmost stage (S1/S3) reacts to a queue rejection by blocking

its threads, then requests flowing fromS2 to S1/S3 will back up in the stage graph.

69

Chapter 4

A Performance Model for SEDA-based

Services

One of the benefits of SEDA is that it provides a structured framework for reasoning about

the performance of complex Internet services. The core structure proposed by SEDA, a network of

service components with associated request queues, has been studied extensively in the context of

queue-theoretic performance models [14, 66, 76]. In many cases, these performance models rely

on simplifying assumptions in order to yield a closed-form solution; a common assumption is that

interarrival and service times are exponentially distributed. However, many of the “interesting”

cases that arise in real systems, such as the effects of scheduling, resource contention, complex

service time distributions, and so forth, are not amenable to direct formal analysis. Despite these

simplifications, however, queueing networks provide a useful formal structure in which to analyze

the behavior of a SEDA application.

In this chapter, we derive a simple performance model for SEDA based on a queueing

network of load-dependent service centers. This model describes the performance aspects of SEDA

in terms of external load, stage performance, thread behavior, and the structure of the stage network.

Using this model we motivate the use of the SEDA design patterns described in the previous chapter,

70

demonstrating the performance effects of each transformation on the structure of a simple service.

The performance model given here makes several simplifying assumptions, and real ser-

vices no doubt exhibit dynamics that are not captured by it. Regardless, we expect that the perfor-

mance model can provide a valuable approximation and intuition for the expected performance of a

SEDA-based service. At the end of the chapter we discuss the limitations of the model and several

potential extensions.

1 Introduction: Basic queueing models

In the terminology of queueing theory, a SEDA application can be modeled as a network

of service centers, with each service center exhibiting some service time distributionS,

S(x) = Pr[service time≤ x]

Requests (also calledcustomersor jobs) arrive at each service center according to an arrival process

characterized by an interarrival time distributionA,

A(t) = Pr[time between arrivals≤ t]

The bulk of queueing theory related to networks of queues deals with service centers exhibiting

exponential service and interarrival time distributions. These two assumptions permit a straightfor-

ward analysis of various aspects of the queueing system, such as the mean number of requests in

the system, the waiting time and response time distributions, and so forth.

The exponential distribution is characterized by the probability density function

f(x) =

λe−λx if x ≥ 0

0 otherwise

(4.1)

whereλ is therateof the associated distribution. The cumulative distribution function is given by

F (x) = Pr[X ≤ x] =
∫ x

−∞
f(y)dy =

1− e−λx if x ≥ 0

0 otherwise

(4.2)

71

µ

µ

µ

λ

Figure 15:M/M/m queueing system:Requests arrive at the system according to a Poisson arrival
process with average rateλ, andm servers process each request with an exponentially distributed
service time with mean1/µ.

The exponential distribution exhibits thememoryless propertyin that

Pr[X > s+ t |X > t] = Pr[X > s] ∀s, t ≥ 0

This property allows the sequence of arrivals to and departures from a service center to be modeled

as a continuous-time Markov chain, which is the basis for many of the results in basic queueing

theory.

The simplest formulation for a single SEDA stage is an M/M/m queueing system as shown

in Figure 15. In this system, request interarrival times are exponentially distributed with mean1/λ,

service times are exponentially distributed with mean1/µ, and there arem serverswithin the service

center available to process requests concurrently. In the SEDA model,m represents the number of

threads within the stage. For the moment, let us assume that the processing capacity of a stage is

linear in the number of threads; in Section 2.1 we discuss the load-dependent case in which stage

performance depends on other factors.

The ratioρ = λ/(mµ) is referred to as thetraffic intensityof the system; whenρ < 1,

the system isstablein that the steady-state waiting time of requests entering the system is finite.

Whenρ ≥ 1, the system isunstable(or overloaded), and waiting times are unbounded. We define

themaximum stable arrival rateas the largest value ofλ for a given system such thatρ < 1.

Rather than reiterate the derivations for these fundamental results, we refer the reader to

any text on basic queueing theory, such as [76]. The derivations of the theorems below can be found

72

in [67], pages 519–534.

It can be shown that the probability ofn requests in an M/M/m queueing system is

pn =

p0

(mρ)n

n! n < m

p0
ρnmm

m! n ≥ m
(4.3)

wherep0 is the probability of the system being empty, given as

p0 =
[
1 +

(mρ)m

m!(1− ρ)
+
m−1∑
n=1

(mρ)n

n!

]−1

(4.4)

Another important quantity is the probability that an incoming request must queue (that is, that all

m servers are busy); this is given by Erlang’s C formula,

% = Pr[≥ m jobs in system] = p0
(mρ)m

m!(1− ρ)
(4.5)

The mean number of requests in the system is denoted by the random variableN , where

E[N] = mρ+
ρ%

1− ρ
(4.6)

with variance

V ar[N] = mρ+ ρ%

[
1 + ρ− ρ%
(1− ρ)2

+m

]
(4.7)

Theresponse time(time waiting in the queue plus time to complete service) exhibited by a request

is denoted by the random variableR, with mean

E[R] =
1
µ

(
1 +

%

m(1− ρ)

)
(4.8)

and cumulative distribution function

F (r) = Pr[R ≤ r] =

1− e−µr − %

1−m+mρe
−mµ(1−ρ)r − e−µr ρ 6= (m− 1)/m

1− e−µr − %µre−µr ρ = (m− 1)/m
(4.9)

Figure 16 shows the mean response time for three M/M/m queueing systems; as the arrival rateλ

approaches the service rateµ, response times grow to infinity.

73

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 r
es

po
ns

e
tim

e,
 s

ec

�

Arrival rate, lambda

1 thread
2 threads
3 threads

Figure 16: Mean response time for an M/M/m queueing system:This graph shows the mean
response time (time in queue plus service time) for requests entering an M/M/m queueing system
with an average service rateµ = 3.0, under a varying average arrival rateλ and 1, 2, or 3 servers.
As the graph shows, the system becomes unstable asλ→ mµ.

It is important to note that these results hold in steady state; that is, whenλ andµ are

constant ast → ∞. In a real system, both the arrival rate and service rate will vary considerably

over time. Unfortunately, these basic results do not address the transient behavior of the system

under heavy load.

2 Modeling resource contention and thread limitations

While the M/M/m queueing system is simple to analyze, it has several drawbacks. Model-

ing each thread within a stage as a separate server fails to capture resource contention that may occur

between threads, either within the same stage or in different stages. As discussed in Chapter 2, most

threading systems exhibit performance degradation as the number of threads in the system grows;

under the simplistic model here, the best way to meet performance targets for SEDA is to simply

allocate more threads! In this section we extend the basic model to address resource contention and

74

the inherent performance overheads of threads.

2.1 Load-dependent service centers

.

A load-dependent service centeris a queueing system in which the average service rateµ

depends upon the number of requests in the system. In generalµ can be any function of the number

of customersn; for M/M/m, service times are exponentially distributed with mean

µ(n) =

nµ if n < m

mµ otherwise

Whereµ is the base service rate of the service center.

Rather than attempt to express all of the possible resource contention scenarios that may

affect a stage, we choose to limit the our model to capturing performance degradation as the total

number of threads in the system increases. First we consider a single stage in isolation; in Section 3

we extend the model to a network of stages.

We expect that for a given stage, there is someinherent parallelismthat can be exploited

by allocating some number of threads to the stage. Beyond a certain limit, adding additional threads

does not yield higher performance, and in fact may incur a performance penalty due to thread

overhead. Leaving aside the number of requests in the system for the moment, we defineµm as the

base service rate for a stage withm threads.

µm =

max(0,mµ− φ(mt)) if m < α

max(0, αµ− φ(mt)) if m ≥ α
(4.10)

α represents the “saturation point” of the stage, beyond which all of the inherent parallelism has

been exploited. For example, if a stage is strictly CPU-bound, thenα is equal to the number of

CPUs in the system.φ(mt) is the performance penalty incurred formt threads, wheremt is the

total number of threads in the system. GivenN stages where theith stage hasmi threads allocated

75

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40

S
er

vi
ce

 r
at

e
µ m

, r
eq

ue
st

s/
se

c

Number of threads, m

α m’

µ = 1, α = 10, β = 0.25, m’ = 20
µ = 0.5, α = 25, β = 0.7, m’ = 15

Figure 17:Load-dependent servicing rate as a function of the number of threads:This graph
shows sample plots for the base service rateµm for two different settings of the parametersα, β,
andm′. In the upper curve, asm increases, performance increases until the natural parallelism
limit α is reached, and degrades oncem′ has been exceeded. In the lower curve,m′ < α, so
performance degradation begins earlier, although additional threads still benefit performance until
α has been reached.

to it,

mt =
N∑
i=0

mi

The effective processing rate is bounded to prevent the performance penalty from driving the effec-

tive processing rate below 0.

A range of penalty functionsφ could be considered. Suppose that beyond some number

of threadsm′, there is a linear performance penaltyβ incurred for each thread:

φ(m) =

0 if m < m′

β(m−m′) if m ≥ m′
(4.11)

A plot of µm for representative values ofα, β, andm′ is shown in Figure 17.

The actual service rate exhibited by a stage is dependent both uponn, the number of

pending requests, andm, the number of threads in the stage. Let us defineµm(n) as the service rate

76

for a stage withm threads andn pending requests. For given values ofm andn, then, there are four

cases to consider when request enters the system:

µm(n) =

max(0, nµ− φ(mt)) if m < α andn < m

max(0,mµ− φ(mt)) if m < α andn ≥ m

max(0, nµ− φ(mt)) if m ≥ α andn < α

max(0, αµ− φ(mt)) if m ≥ α andn ≥ α

(4.12)

The application ofφ(mt) represents the fact that performance degradation occurs regardless of

whether all threads are in use.

2.2 Solving the load-dependent service center

We wish to find the limiting probabilitypn = limt→∞ Pn(t) of there beingn re-

quests within an M/M/m load-dependent service center with average service rateµ(n) as given

by Eq. (4.12). There are various ways to solve for the limiting probabilitiespn; we adopt

Harchol-Balter’s method of solving for the limiting probabilities in a continuous-time Markov chain

(CTMC), each state of which represents the number of requests in the system [56]. In this technique,

the CTMC is modeled as a discrete-time Markov chain, where we allow the time quantumδ to ap-

proach 0. It can be shown that the resulting CTMC is ergodic forρ < 1, which establishes the

existence of the limiting probabilities.

To solve forpn, we begin with the ergodicity condition that the rate at which the system

enters statej is equal to the rate at which the system leaves statej. Thus:

λp0 = µ(1)p1

λp1 = µ(2)p2

77

and so forth. Rewriting in terms of thepi’s,

p1 =
λ

µ(1)
p0

p2 =
λ

µ(2)
p1 =

λ2

µ(1)µ(2)
p0

In general,

pn =
λn∏n

j=1 µ(j)
p0

We solve forp0 using the condition that the probabilities must all sum to 1:

p0 +
∑
i6=0

pi = 1

to obtain

p0 =
1

1 +
∑∞

i=1
λi∏i

j=1 µ(j)

(4.13)

From these probabilities the mean number of jobs in the system can be determined using

E[N] =
∞∑
n=0

npn (4.14)

and the average response time from Little’s Law,

E[R] =
E[N]
λ

(4.15)

It is difficult to obtain a closed-form solution for these expressions whenµ(n) is compli-

cated, as is the case here. Although these expressions can be solved numerically, we chose to rely

on simulation results, which are more readily obtained. The simulation models a load-dependent

M/M/m system withµ(n) as given in Eq. (4.12).

Figure 18 shows the mean response time of a single load-dependent service center as the

arrival rateλ and number of threads varies. As the figure shows, with a small number of threads

the system is underprovisioned, and with a large number of threads the thread system overheadφ

dominates.

78

0

0.1

0.2

0.3

0.4

lambda 5
10

15
20

25
30

Threads

1000

2000

3000

4000

5000

6000

Mean response time

Figure 18: Mean response time of a load-dependent M/M/m queueing system: This graph
shows the mean response time as a function of the mean arrival rateλ and number of threads for a
simulated load-dependent M/M/m queueing system withµ = 0.05, α = 4,m′ = 15, andβ = 0.01.
With a small number of threads, the system is underprovisioned so response time is large. With a
large number of threads, the overhead of the threading systemφ dominates, driving response time
up.

3 Open Jackson networks of load-dependent service centers

Having established results for a single stage in isolation, we are now interested in the

behavior of a SEDA application consisting of multiple stages. Such a system can be modeled

as a queueing network of load-dependent service centers, essential results for which have been

established by Jackson [66] and Baskettet al. [14]. In this model, shown in Figure 19, the system

consists ofN service centers. Each service center has a load-dependent, exponentially-distributed

service time distribution as given by Eq. (4.12). Stagei hasmi threads. For convenience, we denote

the average service rate of theith stage simply asµi, dropping themi subscript; it is implied that

the average service rate of the stage depends uponmi according to Eq. (4.12).

Arrivals are Poisson, and requests may arrive into the system at any of theN service

centers;ri is the average rate at which requests arrive at serveri. Requests are routed through

79

iµri

µ

µ

µ

µ
j

k

m

l

r

Pij

Pi

Pi

P

P

P

P

P

j

k

l

,out

mk

l

k,out

jm

mm

Figure 19:Open Jackson queueing network:An example Jackson queueing network consisting
of five service centers with respective exponential service time distributionsµi, µj , µk, µl, andµm.
Poisson job arrivals enter the system at service centersi andj with respective average ratesri and
rj . Pij represents the probability of a request being routed between service centersi andj; Pi,out
is the probability of a job leaving the system after being processed at service centeri.

the network in a probabilistic fashion; for each job that completes service at serveri, it is routed

to serverj with probabilityPij , or exits the system with probabilityPi,out. The connectivity in a

typical queueing network is sparse, so many of thePij values are 0. Here we studyopennetworks

in which external arrivals and departures are allowed; this is in contrast toclosednetworks in which

customers circulate entirely within the network.

First we consider a Jackson network of M/M/m service centers, wheremi represents the

number of servers at service centeri. The total arrival rate into each server is the sum of the external

arrival rate plus the internal arrival rate:

λi = ri +
k∑
j=1

λjPji (4.16)

As with the M/M/m case, for the corresponding Markov chain to be ergodic, we require thatλi <

miµi for all i. We denote the state of the queueing network as(n1, n2, . . . , nN) whereni represents

the number of requests (including those in service) at theith service center.p(n1, n2, . . . , nN) is

the limiting probability of the system being in state(n1, n2, . . . , nN). Jackson [66] shows that

p(n1, n2, . . . , nN) = p1(n1)p2(n2) · · · pN (nN) (4.17)

80

where eachpi(ni) is the equilibrium probability of findingni requests at service centeri, the solu-

tion to which is identical to that of the M/M/m system. In other words, the Jackson network acts as

a set of independent M/M/m queueing systems with Poisson arrival ratesλi as given by Eq. (4.16).

Note that the actual arrival process to each service center is not Poisson (due to request routing

between service centers), however, the queueing network behaves as though they are. We say that

Jackson networks exhibit aproduct-form solution: the limiting probability of the system being in

state(n1, n2, . . . , nN) equals the product of the individual limiting probabilities of there beingn1

requests at server 1,n2 requests at server 2, and so forth.

A Jackson network of load-dependent service centers also exhibits a product-form solu-

tion. This can be shown by exploitinglocal balancewithin the structure of the queueing network;

the results in this section come from Harchol-Balter’s course notes (Solutions to Homework 5) [56].

To demonstrate local balance, we solve forp(n1, n2, . . . , nN) using two conditions:

(1) The rate at which the system leaves statez due to a departure from serveri is equal to the rate

at which the system enters statez due to an arrival at serveri:

p(n1, n2, . . . , nN)µi(ni) =
k∑
j=1

p(n1, . . . ni − 1, . . . nj + 1, . . . nN)µj(nj + 1)Pji +

p(n1, . . . ni − 1, . . . nN)

(2) The rate at which the system leaves statez due to an arrival from the outside is equal to the rate

at which the system enters statez due to a departure to the outside:

p(n1, n2, . . . , nN)
k∑
i=1

ri =

k∑
i=1

p(n1, . . . ni + 1, . . . nN)µi(ni + 1)Pi,out

The solution comes from [56] and is given as

p(n1, n2, . . . , nN) = C · λn1
1∏n1

j=1 µ1(j)
· λn2

2∏n2
j=1 µ2(j)

· · ·
λnNN∏nN

j=1 µN (j)
(4.18)

81

whereC is a normalizing constant used to cause∑
p(n1, n2, . . . , nN) = 1

given as

C =
1∑

n1...nN

λ
n1
1∏n1

j=1 µ1(j)
· · · λ

nN
N∏nN

j=1 µN (j)

(4.19)

The probability ofni jobs at serveri is

pi(ni) =
∞∑

n1=0

· · ·
∞∑

ni−1=0

∞∑
ni+1=0

· · ·
∞∑

nN=0

p(n1, n2, . . . , nN) (4.20)

that is, the equilibrium probabilities where allnj (j 6= i) are summed from0 to∞. Algebraic

manipulation yields

pi(ni) =

λ
ni
i∏ni

j=1 µi(j)∑∞
ni=0

λ
ni
i∏ni

j=1 µi(j)

(4.21)

4 Examples

In this section we make use of the SEDA performance model and simulation results to

demonstrate the performance impact of the SEDA design patterns described in Chapter 3. These

examples are necessarily simple and serve to illustrate the essential features of the SEDA perfor-

mance model, rather than attempt to capture the full complexity of a real system.

As with Eq. (4.12), there is no closed-form solution to Eq. (4.21) whenµ(n) is sufficiently

complicated. Our initial results were initially obtained using numerical analysis, though later we

relied on simulation, which is more flexible and produces results more quickly. Our simulator

models a Jackson network of stages with load-dependent behavior as described by Eq. (4.12). We

have verified that the simulation and numerical analysis results agree.

4.1 TheCombineand Pipelinepatterns

Consider a simple SEDA application where each request must have two operations,A and

B, performed on it. LetA andB each be characterized by an exponential service time distribution

82

0

200

400

600

800

1000

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

M
ea

n
re

sp
on

se
 ti

m
e

�

Arrival rate, lambda

1 thread
2 threads
3 threads
4 threads

0

200

400

600

800

1000

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

M
ea

n
re

sp
on

se
 ti

m
e

�

Arrival rate, lambda

1/1 thread
1/2 threads
2/1 threads
2/2 threads

(a) Single stage (b) Tandem stages

Figure 20: Effect of stage pipelining: This figure shows the response time as a function of the
arrival rate λ for two servers: (a) a single M/Er/m server where the service time is the sum of two
exponentially distributed steps withµ = 0.07; and (b) two M/M/m stages in tandem where each
stage has an exponentially distributed service time withµ = 0.07. In (a), the number of threads
in the stage ranges from 1 to 4; in (b), the number of threads in each stage ranges from 1 to 2. As
the figure shows, adding threads to the M/Er/m server scales the peak rateλ, while in the M/M/m
case, only when both stages are well-provisioned does the pipeline avoid overload.

with meanµA andµB, respectively. First, consider a single stage performing both operationsA and

B for each request. IfµA = µB = µ, the resulting service time distribution is anr-stage Erlangian

distribution withr = 2 and rateµ,

f(x) =
rµ(rµx)r−1e−rµx

(r − 1)!
= 4µ2xe−2µx (4.22)

Taking into account the SEDA performance model, this application can be described as a load-

dependent M/E2/m queueing system. A single stage processing both steps is representative of the

Combinedesign pattern from the previous chapter.

Second, consider a different implementation of the service consisting of two stages in

tandem, where the first stage performs stepA and the second performsB. In this case we have a

simple Jackson network of two load-dependent M/M/m servers. This is an example of thePipeline

design pattern at work.

We are interested in studying the behavior of these two systems as a function of the (Pois-

son) request arrival rateλ as well as the number of threads in each stage. Here, let us assume that

83

α andm′ are sufficiently large such that thread overhead can be neglected. Figure 20 shows the

mean response times for each server withµA = µB = 0.07, and an increasing number of threads

per stage. In the case ofCombine, adding threads to the stage scales the maximum stable arrival

rate that the system can handle. In the case ofPipeline, the peak stable arrival rate is bounded by

the minimum processing capacity of both stages, as we would expect. With only a single thread in

either of the two stages, the maximum stable arrival rate isλ = µ; with two threads in each stage it

is 2µ.

This result might indicate that there is no benefit to pipelining stages, or that all service

logic should be contained in a single stage. However, in a realistic configuration, the number of

threads required to provision both pipelined stages for high performance is small; as the figure

shows, 4 threads split between two stages yields identical performance to 4 threads in a single

stage. Also, there are other benefits to usingPipelinethat are not captured by this model, such as

increasing cache locality, increased code modularity, and better isolation of resource bottlenecks.

These results do point out that wheneverPipelineis used, it is important to adequately provision the

resulting stages.

4.2 ThePartition pattern

Next we consider the use of thePartition pattern, which converts a branch within a stage’s

processing into a tree of stages. In this example, each request performs stepA (µA = 0.9) followed

by either a “slow” processing stepB (µB = 0.02) or a “fast” stepC (µC = 0.07). 50% of the

requests require processing by the bottleneck taskB. Figure 21 shows the mean response time for

two versions of this server: one in which all tasks are performed by a single stage, and another in

which requests are processed by a tree of three stages, withA at the root andB andC at the leaves.

As the figure shows, adding threads to the single-stage server increases the maximum

stable arrival rateλ. In the case of the partitioned server, it suffices to add threads only to the “slow”

stageB, up to a certain point when “fast” stage becomes the bottleneck. With 4 threads allocated to

84

0

200

400

600

800

1000

0 0.05 0.1 0.15 0.2

M
ea

n
re

sp
on

se
 ti

m
e

�

Arrival rate, lambda

1 thread
2 threads
3 threads
4 threads
5 threads

0

200

400

600

800

1000

0 0.05 0.1 0.15 0.2 0.25

M
ea

n
re

sp
on

se
 ti

m
e

�

Arrival rate, lambda

1 slow, 1 fast
2 slow, 1 fast
3 slow, 1 fast
4 slow, 1 fast
5 slow, 1 fast
4 slow, 2 fast

(a) Single stage (b) Partitioned stages

Figure 21: Effect of stage partitioning: This figure shows the response time as a function of
the arrival rateλ for two servers. (a) shows a single server where each request requires initial
processing (µA = 0.9), followed by either a “slow” (bottleneck) step (µB = 0.02) or a “fast” step
(µC = 0.07). 50% of the requests require processing at the bottleneck. (b) shows the effect of the
Partitionpattern, in which request processing is performed by a tree of three stages, with initial
processing at the root; the “slow” and “fast” steps are performed in separate stages at the leaves.
In (a), adding threads to the stage increases the maximum stable arrival rateλ, while in (b), it
suffices to add threads only to “slow” stage, up to a certain point when the “fast” stage becomes
the bottleneck.

B and 1 thread toC, the maximum stable arrival rate is

λmax = min(2(4µB), 2µC) = min(0.16, 0.14) = 0.14

In other words, stageC is the bottleneck in this case (2µC = 0.14). Adding an additional thread to

C yields

λmax = min(2(4µB), 2(2µC)) = min(0.16, 0.28) = 0.16

makingB the bottleneck once again (8µB = 0.16). This analysis shows thatPartition allows stages

to be independently provisioned for a given load, by allocating threads only to the stages where they

are needed.

4.3 TheReplicatepattern

TheReplicatepattern is used to replicate a single stage across multiple physical resources,

such as the nodes of a cluster. Replication allows performance bottlenecks to be overcome by

85

µ

µ

µ

λ

µ

µ

µλ

(a) Multiple threads in one stage (b) Multiple stages

Figure 22:Replicated queueing system:This figure shows two queueing systems with identical
processing capacity but with different performance characteristics. (a) shows a single stage with
multiple threads each processing requests from a single queue. (b) shows multiple single-threaded
stages each with their own queue.

harnessing additional resources within a service. Consider a case where an application has a single

bottleneck stage that requires a large number of threads to meet offered load. If the thread limitm′

is relatively low, it may be necessary to replicate the stage across multiple machines, rather than

allocate additional threads to the single stage.

There is a disadvantage to replication, however: redirecting requests to separate queues

can have a negative impact on response time compared to all requests waiting in the same queue.

Figure 22 shows two queueing systems: one which consists of a stage with multiple threads pro-

cessing requests from a single queue, and another which consists of multiple replicas of a single-

threaded stage. Figure 23 illustrates the performance tradeoff between multithreading and repli-

cation as the number of threads or replicas varies. The replicated system exhibits higher response

times asλ→ λmax, the maximum stable arrival rate.

This effect is due to the randomness of the exponential interarrival time and service time

processes. Intuitively, allowing all requests to wait in the same queue form servers allows requests

to be directed to the next available server as soon as any server becomes available. Directing requests

to per-server queues upon arrival gives requests less “flexibility” in terms of which server will

process it.

86

0

50

100

150

200

250

300

350

400

450

500

0 0.05 0.1 0.15 0.2

M
ea

n
re

sp
on

se
 ti

m
e

�

Arrival rate, lambda

2 stages
4 stages
8 stages

2 threads
4 threads
8 threads

Figure 23:Performance effect of replication:This figure shows the response time as a function of
the arrival rateλ for two servers: (a) Two M/M/m stages in tandem, the first with an exponential
service rate ofµ1 = 2.9 and a single thread, and the second with an exponential service rate of
µ2 = 0.02 and either 2, 4, or 8 threads; (b) A tree of stages consisting of a single stage at the root
with µ1 and a single thread as above, and with 2, or, or 8 stages at the leaves each with service rate
µ2 and a single thread. Requests have an equal probability of being routed to each of the leaf stages.
As the figure shows, adding threads to a stage has roughly the same effect on the maximum stable
arrival rate as replicating a single-threaded stage, though the replicated system exhibits higher
response times under lighter load.

5 Summary and limitations

In this chapter we have considered a formal performance model for SEDA-based services

based on a queueing network of load-dependent service centers. Load dependence is characterized

in terms of the number of pending requests, the number of threads, and the natural concurrency of

each stage. While not completely descriptive of all of the factors that contribute to system perfor-

mance, this model is still valuable as a tool for understanding the behavior of a SEDA application

and the effect of using each of the design patterns for structuring services. For example, decom-

posing a stage usingPipeline has the benefit that in that the thread pool for each stage can be

provisioned separately, though a system designer must ensure that each stage in the pipeline has

87

enough threads to handle incoming load. Similarly, there is a clear performance tradeoff between

replicating a stage and allocating additional resources to it, given the increased response times due

to queueing effects in the replicated service.

The performance model and simulation results presented in this chapter have several in-

herent limitations. Our intent has been to develop the model as a guide to understanding the high-

level performance aspects of the SEDA design, rather than to address the many details involved in

modeling a complete system. Indeed, it is unlikely that existing queueing theory results are able to

capture the full complexity of the SEDA platform as implemented in a realistic environment.

Our use of load-dependent Jackson networks assumes exponential interarrival time and

service time distributions for each stage, which may not be realistic. Evidence suggests that char-

acteristic service time distributions for Internet services are heavy-tailed [57], but few theoretical

results exist for such systems. Use of alternative service time distributions would be straightforward

in simulation, though not as readily amenable to analysis.

The model here treats each stage as an independent server and assumes that all resource

contention across stages is characterized by the performance penaltyφ as a function of the number

of threads in the system. The model does not attempt to associateφ with specific forms of resource

contention, such as competition for I/O, memory, or CPU resources. An interesting extension to

the model would be to consider the effects of CPU scheduling and context-switch overhead on

performance. BCMP networks [14] extend the product-form solution of Jackson to a broader class

of networks, including those with round-robin and processor sharing service disciplines. However,

BCMP networks do not address resource contention in general.

Finally, our model does not characterize the potential locality benefit obtained using the

PipelineandPartition design patterns. A straightforward extension of the model would allow the

service rateµ(n) of each stage to scale as a function of the number of requests processed in each

batch, and with the specificity of the stage’s task processing code.

88

Chapter 5

Sandstorm: A SEDA-based Internet

Services Prototype

To demonstrate the effectiveness of the SEDA architecture, we have implemented a pro-

totype Internet services platform based on the SEDA design, calledSandstorm. Sandstorm makes

the SEDA design concrete, providing a service construction framework that includes interfaces for

implementing stages, connecting stages into a network, queue management, and admission control.

Sandstorm implements a number of controllers that tune the resource allocation of each stage based

on observed performance, and provides libraries for asynchronous socket and file I/O. In this chap-

ter we detail the design and implementation of Sandstorm, discuss the application programming

model that it provides, and provide an initial evaluation in terms of code size and basic performance

numbers.

1 Sandstorm overview

Sandstorm is a Java-based runtime system based on the SEDA design. In some sense it can

be considered an “operating system for services,” although it is implemented entirely at user-level

on top of a commodity OS. Sandstorm applications are constructed as a network of stages connected

89

Java Virtual Machine

Operating System

S
ystem

 M
an

ag
er

NBIO

P
ro

filer

timer

application
stage

SSL/TLS
protocol

asynchronous
file I/O

Gnutella
protocol

HTTP
protocol

application
stage

application
stage

application
stage

asynchronous
sockets

Figure 24:Sandstorm architecture.Sandstorm is an implementation of SEDA in Java. The system
provides a management interface for creating, destroying and configuring stages; a profiling and
debugging interface; and several pre-built stages providing asynchronous I/O, timers, and various
protocol libraries. Nonblocking socket I/O is provided with theNBIO library, which implements
native code bindings to OS calls such aspoll(2) and nonblocking sockets. Asynchronous file I/O is
accomplished by wrapping blocking I/O calls in a stage.

with explicit event queues; application developers provide the code forevent handlersthat embody

the core event-processing logic within each stage. Sandstorm provides facilities for stage-graph

construction, queue management, signals, and timers, as well as scalable, asynchronous network

and disk I/O interfaces. In addition, Sandstorm provides built-inresource controllersthat mitigate

the resource demands that the application places on the system. In this way, a Sandstorm application

consists of a set of (more or less) naive event handlers and the runtime system handles the details of

load conditioning. The Sandstorm architecture is shown in Figure 24.

1.1 Use of the Java language

Sandstorm is implemented entirely in the Java programming language [51]. The decision

to use Java instead of a “systems language” such as C or C++ was based on a desire to exploit

the various features of the Java environment, including cross-platform portability, type safety, and

automatic memory management. These features ultimately contribute to making services more

robust: Java avoids a large class of common programming errors (including array bounds violations,

90

type mismatching, and failure to reclaim memory).

Java has become a popular language for building Internet services, as exemplified by

broad industry support for the Java 2 Enterprise Edition (J2EE) platform [123]. Until recently, the

performance of Java fell far behind that of C and C++, primarily due to the lack of good compila-

tion technology. However, modern Java Virtual Machines and Just-in-Time (JIT) compilers exhibit

performance rivaling that of C. We believe that the safety and software-engineering benefits of Java

outweigh the dwindling performance gap.

One serious drawback to using Java is the lack of support for nonblocking I/O, which is

necessary to avoid the use of a thread per connection. Until the release of Java Development Kit

(JDK) version 1.4 in early 2002, nonblocking I/O was not supported by the standard Java libraries.

To overcome this limitation we implementedNBIO, a package that supports nonblocking socket I/O

and several variants of event dispatching from the operating system [144]. NBIO is described in

more detail in Section 5. JDK 1.4 now includes thejava.niopackage, which adopts much of the

functionality of NBIO.

1.2 Event handler overview

A Sandstorm application designer implements anevent handlerfor each stage in the ser-

vice, which conforms to theEventHandlerIFinterface.EventHandlerIFincludes the two methods

handleEvent()andhandleEvents(), which take as arguments a single event or a batch of multiple

events to process. The event handler is invoked by the Sandstorm runtime system whenever there

are new events to process; the event handler itself does not determine when it is invoked or with

what set of events. This allows the runtime system to control the execution of stages, the number

and type of events passed to each stage, and so forth.

The event handler should process each event passed to it, and may optionally enqueue one

or more outgoing events to other stages. Alternately, an event handler may drop, reorder, or delay

events, but no mechanism is provided to reject events (that is, provide a signal to the originating

91

stage that an event has been rejected) once they have been passed to the event handler. This is

discussed in more detail in the next section. Because a stage may contain multiple threads, an event

handler must synchronize access to any shared state within the stage (as well as across multiple

stages).

2 Sandstorm design principles

Apart from the structure mandated by the SEDA architecture itself, Sandstorm embodies

several other design principles in keeping with our goals of simplifying service construction. The

most important aspect of Sandstorm’s design is that of simplifying the application interface to afford

the greatest amount of flexibility to the runtime system. Applications merely implement event han-

dlers; they do not manage threads, scheduling, event queues, or most aspects of load conditioning.

Of course, specific services may wish to extend these internal interfaces, but the goal has been to

capture as much of the essential needs of a wide class of services in the underlying runtime.

2.1 Thread management

A fundamental design decision in Sandstorm is that the runtime, rather than the applica-

tion, is responsible for creating, scheduling, and managing threads. This approach is motivated by

two observations. First, thread management is difficult and error-prone, and requiring applications

to manage their own threads results in undue complexity. Second, giving the runtime control over

threads allows for a great deal of flexibility in terms of allocation and scheduling policies.

For this reason, threads in Sandstorm are managed by an internalthread managerthat

is responsible for allocating and scheduling threads across stages. Each stage is managed by one

thread manager, but there may be multiple thread managers in the system. Care must be taken so that

different thread managers do not interfere with one another (for example, having a thread manager

monopolize resources); since thread managers are internal to the runtime system, this requirement

is easy to meet.

92

Implementing different thread managers allows one to experiment with different thread

allocation and scheduling policies without affecting application code. We have implemented several

different thread managers in Sandstorm. The default thread manager maintains a private thread pool

for each stage in the application; the size of each pool is managed by thethread pool controller,

described in Section 4.1. An alternate thread manager allocates a single systemwide thread pool and

schedules those threads across stages according to some algorithm (such as weighted round robin).

We have primarily made use of the thread-pool-per-stage thread manager in our experi-

ments, because it is simple and manages each stage independently. Also, this approach relies upon

the operating system to schedule threads, which we consider an advantage since the OS has more

knowledge than the runtime system about resource usage, blocking, page faults, and other condi-

tions that affect scheduling decisions. An interesting area for future work would be to consider

alternate thread management policies for Sandstorm. The Scout [100] and Exokernel [70] operating

systems, as well as the Click router [77], have explored scheduling policies in environments similar

to Sandstorm, but have focused on specific applications (such as packet routing). It may be possible

to apply similar techniques to Sandstorm.

2.2 Event queue management

The second design principle is that the runtime system is responsible for the number and

rate of events processed by each stage’s event handler, since these are factors that affect application

performance and load conditioning. For example, if a stage is the source of a resource bottleneck,

the runtime system could choose to defer its execution until enough resources are available for the

stage to make progress. Likewise, the runtime can determine the ideal number of events to pass

to each invocation of an event handler to optimize performance. This is the goal of the Sandstorm

batching controller, described in Section 4.2.

In Sandstorm, applications are not responsible for dequeueing events from their associ-

ated event queue. Rather, each runtime-managed thread first dequeues a batch of events from the

93

stage’s queue, and then invokes the associated event handler with those events for processing. Event

handlers may only perform anenqueueoperation onto stage event queues; the dequeue interface is

never exposed to applications.

2.3 Event processing requirements

The third design principle is that enqueue operations on a stage’s event queue are syn-

chronous: the queue either accepts events for (future) processing or rejects them immediately. A

queue rejection causes the originator to receive an immediate exception or error code, indicating

that the recipient stage is overloaded and that load conditioning should be performed.

This approach implies that event handlers cannot reject events passed to them; no mech-

anism is provided to signal to the originator of an event that the recipient is unable to process it.

Rather, admission control must be used to perform early rejection of incoming work from a queue,

causing the corresponding enqueue operation to fail. Note, however, that a stage may elect to drop or

delay an event that has been passed to the event handler. This technique permits application-specific

load shedding, but should only be used in specific situations, such as when it is safe to silently drop

events within a stage. In all other cases admission control should be used to bound the incoming

event queue.

In response to an enqueue rejection, a stage may wish to drop the event (if it is safe to

do so), perform an alternate action (e.g., degrade service fidelity), adjust its own admission control

parameters (e.g., to throttle the rate of incoming events into it), or block the event-handling thread

until the downstream queue can accept the event. The latter case provides a simple mechanism for

backpressure: if all of the threads within a stage are blocking on a downstream event queue, the

queue for the blocked stage will eventually fill as well.

94

Class Description
EventHandlerIF Core logic for stage; implemented by applications
QueueElementIF Empty interface for queue elements
StageIF Handle to stage’s name and event queue
ManagerIF Global access to stages; stage creation
SingleThreadedEventHandlerIFIndicates single-threaded stage
SinkIF Enqueue end of event queue
EnqueuePredicateIF Guards enqueue operations on event queue
ProfilableIF Hook for system profiler

Figure 25:Core Sandstorm classes.This table shows the core classes in the Sandstorm implemen-
tation of SEDA. Each of these interfaces is implemented either by the application designer (in the
case ofEventHandlerIF), or by the Sandstorm implementation itself. By defining system functional-
ity in terms of these interfaces, it is straightforward for a service designer to provide an alternate
implementation of various components of the runtime.

3 Implementation details

In this section we discuss the Sandstorm implementation in detail, covering the interfaces

for system management, stage graph construction, admission control, timers and signals, and profil-

ing support. Figure 25 provides an overview of the core classes in the Sandstorm implementation.

In Section 7 we describe an asynchronous HTTP protocol library as a concrete example of the use

of the Sandstorm interfaces.

3.1 Queue elements and event handlers

QueueElementIFis an empty interface that must be implemented by any class that repre-

sents an event that can be placed onto a queue and passed to an event handler. As described earlier,

the application logic for each stage is represented as an instance ofEventHandlerIF, which provides

four methods.init() anddestroy()are invoked when the stage is initialized and destroyed, respec-

tively; handleEvent()andhandleEvents()are invoked with a single event, or a batch of events, to

process.

Because a stage may be multithreaded, event handlers must be designed to be reen-

trant. This requirement implies that event handlers must synchronize access to any shared state

95

within the stage, as well as across stages. An event handler may implement the optional interface

SingleThreadedEventHandlerIF, which indicates to the runtime system that it is non-reentrant. In

this case the runtime guarantees that only one thread will be executing the event handler at once.

3.2 Stage graph construction

In Sandstorm, connectivity between stages is determined entirely at runtime, and is driven

by stages requesting a handle to other stages in the system through a system-provided management

interface. This approach is in contrast to compile-time or configuration-time construction of the

stage graph, which would allow the system to check certain properties of the graph statically (e.g.,

whether two connected stages agree on the event types passed between them). In Sandstorm, stages

do not explicitly state the types of events that they generate and that they accept, though this func-

tionality could be provided by a wrapper around the basic event handler API. Dynamic graph con-

struction affords the greatest degree of flexibility: for example, using dynamic class loading in Java,

new stages can be be introduced into the service at runtime.

Each stage has an associatedstage handle, provided by the classStageIF. The stage

handle contains methods that return the stage’s name (a string) and a handle to its incoming event

queue.StageIFalso contains adestroy()method that can be used to clean up and remove a stage

from the system. A stage refers to another stage by looking up itsStageIFhandle through the system

management interface,ManagerIF, which maintains a mapping from stage names to stage handles.

When a stage is initialized, an instance of its event handler is created and theinit() method

invoked on it.init() takes a configuration parameter block as an argument, which provides pointers

to the system manager, the stage’s own stage handle, as well as initialization parameters in the form

of name-value mappings. When Sandstorm is initialized, a configuration file is used to specify the

set of initial stages and their initialization parameters. New stages can be created at runtime through

the system manager. When a stage is destroyed, thedestroy()method of its event handler is invoked

before removing it from the system. Thereafter, any attempt to enqueue events to the stage will

96

result in an exception indicating that the stage has been destroyed.

3.3 Queues and admission controllers

Because event handlers are not responsible for dequeueing events from their own event

queue, only the enqueue interface is exposed to applications. This is represented by the general-

purposeSinkIF interface, shown in Figure 26. Three basic enqueue mechanisms are supported:

enqueue(), which enqueues a single event;enqueuemany(), which enqueues multiple events; and

enqueuelossy(), which enqueues an event but drops it if the event is rejected by the queue. In

contrast,enqueue()andenqueuemany()throw an exception if the queue rejects new events, or if

the corresponding stage has been destroyed. In general, applications should use theenqueue()or

enqueuemany()interfaces, which provide an explicit rejection notification to which the stage must

respond.enqueuelossy()should only be used in cases where it is not important whether a given

event is dropped.

Admission control in Sandstorm is implementing usingenqueue predicates, which

are short methods that are invoked whenever an enqueue operation is attempted on a queue.

EnqueuePredicateIFis used to represent an enqueue predicate and supports one method:accept(),

which takes a single event as an argument and returns a boolean value indicating whether the queue

accepts the event or not.

Enqueue predicates should be fast and consume few resources, because they run in the

context of the originating stage, and are on the critical path of enqueue operations. Enqueue pred-

icates are typically used to implement simple queue-management policies, such as thresholding or

rate control. A more complicated enqueue predicate might assign different priorities to incoming

events, and reject low-priority events under heavy load.

The SinkIF methodssetEnqueuePredicate()andgetEnqueuePredicate()can be used to

assign and retrieve the enqueue predicate for a given queue. Note that any stage can assign an

enqueue predicate to any other stage; this design was intentional as it affords the greatest flexibility

97

public interface SinkIF {

/* Enqueue the given event. */
public void enqueue(QueueElementIF event)

throws SinkException;

/* Enqueue the given set of events. */
public void enqueue_many(QueueElementIF events[])

throws SinkException;

/* Enqueue the given event; drop if the queue rejects. */
public boolean enqueue_lossy(QueueElementIF event);

/* Return the number of events in the queue. */
public int size();

/* Prepare a transactional enqueue;
* return a transaction token. */

public Object enqueue_prepare(QueueElementIF events[])
throws SinkException;

/* Commit a previously prepared transactional enqueue. */
public void enqueue_commit(Object transaction_token);

/* Abort a previously prepared transactional enqueue. */
public void enqueue_abort(Object transaction_token);

/* Assign an enqueue predicate. */
public void setEnqueuePredicate(EnqueuePredicateIF predicate);

/* Retrieve the enqueue predicate, if any. */
public EnqueuePredicateIF getEnqueuePredicate();

}

Figure 26:The Sandstorm sink interface. This interface represents the enqueue end of a Sand-
storm event queue. Methods are provided to enqueue events (with and without rejection notifica-
tion), return the number of pending events, perform transactional enqueues, and manipulate the
queue’s admission control predicate.

98

QueueElementIF events[];
SinkIF queue1, queue2;
Object token1, token2;

try {
token1 = queue1.enqueue_prepare(events);

} catch (SinkException se1) {
// Cannot enqueue
return;

}

try {
token2 = queue1.enqueue_prepare(events);

} catch (SinkException se2) {
// Cannot enqueue -- must abort first enqueue
queue1.enqueue_abort(key1);

}

// We now know that both queues accept the events
queue1.enqueue_commit(token1);
queue2.enqueue_commit(token2);

Figure 27:Transactional enqueue example.This code excerpt demonstrates Sandstorm’s trans-
actional enqueue support, implementing an “all or nothing” enqueue operation across two queues.

over placement and control of queue management policies.

Event queues also supporttransactional enqueueoperations, which are provided using

three additional methods inSinkIF. enqueueprepare()takes an array of events as an argument and

returns a transaction token if the queue accepts the events, throwing an exception otherwise. The

transaction token is later passed as an argument toenqueuecommit()(causing the corresponding

events to be actually enqueued) orenqueueabort() (to abort the transactional enqueue).

Transactional enqueue is useful in a number of situations. For example, Figure 27 demon-

strates the use of this interface to perform an “all or nothing” enqueue operation on two separate

queues. Here, an admission control rejection from either queue causes the entire operation to be

aborted. Another use of transactional enqueue is to perform asplit-phaseenqueue, in which a stage

first tests whether a downstream queue can accept new events, and then performs the work neces-

sary to generate those events. This is useful in cases where event generation requires considerable

99

resources that the application wishes to avoid consuming if the events are to be rejected by the

downstream queue. For example, a stage might perform anenqueueprepare()for a “placeholder”

event, filling in the event with generated data only if the event is accepted.

3.4 Timers and signals

Stages often wish to receive events at certain times, and Sandstorm provides a global timer

interface for this purpose. Application code can register with the timer for events to be enqueued

onto a particular queue at some time in the future. The timer is implemented with a single thread

that maintains a list of pending timer events sorted by increasing time in the future. The timer thread

drops timer events if rejected by the associated queue.

In addition to timers, Sandstorm provides a general-purpose signaling mechanism that can

be used to propagate global state changes to one or more event queues. Stages can register with the

systemwide signal manager to receive events of certain types. For instance, one signal type indicates

that all stages in the Sandstorm configuration file have been created and initialized; this can be used

as an initialization barrier. This mechanism could also be used to signal systemwide resource limits

to applications, for example, informing stages when available memory is approaching some limit.

We return to this idea in Chapter 8.

3.5 Profiling and debugging

Sandstorm includes a built-in profiler, which records information on memory usage,

queue lengths, and stage relationships at runtime. The data generated by the profiler can be used to

visualize the behavior and performance of the application; for example, a graph of queue lengths

over time can help identify a bottleneck. Figure 42 in Chapter 6 is an example of such a graph.

The profiler is implemented as a single thread that periodically gathers statistics and writes

the data to a log file, which can be visualized using standard tools such asgnuplot. The profiler nor-

mally gathers information on system memory usage, queue lengths, thread pool sizes, and various

100

GnutellaServer

GnutellaLogger

GC [128.125.196.134:6346]

GC [211.105.230.51:6346]

GC [210.238.26.71:6346]

GC [216.254.103.60:64838]

aSocket ListenStage

aSocket [128.125.196.134:6346]

aSocket [211.105.230.51:6346]

aSocket [210.238.26.71:6346]

aSocket [216.254.103.60:64838] aSocket WriteStage

GC [206.132.188.139:6346] aSocket [206.132.188.139:6346]

aSocket [129.62.105.12:6346]

aSocket [195.251.160.182:5634]

aSocket ReadStage

Figure 28: Visualization of stage connectivity: This graph was automatically generated from
profile data taken during a run of a Sandstorm-based Gnutella server, described in Chapter 6. In
the graph, boxes represent stages, ovals represent classes through which events flow, and edges
represent event propagation. The main application stage isGnutellaLogger , which makes use
of GnutellaServer to manage connections to the Gnutella network. The intermediate nodes
represent Gnutella packet-processing code and socket connections.

controller parameters. Application code can supply additional statistics-gathering hooks by im-

plementing the interfaceProfilableIF, which supplies a single method:profileSize(), returning an

integer. Data from application-supplied hooks is also included in the profile.

The profiler can also generate a graph of stage connectivity, based on a runtime trace

of event flow. Figure 28 shows an automatically generated graph of stage connectivity within the

Gnutella packet router described in Chapter 6. Because the Sandstorm stage graph is dynamic and

stage handles may be directly passed between stages, the system must determine the stage graph

at runtime. Stage connectivity is inferred by interposing a proxy interface on every event queue

in the system. For each enqueue operation, the proxy records the stage performing the enqueue

(determined using the current thread identifier) and the stage onto which the enqueue was performed

(a property of the event queue). A count of the number of events crossing a particular arc of the

stage graph is also recorded. Thegraphvizpackage [47] from AT&T Research is used to render the

graph from the log file generated by the profiler.

101

Observe

Observe

Adjust

Other StagesEvent Handler

Thread Pool

Threshold

Length

Throughput

>
Size

Adjust

Event Handler

Thread Pool

Running Avg

Other Stages

Observe
>Batching

Factor
Throughput

(a) Thread pool controller (b) Batching controller

Figure 29:Sandstorm resource controllers:This figure depicts two of the resource controllers in
Sandstorm that adjust the resource allocation and behavior of each stage to keep the application
within its operating regime. Thethread pool controlleradjusts the number of threads executing
within the stage based on perceived demand, and thebatching controlleradjusts the number of
events processed by each iteration of the event handler to optimize throughput and response time.

4 Resource controllers

An important aspect of the SEDA architecture is automatic management of the resource

consumption of each stage, which attempts to keep the service within its ideal operating regime

despite fluctuations in load. Sandstorm provides a number of dynamic resource controllers for this

purpose. In this section we describe the implementation of two such controllers: the thread pool

controller and the batching controller, both shown in Figure 29. In Chapter 7 we discuss the use of

queue throttling controllers for overload management.

4.1 Thread pool controller

The Sandstorm thread pool controller adjusts the number of threads executing within each

stage. The goal is to avoid allocating too many threads, but still have enough threads to meet the

concurrency demands of the stage. The controller periodically samples the input queue (once per

second by default) and adds a thread when the queue length exceeds some threshold (100 events

by default). Threads are removed from a stage when they are idle for a specified period of time (5

seconds by default).

102

0

25

50

75

100

125

150

175

200

200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

Q
ue

ue
 le

ng
th

T
hr

ea
d

po
ol

 s
iz

e

Time (1 sec intervals)

64 clients 128 clients 256 clients

Input queue length

Thread pool size

Figure 30:Sandstorm thread pool controller: This graph shows the operation of the thread pool
controller for one of the stages in the Haboob Web server, described in Chapter 6. The controller
adjusts the size of each stage’s thread pool based on the length of the corresponding event queue.
In this run, the queue length was sampled every 2 seconds and a thread was added to the pool if
the queue length exceeded 100 events. Here, a maximum per-stage limit of 20 threads was imposed.
Threads are removed from the pool when they are idle for more than 5 seconds. The three bursts of
activity correspond to an increasing number of clients accessing the Web server; as the figure shows,
as the demand on the stage increases, so does the number of threads allocated to it. Likewise, as
demand subsides, threads are removed from the pool.

Figure 30 shows the thread pool controller at work during a run of the Sandstorm-based

Web server described in Chapter 6. The run contains three bursts of activity, corresponding to

an increasing number of clients accessing the Web server. Note as well that the client load is

extremely bursty. As bursts of requests arrive, the controller adds threads to the stage’s thread pool

until saturating at an administrator-specified maximum of 20 threads. Between periods, there is no

demand for service, and the thread pool shrinks.

Rather than imposing a fixed limit on the number of threads in a stage, the thread pool

controller can automatically determine the maximum thread pool size, using mechanisms similar

to multiprogramming level control in virtual memory systems [82]. The controller samples the

throughput of each stage (requests processed per second), maintaining a weighted moving average

103

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900

T
hr

ou
gh

pu
t,

re
qu

es
ts

/s
ec

N
um

be
r

of
 th

re
ad

s

�

Time (sec)

Throughput

Thread pool size

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16
0
2
4
6
8
10
12
14
16
18
20
22
24

T
hr

ou
gh

pu
t,

re
qu

es
ts

/s
ec

N
um

be
r

of
 th

re
ad

s

Time (sec)

Throughput

Thread pool size

(a) Without thrashing detection (b) With thrashing detection

Figure 31:Thread pool thrashing detection: This figure shows the operation of the thrashing de-
tection mechanism in the Sandstorm thread pool controller, which serves to bound the maximum size
of each stage’s thread pool to avoid performance degradation. Here, a single stage is continuously
overloaded, processing CPU-bound requests, some of which require entering a critical section. In
(a), no thrashing detection is enabled, so the thread pool controller continues to add threads to
the stage despite performance degradation. In (b), the thrashing detection mechanism maintains a
small thread pool size that sustains high throughput.

of the throughput samples. The controller also remembers an estimate of the highest throughput

delivered by the stage, as well as the “optimal” maximum thread pool size that corresponds to that

throughput.

The maximum thread pool size is determined in the following manner. If the current

throughput is higher than the highest recorded throughput by some margin (20% by default), the

controller records the current throughput and thread pool size as the new optimal values. If the

current throughput is below the highest recorded throughput (20% by default), the controller sets the

size of the thread pool to the previously recorded optimal value. At the same time, a random number

of threads (between 0 and 4 threads by default) are removed from the pool. This is intended to avoid

local minima where the current estimate of the optimal thread pool size is no longer accurate. By

deliberately underprovisioning the stage, the thread pool controller will naturally allocate additional

threads if needed based on the queue length threshold. If these threads are no longer needed, the

number of threads in the pool will decay over time when the controller resets the thread pool size,

or as threads go idle.

104

Figure 31 shows the operation of the thrashing detection mechanism during the run of a

simple application consisting of a single stage that is continuously overloaded. The stage processes

requests, each of which runs 100,000 iterations of a loop that generates random numbers. With 50%

probability, each request causes the corresponding thread to enter into a critical section during the

execution of the random-number-generation loop. Upon exiting the critical section the thread wakes

up all other threads waiting on the condition variable, leading to “thundering herd” contention for

the critical section. This application is meant to stress two scalability limits of threads, namely,

the overhead of scheduling many CPU-bound threads and performance degradation due to lock

contention and synchronization.

The stage is processing requests from an event queue that is always full, so the thread

pool controller will always attempt to allocate additional threads to the stage. Figure 31(a) shows

the throughput and number of threads allocated to the stage with thrashing detection disabled; as the

number of threads grows to be very large the throughput drops significantly. Figure 31(b) shows that

with thrashing detection enabled, the controller maintains a small thread pool size that sustains high

throughput. The benchmark is being run on a machine with 4 CPUs, and 50% of the requests enter

a critical section; accordingly, the thread pool controller maintains a pool size of about 8 threads.

Because thread pool control is local to each stage, there is a possibility that if a large

number of threads are allocated to one stage, other stages could experience throughput degradation.

Our approach to thrashing detection should avoid most of these cases: if a large number of threads

are allocated to one stage, that stage’s own thrashing detection should cause it to back off before it

seriously impacts the performance of other stages.

4.2 Batching controller

As discussed previously, the runtime passes abatchof multiple events to the event handler

upon invocation, rather than individual events. The goal of request batching is to improve through-

put by increasing cache locality during event handler execution, or by allowing the application to

105

amortize expensive operations over multiple requests. In addition, the event handler may be able to

reorder or prioritize requests in a batch. We call the maximum size of a batch passed to an event

handler thebatching factor. Note that if the batching factor is larger than the current length of the

event queue, the batch simply contains all of the pending events.

There is an inherent tradeoff in the use of batching, however. Intuitively, a large batching

factor can improve throughput by maximizing the opportunities for multi-request processing and

overhead amortization. However, a large batching factor can reduce parallelism. For example, if a

stage has multiple threads, a large batching factor can cause one thread to receive all of the requests,

leading to an imbalance in thread operation and missed opportunities for parallelism. Keeping the

batching factor small can also reduce response time, as it reduces cases of head-of-line blocking

where a single thread is processing all events in series, rather than allowing multiple threads to

process events in parallel.

The Sandstorm batching controller attempts to trade off these effects by searching for the

smallest batching factor that sustains high throughput. It operates by observing the throughput of

each stage, maintaining an estimate of the highest throughput seen in a recent time window. The

controller decreases the batching factor by a small multiplicative factor (20% by default) until the

observed throughput falls below some margin of the best throughput estimate (10% by default).

The controller then begins to increase the batching factor by a small factor (also 20%) until the

throughput approaches the best estimate. The controller responds to a sudden drop in throughput by

resetting the batching factor to its maximum value (1000 events by default).

Figure 32 shows the batching controller at work on a simple benchmark consisting of

a single stage processing a continuous stream of events. In the benchmark, the stage is capable

of amortizing a single expensive operation over the events in a batch, but has an artificially im-

posed optimal batching factor of 200 events. If the event handler receives more than 200 events,

its performance degrades, and if it receives less than 200 events, there is less throughput gain from

amortizing the expensive operation across the batch. In the figure, the controller reduces the batch-

106

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t,

re
qu

es
ts

/s
ec

B
at

ch
in

g
fa

ct
or

Time (100 ms intervals)

Throughput
Batching factor

Figure 32:Sandstorm batching controller: This graph shows the operation of the batching con-
troller for a simple benchmark consisting of a single stage processing a continuous stream of events.
The stage’s event handler has an optimal batching factor of 200 events: the first event in each batch
performs a complex operation (generating 10,000 random numbers), which is amortized across up
to 199 other events in the same batch. If the batching factor is either less than or greater than 200
events, throughput will degrade as the complex operation must be performed more frequently. The
controller first reduces the batching factor to just below the optimal value, and then increases the
batching factor until it approaches the peak throughput.

ing factor to just below the optimal value, and then increases the batching factor until it approaches

the peak throughput. The controller does not damp it response, which explains the oscillations near

the optimal batching factor.

4.3 Other controllers

These mechanisms represent two simple examples of dynamic control in Sandstorm. A

wide range of potential controllers could be implemented within this framework. For example,

the thread pool controller could be extended to support a notion of stage priority, in which higher-

priority stages receive a greater number of threads than lower-priority stages. Another option is

to adjust thread scheduling parameters based on the stage’s progress, as proposed by Steereet

107

al. [120]. In this case, the number of threads (or priorities of threads within a stage) could be tuned

to maintain balanced rates of event production and consumption between each pair of connected

stages. Note that our current thread pool controller approximates this operation: by adding threads

to a stage with a queue backlog, stages that are underprovisioned for load are given higher priority.

Sandstorm’s structure facilitates inspection and control of the underlying application, and a range

of control strategies are possible in this model.

5 NBIO: Nonblocking I/O facilities for Java

Java did not support nonblocking I/O interfaces until the introduction of JDK 1.4 in early

2002. Before this it was necessary to use blocking operations and threads for multiplexing across

multiple I/O channels. As we have discussed, this approach does not scale well, with performance

degrading considerably as the number of I/O channels grows large. To overcome this problem, we

implementedNBIO, a library making use of native method calls to provide true nonblocking I/O in

Java. NBIO has been released to the public and has seen widespread adoption by developers building

scalable services in Java. NBIO has also influenced the design of the nonblocking I/O interfaces

being standardized in JDK 1.4, and the author has participated on the expert group defining those

interfaces.

NBIO extends the standard Java socket interfaces with new classesNonblockingSocket

andNonblockingServerSocket, as well as nonblocking stream interfacesNonblockingInputStream

andNonblockingOutputStream. All operations (connect, accept, read, write, etc.) on these classes

are nonblocking. Native methods, written in C, are used to invoke the corresponding system calls

for these operations; the standard Java Native Interface [124] is used to bind these methods to the

Java classes.

To support I/O event notification across a set of nonblocking sockets, NBIO provides the

classSelectSetthat implements an interface similar to the UNIXselect()system call. Applications

register instances of theSelectItemclass with aSelectSet, each of which consists of a socket as

108

well as an event mask indicating the types of events that the application wishes to be notified of

on that socket. Event types include read readiness, write readiness, accept readiness (for incoming

connections on a server socket), and connection established (for an outgoing connection from a

client socket). The methodSelectSet.select()is used to test for I/O events on all of the registered

SelectItems, returning a list of pending events.SelectSet.select()either blocks indefinitely waiting

for new events, or a timeout can be supplied as an optional argument.

SeveralSelectSetimplementations are provided to make the best use of the underlying

OS facilities. The default implementation uses the standardpoll() system call found on most UNIX

systems. An alternate implementation uses the/dev/poll mechanism [111] mechanism that

demonstrates better scalability thanpoll() on some platforms. An alternate implementation for

Windows 2000 systems is provided, using theWSAAsyncSelectinterface.

NBIO does not yet provide nonblocking file I/O functionality. The reasons behind this are

discussed in more detail in Section 6.2.

6 Asynchronous I/O primitives

To meet SEDA’s goal of supporting high concurrency requires efficient, robust I/O inter-

faces. This section describes the implementation of asynchronous socket and file I/O primitives,

using the SEDA concepts to structure these layers. We describe an asynchronous network socket

layer that makes use of the NBIO package for nonblocking I/O, and an asynchronous file I/O layer

that uses blocking OS calls and a thread pool to expose nonblocking behavior. Both of these lay-

ers are implemented as a set of Sandstorm stages that can be used by applications to provide fast

asynchronous I/O.

6.1 Asynchronous socket I/O

While NBIO provides low-level nonblocking socket interfaces in Java, it is important to

integrate this functionality into the Sandstorm programming model. For example, NBIO requires

109

asyncClientSocket asyncConnection asyncServerSocket

Connect pendingWrite readyRead ready

request

request
Read

complete

connection
request
Listen

New

Write
WritePacket

Operating System

Write ListenRead

Application

Figure 33:SEDA-based asynchronous sockets layer:The Sandstorm sockets interface consists
of three stages:read, write, and listen. Thereadstage responds to network I/O readiness events
and reads data from sockets, pushing new packets to the application stage. Thewrite stage accepts
outgoing packets and schedules them for writing to the appropriate socket. It also establishes new
outgoing socket connections. Thelistenstage accepts new TCP connections and pushes connection
events to the application.

that applications actively performselect()operations to receive pending I/O events; in contrast,

Sandstorm stages are invoked passively when new events are ready for processing. In addition,

NBIO requires that applications carefully schedule I/O across a large number of sockets; however,

one of the goals of Sandstorm is to prevent applications from making complex scheduling decisions.

In this section we describe the Sandstorm asynchronous sockets layer,asyncSocketIO, which is

layered on top of NBIO and provides an easy-to-use interface.asyncSocketIOis also capable of

using thejava.niononblocking I/O support in JDK 1.4.

In asyncSocketIO, applications create instances of the classesasyncClientSocketand

asyncServerSocketto initiate outgoing and incoming socket connections. When a connection is

established, anasyncConnectionobject is pushed onto an event queue provided by the user (typi-

cally the queue associated with the requesting stage). Incoming packets are enqueued onto the user’s

event queue, andasyncConnectionimplements a queue interface onto which outgoing packets can

110

be placed. Each outgoing packet may also have an associated event queue onto which a completion

event is pushed when the packet is transmitted. Error and other notification events are passed to the

user in a similar way.

Internally, theasyncSocketIOlayer is implemented using three stages, which are shared

across all sockets, as shown in Figure 33.ReadStagereads network packets and responds to user

requests to initiate packet reading on a new socket.WriteStagewrites packets to the network and

establishes new outgoing connections.ListenStageaccepts new TCP connections and responds to

user requests to listen on a new port. Each operation on anasyncConnection, asyncClientSocket,

or asyncServerSocketis converted into a corresponding request for one of the internal stages and

placed on that stages’s request queue. TheasyncSocketIOstages are managed by their own thread

manager that allocates a single thread to each stage.

Each of these stages must respond to read- and write-readiness events from the operating

system and use these to drive socket processing, potentially across a large number of sockets. At the

same time, each stage must respond to requests from the user, such as for creation of a new socket.

Therefore, each stage services two separate event queues: a request queue from the user, and an

I/O readiness/completion event queue from the operating system. The thread within each stage

alternately services each queue, using a simple timeout mechanism to toggle between the two. The

I/O event queue is implemented as a library that causes dequeue operations to invoke the underlying

NBIO SelectSet.select()call to retrieve I/O events. To ensure fairness across sockets, each stage

randomizesthe order in which it processes I/O events delivered by the operating system. This is

necessary because the OS generally returns socket events in a fixed order (e.g., in increasing order

by file descriptor).

Each connected socket has an associatedSockStateobject which is maintained by

ReadStageandWriteStage. Because the operation of these two stages is mostly independent, lit-

tle synchronization is required. The one exception arises due to closing sockets: sockets may be

closed either by the user (by enqueueing a close request onto the appropriateasyncConnection), or

111

externally, due to the peer shutting down the connection or an error condition.

ReadStageoperates by performing a socket read whenever an I/O readiness event indi-

cates that a socket has data available. It reads at most 16 KB into a pre-allocated buffer and en-

queues the resulting packet onto the event queue provided by the user. In case of an I/O error (e.g.,

because the peer has closed the connection), the stage closes the socket and pushes an appropriate

notification event to the user. Each socket read requires the allocation of a new packet buffer; while

this can potentially cause a great deal of garbage collection overhead, we have not found this to be

a performance issue. Note that because this system is implemented in Java, no explicit deallocation

of expired packets is necessary.

ReadStagealso provides an optional rate controller that can throttle the rate at which

packets are read from the network; this controller is useful for performing load shedding during

overload conditions. The controller is implemented by calculating a moving average of the incoming

packet rate and introducing artificial delays into the event-processing loop to achieve a certain rate

target.

WriteStagereceives packet write requests from the user and enqueues them onto an inter-

nal queue associated with the corresponding socket. When the OS indicates that a socket is ready

for writing, it attempts to write the next packet on that socket’s outgoing queue. As described in

Section 2, the socket queue may have an associated threshold to prevent a large backlog of outgoing

sockets pending transmission. This can be a problem if a socket is connected to a slow peer, such as

a modem link. In a blocking sockets interface, an attempt to write data to such a connection would

simply block the caller. However, when using nonblocking I/O the rate of socket I/O and the rate of

outgoing packet generation are decoupled, necessitating a limitation on the length of the outgoing

packet queue.

112

6.2 Asynchronous file I/O

In contrast toasyncSocketIO, which makes use of nonblocking I/O primitives from the

OS, the Sandstorm asynchronous file I/O (asyncFileIO) layer does not have true nonblocking OS

primitives available to it. This is mainly due to the lack of nonblocking file support in commod-

ity operating systems; moreover, the various implementations that do exist do not share common

interfaces or semantics. For example, the POSIX.4 AIO [117] implementation in Linux provides

nonblocking file reads, but uses an in-kernel thread pool for handling writes. Also, AIO does not

provide a straightforward mechanism for testing I/O readiness across a set of files. Rather than con-

form to imperfect underlying APIs, we have instead opted to use the SEDA concept of “wrapping”

blocking operations in a stage, making use of blocking I/O primitives and a tunable thread pool to

expose an asynchronous file interface despite internal blocking behavior.

Users perform file I/O through anasyncFileobject that supports the familiar interfaces

read, write, seek, stat, andclose. TheasyncFileIOlayer is implemented using a single stage that

contains a dynamically sized thread pool, identical in nature to application-level stages. Each oper-

ation on anasyncFilecauses a request to be placed onto this stage’s event queue. Threads within the

stage dequeue each request and perform the corresponding (blocking) I/O operation on the file. To

ensure that multiple I/O requests on the same file are executed serially, only one thread may process

events for a particular file at a time. This is an example ofstage-specific event scheduling—the

asyncFileIOthreads are dispatched in a way that avoids contention for individual files.

When an I/O request completes, a corresponding completion event is enqueued onto the

user’s event queue. TheasyncFileIOstage is initialized with a single thread in its thread pool, and

the Sandstorm thread pool controller is responsible for dynamically adjusting the size of the thread

pool based on observed concurrency demand.

113

7 Design example: HTTP protocol library

To illustrate the use of the Sandstorm interfaces, in this section we briefly describe the

design of an asynchronous HTTP protocol library that makes use of theasyncSocketIOprimitives.

This library provides HTTP server-side protocol functionality that can be readily adopted for use

in a Web server or other service; the Haboob Web server described in Chapter 6 is based on this

library.

The core class in this package ishttpServer, which implements a stage that accepts HTTP

connections and performs protocol processing. An application stage can create an instance of

httpServerto listen on a given port for HTTP connections. ThehttpServerstage creates the server

socket and receives incoming connections on its event queue. For each connection,httpServercre-

ates an instance ofhttpConnectionand enqueues it to the user.httpConnectionimplements the

SinkIF interface, so it can be used to send HTTP responses back to the corresponding client or close

the connection.

Every data packet received byhttpServeris passed through a per-connection state ma-

chine that performs protocol processing; this is implemented as the classhttpPacketReader.

httpPacketReaderaccumulates raw data from the underlyingasyncConnectionand parses it, build-

ing up the components of the HTTP request piecewise, including the request line, request header,

and request body [42]. To simplify protocol processing, Sandstorm provides a utility class called

asyncSocketInputStream. This class takes multiple packets received on anasyncConnectionand

allows them to be viewed as a contiguous stream of bytes, providing compatibility with stan-

dard Java text-processing libraries. When a complete HTTP request has been read and parsed,

httpPacketReaderenqueues anhttpRequestobject onto the user’s event queue. ThehttpRequest

provides access to the request header fields, URL, and body, as well as a pointer to the correspond-

ing httpConnection. The user stage can then perform whatever processing is necessary to handle the

httpRequest.

To send a response to the client, the user creates an instance ofhttpResponse, which has

114

a number of subclasses corresponding to the various response types in HTTP:OK, not found, bad

request, service unavailable, andinternal server error. The response object contains the response

header and payload, represented as separate buffers. The user then enqueues thehttpResponseonto

the desiredhttpConnection, which extracts the data buffers from the response and enqueues them

onto the correspondingasyncConnection.

This basic approach to protocol design using SEDA is general enough to capture a range

of protocols. We have also developed an asynchronous Transport Layer Security (TLS) [38] library

that extends theasyncSocketIOinterfaces, providing transparent authentication and encryption for

socket connections.1 Its design is very similar to that of the HTTP library, but uses additional

stages for performing encryption and decryption as well as negotiating key exchange. The library

uses PureTLS [33] and Cryptix [132] for the basic TLS functionality. Because the TLS library

subclassesasyncSocketIO, any code (such as the HTTP library) making use ofasyncSocketIOcan

substitute TLS-enabled sockets with very few changes.

8 Evaluation

In this section we provide an initial evaluation of the Sandstorm framework in terms

of code complexity, microbenchmark results, and scalability of theasyncSocketIOlayer. A more

detailed evaluation based on application results is given in Chapter 6.

8.1 Code size and complexity

Figure 34 shows a breakdown of the code size for each of the Java packages in the Sand-

storm implementation. The number of classes, methods, and non-commenting source statements

(NCSS) [109] are shown. The latter is a better indication of code size than source code lines, which

vary greatly with indentation and coding style. The figure shows that Sandstorm is relatively small,

with a total of only 10299 NCSS. The bulk of the complexity lies in the NBIO primitives and

1Dennis Chi developed the asynchronous TLS library.

115

Package Description Classes Methods NCSS
nbio Nonblocking I/O primitives 14 182 756
api basic API 28 71 167
api.internal internal APIs 3 13 22
main initialization 4 37 591
core core classes 13 104 906
internal internal implementation 20 130 1644
asyncSocketIO asynchronous sockets 32 141 1375
asyncFileIO asynchronous files 20 78 493
http HTTP protocol 13 88 787
Gnutella Gnutella protocol 14 113 878
util various utilities 3 20 281
Total 191 1099 10299

Figure 34: Sandstorm code size.This table shows the number of classes, methods, and non-
commenting source statements (NCSS) in each package of the Sandstorm implementation.

asynchronous sockets library.

8.2 Sandstorm microbenchmarks

The basic queue implementation in Sandstorm consists of a linked list as well as two

monitors: one for synchronizing changes to the list, and another used as a condition variable to wake

up a sleeping thread blocked on an empty queue. The basic queue operations are very efficient: on

a 930 MHz Pentium III system running Linux 2.2.14 and IBM JDK 1.3, an enqueue operation costs

0.5µsec without admission control; and 0.7µsec with a simple thresholding admission controller

(enqueue predicate). Nonblocking dequeue costs 0.2µsec and a blocking dequeue costs 0.9µsec

(due to the extra synchronization involved).

In addition, we measured the overhead of events traversing multiple stages, including the

thread context switch overhead across stages. Here we assume each stage has its own thread pool

with a single thread. The benchmark generates a ring of stages and measures the average time for

a single event to propagate through the ring. On the system described above, the stage crossing

overhead averaged 5.1µsec per stage for 10 stages. This is a single-processor system so there is

no opportunity for parallelism. The stage crossing overhead increases linearly as the number of

116

0

25

50

75

100

125

150

175

200

225

250

1 4 16 64 256 1024 4096 16384

B
an

dw
id

th
, M

bi
t/s

ec

Number of connections

(Can’t run beyond 400 connections)

SEDA asynchronous socket layer
Thread-based asynchronous socket layer

Figure 35:Asynchronous sockets layer performance:This graph shows the performance of the
SEDA-based asynchronous socket layer as a function of the number of simultaneous connections.
Each client opens a connection to the server and issues bursts of 8KB packets; the server responds
with a single 32-byte ACK for each burst of 1000 packets. All machines are connected via switched
Gigabit Ethernet and are running Linux 2.2.14. The SEDA-based server makes use of nonblocking
I/O primitives provided by the operating system. Performance is compared against a compatibility
layer that makes use of blocking sockets and multiple threads to emulate asynchronous I/O. The
thread-based layer was unable to accept more than 400 simultaneous connections, because the
number of threads required would exceed the per-user thread limit in this version of Linux.

stages increases, due to increased overheads of thread context switching and lower locality. With

100 stages the overhead increases to 40µsec per stage. Note, however, that with batching enabled

this context switch overhead is amortized across all events in a batch.

8.3 Asynchronous sockets performance

To evaluate the performance ofasyncSocketIO, we implemented a simple server applica-

tion that accepts bursts of 8KB packets from a number of clients, responding with a single 32-byte

ACK for each burst of 1000 packets. This somewhat artificial application is meant to stress the

network layer and measure its scalability as the number of clients increases. Figure 35 shows the

aggregate throughput of the server as the number of clients increases from 1 to 8192. The server and

117

client machines are all 4-way 500 MHz Pentium III systems interconnected using Gigabit Ethernet

running Linux 2.2.14 and IBM JDK 1.3.

Two implementations of the socket layer are shown. The SEDA-based layer makes use of

nonblocking I/O provided by the OS and the/dev/poll event-delivery mechanism [111]. This is

compared against a compatibility layer that uses blocking sockets and a thread pool for emulating

asynchronous I/O. This layer creates one thread per connection to process socket read events and

a fixed-size pool of 120 threads to handle socket writes. This compatibility layer was originally

developed to provide asynchronous I/O under Java before the development of the NBIO package.

The nonblocking implementation clearly outperforms the threaded version, which de-

grades rapidly as the number of connections increases. In fact, the threaded implementation crashes

when receiving over 400 connections, as the number of threads required exceeds the per-user thread

limit in this version of Linux. The slight throughput degradation for the nonblocking layer is due in

part to lack of scalability in the Linux network stack; even using the highly optimized/dev/poll

mechanism [111] for socket I/O event notification, as the number of sockets increases the overhead

involved in polling readiness events from the operating system increases significantly [74].

9 Summary

Our prototype of a SEDA-based Internet services platform, Sandstorm, is intended to sim-

plify the development of scalable services in several ways. By isolating application logic into event

handlers that are unable to affect thread allocation, scheduling, and queue management, the runtime

is given a great deal of control over the execution of service components, allowing developers to

focus on application-specific details. Sandstorm’s thread pool and batching controller mechanisms

shield service developers from the complexity of performance tuning; the controllers automatically

determine ideal runtime parameters based on observed behavior. Scalable, robust I/O primitives are

provided through theasyncSocketIOandasyncFileIOlayers, which extract general-purpose func-

tionality into a clean, reusable set of interfaces.

118

It is important not to confuse the SEDA architecture with the Sandstorm platform imple-

mentation. Many of the design choices made in Sandstorm—such as thread management, OS-driven

scheduling, and dynamic stage graph construction—are not inherent to the SEDA model, and al-

ternate designs could be investigated. We believe that Sandstorm embodies the right balance of

flexibility and ease-of-programming for a wide class of services, a claim we investigate in the next

chapter.

119

Chapter 6

Application Evaluation

This chapter presents a detailed performance evaluation of three significant applications

developed using the SEDA architecture:Haboob, a high-performance HTTP server; a packet router

for the Gnutella peer-to-peer file sharing network; andArashi, a Web-based e-mail service. These

three applications typify a broad class of Internet services, and each represents a different set of

design and performance goals.

In Haboob, the focus is on achieving high bandwidth and robust performance for a work-

load consisting of static Web pages; Haboob puts the SEDA model “on the map” with respect to

prior work on static Web server design. The Gnutella packet router is used to demonstrate robustness

under real-world loads: we ran our router for several days connected to the live Gnutella network.

The Gnutella router is also an example of an “open loop” server in which server performance does

not act as a limiting factor on offered load. Arashi is intended to demonstrate complex service

dynamics through heavyweight, on-the-fly content generation: e-mail is retrieved from a back-end

database, and a Python-based scripting language is used to format each Web page response. In

Chapter 7, Arashi is used to evaluate several overload control mechanisms in SEDA.

Our goal is to evaluate the SEDA design through complex, realistic applications under

extreme load situations. The three applications presented here are meant to be complete and usable,

120

which forces us to address some of the more challenging questions of service design in the SEDA

space.

1 Haboob: A high-performance HTTP server

Web servers form the archetypal component of scalable Internet services. Much prior

work has investigated the engineering aspects of building high-performance HTTP servers, but little

has been said about load conditioning, robustness, and ease of construction. Here, we describe

Haboob,1 a full-featured Web server capable of hosting both static and dynamic pages, built using

the Sandstorm framework.

One benefit of studying HTTP servers is that a variety of industry-standard benchmarks

exist to measure their performance, and a great deal of prior results have been published describing

performance tradeoffs in HTTP server design. In this section we present the Haboob architecture

as well as a detailed performance analysis, using a modified version of the SPECweb99 [119] Web

server benchmark. We compare Haboob’s performance to that of the Apache [8] and Flash [106]

Web servers, showing that Haboob achieves about 10% higher throughput than these other servers,

while exhibiting scalable performance as load increases.

1.1 Haboob architecture

The overall structure of Haboob is shown in Figure 36. The server consists of 11 essential

stages, as well as additional stages for dynamic page processing as described below. As described

in the previous chapter, three stages are used for asynchronous sockets, one for asynchronous file

I/O, and three for asynchronous SSL/TLS protocol processing. TheHttpParsestage is responsible

for accepting new client connections and for HTTP protocol processing for incoming packets. The

HttpRecvstage accepts HTTP connection and request events and dispatches them to one of several

stages based on the URL and type of request. For static Web pages, the request is passed to the

1Haboobis an Arabic word, describing a type of sand storm occurring in the desert of the Sudan.

121

dynamic pages

cache miss

I/O completion

static pages

packet
parse

SSL/TLS
processing

read
packet

connection
accept

handle
cache miss

file
I/O

dynamic
page gen

send
response

URL
dispatch cache

check

Figure 36:Haboob HTTP server architecture: This is a structural representation of the SEDA-
based Web server,Haboob.The server consists of a graph of stages for processing both static and
dynamic HTTP requests. The server maintains a cache of recently accessed static pages, and a
Python-based scripting language (PyTeC) is used to process dynamic pages. For simplicity, some
event paths and stages have been elided from this figure.

PageCachestage. For dynamic Web pages, the request is dispatched to an appropriate handler stage

based on the URL; the service designer can introduce new dynamic page handler stages as needed.

PageCacheimplements an in-memory Web page cache implemented using a hashtable

indexed by URL, each entry of which contains a response packet consisting of an HTTP header and

Web page payload. TheCacheMissstage is responsible for handling page cache misses, using the

asynchronous file I/O layer to read in the contents of the requested page from disk. File I/O comple-

tion events are passed back to theCacheMissstage for insertion into the cache. WhenPageCache,

CacheMiss, or a dynamic page handler stage have prepared an HTTP response for the client, the

corresponding data is enqueued for transmission by the asynchronous sockets layer.

The page cache attempts to keep the cache size below an administrator-specified threshold

(set to 204,800 KB for the measurements provided below). It aggressively recycles buffers on

capacity misses, rather than allowing old buffers to be garbage-collected by the Java runtime; we

have found this approach to yield a noticeable performance advantage. The cache stage makes

use of application-specific event scheduling to increase performance. In particular, it implements

shortest connection first (SCF) [35] scheduling, which reorders the request stream to send short

122

cache entries before long ones, and prioritizes cache hits over misses. Because SCF is applied only

to each batch of requests at a time, starvation across requests is not an issue.

1.2 Design rationale

A number of factors contributed to the decision to structure Haboob as described here.

We have already discussed the rationale behind the design of the asynchronous sockets, file, and

TLS/SSL layers in the previous chapter. The primary design consideration in Haboob was code

modularity: it is straightforward to delineate the various stages of the service according to func-

tion. For example, HTTP request parsing is a generic function that is largely independent of the

specific service layered above it. The URL dispatch stage,HttpRecv, is specific to Haboob and

must distinguish between static and dynamic requests. One could imagine a range of URL dispatch

mechanisms, for example, based on information such as client IP address or cookies; by isolating

dispatch within its own stage, other aspects of the service are unaffected by the choice of dispatch

policy. The code modularity of the staged design allowed us to test different implementations of

the page cache without any modification to the rest of the code; the runtime simply instantiates a

different stage in place of the original page cache. Likewise, another developer who had no prior

knowledge of the Haboob structure was able to replace Haboob’s use of the asynchronous file layer

with an alternate filesystem interface with little effort.

Other structuring decisions were intended to introduce load conditioning points within

the request processing flow. For example, isolating cache miss handling into its own stage allows

the length of the cache miss queue to signal overload conditions. Each dynamic request handler

is contained within its own stage, allowing admission control to be performed for each request

type; this is the basis for overload management in the Arashi e-mail service, described in detail in

Chapter 7.

Finally, other aspects of Haboob’s design were motivated by performance considerations.

It is expected that cache hits will generally outnumber cache misses, so it is critical to keep the cache

123

hit handling stage as lean as possible and allow multithreading within the stage to exploit potential

parallelism. An earlier incarnation of Haboob used a separate stage to perform HTTP response for-

matting; this code was inlined into the “send response” operation (an instance of theCombinedesign

pattern) to reduce response latency. Since response formatting is a fast operation that consumes few

resources, there was little need to isolate this code within its own stage. Conversely, performing

cache miss handling in a separate stage allows that stage to be independently conditioned to load,

and any increased latency due to queueing and context-switch overhead is negligible given the cost

of filesystem access.

As with all SEDA-based services, Haboob’s design represents the use of the design pat-

terns described in Chapter 3. Conceptually, one could transform a thread-per-request Web server

(such as Apache) into Haboob by repeated application of these design patterns. For example, block-

ing file and network I/O operations are converted to split-phase operations through the use of the

Pipelinepattern, resulting in the Sandstorm asynchronous I/O layers.Pipelineis also used to intro-

duce code modularity, for instance, as described above with theHttpRecvURL dispatch stage. The

Combinepattern is used when it is natural for a single stage to perform multiple aspects of request

processing, as in the case of inlining the HTTP reply formatting code. Finally, thePartition pattern

is used to separate static and dynamic page processing into different stages. Of the patterns, only

Replicateis not represented, since Haboob runs in a single address space on one machine.

1.3 Benchmark configuration

We have chosen the load model from the SPECweb99 benchmark suite [119] as the basis

for our measurements. SPECweb99 consists of both static and dynamic workload models based

on traffic from several popular Web sites. In the static workload, clients access files according to a

Zipf-based request distribution; files range in size from 102 to 921600 bytes. The dynamic workload

consists of a variety of request types that measure common dynamic server functionality including

the use of POST, GET, CGI scripts, and cookies.

124

Rather than use the standard SPECweb99 load generator, we have implemented our own

variant that collects more detailed performance statistics than the original, and allows us to tweak

various aspects of the generated load to study the behavior of each measured server. We have also

made two important modifications to the SPECweb99 benchmark. First, rather than scale the size

of the Web page file set with the number of simulated clients, we keep the file set fixed at 3.31 GB,

which corresponds to a SPECweb99 target load of 1000 connections. The rationale here is that a

server provisioned for a heavy traffic load should still perform well with a small number of clients;

under the SPECweb99 rules, a lightly loaded server would only be responsible for hosting a fraction

of the content. Secondly, we measure only the performance of static Web pages, which constitute

70% of the SPECweb99 load mix. The rationale here is that it is very difficult to conduct an apples-

to-apples performance study of multiple Web servers using dynamic scripting. This is because

scripting performance depends greatly on factors such as the language that scripts are implemented

in, the script interface to the Web server, and so forth. These factors differ greatly across the three

servers measured here, and a significant engineering effort would be required to eliminate these

differences.

For comparison, we present performance measurements from the popular Apache [8] Web

server (version 1.3.14, as shipped with Linux Red Hat 6.2 systems) as well as the Flash [106] Web

server from Rice University. Apache is the canonical example of a process-based Web server, where

each client connection is handled entirely by a single process. Flash, on the other hand, is a typical

event-driven Web server that has been highly tuned to maximize concurrency.

Apache uses a dynamically sized process pool that grows and shrinks as the number of

concurrent client connections varies. Each process accepts a single client connection and handles

all processing for it, reading file data from disk and sending it to the client in 8 KB chunks, using

blocking I/O. The size of the process pool therefore bounds the number of connections that are

simultaneously accepted by the server; the maximum process pool sized used in our measurements

is 150, which we found to yield the best performance of several configurations tested. Increasing

125

the process pool further either yielded no performance advantage or led to throughput degradation

under heavy load.

Flash uses an efficient event-driven design, with a single process handling most request-

processing tasks. The process executes in a loop, callingselect()to retrieve I/O events from the

operating system, and dispatching each event to a handler function that processes it. Because non-

blocking file I/O is not provided by most operating systems, Flash uses a set of helper processes to

perform blocking disk I/O operations, not unlike the design of the Sandstorm asynchronous file I/O

layer. Helper processes are also used for pathname conversions, listing the contents of directories,

and dynamic page generation. Helper processes communicate with the main process using UNIX

domain sockets, which entails relatively high overheads as the operating system must be involved

in interprocess communication. Flash maintains a static page cache that was configured to a maxi-

mum size of 204,800 KB, the same size as in Haboob. Both Apache and Flash are implemented in

C, while Haboob is implemented in Java.

The client load generator developed for our experiments is also implemented in Java and

make use of multiple threads to simulate many clients on a single machine. Each client thread

runs in a loop, establishing a connection to the server and requesting a Web page according to the

distribution specified by our variant on the SPECweb99 benchmark rules. After receiving the result,

the client waits 20 milliseconds before requesting the next page. HTTP/1.1 persistent connections

are used, allowing multiple HTTP requests to be issued (one at a time) on a single TCP connection.

Each benchmark run for a particular client load lasted 500 seconds.

To more closely simulate the connection behavior of clients in the wide area, each client

closes its TCP connection to the server after 5 HTTP requests, and reestablishes the connection

before continuing. This value was chosen based on observations of HTTP traffic from [98]. Note

that most Web servers are configured to use a much higher limit on the number of HTTP requests

per connection, which is unrealistic but provides improved benchmark results.

All measurements below were taken with the server running on a 4-way SMP 500 MHz

126

0

20

40

60

80

100

120

140

160

180

200

220

240

1 2 4 8 16 32 64 128 256 512 1024
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

T
hr

ou
gh

pu
t,

M
B

it/
se

c

�

F
ai

rn
es

s

�

Number of clients

Throughput

Fairness

Apache
Flash
Haboob

Figure 37:Haboob Web server throughput: This figure shows the throughput of the Haboob Web
server compared to Apache and Flash. From 1 to 1024 clients are accessing a fileset of 3.31 GBytes
with a think time of 20 ms between requests. Haboob achieves roughly 10% higher throughput
than Apache and Flash, and all three servers maintain high throughput despite increasing load.
Also shown is the Jain fairness index delivered by each server. A fairness index of 1 indicates
that the server is equally fair to all clients; smaller values indicate less fairness. The Haboob and
Flash servers yield very high fairness under increasing loads, while Apache’s fairness degrades
considerably due to its failure to rapidly accept incoming TCP connections when saturated.

Pentium III system with 2 GB of RAM and Linux 2.2.14. IBM JDK v1.3.0 was used as the Java

platform. Thirty-two machines of a similar configuration were used for load generation. All ma-

chines were interconnected using switched Gigabit Ethernet. Although this configuration does not

simulate wide-area network effects, our interest here is in the performance and stability of the server

under heavy load. All benchmarks were run with warm filesystem and Web page caches. Note that

the file set size of 3.31 GB is much larger than the physical memory of the server, and the static

page cache for Haboob and Flash was set to only 200 MB; therefore, these measurements include a

large amount of disk I/O.

127

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

P
ro

b
[r

es
po

ns
e

tim
e

<
=

 x
]

Response time, msec

Apache

Flash

Haboob

Figure 38: Web server response times with 1024 clients:This figure shows the cumulative re-
sponse time distribution for Haboob, Apache, and Flash with 1024 clients. While Apache and Flash
exhibit a high frequency of low response times, there is a heavy tail, with the maximum response
time corresponding to several minutes. This is due to exponential backoff in the TCP SYN retrans-
mit timer: Apache accepts only 150 connections, and Flash accepts only 506, despite 1024 clients
requesting service. Note the log scale on the horizontal axis.

1.4 Performance analysis

Figure 37 shows the throughput of Haboob compared with Apache and Flash with be-

tween 1 and 1024 clients. Also shown is the Jain fairness index [68] of the number of requests

completed by each client. This metric is defined as

f(x) =
(
∑
xi)2

N
∑
x2
i

wherexi is the number of requests for each ofN clients. A fairness index of 1 indicates that the

server is equally fair to all clients; smaller values indicate less fairness. Intuitively, ifk out ofN

clients receive an equal share of service, and the otherN − k clients receive no service, the Jain

fairness index is equal tok/N .

As Figure 37 shows, Haboob’s throughput is stable as the number of clients increases, sus-

taining over 200 Mbps for 1024 clients. Flash and Apache also exhibit stable throughput, although

128

64 clients
Server Throughput RT mean RT max Fairness
Apache 177.56 Mbps 16.61 ms 2285 ms 0.99
Flash 172.65 Mbps 18.58 ms 12470 ms 0.99
Haboob 187.52 Mbps 15.08 ms 1872 ms 0.99

1024 clients
Apache 173.09 Mbps 475.47 ms 93691 ms 0.80
Flash 172.65 Mbps 665.32 ms 37388 ms 0.99
Haboob 201.42 Mbps 547.23 ms 3886 ms 0.98

Figure 39:Haboob Web server performance summary:This table summarizes the performance
of the Haboob, Apache, and Flash Web servers for 64 clients and 1024 clients. Note that the average
response time for each server is nearly identical, though the maximum response times vary widely.

slightly less than Haboob. This result might seem surprising, as we would expect the process-based

Apache server to degrade in performance as the number of clients becomes large. Recall, however,

that Apache accepts no more than 150 connections at any time, for which is not difficult to sustain

high throughput using process-based concurrency. When the number of clients exceeds this amount,

all other clients must wait for increasingly longer periods of time before being accepted into the sys-

tem. Flash has a similar problem: it caps the number of simultaneous connections to 506, due to a

limitation in the number of file descriptors that can be used with theselect()system call. When the

server is saturated, clients must wait for very long periods of time before establishing a connection.2

This effect is demonstrated in Figure 38, which shows the cumulative distribution of re-

sponse times for each server with 1024 clients. Here, response time is defined as the total time for

the server to respond to a given request, including time to establish a TCP connection if one has

not already been made. Although all three servers have approximately the sameaverageresponse

times, the distribution is very different. Apache and Flash exhibit a greater fraction of low response

times than Haboob, but have very long tails, exceeding tens of seconds for a significant percentage

of requests. Note that the use of the log scale in the figure underemphasizes the length of the tail.

2It is worth noting that both Apache and Flash were very sensitive to the benchmark configuration, and our test-
ing revealed several bugs leading to seriously degraded performance under certain conditions. For example, Apache’s
throughput drops considerably if the server, rather than the client, closes the HTTP connection. The results presented
here represent the most optimistic results from these servers.

129

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

P
ro

b
[r

es
po

ns
e

tim
e

<
=

 x
]

Response time, msec

Haboob
Flash

Apache

Figure 40:Web server response times with 64 clients:This figure shows the cumulative response
time distribution for Haboob, Apache, and Flash with 64 clients. Under light load, all three servers
exhibit roughly identical response time distributions. This is in contrast to Figure 38, which shows
that Apache and Flash exhibit a great deal of unfairness to clients when heavily loaded. Note the
log scale on the horizontal axis.

The maximum response time for Apache was over 93 seconds, and over 37 seconds for Flash. For

comparison, Figure 40 shows the response time distribution for 64 clients, a considerably lighter

load. In this case, all three servers exhibit roughly the same response time distribution.

The long tail in the response times is caused by exponential backoff in the TCP retrans-

mission timer for establishing a new connection, which under Linux can grow to be as large as 120

seconds. With Apache, if a client is “lucky”, its connection is accepted quickly and all of its requests

are handled by a single server process. Moreover, each process is in competition with only 149 other

processes, which is a manageable number on most systems. This explains the large number of low

response times. However, if a client is “unlucky” it will have to wait for a server process to become

available; TCP retransmit backoff means that this wait time can become very large. This unequal

treatment of clients is reflected in the lower value of the fairness metric for Apache.

With Flash, all clients are accepted into the system very quickly, and are subject to queue-

130

ing delays within the server. Low response times in Flash owe mainly to very efficient implementa-

tion, including a fast HTTP protocol processing library; we have not implemented these optimiza-

tions in Haboob. However, the fact that Flash accepts only 506 connections at once means that

under heavy load TCP backoff becomes an issue, leading to a long tail on the response time dis-

tribution. Flash’s fairness metric remains high because iteventuallyservices (nearly) all requests

despite running out of file descriptors in the case of 512 and 1024 clients; that is, the benchmark run

is not long enough to cause clients not to receive responses. We would expect the fairness metric to

drop if higher loads were placed on the server.

In contrast, Haboob exhibits a great degree of fairness to clients when heavily loaded.

The mean response time was 547 ms, with a maximum of 3.8 sec. This is in keeping with our goal

of graceful degradation—when the server is overloaded, it should not unfairly penalize waiting re-

quests with arbitrary wait times. Haboob rapidly accepts new client connections and allows requests

to queue up within the application, where they are serviced fairly as they pass between stages. Be-

cause of this, the load is visible to the service, allowing various load conditioning policies to be

applied. For example, to provide differentiated service, it is necessary to efficiently accept connec-

tions for inspection. The tradeoff here is between low average response time versus low variance in

response time. In Haboob, we have opted for the latter.

2 Gnutella packet router

We chose to implement a Gnutella packet router to demonstrate the use of SEDA for non-

traditional Internet services. The Gnutella router represents a very different style of service from

an HTTP server: that of routing packets between participants in a peer-to-peer file sharing network.

Services like Gnutella are increasing in importance as novel distributed applications are developed

to take advantage of the well-connectedness of hosts across the wide area. The peer-to-peer model

has been adopted by several distributed storage systems such as Freenet [32], OceanStore [79], and

Intermemory [29].

131

Gnutella [49] allows a user to search for and download files from other Gnutella users.

The protocol is entirely decentralized; nodes running the Gnutella client form an ad-hoc multihop

routing network layered over TCP/IP, and nodes communicate by forwarding received messages

to their neighbors. Gnutella nodes tend to connect to several (typically four or more) other nodes

at once, and the initial discovery of nodes on the network is accomplished through a well-known

host. There are five message types in Gnutella:ping is used to discover other nodes on the network;

pongis a response to a ping;queryis used to search for files being served by other Gnutella hosts;

queryhitsis a response to a query; andpushis used to allow clients to download files through a

firewall. The packet router is responsible for broadcasting receivedping andquerymessages to all

other neighbors, and routingpong, queryhits, andpushmessages along the path of the corresponding

pingor querymessage. Details on the message formats and routing protocol can be found in [49].

2.1 Architecture

The SEDA-based Gnutella packet router is implemented using 3 stages, in addition to

those of the asynchronous sockets layer. TheGnutellaServerstage accepts TCP connections and

parses packets, passing complete packet events to theGnutellaRouterstage.GnutellaRouterper-

forms actual packet routing, sending each received packet to the appropriate outgoing connection(s),

and maintains routing tables.GnutellaCatcheris a helper stage used to join the Gnutella network

by contacting a well-known site to receive a list of hosts to connect to. It attempts to maintain at

least 4 simultaneous connections to the network, in addition to any connections established by other

Internet clients.

Joining the “live” Gnutella network and routing packets allows us to test SEDA in a real-

world environment, as well as to measure the traffic passing through the router. During one 37-hour

run, the router processed 24.8 million packets (with an average of 179 packets/sec) and received

72,396 connections from other hosts on the network, with an average of 12 simultaneous connec-

tions at any given time. We have measured the router as being capable of sustaining over 20,000

132

packets a second.

2.2 Protection from slow sockets

Our original packet router prototype exhibited an interesting bug: after several hours of

correctly routing packets through the network, the server would crash after running out of mem-

ory. Using the Sandstorm profiling tools and observing the various stage queue lengths allowed

us to easily detect the source of the problem: a large number of outgoing packets were queueing

up for certain client connections, causing the queue length (and hence memory usage) to become

unbounded. We have measured the average packet size of Gnutella messages to be approximately

32 bytes; a packet rate of just 115 packets per second can saturate a 28.8-kilobit modem link, still

commonly in use by many users of the Gnutella software.

The solution in this case was to impose a threshold on the outgoing packet queue for

each socket, and close connections that exceed their threshold. This solution is acceptable because

Gnutella clients automatically discover and connect to multiple hosts on the network; the redun-

dancy across network nodes means that clients need not depend upon a particular host to remain

connected to the network.

2.3 Load conditioning behavior

To evaluate the use of Sandstorm’s resource controllers for load conditioning, we intro-

duced a deliberate bottleneck into the Gnutella router, in which every query message induces a

servicing delay of 20 ms. This is accomplished by having the application event handler sleep for

20 ms when a query packet is received. We implemented a load-generation client that connects to

the server and generates streams of packets according to a distribution approximating that of real

Gnutella traffic. In our Gnutella traffic model, query messages constitute 15% of the generated

packets. With a single thread performing packet routing, it is clear that as the number of packets

flowing into the server increases, this delay will cause large backlogs for other messages.

133

13
.3

4

27
.2

72

100
�

35
.8 38

.8
3

200
�

34
55

.0

64
42

.7

400
�

* *
1000

0
�

20
�

40
�

60
�

80
�

100
�

La
te

nc
y

(m
s)

Offered load (packets/sec)

Packet type
Ping
Query

12
.6

3

27
.3

88

100
�

29
.4

2

42
.6

88

200
�

10
.9

34

29
.3

6

400
�

16
.4

7

37
.6

7

1000
0
�

20
�

40
�

60
�

80
�

100
�

La
te

nc
y

(m
s)

Offered load (packets/sec)

Packet type
Ping
Query

(a) Using single thread (b) Using thread pool controller

Figure 41:Gnutella packet router latency: These graphs show the average latency of ping and
query packets passing through the Gnutella packet router with increasing incoming packet rates.
Query packets (15% of the packet mix) induce an artificial server-side delay of 20 ms. (a) shows the
latency with a single thread processing packets. Note that the latency increases dramatically as the
offered load exceeds server capacity; at 1000 packets/sec, the server ran out of memory before a
latency measurement could be taken. (b) shows the latency with the thread pool controller enabled.
Note that for 100 and 200 packets/sec, no threads were added to the application stage, since the
event queue never reached its threshold value. This explains the higher packet latencies compared
to 400 and 1000 packets/sec, for which 2 threads were added to the stage.

Figure 41(a) shows the average latencies for ping and query packets passing through the

server with an offered load increasing from 100 to 1000 packets/sec. Both the client and server

machines use the same configuration as in the HTTP server benchmarks (see page 125). Packet

latencies increase dramatically when the offered load exceeds the server’s capacity. In the case of

1000 packets/sec, the server crashed before a latency measurement could be taken. This is because

the enormous backlog of incoming packets caused the server to run out of memory.

A number of load conditioning policies could be employed by the router to deal with such

an overload situation. A simple policy would be to threshold each stage’s incoming event queue and

drop packets when the threshold has been exceeded. Alternately, an approach similar to that used in

Random Early Detection (RED) congestion avoidance schemes [43] could be used, where packets

134

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450 500

Q
ue

ue
 le

ng
th

Time (100 ms intervals)

Threads added to pool

GnutellaRouter stage queue length

Figure 42:Thread pool controller operation in the Gnutella packet router: This figure shows
the queue length of theGnutellaRouterstage over time for a load of 1000 packets/sec, with the
thread pool controller active. As the figure shows, the controller added a thread to the stage at each
of the two points, which alleviated the overload situation.

are dropped probabilistically based on the length of the input queue. Although these policies cause

many packets to be dropped during overload, due to the lossy nature of Gnutella network traffic this

may be an acceptable solution. An alternate policy would be to admit all packets into the system,

but have the application event handler filter out query packets, which are the source of the overload.

Yet another policy would be to bound the rate at which theasyncSocketIOlayer reads incoming

packets from the network.

An alternate approach is to make use of SEDA’s resource controllers to overcome the

bottleneck automatically. In this approach, the thread pool controller adds threads to theGnutel-

laRouterstage when it detects that additional concurrency is required. Figure 41(b) shows the aver-

age latencies in the Gnutella router with the SEDA thread pool controller enabled and an incoming

packet load of 1000 packets/sec. As shown in Figure 42, the controller adds 2 threads to theGnutel-

laRouterthread pool, allowing the server to handle the increasing load despite the bottleneck. Note

that the number of threads required matches the theoretical value obtained from Little’s law (see

135

Chapter 4): If we model the stage as a queueing system withn threads, an average packet arrival rate

of λ, a query packet frequency ofp, and a query servicing delay ofL seconds, then the number of

threads needed to maintain a completion rate ofλ isn = λpL = (1000)(0.15)(20 ms) = 3 threads.

3 Arashi: A dynamic Web-based e-mail service

Our results with the Haboob Web server and Gnutella packet router mainly serve to

demonstrate the scalability of the SEDA framework under a range of loads. However, another axis

that we wish to investigate deals with mechanisms for managing overload, especially in a highly

dynamic environment. To explore this aspect of SEDA, we have developed theArashiWeb-based

e-mail service.3 Arashi is akin to Hotmail or Yahoo! Mail, allowing users to access e-mail through

a Web browser interface with various functions: managing e-mail folders, deleting and refiling

messages, searching for messages, and so forth. Arashi uses the Haboob Web server as its core,

but includes significant new functionality to support dynamic page generation, SSL/TLS protocol

connectivity, and database access.

3.1 Arashi architecture

Arashi is built as a SEDA application consisting of 17 stages, as shown in Figure 43.

Apart from the 11 stages provided by Sandstorm and Haboob, Arashi employs six additional stages

to process dynamic page requests. These dynamic pages are each driven by a script that accesses

e-mail data from a back-end MySQL [102] database and generates a customized HTML page in

response. This design mimics standard “three-tier” Web applications that consist of a Web server

front-end, a database back-end, and anapplication servermiddle tier that performs service-specific

scripting. In this case, Arashi acts as both the Web server and the middle tier.

A typical user view of the Arashi service is shown in Figure 44. To use Arashi, a user

first logs into the service with a username and password. The user’s list of message folders is then

3Arashi is the Japanese word forstorm.

136

...

connection
accept

read
packet

SSL/TLS
processing

cache
check

packet
parse

folders
list

show
message

message
delete/refile

send
response

static pages
(some stages not shown)

URL
dispatch

for dynamic pages
admission control

Figure 43:Architecture of the Arashi e-mail service: Arashi is based on the Haboob Web server,
and shares many stages with it. TheHttpRecvstage directs requests either to the Haboob page
cache (for static pages) or to one of several dynamic page stages. Dynamic pages are implemented
in PyTeC, a Python-based scripting language. Each request type is handled by a separate stage,
and these stages are subject to admission control to prevent overload.

displayed. Clicking on a folder lists the first 10 messages in the folder; the user can navigate through

the messages with next/previous page links. Clicking on a message shows the message headers and

contents, with all embedded URLs transformed into clickable links. On each page the user has the

option of deleting or refiling a message (either the currently displayed message or those selected

from the list view with checkboxes). Each page also has a search box that performs a substring

match on all message headers either in the currently selected folder or across all folders.

There are nine user request types: login, folder list, message list, show message, delete

message, refile message, search, create folder, and delete folder. Each request type is processed by

its own stage according to the URL of the request; for example, the URL prefix/folderlist

indicates a folder list operation. In this case, when a user accesses the list of mail folders, the

/folderlist stage retrieves the list of folders from the database, and generates an HTML table

with one row per folder, translating each internal folder ID to its user-assigned folder name. Isolating

each request type into its own stage allows overload control to be applied on a per-request-type

basis, as we will see in Chapter 7. Request handling for folder creation/deletion and message

refile/deletion are coalesced into a single stage.

137

Figure 44:Screenshot of the Arashi e-mail service:Arashi allows users to read e-mail through
a Web browser interface. Many traditional e-mail reader features are implemented, including mes-
sage search, folder view, sorting message lists by author, subject, or date fields, and so forth.

User authentication is performed through a simple username/password scheme when the

user initially logs into the Arashi service. The TLS protocol may also be used to secure the client

connection to the server. Upon logging in, the service generates a unique 64-bitsession keythat

is automatically appended to each link in the HTML code generated by the service. The session

key is used to authenticate subsequent requests to the service, avoiding the overhead of password

exchange for each request. The session key also prevents the leakage of password information from

the service. For example, should the user click on an external link from an e-mail message, the

HTTPRefererfield would contain only the session key, a nonce that cannot be used by a subsequent

user to gain access to the service. This authentication model closely resembles that used by a wide

range of e-commerce sites.

138

3.2 PyTeC service construction language

To simplify the development of the Arashi service logic, we developed a new scripting

language calledPyTeC, which is based on Python [91].4 PyTeC is similar to Java Server Pages [126]

and PHP [134], allowing application logic to be embedded within HTML templates. The service

author writes an HTML page with embedded Python commands; these commands can perform

functions such as database access or calls to library routines implemented in Python or Java. Python

makes an excellent service scripting language, as it supports a wealth of text-based operations such

as regular expressions.

The PyTeC compiler first generates a Python source file from each PyTeC (HTML plus

Python code) source file; this Python code is then compiled to Java bytecode using Jython [133]. The

resulting Java class implements a generic dynamic page handler interface supported by Haboob, and

is wrapped in its own stage. Therefore, each PyTeC script is compiled into a Sandstorm stage that

can be directly linked into the service. The great majority of the Arashi service logic is implemented

in PyTeC, and only a few support routines were implemented in Java. Figure 45 shows an example

of the PyTeC code for displaying an e-mail message in Arashi.

3.3 Database connection pooling

Establishing connections to the back-end database is typically an expensive operation

involving instantiation of several classes, opening a socket, and authenticating the Arashi application

to the database server. Arashi’s PyTeC components make use of database connection pooling to

avoid the overhead of creating and destroying database connection contexts for each request. This is

accomplished through a simple mechanism whereby a PyTeC component creates aDBConnection

object, which does one of two things: either allocates a connection from a pool, or establishes a

new connection to the database if the pool is empty. When the component is finished with the

connection, it is returned to the pool for another component to use. In the current implementation,

4The PyTeC language was primarily designed and implemented by Eric Wagner.

139

<html><body>

<%include ARASHI-HEADER.pyh>

<%pytec
’req’ is the user request passed to this page, and
_session is the session data, extracted from the request
by including ARASHI-HEADER.pyh above

userid = _session.getValue("userid")
msgid = req.getQuery("msgid")
if not Arashi.validate_message(userid,msgid):

return error("User "+userid+" not allowed to access message "+msgid)

Fetch the message contents from the database
conn = DBConnection()
results = conn.execute("select * from msgtable,foldertable

where msgtable.msgid="+msgid+" and foldertable.msgid=msgtable.msgid")

while results.next():
folderid = results.getString("folderid")
folder = Arashi.folderid_to_name(folderid)

makeURL() generates a URL with the user’s session key appended
folderurl = _session.makeURL("/list") + "&folderid="+folderid
print ’Folder: ’+folder+’
’

make_safe escapes HTML special characters
to = Arashi.make_safe(results.getString("header_to"))
print "To: "+to+"
"
froms = Arashi.make_safe(results.getString("header_from"))
print "From: "+froms+"
"
subject = Arashi.make_safe(results.getString("header_subject"))
print "Subject: "+subject+"
"
date = Arashi.make_safe(results.getString("date"))
print "Date: "+date+"
</td>"
body = results.getBytes("body")

mail is stored in Base64 format in the database;
url_subst adds an HTML link to any URL that appears in the body
of the message.
bodyStr = Arashi.url_subst(Arashi.base64_decode(body))
if (bodyStr != None):

print ’<p><pre>’+bodyStr+’</pre><p>’

conn.close()
%>
</body></html>

Figure 45:Simplified PyTeC source code for an Arashi request:This figure shows the source
code for an Arashi “message display” operation. The code consists of Python embedded in HTML,
which performs database access operations as well as calls to Python and Java libraries.

140

next state→ login list folders list msgs show msg delete refile search
from: login — 1.0 — — — — —

from: list folders — — 1.0 — — — —
from: list msgs 0.27 — — 0.68 0.02 0.02 0.01

from: show msg 0.03 — 0.58 — 0.18 0.20 0.01
from: search 0.27 — — 0.68 0.02 0.02 0.01

Figure 46:State transition probabilities for the Arashi client load generator: This table shows
the probability of an emulated user transitioning from a given state (listed in the left column) to a
new state (in the top row). These probabilities are based on traces from the Berkeley departmental
IMAP server. The set of possible transitions out of a given state is limited by the request types that
a user can generate from that state; for example, after listing the set of folders, the only possible
transition is to select a new folder. For thedeleteandrefilestates, the user always transitions to the
previous page visited.

idle connections are not removed from the pool, but a simple garbage-collection mechanism would

be easy to implement.

3.4 Benchmark configuration

Arashi was designed primarily to evaluate the overload control mechanisms presented

in Chapter 7, so we are not concerned strictly with peak performance, but rather the shape of the

performance curve under increasing load. By running the Arashi service on the same machine as

the database engine, it is easy to drive Arashi into overload; here we present basic performance

measurements that demonstrate this fact. In Chapter 7 we present a family of mechanisms for

managing overload in Arashi.

The Arashi client load generator uses Sandstorm’s nonblocking sockets interface to make

a varying number of simultaneous connections to the server, with each connection corresponding to

one client. Each emulated user has a single mail folder consisting of between 1 and 12794 messages,

the contents of which are derived from the author’s own e-mail archives. The client load generator

parses the HTML content returned by the Arashi service and scans it for specially marked tags

indicating potential links to follow from each page. Emulated users access the service based on a

simple Markovian model of user behavior derived from traces of the UC Berkeley Computer Science

141

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 64 128 256 512 1024
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

T
hr

ou
gh

pu
t,

re
qu

es
ts

/s
ec

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e,

 m
se

c

Number of clients

Throughput

Fairness

Throughput
90th percentile response time

Figure 47:Arashi server performance: This figure shows the throughput (in terms of requests per
second) and 90th-percentile response time for the Arashi e-mail service as a function of increasing
user load. As the figure shows, a modest load is able to saturate the service, leading to increasingly
large response times as load increases beyond the saturation point. Throughput does not degrade
as user load is increased beyond saturation.

Division’s IMAP server.5 Figure 46 shows the state transition probabilities made by emulated users.

Each of the states (login, list folders, and so forth) correspond to each type of request that a user can

generate. Note that creation and deletion of folders is not included in this benchmark.

For each request, the client load generator records the response time as well as the time

required to establish a TCP connection to the service if one was not already made. The overall

throughput (in terms of requests per second and megabits/sec) is also recorded. As in the Haboob

measurements, the inter-request think time is 20ms.

3.5 Throughput and response time measurements

Figure 47 shows the throughput and 90th-percentile response time of the Arashi service

as load increases from 1 to 1024 users. With a modest load of 128 users, the service becomes

5We are indebted to Steve Czerwinski for providing the IMAP trace data.

142

83
1

17
34

23
71

70 10
02

10
08

81
76

16 users

86
8

36
50

89
11

67
35

30
13

3
11

35
8

10
63

3 19
67

3

1024 users
0

�

20000
�

40000
�

60000
�

80000
�

100000
�

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e

(m
s)

Request type

login

list folders

list messages

show message

delete message

refile message

search

Figure 48:Response time based on request type:This figure shows the 90th-percentile response
time for each request type in the Arashi e-mail service for loads of 16 and 1024 users. The response
time depends heavily on the complexity of the user request; while login requests are processed
quickly, searching messages for a small string is very resource-intensive.

saturated, leading to increasingly large response times as load continues to increase. Arashi exhibits

well-conditioned performance as load increases, with throughput saturating at a load of around 16

clients. Also, throughput does not degrade as the user load is increased beyond saturation.

In Arashi, the primary performance bottleneck is the MySQL database engine, as well

as the dynamic page generation code that performs database access and HTML rendering. As

Figure 48 shows, the response time depends greatly on the type of user request. As load increases,

listing the set of folders and the contents of a particular folder exhibit much higher response times

than other requests. This is for two reasons: first, these are the most popular operations, and second,

they are relatively complex. For example, listing the contents of a folder involves a number of

database accesses to fetch the headers of each message in the folder. Listing the folders themselves

requires several database operations to map from internal folder ID to the user-assigned folder name.

143

We have intentionally not made any effort to optimize Arashi to improve performance,

as this service is designed to serve as a vehicle for exploring overload management techniques in

Chapter 7. If this service were intended for actual deployment, a fair amount of performance gain

could be obtained using standard techniques such as caching the HTML pages and database results

produced by each PyTeC script.

4 Summary

This chapter has presented a design and performance study of three interesting applica-

tions built using the SEDA model: a high-performance Web server, a Gnutella packet router, and a

complex e-mail service. Through these applications, we have demonstrated that the SEDA model

enables the construction of services that scale to very heavy user loads, and behave gracefully as

load exceeds service capacity.

A critical aspect of the Haboob Web server design is that it rapidly accepts all TCP con-

nections to avoid the response-time penalty of SYN retransmit backoff. This approach also yields

a great deal of fairness to clients, as all requests are given equal opportunity to be admitted to and

processed by the system. The Gnutella packet router demonstrated the use of thread pool manage-

ment to overcome performance bottlenecks, as well as the use of outgoing socket thresholding to

avoid memory leaks due to connections from wide-area clients. Finally, the Arashi e-mail service

represents a complex application with dynamic Web page generation, database access, and a wide

variation in resource demands for each request.

The results here serve mainly to highlight the scalability of the SEDA platform and

demonstrate uses of the programming model. In the next chapter we explore the other primary

goal of SEDA: to enable flexible management of overload conditions.

144

Chapter 7

Adaptive Overload Management

Previous chapters have focused on the efficiency and scalability of the SEDA architecture

with respect to current server designs, and have discussed the use of dynamic control of system

resources for load conditioning and automatic tuning. In this chapter we concentrate on the use of

adaptive, per-stage admission control as a means for managing extreme overload.

We begin by discussing the role of feedback-driven control for overload management,

contrasting this approach to more traditional resource control mechanisms, such as static resource

containment and prioritization. We also discuss some of the difficulties of applying classic con-

trol theory to dynamic Internet services, including the lack of good system models and nonlinear

dynamics.

Next, we develop an adaptive admission control mechanism that attempts to bound the

90th-percentile response time of requests flowing through a SEDA application. We extend this

technique to incorporate application-specific service degradation as well as service differentiation

across multiple request or user classes. These techniques are evaluated using two applications: the

Arashi e-mail service described in the previous chapter, and a Web server benchmark involving

dynamic page generation. These results show that feedback-driven admission control is an effective

way to manage overload in SEDA-based services.

145

1 Background

Chapter 2 discussed various approaches to overload management in Internet services,

many of which focused on static resource containment, in whicha priori resource limits are imposed

on an application or service to avoid overcommitment. As discussed previously, these approaches

are inflexible in that they can underutilize resources (if limits are set too low) or lead to overload (if

limits are set too high). Also, these mechanisms are typically concerned with resource allocation

of coarse-grained entities such as processes or sessions. In Internet services, it is more important

to meet a statistical performance target across a large number of requests; this model does not map

well onto techniques such as process-based resource containment or scheduling.

We argue that the right approach to overload management in Internet services is feedback-

driven control, in which the system actively observes its behavior and applies dynamic control to

manage resources [146]. As discussed in Chapter 2, several systems have explored the use of closed-

loop overload management in Internet services, such as limiting incoming packet rates [69, 138] or

allocating server processes to requests to meet performance targets [89]. These mechanisms are

approaching the kind of overload management techniques we would like to see in Internet services,

yet they are inflexible in that the application itself is not designed to manage overload.

Our approach builds upon these ideas by introducing per-stage adaptive admission control

into the SEDA framework. Applications are explicitly signaled of overload conditions through

enqueue failures. Moreover, applications are given the responsibility to react to overload conditions

in some way, such as by shedding load or degrading the quality of service. In this way, SEDA makes

overload management a first-class application design primitive, rather than an operating system

function with generic load-shedding policies.

1.1 Performance metrics

A variety of performance metrics have been studied in the context of overload manage-

ment, including throughput and response time targets [27, 28], CPU utilization [3, 30, 37], and

146

differentiated service metrics, such as the fraction of users in each class that meet a given perfor-

mance target [72, 89]. We focus on90th-percentile response timeas a realistic and intuitive measure

of client-perceived system performance, defined as follows: if the 90th percentile response time is

t, then 90% of the requests experience a response time equal to or less thant. This metric has the

benefit that it is both easy to reason about and captures administrators’ (and users’) intuition of In-

ternet service performance. This is as opposed to average or maximum response time (which fail to

represent the “shape” of a response time curve), or throughput (which depends greatly on the user’s

connection to the service and has little relationship with user-perceived performance).

In this context, the system administrator specifies a target value for the 90th-percentile

response time exhibited by requests flowing through the service.

The target value may be parameterized by relative utility of the requests, for example,

based on request type or user classification. An example might be to specify a lower response time

target for requests from users with more items in their shopping cart. Our current implementation,

discussed below, allows separate response time targets to be specified for each stage in the service,

as well as for different classes of users (based on IP address, request header information, or HTTP

cookies).

1.2 Overload exposure through admission control

As discussed earlier, each stage in a SEDA application has an associated admission con-

troller that guards access to the event queue for that stage. The admission controller (implemented

as an enqueue predicate) is invoked upon each enqueue operation on a stage and may either accept

or reject the given request. Numerous admission control strategies are possible, such as simple

thresholding, rate limiting, or class-based prioritization. Additionally, the application may specify

its own admission control policy if it has special knowledge that can drive the load conditioning

decision.

When the admission controller rejects a request, the corresponding enqueue operation

147

fails, indicating to the originating stage that there is a bottleneck in the system. Applications are

therefore responsible for reacting to these “overload signals” in some way. More specifically, over-

load management is the responsibility of the upstream stage when an enqueue rejection occurs.

A wide range of overload management policies are available to the application. The sim-

plest response is to block until the downstream stage can accept the request. This leads to backpres-

sure, since blocked threads in a stage cause its incoming queue to fill, triggering overload response

upstream. However, backpressure may be undesirable as it causes requests to queue up, possibly

for long periods of time. Under high loads, queueing backlogged requests may also consume an

excessive amount of memory. Another overload response is to drop the request. Depending on the

application, this might involve sending an error message to the client or using an HTTP redirect

message to bounce the request to another node in a server farm.

More generally, an application maydegrade servicein response to overload, allowing a

larger number of requests to be processed albeit at lower quality. Examples include delivering lower-

fidelity content (e.g., reduced-resolution image files) or performing alternate actions that consume

fewer resources per request. Whether or not degradation is feasible depends greatly on the nature

of the service. The SEDA framework itself is agnostic as to the precise degradation mechanism

employed—it simply provides the adaptive admission control primitive to signal overload to appli-

cations.

2 Overload control mechanisms

In this section we describe three overload control mechanisms for SEDA: adaptive ad-

mission control for bounding 90th-percentile response times, service degradation, and class-based

service differentiation.

148

Controller

λ

Target
RT

Stage

Distribution

Thread Pool

Response
Time Monitor

Token
Bucket Rate

Figure 49: Response time controller design: The controller observes a history of response
times through the stage, and adjusts the rate at which the stage accepts new requests to meet an
administrator-specified 90th-percentile response time target.

2.1 Response time controller design

The design of the per-stage overload controller in SEDA is shown in Figure 49. The

controller consists of several components. Amonitor measures response times for each request

passing through a stage. The measured 90th-percentile response time over some interval is passed

to thecontroller that adjusts theadmission control parametersbased on the administrator-supplied

response-timetarget. In the current design, the controller adjusts the rate at which new requests are

admitted into the stage’s queue by adjusting the rate at which new tokens are generated in a token

bucket traffic shaper [110].

The basic overload control algorithm makes use of additive-increase/multiplicative-

decrease tuning of the token bucket rate based on the current observation of the 90th-percentile

response time. The controller is invoked by the stage’s event-processing thread after some number

of requests (nreq) has been processed. The controller also runs after a set interval (timeout) to allow

the rate to be adjusted when the processing rate is low.

The controller records up tonreqresponse-time samples and calculates the 90th-percentile

samplesampby sorting the samples and taking the(0.9 × nreq)-th sample. In order to prevent

149

Parameter Description Default value
target 90th-percentile RT target Set by administrator
nreq # requests before controller executed100
timeout Time before controller executed 1 sec
α EWMA filter constant 0.7
erri % error to trigger increase -0.5
errd % error to trigger decrease 0.0
adji Additive rate increase 2.0
adjd Multiplicative rate decrease 1.2
ci Constant weight on additive increase-0.1
ratemin Minimum rate 0.05
ratemax Maximum rate 5000.0

Figure 50:Parameters used in the response time controller.

sudden spikes in the response time sample from causing large reactions in the controller, the 90th-

percentile response time estimate is smoothed using an exponentially weighted moving average with

parameterα:

cur = α · cur + (1− α) · samp

The controller then calculates the error between the current response time measurement and the

target:

err =
cur− target

target

If err > errd, the token bucket rate is reduced by a multiplicative factoradjd. If err < erri, the rate

is increased by an additive factor proportional to the error:adji × −(err − ci). The constantci is

used to weight the rate increase such that whenerr = ci then the rate adjustment is 0.

The parameters used in the implementation are summarized in Figure 50. These parame-

ters were determined experimentally using a combination of microbenchmarks with artificial loads

and real applications with realistic loads (e.g., the Arashi e-mail service). In most cases the con-

troller algorithm and parameters were tuned by running test loads against a service and observing

the behavior of the controller in terms of measured response times and the corresponding admission

rate.

150

These parameters have been observed to work well across a range of applications, how-

ever, there are no guarantees that they are optimal. We expect that the behavior of the controller

is sensitive to the setting of the smoothing filter constantα, as well as the rate increaseadji and

decreaseadjd. The setting of the other parameters has less of an effect on controller behavior. The

main goal of tuning is allow the controller to react quickly to increases in response time, while not

being so conservative that an excessive number of requests are rejected.

An important problem for future investigation is the tuning (perhaps automated) of con-

troller parameters in this environment. As discussed earlier, it would be useful to apply concepts

from control theory to aid in the tuning process, but this requires realistic models of system behavior.

2.2 Service degradation

Another approach to overload management is to allow applications to degrade the quality

of delivered service in order to admit a larger number of requests while maintaining a response-

time target [2, 24, 45]. SEDA itself does not implement service degradation mechanisms, but rather

signals overload to applications in a way that allows them to degrade if possible. SEDA allows ap-

plication code to obtain the current 90th-percentile response time measurement from the overload

controller, as well as to enable or disable the admission control mechanism. This allows an appli-

cation to implement degradation by periodically sampling the current response time and comparing

it to the administrator-specified target. If service degradation is ineffective (say, because the load

is too high to support even the lowest quality setting), the stage can re-enable admission control to

cause requests to be rejected.

2.3 Class-based differentiation

By prioritizing requests from certain users over others, a SEDA application can implement

various policies related to class-based service level agreements (SLAs). A common example is to

prioritize requests from “gold” customers, who might pay more money for the privilege, or to give

151

λ

Controller

Stage
Response

Times

Token
Buckets

Distributions

Class 2
targettarget

Class 1

λ

Figure 51: Multiclass overload controller design:For each request class, the controller measures
the 90th-percentile response time, and adjusts the rate at which the stage accepts new requests of
each class. When overload is detected, the admission rate for lower-priority classes is reduced
before that of higher-priority classes.

better service to customers with items in their shopping cart.

Various approaches to class-based differentiation are possible in SEDA. One option would

be to segregate request processing for each class into its own set of stages, in effect partitioning

the service’s stage graph into separate flows for each class. In this way, stages for higher-priority

classes could be given higher priority, e.g., by increasing scheduling priorities or allocating addi-

tional threads. Another option is to process all classes of requests in the same set of stages, but make

the admission control mechanism aware of each class, for example, by rejecting a larger fraction of

lower-class requests than higher-class requests. This is the approach taken here.

The multiclass response time control algorithm is identical to that presented in Section 2.1,

with several small modifications. Incoming requests are assigned an integerclassthat is derived

from application-specific properties of the request, such as IP address or HTTP cookie information.

A separate instance of the response time controller is used for each classc, with independent re-

sponse time targetstargetc. Likewise, the queue admission controller maintains a separate token

152

bucket for each class.

For classc, if errc > errcd, then the token bucket rate of all classeslower thanc is reduced

by a multiplicative factoradjlod (with default value 10). If the rate of all lower classes is already

equal toratemin then a counterlcc is incremented; whenlcc ≥ lcthresh(default value 20), then the

rate for classc is reduced byadjd as described above. In this way the controller aggressively reduces

the rate of lower-priority classes before higher-priority classes. Admission rates are increased as in

Section 2.1, except that whenever a higher-priority class exceeds its response time target, all lower-

priority classes are flagged to prevent their admission rates from being increased.

3 Evaluation

We evaluate the SEDA overload control mechanisms using two applications: the Arashi

e-mail service described in the previous chapter, and a Web server benchmark involving dynamic

page generation that is capable of degrading service in response to overload.

Recall that the Arashi service processes nine different request types, which are handled

by six separate stages (several of the request types are handled by the same stage). These stages

are the bottleneck in the system as they perform database access and HTML page generation; the

other stages are relatively lightweight. When the admission controller rejects a request, the HTTP

processing stage sends an error message to the client indicating that the service is busy. The client

records the error and waits for 5 seconds before attempting to log in to the service again.

3.1 Controller operation

Figure 52 demonstrates the operation of the overload controller, showing the 90th-

percentile response time measurement and token bucket admission rate for one of the stages in

the Arashi service (in this case, for the “list folders” request type). Here, the stage is being sub-

jected to a very heavy load spike of 1000 users, causing response times to increase dramatically.

Recall from Figure 47 that Arashi saturates at a load of 16 users; the offered load is therefore 62

153

0

0.5

1

1.5

2

2.5

3

3.5

4

60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

220

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e

(s
ec

)

A
dm

is
si

on
 r

at
e

(r
eq

s/
se

c)

Time (5 sec intervals)

Target
90th percentile RT

Admission rate

Figure 52: Overload controller operation: This figure shows the operation of the SEDA overload
controller for one of the stages in the Arashi e-mail service during a large load spike. A load spike
of 1000 users enters the system at aroundt = 70 and leaves the system aroundt = 150. The
response time target is set to 1 sec. The overload controller responds to a spike in response time
by exponentially decreasing the admission rate of the stage. Likewise, when the measured response
time is below the target, the admission rate is increased slowly. Notice the slight increase in the
admission rate aroundt = 100; this is an example of the proportional increase of the admission
rate based on the error between the response time measurement and the target. The spikes in the
measured response time are caused by bursts of requests entering the stage, as well as resource
contention across stages.

times the capacity of the service.

As the figure shows, the controller responds to a spike in the response time by expo-

nentially decreasing the token bucket rate. When the response time is below the target, the rate

is increased slowly. Despite several overshoots of the response time target, the controller is very

effective at keeping the response time near the target. The response time spikes are explained by

two factors. First, the request load is extremely bursty due to the realistic nature of the client load

generator. Second, because all stages share the same back-end database, requests for other stages

(not shown in the figure) may cause resource contention that affects the response time of the “list

folders” stage. Note, however, that the largest response time spike is only about 4 seconds, which is

154

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e,

 s
ec

R
ej

ec
t r

at
e

Number of clients

90th percentile RT, with overload control
90th percentile RT, no overload control
Reject rate
Target

Figure 53:Overload control in Arashi: This figure shows the 90th-percentile response time for
the Arashi e-mail service with and without the overload controller enabled. The 90th-percentile
response time target is 10 sec. Also shown is the fraction of rejected requests with overload control
enabled. Note that the overload controller is operating independently on each request type, though
this figure shows the 90th-percentile response time and reject rate averaged across all requests. As
the figure shows, the overload control mechanism is effective at meeting the response time target
despite a many-fold increase in load.

not too serious given a response time target of 1 second. With no admission control, response times

grow without bound, as we will show in Sections 3.2 and 3.3.

3.2 Overload control with increased user load

Figure 53 shows the 90th-percentile response time of the Arashi service, as a function of

the user load, both with and without the per-stage overload controller enabled. Also shown is the

fraction of overall requests that are rejected by the overload controller. The 90th-percentile response

time target is set to 10 sec. For each data point, the corresponding number of simulated clients load

the system for about 15 minutes, and response-time distributions are collected after an initial warm-

up period of about 20 seconds. As the figure shows, the overload control mechanism is effective at

meeting the response time target despite a many-fold increase in load, up to 1024 users.

155

59
4

57
9

58
1

30
4

28
4

47
2

99
24

16 users

38
47

57
52

 1
16

73
5

38
75

68
52

60
74

18
10

8

1024 users

Target Response Time

0

5000

10000

15000

20000

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e

(m
s)

-invisible -interval 100

Request type

login

list folders

list messages

show message

delete message

refile message

search

Figure 54:Per-request-type response times with overload control:This figure shows the 90th-
percentile response time for each request type in the Arashi e-mail service for loads of 16 and
1024 users, with the overload controller enabled using a response time target of 10 sec. Although
request types exhibit a widely varying degree of complexity, the controller is effective at meeting the
response time target for each type. With 1024 users, the performance target is exceeded forsearch
requests, due to their relative infrequency. Compare these values with Figure 48 in Chapter 6, which
shows response times without overload control enabled.

Recall that the overload controller is operating on each request type separately, though this

figure shows the 90th-percentile response time and reject rate acrossall requests. Figure 54 breaks

the response times down according to request type, showing that the overload controller is able to

meet the performance target for each request type individually. Compare this figure to Figure 48

in Chapter 6, which shows response times without overload control enabled. With 1024 users, the

performance target is exceeded forsearchrequests. This is mainly due to their relative infrequency:

search requests are very uncommon, comprising less than 1% of the request load. The controller for

thesearchstage is therefore unable to react as quickly to arrivals of this request type.

156

0

20

40

60

80

100

120

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e

(s
ec

)

R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike
(1000 users) Load spike ends

No overload control
With overload control
Reject rate

Figure 55: Overload control under a massive load spike:This figure shows the 90th-percentile
response time experienced by clients using the Arashi e-mail service under a massive load spike
(from 3 users to 1000 users). Without overload control, response times grow without bound; with
overload control (using a 90th-percentile response time target of 1 second), there is a small increase
during load but response times quickly stabilize. The lower portion of the figure shows the fraction
of requests rejected by the overload controller.

3.3 Overload control under a massive load spike

The previous section evaluated the overload controller under a steadily increasing user

load, representing a slow increase in user population over time. We are also interested in evaluating

the effectiveness of the overload controller under a sudden load spike. In this scenario, we start with

a base load of 3 users accessing the Arashi service, and suddenly increase the load to 1000 users.

This is meant to model a “flash crowd” in which a large number of users access the service all at

once.

Figure 55 shows the performance of the overload controller in this situation. Without

overload control, there is an enormous increase in response times during the load spike, making the

service effectively unusable for all users. With overload control and a 90th-percentile response time

target of 1 second, about 70-80% of requests are rejected during the spike, but response times for

157

admitted requests are kept very low.

Our feedback-driven approach to overload control is in contrast to the common technique

of limiting the number of client TCP connections to the service, which does not actively monitor re-

sponse times (a small number of clients could cause a large response time spike), nor give users any

indication of overload. In fact, refusing TCP connections has a negative impact on user-perceived

response time, as the client’s TCP stack transparently retries connection requests with exponential

backoff.

We claim that giving 20% of the users good service and 80% of the users some indication

that the site is overloaded is better than givingall users unacceptable service. However, this comes

down to a question of what policy a service wants to adopt for managing heavy load. Recall that the

service need not reject requests outright—it could redirect them to another server, degrade service,

or perform an alternate action. The SEDA design allows a wide range of policies to be implemented:

in the next section we look at degrading service as an alternate response to overload.

3.4 Service degradation experiments

As discussed previously, SEDA applications can respond to overload by degrading the

fidelity of the service offered to clients. This technique can be combined with admission control,

for example, by rejecting requests when the lowest service quality still leads to overload.

It is difficult to demonstrate the effect of service degradation in Arashi, because there are

few interesting opportunities for reduced quality of service. If an e-mail service is overloaded, there

is not much that the service can do besides rejecting or redirecting requests—it is not meaningful

to retrieve e-mail at a degraded quality level. Though it may be possible to reduce the expense of

HTML rendering (e.g., by removing inlined images and advertisements), HTML rendering is not

the bottleneck in Arashi.

Therefore, we evaluate service degradation using a simple Web server that responds to

each request with a dynamically generated HTML page that requires significant resources to gener-

158

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e

(s
ec

)

Q
ua

lit
y

/ R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike Load spike ends

No overload control
With degradation
Service quality

Figure 56: Effect of service degradation: This figure shows the 90th-percentile response time
experienced by clients accessing a simple service consisting of a single bottleneck stage. The stage
is capable of degrading the quality of service delivered to clients in order to meet response time
demands. The 90th-percentile response time target is set to 5 seconds. Without service degradation,
response times grow very large under a load spike of 1000 users. With service degradation, response
times are greatly reduced, oscillating near the target performance level.

ate. A single stage acts as a CPU-bound bottleneck in this service; for each request, the stage reads

a varying amount of data from a file, computes checksums on the file data, and produces a dynami-

cally generated HTML page in response. The stage has an associatedquality factorthat controls the

amount of data read from the file and the number of checksums computed. By reducing the quality

factor, the stage consumes fewer CPU resources, but provides “lower quality” service to clients.

Using the overload control interfaces in SEDA, the stage monitors its own 90th-percentile

response time and reduces the quality factor when it is over the administrator-specified limit. Like-

wise, the quality factor is increased slowly when the response time is below the limit. Service

degradation may be performed either independently or in conjunction with the response-time ad-

mission controller described above. If degradation is used alone, then under overload all clients are

given service but at a reduced quality level. In extreme cases, however, the lowest quality setting

may still lead to very large response times. The stage optionally re-enables the admission controller

159

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e

(s
ec

)

Q
ua

lit
y

/ R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike Load spike ends

No overload control
Degrade + Reject
Service quality
Reject rate

Figure 57: Service degradation combined with admission control:This figure shows the effect
of service degradation combined with admission control. The experiment is identical to that in
Figure 56, except that the bottleneck stage re-enables admission control when the service quality
is at its lowest level. In contrast to the use of service degradation alone, degradation coupled with
admission control is much more effective at meeting the response time target.

when the quality factor is at its lowest setting and response times continue to exceed the target.

Figure 56 shows the effect of service degradation under an extreme load spike, and Fig-

ure 57 shows the use of service degradation coupled with admission control. As these figures show,

service degradation alone does a fair job of managing overload, though re-enabling the admission

controller under heavy load is much more effective. Note that when admission control is used, a

very large fraction (99%) of the requests are rejected; this is due to the extreme nature of the load

spike and the inability of the bottleneck stage to meet the performance target, even at a degraded

level of service.

3.5 Service differentiation

Finally, we evaluate the use of multiclass service differentiation, in which requests from

lower-priority users are rejected before those from higher-priority users. In these experiments, we

160

0
10
20
30
40
50

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e,

 s
ec

F
ra

ct
io

n
of

 r
ej

ec
te

d
re

qu
es

ts

Time (5 sec intervals)

Target
Response time (high priority)

Reject rate (high priority)

0
10
20
30
40
50

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e,

 s
ec

F
ra

ct
io

n
of

 r
ej

ec
te

d
re

qu
es

ts

Time (5 sec intervals)

Target
Response time (low priority)

Reject rate (low priority)

Figure 58: Multiclass experiment without service differentiation: This figure shows the opera-
tion of the overload control mechanism in Arashi with two classes of 128 users each accessing the
service. The high-priority users begin accessing the service at timet = 100 and leave att = 200.
No service differentiation is used, so all users are treated as belonging to the same class. The 90th-
percentile response time target is set to 10 sec. The controller is able to maintain response times
near the target, though no preferential treatment is given to higher-priority users as they exhibit an
identical frequency of rejected requests.

deal with two user classes, each with a 90th-percentile response time target of 10 sec, generating

load against the Arashi e-mail service. Each experiment begins with a base load of 128 users from

the lower-priority class. At a certain point during the run, 128 users from the higher-priority class

also start accessing the service, and leave after some time. The user class is determined by a field in

the HTTP request header; the implementation is general enough to support class assignment based

on client IP address, HTTP cookies, or other information.

Recall that the multiclass admission controller operates by performing per-stage admis-

161

0
10
20
30
40
50

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e,

 s
ec

F
ra

ct
io

n
of

 r
ej

ec
te

d
re

qu
es

ts

Time (5 sec intervals)

Target
Response time (high priority)

Reject rate (high priority)

0
10
20
30
40
50

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e,

 s
ec

F
ra

ct
io

n
of

 r
ej

ec
te

d
re

qu
es

ts

Time (5 sec intervals)

Target
Response time (low priority)

Reject rate (low priority)

Figure 59: Multiclass service differentiation: This figure shows the operation of the multiclass
overload control mechanism in Arashi with two classes of 128 users each. Service differentiation
between the two classes is enabled and the 90th-percentile response time target for each class is
10 sec. The high-priority users begin accessing the service at timet = 100 and leave att = 200.
As the figure shows, when the high-priority users become active, there is an initial load spike that is
compensated for by penalizing the admission rate of the low-priority users. Overall the low-priority
users receive a large number of rejections than high-priority users.

sion control with a separate token bucket rate for each class of users, and the admission rate for

lower-class requests is reduced before that for the higher-class requests. This scheme can be used

with any number of user classes though we focus here on just two classes.

Figure 58 shows the performance of the multiclass overload controller without service

differentiation enabled: all users are effectively treated as belonging to the same class. As the

figure shows, the controller is able to maintain response times near the target, though the fraction

of rejected requests is identical for the two classes of users; no preferential treatment is given to the

162

high priority requests.

In Figure 59, service differentiation is enabled, causing requests from lower-priority users

to be rejected more frequently than higher-priority users. As the figure demonstrates, while both

user classes are active, the overall rejection rate for higher-priority users is slightly lower than that

in Figure 58, though the lower-priority class is penalized with a higher rejection rate. Note also that

the initial load spike (aroundt = 100) when the high priority users become active is somewhat more

severe with service differentiation enabled. This is because the controller is initially attempting to

reject only low-priority requests, due to the lag threshold (lcthresh) for triggering admission rate

reduction for high-priority requests.

4 Summary

In this chapter we have addressed the issue of adaptive overload management in SEDA,

which is one of the most important aspects of the SEDA model over previous approaches to service

design. We argue that the right way to address overload management is not through static resource

limits or share-based allocation, but rather through feedback-driven control that actively observes

and adapts the system’s behavior under load. We also discussed the use of 90th-percentile response

time as a metric for measuring overload.

We have designed and evaluated three overload control mechanisms for SEDA: adaptive,

per-stage admission control; application-specific service degradation; and multiclass service dif-

ferentiation. These mechanisms operate primarily by adapting the rate at which each stage in the

system accepts requests, signaling overload to upstream stages through queue rejections. In the

service degradation case, the application itself is responsible for monitoring response times and

reacting to load, though it is capable of enabling and disabling the runtime-supplied admission con-

troller as well. The evaluation of these control mechanisms, using both the complex Arashi e-mail

service and a simpler dynamic Web server benchmark, show that these techniques are effective for

managing load with increasing user populations as well as under a massive load spike.

163

Chapter 8

Lessons and Future Work

In this chapter we distill our experiences with the SEDA model and reflect on lessons

learned about the architecture, discussing some of the strengths and weaknesses of the SEDA design.

We also outline several areas for future work.

1 Reflections on the SEDA programming model

The SEDA design arose primarily out of a desire to simplify the development of systems

making use of event-driven concurrency. Much of the initial work on SEDA was motivated by

experiences with the Ninja I/O core, used by Gribble’s Distributed Data Structures (DDS) [52] layer

and initial versions of the vSpace [139] cluster-based service platform. As described in Chapter 2,

the I/O core is a framework for event-driven concurrency based on the use of thread pools and

software components composed using both direct upcalls and queues.

The most serious issue with the Ninja I/O core is that it made no distinction between

upcalls (in which one component directly invokes another) and queues (in which one component

enqueues an event to be processed asynchronously by another). Moreover, the upcall/enqueue in-

terface was not permitted to reject events passed across the interface; components were therefore

required to accept all new work for processing. This approach raises two important challenges for

164

an application designer: first, whether (and how) to use upcalls or queues when composing two

software components; and second, how to design components to be aware of whether an upcall or a

queue is being used to integrate it into the application.

The first problem exists in a similar form in the SEDA model, in that application designers

must decide how to decompose request processing into a graph of stages connected with queues.

The design patterns presented in Chapter 3 are intended to serve as guidelines to address these

questions. The second problem is more subtle: what is the responsibility of components in an

event-driven application with respect to concurrency and load management? In the I/O core, when

one component invokes another, it has no way of knowing in advance whether the operation will be

synchronous (and hence stall the caller until it is complete) or asynchronous (returning immediately

after an enqueue). The distinction is important for managing concurrency and resource bottlenecks.

In SEDA, there is no explicit upcall interface: two software components that wish to be

composed through a direct method call simply invoke one another through a function call. Likewise,

SEDA makes the use of queues explicit, thereby clarifying the semantics of stage composition

across the queue boundary: stages operate asynchronously with respect to one another, and queues

are permitted to reject new entries to manage load. The system designer must explicitly consider

the possibility of queue rejection within the stage graph.

1.1 Simplification of event-driven design

In addition to making queue boundaries explicit, SEDA simplifies event-driven system de-

sign in several other ways. Application programmers are not responsible for allocation or scheduling

of threads; rather, this functionality is provided by the underlying runtime system. Using dynamic

control to tune thread pool sizes automatically avoids error-prone manual configuration, which can

have a serious effect on performance. Also, the rich initialization and configuration API in the Sand-

storm framework makes it relatively straightforward to develop stages in isolation from one another

and “drop them into” an existing application.

165

The most important simplification introduced by SEDA is the explicit decomposition of

event-processing code into stages. By having stages communicate through an explicit event-passing

interface across bounded queues, the problem of managing the control structure of a complex event-

driven application is greatly reduced. In the monolithic event-driven design, one constructs a single

event loop that must explicitly schedule event-processing components, as well as be aware of the

resource requirements of each component. In SEDA, concurrency management is limited to each

individual stage, scheduling is performed by the underlying thread system, and resource bottlenecks

are managed through admission control.

Code modularization in SEDA is achieved through the natural encapsulation of event-

processing code within stages. In this model, composition is accomplished through asynchronous

event exchange, rather than though the more traditional approach of function-call APIs. The SEDA

model achieves better containment of resources within a stage, as stages are permitted to perform

admission control, and the performance of a stage (e.g., its throughput and response time) are ev-

ident. Staged pipelining also permits straightforward interpositioning of code along a event-flow

path. Composition of components is less rigid than a traditional API: a stage may simply pass

through or ignore events that it does not understand.

SEDA’s use of dynamic resource and overload control greatly relieves programmer burden

when designing well-conditioned services. In the monolithic event-driven design, programmers

must make a number of decisions about event scheduling, such as the number and placement of

threads in the application, what order to process pending events, and so forth. SEDA obviates the

need for this type of careful resource planning: thread allocation decisions are made by the runtime

in response to load, and scheduling is performed by the underlying operating system. In addition,

SEDA’s overload control primitives make it relatively straightforward to ensure that a service will

behave well under excessive demand. A service designer need only attach an overload controller to

an appropriate set of stages to cause the runtime to perform admission control.

166

1.2 Disadvantages of SEDA

The SEDA model has several disadvantages that became clear as we gained more experi-

ence with the design. We believe that most of these issues could be addressed through some simple

modifications to the programming model.

In the current design, events arriving at a stage are assumed to be independent: separate

threads may process any two events, and hence in any order. However, if a stage has constraints

on the order in which events can be processed, it must impose that ordering itself, for example by

maintaining an internal list of incoming events that is synchronized across threads within a stage.

We have provided a utility class that implements cross-event ordering, though ideally the SEDA

programming model would allow stages to express their ordering constraints, if any, and the runtime

would obey those constraints when dispatching events to threads.

In the Sandstorm implementation, stages have no way of knowing or controlling how

many threads are operating within it. This precludes several optimizations, such as avoiding the use

of locks when there is only one thread running in the stage. A stage may be declared as single-

threaded at implementation time, but this determination is static: a single-threaded stage maynever

have multiple threads running within it. It would be useful to allow a stage to indicate to the runtime

that it wishes to run in single-threaded mode for some period of time.

Likewise, it is sometimes desirable for a multithreaded stage to operate as though it were

multiple single-threaded stages running in parallel, allowing each thread within the stage to operate

entirely on private state. Sandstorm provides no interfaces for this, so programmers typically main-

tain a “pool” of private state objects that threads may claim when an event handler is invoked. A

straightforward modification to Sandstorm would allow the creation of partitioned multi-threaded

stages.

Although SEDA is intended to simplify concurrency issues in an event-driven application,

it is still possible for state to be shared across stages as well as within a stage. Though we encourage

the avoidance of shared state, for any reasonably complex application this need will undoubtedly

167

arise. Currently, application developers must make use of standard synchronization primitives (mu-

texes, semaphores, etc.) when controlling access to shared state. An alternative would allow one

stage to affect the scheduling properties of another stage to implement various mutual-exclusion

properties. For example, threads could be scheduled such that no two threads that operate on a

shared data structure are active at one time. It is unclear whether the complexity of this approach

would outweigh the potential performance gains from avoiding locks.

2 Future Work

A wide range of open questions remain in the Internet service design space. We feel that

the most important issues have to do with robustness and management of heavy load, rather than

raw performance, which has been much of the research community’s focus up to this point. Some

of the interesting research challenges raised by the SEDA design are outlined below.

2.1 Directions in dynamic resource control

We have argued that measurement and control is the key to resource management and

overload protection in busy Internet services. This is in contrast to long-standing approaches based

on resource containment, which assign fixed resources to each task (such as a process, thread, or

server request) in the system, and strive to contain the resources consumed by each task. Although

these techniques have been used with some success [138], containment typically mandates ana pri-

ori assignment of resources to each task, limiting the range of applicable load-conditioning policies.

Rather, we argue that dynamic resource control, coupled with application-specific adaptation in the

face of overload, is the right way to approach load conditioning.

Introducing feedback as a mechanism for overload control raises a number of questions.

For example, how should controller parameters be tuned? We have relied mainly on a heuristic

approach to controller design, though more formal, control-theoretic techniques are possible [108].

Control theory provides a valuable framework for designing and evaluating feedback-driven sys-

168

tems, though many of the traditional techniques rely upon good mathematical models of system

behavior, which are often unavailable for complex software systems. Capturing the performance

and resource needs of real applications through detailed models is an important research direction

if control-theoretic techniques are to be employed more widely.

The interaction between multiple levels of control in the system is also largely unexplored.

For example, there is a subtle interplay between queue admission control and tuning per-stage thread

pool sizes, given that one technique attempts to keep queue lengths low by scaling the number of

threads, while another is attempting to meet performance targets through rejecting incoming queue

entries. A simple approach is to disable admission control until the thread pool has reached its

maximum size, though a more general approach to controller composition is needed.

2.2 Generalizing overload management

Our approach to overload management is based on adaptive admission control using “ex-

ternal” observations of stage performance. This approach uses no knowledge of the actual resource-

consumption patterns of stages in an application, but is based on the implicit connection between

request admission and performance. However, this does not directly capture all of the relevant fac-

tors that can drive a system into overload. For example, a memory-intensive stage (or a stage with

a memory leak) can lead to VM thrashing with even a very low request-admission rate. Likewise,

resource sharing across stages can cause one stage to affect the performance of another, leading to

misdirected admission-control decisions.

A better approach to overload control would be informed by actual resource usage, allow-

ing the system to make directed overload control decisions. By carefully accounting for resource

usage on a per-stage basis, the system could throttle the operation of only those stages that are

causing overload. Likewise, applications could degrade their service fidelity based on the resource

availability: very different degradation decisions might be made if CPU were a bottleneck than if

memory were limited. We have investigated one step in this direction, a system-wide resource mon-

169

itor capable of signaling stages when resource usage (e.g., memory availability or CPU utilization)

meets certain conditions. In this model, stages receive system-wide overload signals and use the

information to voluntarily reduce their resource consumption.

2.3 Towards a service-oriented operating system

Although SEDA facilitates the construction of well-conditioned services over commodity

operating systems, the SEDA model suggests new directions for OS design. An interesting aspect

of Sandstorm is that it is purely a “user level” mechanism, acting as a resource management mid-

dleware sitting between applications and the underlying operating system. However, if given the

opportunity to design an OS for scalable Internet services, many interesting ideas could be inves-

tigated, such as scalable I/O primitives, SEDA-aware thread scheduling, and application-specific

resource management.

Designing an operating system specifically tailored for Internet services would shift the

focus from multiprogramming workloads to supporting massive flows of requests from a large num-

ber of simultaneous clients. The I/O system could be structured around scalable, nonblocking primi-

tives, and issues with supporting legacy (blocking) interfaces could be sidestepped. Questions about

provisioning system resources would be made in favor of large degrees of scalability. For exam-

ple, most default Linux installations support a small number of file descriptors per process, on the

assumption that few users will need more than a handful. In a server-oriented operating system

these limits would be based entirely on available resources, rather than protecting the system from

runaway processes.

We envision an OS that supports the SEDA execution model directly, and provides appli-

cations with greater control over scheduling and resource usage. This approach is similar to that

found in various research systems [7, 16, 70, 87] that enable application-specific resource manage-

ment. Even more radically, a SEDA-based operating system need not be designed to allow multiple

applications to share resources transparently. Internet services are highly specialized and are not

170

intended to share the machine with other applications: it is generally undesirable for, say, a Web

server to run on the same machine as a database engine (not to mention a scientific computation or

a word processor). Although the OS may enforce protection (to prevent one stage from corrupting

the state of the kernel or another stage), the system need not virtualize resources in a way that masks

their availability from applications.

The standard UNIX scheduling algorithm, based on multilevel feedback priority queues,

has served us well. However, it would be interesting to investigate the optimal thread scheduling

policy for SEDA-based applications. A primary goal would be to ensure that the flow of requests

through stages is in balance; in the current design, this is accomplished by adding threads to stages

which appear to have increased concurrency demands, though this could also be effected through

scheduling. The StagedServer [80] approach of scheduling to maximize cache locality could be

incorporated as well. Under overload, the scheduler might give priority to stages that will re-

lease resources, preventing requests from propagating through the system until enough resources

are available to complete their processing.

2.4 Using SEDA in a cluster environment

This dissertation has dealt primarily with concurrency and load management within a

single node, though large-scale Internet services are typically constructed using workstation clusters

to achieve incremental scalability and fault tolerance [45, 52]. An interesting direction for future

work would be to explore the application of SEDA in a clustered environment. In this model,

individual stages can be replicated across cluster nodes for high availability as well as to scale

in response to load. Event queues can be implemented as network sockets, allowing inter-stage

communication to be transparent regardless of whether two stages are on the same node or on

different nodes.

The Ninja vSpace system [139] has explored several aspects of this design space. In

vSpace, individual cluster nodes use the SEDA design to manage concurrency and resources locally.

171

Services are decomposed into a set ofclones; each clone is a software module (essentially a stage)

that can be replicated across cluster nodes. Aconnection manageris used to load-balance the

service by directing incoming requests to an appropriate clone. Shared state across clones is stored

in a cluster-wide distributed hash table [52].

vSpace raises a number of interesting issues in distributing a SEDA stage graph across

cluster nodes. To achieve fault tolerance, it is necessary to retransmit events that are dispatched over

the network should the receiving node fail. This implies that the receiving node send an acknowl-

edgment when it has completed processing an event (or has passed the event on to another stage),

to inform the sender that retransmission is no longer necessary. Distribution therefore induces a

“request-reply” event-passing model, rather than the unidirectional event-passing model used in the

single-node case. In a single-node service, retransmission and acknowledgments are unnecessary if

the unit of service failure is the entire node (as is the case in our Sandstorm prototype).

Stage distribution also raises questions about the placement of stages within a cluster. For

increased locality it is generally desirable to co-locate the stages for a given request-processing path

(for example, a single client session) on the same machine. Likewise, by allowing certain stages

to be replicated more than others, a coarse form of resource prioritization can be achieved. vSpace

uses the notion ofpartitions to logically and physically separate multiple request processing paths

within the service. A partition is used as the unit of resource affinity (e.g., binding a set of client

sessions to a set of cluster nodes) and for prioritization (e.g., allowing larger number of resources to

be devoted to higher-priority requests).

172

Chapter 9

Conclusions

This thesis has addressed a critical issue in the design and deployment of services on

the Internet: that of implementing massively scalable services that are robust to huge variations in

load. We have argued that traditional programming models, based on thread-driven and event-driven

concurrency, fail to address the scalability and overload-management needs for large-scale Internet

services. This domain gives rise to a new set of systems design requirements that are less evident in

systems targeted at low levels of concurrency and load.

Our primary goal has been to develop a system architecture that simplifies the develop-

ment of highly concurrent and well-conditioned services. In the Staged Event-Driven Architecture

(SEDA), services are constructed as a network of event-driven stages connected with explicit event

queues. Event-driven concurrency is used within each stage, thereby facilitating a high degree of

scalability. Dynamic resource control and per-stage control are used to ensure that the service stays

within its ideal operating regime despite large fluctuations in load.

We have presented the SEDA architecture as well as a set of design patterns that can

be used to map an application onto a structure of stages and queues. These patterns are meant to

make the abstract process of service design more concrete by encapsulating critical tradeoffs in

terms of performance, load management, and code modularity. In addition, we have developed

173

a queue-theoretic performance model for SEDA that describes the performance effects of each of

these design patterns, and serves as a guide for system designers to understand the performance of

the resulting system.

Our prototype of SEDA, called Sandstorm, is implemented in Java and makes use of

native code bindings to provide nonblocking I/O primitives. We have found Java to be an excellent

language for Internet service development, which is greatly facilitated by strong typing, built-in

threading, and automatic memory management. Despite expectations to the contrary, we have found

that Java has not had a negative impact on the performance and scalability of services developed

using the Sandstorm framework.

We have developed several dynamic resource control mechanisms that tune the number of

threads within each stage, as well as control the degree of event batching used internally by a stage.

We have also presented a family of overload control mechanisms for SEDA, based on adaptive,

per-stage admission control that attempts to meet a 90th percentile response time target. These

mechanisms are capable of shedding load from the system under overload, or alternately allow

applications to degrade the fidelity of delivered service to allow more requests to be processed at

reduced quality. Likewise, differentiated service can be implemented by prioritizing requests from

one user or request class over another.

We have evaluated the SEDA architecture through several applications, including Ha-

boob, a high-performance Web server; a packet router for the Gnutella peer-to-peer file-sharing

network; and Arashi, an e-mail service making use of dynamic scripting and database access. Our

measurements show that services developed using the SEDA model exhibit good performance and

extremely robust behavior under heavy load. The SEDA overload control mechanisms are effective

at meeting performance targets for complex services, even under extreme load spikes.

We have argued that it is critically important to address the problem of overload from

an Internet service design perspective, rather than throughad hocapproaches lashed onto existing

systems. Rather than static resource partitioning or prioritization, we claim that the most effective

174

way to approach overload management is to use feedback and dynamic control. This approach is

more flexible, less prone to underutilization of resources, and avoids the use of static “knobs” that

can be difficult for a system administrator to tune. In our approach, the administrator specifies only

high-level performance targets which are met by feedback-driven controllers.

We also argue that it is necessary to expose overload to the application, rather than hiding

load management decisions in an underlying OS or runtime system. Application awareness of load

conditions allows the service to make informed resource management decisions, such as gracefully

degrading the quality of service. In the SEDA model, overload is exposed to applications through

explicit signals in the form of cross-stage enqueue failures.

The staged event-driven architecture represents a new design point for large-scale Internet

services that must support massive concurrency and unexpected changes in load. SEDA brings to-

gether aspects of threading, event-driven concurrency, dynamic resource management, and adaptive

overload control into a coherent framework. Our experience and evaluation of this design demon-

strate that the SEDA approach is an effective way to build robust Internet services.

175

Bibliography

[1] TreadMarks: Distributed shared memory on standard workstations and operating systems.

[2] T. F. Abdelzaher and N. Bhatti. Adaptive content delivery for Web server QoS. InProceed-

ings of International Workshop on Quality of Service, London, June 1999.

[3] T. F. Abdelzaher and C. Lu. Modeling and performance control of Internet servers. InInvited

Paper, 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000.

[4] Acme Labs. thttpd: Tiny/Turbo/Throttling HTTP Server.http://www.acme.com/

software/thttpd/ .

[5] Akamai, Inc.http://www.akamai.com/ .

[6] America Online. Press Data Points.http://corp.aol.com/press/press_

datapoints.html .

[7] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler activations: Effective ker-

nel support for the user-level management of parallelism.ACM Transactions on Computer

Systems, 10(1):53–79, February 1992.

[8] Apache Software Foundation. The Apache Web server.http://www.apache.org .

[9] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: A mechanism for resource

management in cluster-based network servers. InProceedings of the ACM SIGMETRICS

176

Conference on Measurement and Modeling of Computer Systems, Santa Clara, CA, June

2000.

[10] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and control in gray-box sys-

tems. InProceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP

’01), Banff, Canada, October 2001.

[11] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility for resource man-

agement in server systems. InProceedings of the Third USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’99), February 1999.

[12] G. Banga and J. C. Mogul. Scalable kernel performance for Internet servers under realistic

loads. InProceedings of the 1998 USENIX Annual Technical Conference, New Orleans, LA,

June 1998.

[13] G. Banga, J. C. Mogul, and P. Druschel. A scalable and explicit event delivery mechanism

for UNIX. In Proceedings of the USENIX 1999 Annual Technical Conference, Monterey,

CA, June 1999.

[14] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed networks

of queues with different classes of customers.Journal of the ACM, 22(2):248–260, April

1975.

[15] BEA Systems. BEA WebLogic. http://www.beasys.com/products/

weblogic/ .

[16] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski, C. Chambers,

and S. Eggers. Extensibility, safety and performance in the SPIN operating system. In

Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP-15), 1995.

[17] P. Bhoj, S. Ramanathan, and S. Singhal. Web2K: Bringing QoS to Web Servers. Technical

Report HPL-2000-61, HP Labs, May 2000.

177

[18] Bloomberg News. E*Trade hit by class-action suit,CNET News.com, February 9, 1999.

http://news.cnet.com/news/0-1007-200-338547.html .

[19] J. Borland. Net video not yet ready for prime time,CNET news.com. http://news.

cnet.com/news/0-1004-200-338361.html , February 1999.

[20] L. Breslau, S. Jamin, and S. Shenker. Comments on the performance of measurement-based

admission control algorithms. InProceedings of IEEE INFOCOM 2000, Tel Aviv, Israel,

March 2000.

[21] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and H. Zhang. Endpoint admission control:

Architectural issues and performance. InProceedings of ACM SIGCOMM 2000, Stockholm,

Sweeden, October 2000.

[22] British Broadcasting Corporation. Net surge for news sites.http://news.bbc.co.uk/

hi/english/sci/tech/newsid_1538000/1538149.stm , September 2001.

[23] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Exploiting gray-box

knowledge of buffer-cache contents. InProceedings of the 2002 USENIX Annual Technical

Conference (USENIX ’02), Monterey, CA, June 2002.

[24] S. Chandra, C. S. Ellis, and A. Vahdat. Differentiated multimedia Web services using quality

aware transcoding. InProceedings of IEEE INFOCOM 2000, March 2000.

[25] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell. A hierarchi-

cal Internet object cache. InProceedings of the 1996 USENIX Annual Technical Conference,

pages 153–163, January 1996.

[26] B. Chen and R. Morris. Flexible control of parallelism in a multiprocessor PC router. In

Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01), Boston, June

2001.

178

[27] H. Chen and P. Mohapatra. Session-based overload control in QoS-aware Web servers. In

Proceedings of IEEE INFOCOM 2002, New York, June 2002.

[28] X. Chen, H. Chen, and P. Mohapatra. An admission control scheme for predictable server

response time for Web accesses. InProceedings of the 10th World Wide Web Conference,

Hong Kong, May 2001.

[29] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos. A prototype implemen-

tation of archival Intermemory. InProceedings of the Fourth ACM Conference on Digital

Libraries (DL ’99), Berkeley, CA, 1999.

[30] L. Cherkasova and P. Phaal. Session based admission control: A mechanism for improving

the performance of an overloaded Web server. Technical Report HPL-98-119, HP Labs, June

1998.

[31] D. D. Clark. The structuring of systems using upcalls. InProceedings of the Tenth ACM

Symposium on Operating Systems Principles, December 1985.

[32] I. Clarke, O. Sandberg, B. Wiley, , and T. W. Hong. Freenet: A distributed anonymous in-

formation storage and retrieval system in designing privacy enhancing technologies. InPro-

ceedings of the ICSI Workshop on Design Issues in Anonymity and Unobservability, Berkeley,

CA, 2000.

[33] Claymore Systems, Inc. PureTLS.http://www.rtfm.com/puretls/ .

[34] CNN. 20 million Americans see Starr’s report on Internet.http://www.cnn.com/

TECH/computing/9809/13/internet.starr/ , September 1998.

[35] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling in Web servers. In

Proceedings of the 1999 USENIX Symposium on Internet Technologies and Systems (USITS

’99), October 1999.

179

[36] M. L. Dertouzos. The future of computing.Scientific American, July 1999.

[37] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury. Using MIMO feedback control

to enforce policies for interrelated metrics with application to the Apache Web server. In

Proceedings of the Network Operations and Management Symposium 2002, Florence, Italy,

April 2002.

[38] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Internet Network Working Group

RFC2246, January 1999.

[39] Digital Island, Inc.http://www.digitalisland.com/ .

[40] P. Druschel and L. Peterson. Fbufs: A high bandwidth cross-domain transfer facility. In

Proceedings of the 14th ACM Symposium on Operating Systems Principles, 1993.

[41] M. Fayad and D. C. Schmidt. Object-oriented application frameworks.Communications of

the ACM, Special Issue on Object-Oriented Application Frameworks, 40(10), October 1997.

[42] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext Transfer Protocol – HTTP/1.1. Internet Network Working Group RFC2616, June

1999.

[43] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[44] A. Fox and E. A. Brewer. Harvest, yield and scalable tolerant systems. InProceedings of the

1999 Workshop on Hot Topics in Operating Systems, Rio Rico, Arizona, March 1999.

[45] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-based scalable

network services. InProceedings of the 16th ACM Symposium on Operating Systems Prin-

ciples, St.-Malo, France, October 1997.

180

[46] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

[47] E. R. Gansner and S. C. North. An open graph visualization system and its applications to

software engineering,Software – Practice and Experience. http://www.research.

att.com/sw/tools/graphviz/ .

[48] Garner Group, Inc. Press Release.http://www.gartner.com/public/static/

aboutgg/pressrel/pr20001030a.html , October 2000.

[49] Gnutella.http://gnutella.wego.com .

[50] S. Goldstein, K. Schauser, and D. Culler. Enabling primiives for compiling parallel lan-

guages. InThird Workshop on Languages, Compilers, and Run-Time Systems for Scalable

Computers, Rochester, NY, May 1995.

[51] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-Wesley, Read-

ing, MA, 1996.

[52] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, distributed data structures for

Internet service construction. InProceedings of the Fourth USENIX Symposium on Operating

Systems Design and Implementation (OSDI 2000), October 2000.

[53] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N. Borisov, S. Czerwinski,

R. Gummadi, J. Hill, A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao. The Ninja ar-

chitecture for robust Internet-scale systems and services.Computer Networks, June 2000.

Special Issue on Pervasive Computing.

[54] S. D. Gribble. A Design Framework and a Scalable Storage Platform to Simplify Internet

Service Construction. PhD thesis, UC Berkeley, September 2000.

[55] E. Hansen. Email outage takes toll on Excite@Home,CNET News.com, June 28, 2000.

http://news.cnet.com/news/0-1005-200-2167721.html .

181

[56] M. Harchol-Balter. Performance modeling and design of computer systems. Unpublished lec-

ture notes,http://www-2.cs.cmu.edu/˜harchol/Perfclass/class.html .

[57] M. Harchol-Balter, M. Crovella, and S. Park. The case for SRPT scheduling in Web servers.

Technical Report MIT-LCR-TR-767, MIT, October 1998.

[58] K. Harty and D. Cheriton. Application controlled physical memory using external page cache

management, October 1992.

[59] Hewlett-Packard Corporation. e-speak Open Services Platform.http://www.e-speak.

net/ .

[60] J. Hu, S. Mungee, and D. Schmidt. Techniques for developing and measuring high-

performance Web servers over ATM networks. InProceedings of INFOCOM ’98,

March/April 1998.

[61] J. C. Hu, I. Pyarali, and D. C. Schmidt. High performance Web servers on Windows NT: De-

sign and performance. InProceedings of the USENIX Windows NT Workshop 1997, August

1997.

[62] IBM Corporation. IBM WebSphere Application Server.http://www-4.ibm.com/

software/webservers/ .

[63] Inktomi Corporation. Inktomi search engine. http://www.inktomi.com/

products/portal/search/ .

[64] Inktomi Corporation. Web surpasses one billion documents.http://www.inktomi.

com/new/press/2000/billion.html , January 2000.

[65] R. Iyer, V. Tewari, and K. Kant. Overload control mechanisms for Web servers. InWorkshop

on Performance and QoS of Next Generation Networks, Nagoya, Japan, November 2000.

182

[66] J. Jackon. Jobshop-like queueing systems.Management Science, 10(1):131–142, October

1963.

[67] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons, Inc.,

New York, 1991.

[68] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and discrimination for

resource allocation in shared computer systems. Technical Report TR-301, DEC Research,

September 1984.

[69] H. Jamjoom, J. Reumann, and K. G. Shin. QGuard: Protecting Internet servers from overload.

Technical Report CSE-TR-427-00, University of Michigan Department of Computer Science

and Engineering, 2000.

[70] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño, R. Hunt, D. Mazìeres, T. Pinck-

ney, R. Grimm, J. Jannotti, and K. Mackenzie. Application performance and flexibility on

Exokernel systems. InProceedings of the 16th ACM Symposium on Operating Systems Prin-

ciples (SOSP ’97), October 1997.

[71] M. F. Kaashoek, D. R. Engler, G. R. Ganger, and D. A. Wallach. Server operating systems.

In Proceedings of the 1996 SIGOPS European Workshop, September 1996.

[72] V. Kanodia and E. Knightly. Multi-class latency-bounded Web services. InProceedings of

IEEE/IFIP IWQoS 2000, Pittsburgh, PA, June 2000.

[73] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for future high bandwidth-

delay product environments. InProceedings of ACM SIGCOMM 2002, Pittsburgh, PA, Au-

gust 2002.

[74] D. Kegel. The C10K problem.http://www.kegel.com/c10k.html .

[75] S. Keshav. A control-theoretic approach to flow control. InProceedings of ACM SIGCOMM

1991, September 1991.

183

[76] L. Kleinrock. Queueing Systems, Volume 1: Theory. John Wiley and Sons, New York, 1975.

[77] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click modular router.

ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

[78] R. Konrad. Napster among fastest-growing Net technologies,CNET news.com. http:

//news.com.com/2100-1023-246648.html , October 2000.

[79] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An architecture for

global-scale persistent storage. InProceedings of the Ninth international Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS 2000),

November 2000.

[80] J. Larus and M. Parkes. Using cohort scheduling to enhance server performance. InProceed-

ings of the 2002 USENIX Annual Technical Conference (USENIX ’02), Monterey, CA, June

2002.

[81] H. Lauer and R. Needham. On the duality of operating system structures. InProceedings of

the Second International Symposium on Operating Systems, IRIA, October 1978.

[82] S. S. Lavenberg.Computer Performance Modeling Handbook. Academic Press, 1983.

[83] W. LeFebvre. CNN.com: Facing a world crisis. Invited talk at USENIX LISA’01, December

2001.

[84] J. Lemon. FreeBSD kernel event queue patch.http://www.flugsvamp.com/

˜jlemon/fbsd/ .

[85] R. Lemos. Antivirus firms team to thwart DoS attacks,CNET News.com. http://news.

cnet.com/news/0-1003-200-6931389.html , August 2001.

184

[86] R. Lemos. Web worm targets White House,CNET News.com. http://news.com.com/

2100-1001-270272.html , July 2001.

[87] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden.

The design and implementation of an operating system to support distributed multimedia

applications.IEEE Journal on Selected Areas in Communications, 14:1280–1297, September

1996.

[88] K. Li and S. Jamin. A measurement-based admission-controlled Web server. InProceedings

of IEEE Infocom 2000, Tel-Aviv, Israel, March 2000.

[89] C. Lu, T. Abdelzaher, J. Stankovic, and S. Son. A feedback control approach for guaranteeing

relative delays in Web servers. InIEEE Real-Time Technology and Applications Symposium,

Taipei, Taiwan, June 2001.

[90] C. Lu, J. Stankovic, G. Tao, and S. Son. Design and evaluation of a feedback control EDF al-

gorithm. InProceedings of the 20th IEEE Real-Time Systems Symposium, Phoenix, Arizona,

December 1999.

[91] M. Lutz. Programming Python. O’Reilly and Associates, March 2001.

[92] F. Manjoo. Net traffic at all-time high,WIRED News, November 8, 2000.http://www.

wired.com/news/business/0,1367,40043,00.html .

[93] D. McNamee and K. Armstrong. Extending the Mach external pager interface to accommo-

date user-level page replacement policies. InProceedings of the USENIX Mach Symposium,

1990.

[94] K. McNaughton. Is eBay too popular?,CNET News.com, March 1, 1999.http://news.

cnet.com/news/0-1007-200-339371.html .

[95] Microsoft Corporation. DCOM Technical Overview.http://msdn.microsoft.com/

library/backgrnd/html/msdn_dcomtec.htm .

185

[96] Microsoft Corporation. IIS 5.0 Overview. http://www.microsoft.com/

windows2000/library/howitworks/iis/iis5techove%rview.asp .

[97] J. Mogul. Operating systems support for busy Internet services. InProceedings of the Fifth

Workshop on Hot Topics in Operating Systems (HotOS-V), May 1995.

[98] J. C. Mogul. The case for persistent-connection HTTP. InProceedings of ACM SIG-

COMM’95, October 1995.

[99] E. Mohr, D. Kranx, and R. Halstead. Lazy task creation: A technique for increasing the

granularity of parallel programs.IEEE Transactions on Parallel and Distributed Systems,

2(3):264–280, 1991.

[100] D. Mosberger and L. Peterson. Making paths explicit in the Scout operating system. In

Proceedings of the USENIX Symposium on Operating Systems Design and Implementation

1996, October 1996.

[101] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual synchrony.

In Proceedings of the Fourteenth International Conference on Distributed Computing Sys-

tems, pages 56–65, Poznan, Poland, June 1994.

[102] MySQL AB. MySQL. http://www.mysql.com .

[103] Netscape Corporation. Netscape Enterprise Server.http://home.netscape.com/

enterprise/v3.6/index.html .

[104] Nielsen//NetRatings. Nielsen//NetRatings finds strong global growth in monthly Inter-

net sessions and time spent online between April 2001 and April 2002.http://www.

nielsen-netratings.com/pr/pr_020610_global.pdf , June 2002.

[105] K. Ogata.Modern Control Engineering. Prentice Hall, 1997.

186

[106] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable Web server. In

Proceedings of the 1999 USENIX Annual Technical Conference, June 1999.

[107] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A unified I/O buffering and caching

system. InProceedings of the 3rd USENIX Symposium on Operating Systems Design and

Implementation (OSDI’99), February 1999.

[108] S. Parekh, N. Gandhi, J. L. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Using control

theory to achieve service level objectives in performance management. InProceedings of the

IFIP/IEEE International Symposium on Integrated Network Management, Seattle, WA, May

2001.

[109] R. Park. Software size measurement: A framework for counting source statements. Technical

Report CMU/SEI-92-TR-020, Carnegie-Mellon Software Engineering Institute, September

1992.

[110] C. Partridge.Gigabit Networking. Addison-Wesley, 1993.

[111] N. Provos and C. Lever. Scalable network I/O in Linux. Technical Report CITI-TR-00-4,

University of Michigan Center for Information Technology Integration, May 2000.

[112] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-performance local area communi-

cation with fast sockets. InProceedings of the 1997 USENIX Annual Technical Conference,

1997.

[113] M. Russinovich. Inside I/O completion ports.http://www.sysinternals.com/

comport.htm .

[114] A. T. Saracevic. Quantifying the Internet,San Francisco Examiner, November 5,

2000. http://www.sfgate.com/cgi-bin/article.cgi?file=/examiner/

hotnews/storie%s/05/Binternetsun.dtl .

187

[115] D. C. Schmidt, R. E. Johnson, and M. Fayad. Software patterns.Communications of the

ACM, Special Issue on Patterns and Pattern Languages, 39(10), October 1996.

[116] B. Schroeder and M. Harchol-Balter. Web servers under overload: How scheduling can help.

Technical Report CMU-CS-02-143, Carnegie-Mellon University, June 2002.

[117] SGI, Inc. POSIX Asynchronous I/O.http://oss.sgi.com/projects/kaio/ .

[118] E. G. Sirer, P. Pardyak, and B. N. Bershad. Strands: An efficient and extensible thread

management architecture. Technical Report UW-CSE-97-09-01, University of Washington,

September 1997.

[119] Standard Performance Evaluation Corporation. The SPECweb99 benchmark.http://

www.spec.org/osg/web99/ .

[120] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole. A feedback-driven

proportion allocator for real-rate scheduling. InProceedings of the 3rd USENIX Symposium

on Operating Systems Design and Implementation (OSDI’99), pages 145–158, 1999.

[121] M. Stonebraker. Operating system support for database management.Communications of

the ACM, 24(7):412–418, July 1981.

[122] Sun Microsystems Inc. Enterprise Java Beans Technology.http://java.sun.com/

products/ejb/ .

[123] Sun Microsystems Inc. Java 2 Enterprise Edition.http://java.sun.com/j2ee .

[124] Sun Microsystems Inc. Java Native Interface Specification.http://java.sun.com/

products/jdk/1.2/docs/guide/jni/index.html .

[125] Sun Microsystems, Inc. Java Remote Method Invocation.http://java.sun.com/

products/jdk/rmi/ .

188

[126] Sun Microsystems Inc. Java Server Pages API.http://java.sun.com/products/

jsp .

[127] Sun Microsystems Inc. Java Servlet API.http://java.sun.com/products/

servlet/index.html .

[128] Sun Microsystems Inc. Jini Connection Technology.http://www.sun.com/jini/ .

[129] Sun Microsystems Inc. RPC: Remote Procedure Call Protocol Specification Version 2. In-

ternet Network Working Group RFC1057, June 1988.

[130] Superior Court of Santa Clara County, California. Cooper v. E*Trade Group,

Inc. Case No. CV770328,http://www.cybersecuritieslaw.com/lawsuits/

primary_sources/cooper_v_etr%ade.htm , November 1997.

[131] K. Taura and A. Yonezawa. Fine-grain multithreading with minimal compiler support: A cost

effective approach to implementing efficient multithreading languages. InProceedings of the

1997 ACM SIGPLAN Conference on Programming Language Design and Implementation,

Las Vegas, Nevada, June 1997.

[132] The Cryptix Foundation Limited. Cryptix.http://www.cryptix.org .

[133] The Jython Project.http://www.jython.org .

[134] The PHP Group. PHP: Hypertext Preprocessor.http://www.php.net .

[135] S. Vajracharya and D. Chavarrá-Miranda. Asynchronous resource management. InProceed-

ings of the International Parallel and Distributed Processing Symposium, San Francisco,

California, April 2001.

[136] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication

system.Communications of the ACM, 39(4):76–83, April 1996.

189

[137] M. Vandevoorde and E. Roberts. Work crews: An abstraction for controlling parallelism.

Technical Report Research Report 42, Digital Equipment Corporation Systems Research

Center, February 1988.

[138] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms for service differen-

tiation in overloaded Web servers. InProceedings of the 2001 USENIX Annual Technical

Conference, Boston, June 2001.

[139] J. R. von Behren, E. Brewer, N. Borisov, M. Chen, M. Welsh, J. MacDonald, J. Lau, S. Grib-

ble, and D. Culler. Ninja: A framework for network services. InProceedings of the 2002

USENIX Annual Technical Conference, Monterey, California, June 2002.

[140] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network interface for

parallel and distributed computing. InProceedings of the 15th Annual ACM Symposium on

Operating Systems Principles, December 1995.

[141] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a mech-

anism for integrating communication and computation. InProceedings of the 19th Annual

International Symposium on Computer Architecture, pages 256–266, May 1992.

[142] L. A. Wald and S. Schwarz. The 1999 Southern California Seismic Network Bulletin.Seis-

mological Research Letters, 71(4), July/August 2000.

[143] D. A. Wallach, D. R. Engler, and M. F. Kaashoek. ASHs: Application-specific handlers for

high-performance messaging. InProceedings of the ACM SIGCOMM ’96 Conference: Ap-

plications, Technologies, Architectures, and Protocols for Computer Communication, pages

40–52, Stanford, California, August 1996.

[144] M. Welsh. NBIO: Nonblocking I/O for Java.http://www.cs.berkeley.edu/˜mdw/

proj/java-nbio .

190

[145] M. Welsh and D. Culler. Virtualization considered harmful: OS design directions for well-

conditioned services. InProceedings of the 8th Workshop on Hot Topics in Operating Systems

(HotOS VIII), Schloss Elmau, Germany, May 2001.

[146] M. Welsh and D. Culler. Overload management as a fundamental service design primitive. In

Proceedings of the Tenth ACM SIGOPS European Workshop, Saint-Emilion, France, Septem-

ber 2002.

[147] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-conditioned, scalable

Internet services. InProceedings of the 18th ACM Symposium on Operating Systems Princi-

ples, Banff, Canada, October 2001.

[148] J. Wilcox. Users say MSN outage continues,ZDNet News. http://zdnet.com.com/

2100-11-269529.html , July 2001.

[149] Yahoo! Inc.http://www.yahoo.com .

[150] Yahoo! Inc. Yahoo! Reports Fourth Quarter, Year End 2001 Financial Results.http:

//docs.yahoo.com/docs/pr/4q01pr.html .

[151] Zeus Technology. Zeus Web Server.http://www.zeus.co.uk/products/ws/ .

