
Lazy Receiver Processing (LRP): A Network Subsystem
Architecture for Server Systems

�

Peter Druschel and Gaurav Banga
�

Department of Computer Science
Rice University

Houston, TX 77005

Abstract

The explosive growth of the Internet, the widespread use
of WWW-related applications, and the increased reliance
on client-server architectures places interesting new de-
mands on network servers. In particular, the operating
system running on such systems needs to manage the ma-
chine’s resources in a manner that maximizes and main-
tains throughput under conditions of high load. We pro-
pose and evaluate a new network subsystem architecture
that provides improved fairness, stability, and increased
throughput under high network load. The architecture
is hardware independent and does not degrade network
latency or bandwidth under normal load conditions.

1 Introduction

Most work on operating system support for high-speed
networks to date has focused on improving message la-
tency and on delivering the network’s full bandwidth to
application programs [1, 5, 7, 21]. More recently, re-
searchers have started to look at resource management
issues in network servers such as LAN servers, firewall
gateways, and WWW servers [16, 17]. This paper pro-
poses a new network subsystem architecture based on
lazy receiver processing (LRP), which provides stable
overload behavior, fair resource allocation, and increased
throughput under heavy load from the network.

�
This paper originally appeared in the Proceedings of the 2nd

USENIX Symposium on Operating Systems Design and Implemen-
tation (ODSI), Seattle, WA, Oct 1996.�

This work supported in part by National Science Foundation Grant
CCR-9503098

State of the art operating systems use sophisticated
means of controlling the resources consumed by appli-
cation processes. Policies for dynamic scheduling, main
memory allocation and swapping are designed to ensure
graceful behavior of a timeshared system under various
load conditions. Resources consumed during the process-
ing of network traffic, on the other hand, are generally not
controlled and accounted for in the same manner. This
poses a problem for network servers that face a large
volume of network traffic, and potentially spend consid-
erable amounts of resources on processing that traffic.

In particular, UNIX based operating systems and many
non-UNIX operating systems use an interrupt-drivennet-
work subsystem architecture that gives strictly highest
priority to the processing of incoming network packets.
This leads to scheduling anomalies, decreased through-
put, and potential resource starvation of applications.
Furthermore, the system becomes unstable in the face
of overload from the network. This problem is serious
even with the relatively slow current network technology
and will grow worse as networks increase in speed.

We propose a network subsystem architecture that in-
tegrates network processing into the system’s global re-
source management. Under this system, resources spent
in processing network traffic are associated with and
charged to the application process that causes the traf-
fic. Incoming network traffic is scheduled at the priority
of the process that receives the traffic, and excess traffic
is discarded early. This allows the system to maintain
fair allocation of resources while handling high volumes
of network traffic, and achieves system stability under
overload.

Experiments show that a prototype system based on
LRP maintains its throughput and remains responsive
even when faced with excessive network traffic on a 155
Mbit/s ATM network. In comparison, a conventional
UNIX system collapses under network traffic conditions
that can easily arise on a 10 Mbit/s Ethernet. Further
results show increased fairness in resource allocation,
traffic separation, and increased throughput under high

IP

TCPUDP

Interface queue

IP queue

Sockets

OS

Application
Processes

Network Interface

Datagram Stream

Figure 1: BSD Architecture

load.
The rest of this paper is organized as follows. Section 2

gives a brief overview of the network subsystem found in
BSD UNIX-derived systems [13] and identifies problems
that arise when a system of this type is used as a network
server. The design of the LRP network architecture is
presented in Section 3. Section 4 gives a quantitative
performance evaluation of our prototype implementation.
Finally, Section 5 covers related work and and Section 6
offers some conclusions.

2 UNIX Network Processing

This section starts with a brief overview of network pro-
cessing in UNIX operating systems. It then points out
problems that arise when a system of this type faces large
volumes of network traffic. Finally, we argue that these
problems are important by discussing common sources
of high network traffic.

To simplify the discussion, we focus on the
TCP/UDP/IP protocol suite, and on BSD-derived UNIX
systems [13]. Similar problems arise with other protocol
suites, in System V-derived UNIX systems, and in many
commercial non-UNIX operating systems. Figure 1 il-
lustrates the BSD networking architecture.

2.1 Overview

On the receiving side, the arrival of a network packet is
signaled by an interrupt. The interrupt handler, which is
part of the network interface device driver, encapsulates
the packet in an mbuf, queues the packet in the IP queue,

and posts a software interrupt. In the context of this
software interrupt, the packet is processed by IP. After
potential reassembly of multiple IP fragments, UDP’s or
TCP’s input function is called, as appropriate. Finally—
still in the context of the software interrupt—thepacket is
queued on the socket queue of the socket that is bound to
the packet’s destination port. The software interrupt has
higher priority than any user process; therefore, when-
ever a user process is interrupted by a packet arrival, the
protocol processing for that packet occurs before control
returns to the user process. On the other hand, software
interrupts have lower priority than hardware interrupts;
thus, the reception of subsequent packets can interrupt
the protocol processing of earlier packets.

When an application process performs a receive system
call1 on the socket, the packet’s data is copied from the
mbufs into the application’s address space. The mbufs
are then dequeued and deallocated. This final processing
step occurs in the context of the user process performing
a system call.

On the sending side, data written to a socket by an
application is copied into newly allocated mbufs. For
datagram sockets (UDP), the mbufs are then handed to
UDP and IP for transmission. After potential fragmenta-
tion, the resulting IP packets are then transmitted, or—if
the interface is currently busy—placed in the driver’s in-
terface queue. All of these actions are executed in the
context of the user process that performed the send sys-
tem call on the socket. Packets queued in the interface
queue are removed and transmitted in the context of the
network interface’s interrupt handler.

For stream sockets (TCP), the mbufs are queued in the
socket’s outgoing socket queue, and TCP’s output func-
tion is called. Depending on the state of the TCP con-
nection and the arguments to the send call, TCP makes a
logical copy of all, some, or none of the queued mbufs,
processes them for transmission, and calls IP’s output
function. The resulting IP packets are then transmitted
or queued on the interface queue. Again, this processing
occurs in the context of the application process perform-
ing a system call. As for UDP packets, data is removed
from the interface queue and transmitted in the context
of the network interface’s interrupt handler.

Processing of any remaining data in the socket queue
typically occurs in the context of a software interrupt. If
TCP receives an acknowledgment, more data from the
socket queue may be sent in the context of the software
interrupt that was posted to process the incoming ac-
knowledgment. Or, data may be sent in the context of a
software interrupt that was scheduled by TCP to indicate a
timeout. Data is not removed from the socket queue until

1We use the term receive system call to refer to anyof the five system
calls available to read data from a socket. The term send system call is
used analogously to refer to system calls that write data to a socket.

its reception was acknowledged by the remote receiver.
CPU time consumed during the processing of network

I/O is accounted for as follows. Any processing that
occurs in the context of a user process performing a sys-
tem call is charged to that process as system time. CPU
time spent in software or hardware interrupt handlers is
charged to the user process that was interrupted. Note
that in general, the interrupted process may be unrelated
to the network communication that caused the interrupt.

2.2 Problems

We now turn to describe several problems that can arise
when a system with conventional network architecture
faces high volumes of network traffic. Problems arise
because of four aspects of the network subsystem:

Eager receiver processing
Processing of received packets is strictly interrupt-
driven, with highest priority given to the capture and
storage of packets in main memory; second highest
priority is given to the protocol processing of pack-
ets; and, lowest priority is given to the applications
that consume the messages.

Lack of effective load shedding Packet dropping as a
means to resolve receiver overload occurs only after
significant host CPU resources have already been
invested in the dropped packet.

Lack of traffic separation Incoming traffic destined for
one application (socket) can lead to delay and loss
of packets destined for another application (socket).

Inappropriate resource accounting CPU time spent in
interrupt context during the reception of packets is
charged to the application that happens to execute
when a packet arrives. Since CPU usage, as main-
tained by the system, influences a process’s future
scheduling priority, this is unfair.

Eager receiver processing has significant disadvan-
tages when used in a network server. It gives highest
priority to the processing of incoming network packets,
regardless of the state or the scheduling priority of the re-
ceiving application. A packet arrival will always interrupt
a presently executing application, even if any of the fol-
lowing conditions hold true: (1) the currently executing
application is not the receiver of the packet; (2) the re-
ceiving application is not blocked waiting on the packet;
or, (3) the receiving application has lower or equal pri-
ority than the currently executing process. As a result,
overheads associated with dispatching and handling of
interrupts and increased context switching can limit the
throughput of a server under load.

Under high load from the network, the system can en-
ter a state known as receiver livelock [20]. In this state,
the system spends all of its resources processing incom-
ing network packets, only to discard them later because
no CPU time is left to service the receiving application
programs. For instance, consider the behavior of the sys-
tem under increasing load from incoming UDP packets
2. Since hardware interface interrupt and software inter-
rupts have higher priority than user processes, the socket
queues will eventually fill because the receiving appli-
cation no longer gets enough CPU time to consume the
packets. At that point, packets are discarded when they
reach the socket queue. As the load increases further, the
software interrupts will eventually no longer keep up with
the protocol processing, causing the IP queue to fill. The
problem is that early stages of receiver processing have
strictly higher priority than later stages. Under overload,
this causes packets to be dropped only after resources
have been invested in them. As a result, the throughput
of the system drops as the offered load increases until the
system finally spends all its time processing packets only
to discard them.

Bursts of packets arriving from the network can cause
scheduling anomalies. In particular, the delivery of an
incoming message to the receiving application can be de-
layed by a burst of subsequently arriving packets. This
is because the network processing of the entire burst of
packets must complete before any applicationprocess can
regain control of the CPU. Also, since all incoming IP
traffic is placed in the shared IP queue, aggregate traffic
bursts can exceed the IP queue limit and/or exhaust the
mbuf pool. Thus, traffic bursts destined for one server
process can lead to the delay and/or loss of packets des-
tined for other sockets. This type of traffic interference
is generally unfair and undesirable.

2.3 Sources of High Network Load

Network protocols and distributed application programs
use flow control mechanisms to prevent a sender process
from generating more traffic than the receiver process can
handle. Unfortunately, flow control does not necessarily
prevent overload of network server machines. Some rea-
sons for this are:

� simultaneous requests from a large number of clients

� misbehaved distributed applications

� incorrect client protocol implementations

� malicious denial-of-service attacks

� broadcast and multicast traffic
2Similar problems can arise under load from TCP connection estab-

lishment request packets.

TCP connection establishment requests (TCP SYN
packets) from a large number of clients can flood a WWW
server. This is true despite TCP’s flow control mechanism
(which regulates traffic on established connections) and
TCP’s exponential backoff strategy for connection estab-
lishment requests (which can only limit the rate of re-
tries). The maximal rate of SYN packets is only bounded
by the capacity of the network. Similar arguments ap-
ply for any server that serves a virtually unlimited client
community such as the Internet.

Distributed applications built on top of a simple data-
gram service such as UDP must implement their own
flow and congestion control mechanisms. When these
mechanisms are deficient, excessive network traffic can
result. Incorrect implementations of flow-controlled pro-
tocols such as TCP—not uncommon in the PC market—
can have the same effect. The vulnerability of network
servers to network traffic overload can be and has been
exploited for security attacks3. Thus, current network
servers have a protection and security problem, since un-
trusted application programs runningon clients can cause
the failure of the shared server.

There are many examples of real-world systems that
are prone to the problems discussed above. A packet
filtering application-level gateway, such as a firewall,
establishes a new TCP connection for every flow that
passes through it. An excessive flow establishment rate
can overwhelm the gateway. Moreover, a misbehaving
flow can get an unfair share of the gateway’s resources
and interfere with other flows that pass through it. Simi-
lar problems can occur in systems that run several server
processes, such as Web servers that use a process per con-
nection; or, single process servers that use a kernel thread
per connection. Scheduling anomalies, such as those re-
lated to bursty data, can be ill-afforded by systems that
run multimedia applications. Apart from the above ex-
amples, any system that uses eager network processing
can be livelocked by an excess of network traffic—this
need not always be part of a denial of service attack, and
can simply be because of a program error.

These problems make it imperative that a network
server be able to control its resources in a manner that
ensures efficiency and stability under conditions of high
network load. The conventional, interrupt-driven net-
work subsystem architecture does not satisfy this crite-
rion.

3 Design of the LRP Architecture

In this section, we present the design of our network
subsystem architecture based on lazy receiver processing

3Often, a denial-of-service attack is used as part of a more elaborate
security attack.

IP

TCPUDP

Sockets

OS

Application
Processes

Network Interface

NI Channels

Datagram Stream

Interface queue

Figure 2: LRP Architecture

(LRP). We start with an overview, and then focus on
details of protocol processing for UDP and TCP.

The proposed architecture overcomes the problems
discussed in the previous section through a combination
of techniques: (1) The IP queue is replaced with a per-
socket queue that is shared with the network interface
(NI). (2) The network interface demultiplexes incoming
packets according to their destination socket, and places
the packet directly on the appropriate receive queue4.
Packets destined for a socket with a full receiver queue
are silently discarded (early packet discard). (3) Receiver
protocol processing is performed at the priority of the re-
ceiving process5. (4) Whenever the protocol semantics
allow it, protocol processing is performed lazily, in the
context of the user process performing a receive system
call. Figure 2 illustrates the LRP architecture.

There are several things to note about the behavior of
this architecture. First, protocol processing for a packet in
many cases does not occur until the application requests
the packet in a receive system call. Packet processing no
longer interrupts the running process at the time of the
packet’s arrival, unless the receiver has higher schedul-
ing priority than the currently executing process. This
avoids inappropriate context switches and can increase
performance.

Second, the network interface separates (demulti-
plexes) incoming traffic by destination socket and places

4The present discussion assumes that the network interface has an
embedded CPU that can be programmed to perform this task. Sec-
tion 3.2 discusses how LRP can be implemented with an uncooperative
NI.

5For a shared or multicast socket, this is the highest of the partici-
pating processes’ priorities.

packets directly into per-socket receive queues. Com-
bined with the receiver protocol processing at application
priority, this provides feedback to the network interface
about application processes’ ability to keep up with the
traffic arriving at a socket. This feedback is used as fol-
lows: Once a socket’s receive queue fills, the NI discards
further packets destined for the socket until applications
have consumed some of the queued packets. Thus, the
NI can effectively shed load without consuming signif-
icant host resources. As a result, the system has stable
overload behavior and increased throughput under high
load.

Third, the network interface’s separation of received
traffic, combined with the receiver processing at applica-
tion priority, eliminates interference among packets des-
tined for separate sockets. Moreover, the delivery latency
of a packet cannot be influenced by a subsequently arriv-
ing packet of equal or lower priority. And, the elimination
of the shared IP queue greatly reduces the likelihood that
a packet is delayed or dropped because traffic destined
for a different socket has exhausted shared resources.

Finally, CPU time spent in receiver protocol processing
is charged to the application process that receives the
traffic. This is important since the recent CPU usage
of a process influences the priority that the scheduler
assigns a process. In particular, it ensures fairness in the
case where application processes receive high volumes
of network traffic.

Early demultiplexing—a key component of LRP’s
design—has been used in many systems to support
application-specific network protocols [11, 23], to avoid
data copying [6, 21], and to preserve network quality-
of-service guarantees for real-time communication [10].
Demultiplexing in the network adaptor and multiple NI
channels have been used to implement low-latency, high-
bandwidth, user-level communication [1, 5]. Protocol
processing by user-level threads at application priority
has been used in user-level network subsystem imple-
mentations [10, 11, 23]. What is new in LRP’s design
is (1) the lazy, delayed processing of incoming network
packets, and (2) the combination and application of the
above techniques to provide stability, fairness, and in-
creased throughput under high load. A full discussion of
related work is given in Section 5.

It is important to note that the two key techniques used
in LRP—lazy protocol processing at the priority of the
receiver, and early demultiplexing—are both necessary
to achieve stability and fairness under overload. Lazy
protocol processing trivially depends on early demulti-
plexing. To see this, observe that the receiver process of
an incoming packet must be known to determine the time
and priority at which the packet should be processed.

Conversely, early demultiplexing by itself is not suf-
ficient to provide stability and fairness under overload.

Consider a system that combines the traditional eager
protocol processing with early demultiplexing. Packets
are dropped immediately in case their destination socket’s
receive queue is full. One would expect this system to
remain stable under overload, since traffic arriving at an
overloaded endpoint is discarded early. Unfortunately,
the system is still defenseless against overload from in-
coming packets that do not contain valid user data. For
example, a flood of control messages or corrupted data
packets can still cause livelock. This is because process-
ing of these packets does not result in the placement of
data in the socket queue, thus defeating the only feedback
mechanism that can effect early packet discard.

In addition, early demultiplexing by itself lacks LRP’s
benefits of reduced context switching and fair resource
allocation, since it shares BSD’s resource accounting and
eager processing model. A quantitative comparison of
both approaches is given in Section 4. We proceed with
a detailed description of LRP’s design.

3.1 Sockets and NI Channels

A network interface (NI) channel is a data structure that
is shared between the network interface and the OS ker-
nel. It contains a receiver queue, a free buffer queue, and
associated state variables. The NI determines the desti-
nation socket of any received packets and queues them
on the receive queue of the channel associated with that
socket. Thus, the network interface effectively demulti-
plexes incoming traffic to their destination sockets.

When a socket is bound to a local port (either implicitly
or explicitly by means of a bind() system call), an NI
channel is created. Also, when a connected stream socket
is created, it is allocated its own NI channel. Multiple
sockets bound to the same UDP multicast group share a
single NI channel. All traffic destined for or originating
from a socket passes through that socket’s NI channel.

3.2 Packet Demultiplexing

LRP requires that the network interface be able to identify
the destination socket of an incoming network packet, so
that the packet can be placed on the correct NI channel.
Ideally, this function should be performed by the NI it-
self. Incidentally, many commercial high-speed network
adaptors contain an embedded CPU, and the necessary
demultiplexing function can be performed by this CPU.
We call this approach LRP with NI demux. In the case
of network adaptors that lack the necessary support (e.g.,
inexpensive Fast Ethernet adaptors), the demultiplexing
function can be performed in the network driver’s inter-
rupt handler. We call this approach soft demux. Here,
some amount of host interrupt processing is necessary to
demultiplex incoming packets. Fortunately, with current

technology, this overhead appears to be small enough to
still maintain good stability under overload. The advan-
tage of this approach is that it will work with any net-
work adaptor, i.e., it is hardware independent. We will
quantitatively evaluate both demultiplexing approaches
in Section 4.

Our demultiplexing function is self-contained, and has
minimal requirements on its execution environment (non-
blocking, no dynamic memory allocation, no timers). As
such, it can be readily integrated in a network interface’s
firmware, or the device’s host interrupt handler. The func-
tion can efficiently demultiplex all packets in the TCP/IP
protocol family, including IP fragments. In rare cases, an
IP fragment does not contain enough information to al-
low demultiplexing to the correct endpoint. This happens
when the fragment containing the transport header of a
fragmented IP packet does not arrive first. In this case,
the offending packet is placed on a special NI channel
reserved for this purpose. The IP reassembly function
checks this channel queue when it misses fragments dur-
ing reassembly.

Throughout this paper, whenever reference is made to
actions performed by the network interface, we mean that
the action is performed either by the NI processor (in the
case of NI demux), or the host interrupt handler (in the
case of soft demux).

3.3 UDP protocol processing

For unreliable, datagram-oriented protocols like UDP,
network processing proceeds as follows: The transmit
side processing remains largely unchanged. Packets are
processed by UDP and IP code in the context of the
user process performing the send system call. Then, the
resulting IP packet(s) are placed on the interface queue.

On the receiving side, the network interface determines
the destination socket of incoming packets and places
them on the corresponding channel queue. If that queue is
full, the packet is discarded. If the queue was previously
empty, and a state flag indicates that interrupts are re-
quested for this socket, the NI generates a host interrupt6.
When a user process calls a receive system call on a UDP
socket, the system checks the associated channel’s re-
ceive queue. If the queue is non-empty, the first packet
is removed; else, the process is blocked waiting for an
interrupt from the NI. After removing a packet from the
receive queue, IP’s input function is called, which will in
turn call UDP’s input function. Eventually the processed
packet is copied into the application’s buffer. All these
steps are performed in the context of the user process
performing the system call.

There are several things to note about the receiver pro-
cessing. First, protocol processing for a packet does not

6With soft demux, a host interrupt always occurs upon packet arrival.

occur until the application is waiting for the packet, the
packet has arrived, and the application is scheduled to run.
As a result, one might expect reduced context switching
and increased memory access locality. Second, when the
rate of incoming packets exceeds the rate at which the re-
ceiving application can consume the packets, the channel
receive queue fills, causing the network interface to drop
packets. This dropping occurs before significant host re-
sources have been invested in the packet. As a result,
the system has good overload behavior: As the offered
rate of incoming traffic approaches the capacity of the
server, the throughput reaches its maximum and stays at
its maximum even if the offered rate increases further7.

It is important to realize that LRP does not increase
the latency of UDP packets. The only condition under
which the delivery delay of a UDP packet could increase
under LRP is when a host CPU is idle between the time
of arrival of the packet and the invocation of the receive
system call that will deliver the packet to the application.
This case can occur on multiprocessor machines, and on
a uniprocessor when the only runnable application blocks
on an I/O operation (e.g., disk) before invoking the receive
system call. To eliminate this possibility, an otherwise
idle CPU should always perform protocol processing for
any received packets. This is easily accomplished by
means of a kernel thread with minimal priority that checks
NI channels and performs protocol processing for any
queued UDP packets.

3.4 TCP protocol processing

Protocol processing is slightly more complex for a re-
liable, flow-controlled protocol such as TCP. As in the
original architecture, data written by an application is
queued in the socket queue. Some data may be trans-
mitted immediately in the context of the user process
performing the send system call. The remaining data
is transmitted in response to arriving acknowledgments,
and possibly in response to timeouts.

The main difference between UDP and TCP process-
ing in the LRP architecture is that receiver processing
cannot be performed only in the context of a receive sys-
tem call, due to the semantics of TCP. Because TCP is
flow controlled, transmission of data is paced by the re-
ceiver via acknowledgments. Achieving high network
utilization and throughput requires timely processing of
incoming acknowledgments. If receiver processing were
performed only in the context of receive system calls,
then at most one TCP congestion window of data could
be transmitted between successive receive system calls,
resulting in poor performance for many applications.

7With soft demux, the throughput diminishes slightly as the offered
load increases, due to the demultiplexing overhead.

The solution is to perform receiver processing for TCP
sockets asynchronously when required. Packets arriving
on TCP connections can thus be processed even when
the application process is not blocked on a receive sys-
tem call. Unlike in conventional architectures, this asyn-
chronous protocol processing does not take strict prior-
ity over application processing. Instead, the process-
ing is scheduled at the priority of the application pro-
cess that uses the associated socket, and CPU usage is
charged back to that application8. Under normal condi-
tions, the application has a sufficiently high priority to
ensure timely processing of TCP traffic. If an excessive
amount of traffic arrives at the socket, the application’s
priority will decay as a result of the high CPU usage.
Eventually, the protocol processing can no longer keep
up with the offered load, causing the channel receiver
queue to fill and packets to be dropped by the NI. In addi-
tion, protocol processing is disabled for listening sockets
that have exceeded their listen backlog limit, thus caus-
ing the discard of further SYN packets at the NI channel
queue. As shown in Section 4, TCP sockets enjoy similar
overload behavior and traffic separation as UDP sockets
under LRP.

There are several ways of implementing asynchronous
protocol processing (APP). In systems that support (ker-
nel) threads (i.e., virtually all modern operating systems),
an extra thread can be associated with application pro-
cesses that use stream (TCP) sockets. This thread is
scheduled at its process’s priority and its CPU usage is
charged to its process. Since protocol processing always
runs to completion, no state needs to be retained be-
tween activations. Therefore, it is not necessary to assign
a private runtime stack to the APP thread; a single per
CPU stack can be used instead. The resulting per-process
space overhead of APP is one thread control block. This
overhead can be further reduced through the use of con-
tinuations [3]. The exact choice of a mechanism for APP
greatly depends on the facilities available in a particular
UNIX kernel. In our current prototype implementation,
a kernel process is dedicated to TCP processing.

3.5 Other protocol processing

Processing for certain network packets cannot be directly
attributed to any application process. In the TCP/IP suite,
this includes processing of some ARP, RARP, ICMP
packets, and IP packet forwarding. In LRP, this process-
ing is charged to daemon processes that act as proxies for
a particular protocol. These daemons have an associated
NI channel, and packets for such protocols are demul-
tiplexed directly onto the corresponding channel. For

8In UNIX, more than one process can wait to read from a socket.
In this case, the process with the highest priority performs the protocol
processing.

example, an IP forwarding daemon is charged for CPU
time spent on forwarding IP packets, and its priority con-
trols resources spent on IP forwarding9. The IP daemon
competes with other processes for CPU time.

4 Performance

In this section, we present experiments designed to evalu-
ate the effectiveness of the LRP network subsystem archi-
tecture. We start with a description of the experimental
setup and the prototype implementation, and proceed to
present the results of various experiments.

4.1 Experimental Setup

All experiments were performed on Sun Microsystems
SPARCstation 20 model 61 workstations (60MHz Su-
perSPARC+, 36KB L1, 1MB L2, SPECint92 98.2). The
workstations are equipped with 32MB of memory and run
SunOS 4.1.3 U1. A 155 Mbit/s ATM local area network
connects the workstations, using FORE Systems SBA-
200 network adaptors. These network adaptors include
an Intel i960 processor that performs cell fragmentation
and reassembly of protocol data units (PDUs). Note that
LRP does not depend on a specific network adaptor or
ATM networks. SOFT-LRP can be used with any net-
work and NI.

The LRP architecture was implemented as follows. We
modified the TCP/UDP/IP networksubsystem that comes
with the 4.4 BSD-Lite distribution [24] to optionally im-
plement LRP. The resulting code was then downloaded
into the SunOS kernel as a loadable kernel module and
attached to the socket layer as a new protocol family
(PF LRP). A custom device driver was developed for the
FORE network adaptor. The 4.4 BSD-Lite networking
subsystem was used because of its performance and avail-
ability in source form. (We did not have access to SunOS
source code.) The 4.4 BSD networking code was slightly
modified to work with SunOS mbufs. At the time of
this writing, the prototype implementation uses a kernel
process to perform asynchronous protocol processing for
TCP.

Since we were unable to obtain source code for the
SBA-200 firmware, we could not integrate our own de-
multiplexing function in this network adaptor. However,
we know enough about the interface’s architecture to be
confident that the function could be easily integrated,
given the source code. To evaluate packet demultiplex-
ing in the network adaptor (NI demux), we used instead
the SBA-200 firmware developed by Cornell University’s

9QoS attributes or IPv6 flows could be used in an LRP based IP
gateway to provide more fine-grained resource control.

U-Net project [1]. This firmware performs demultiplex-
ing based on the ATM virtual circuit identifier (VCI). A
signaling scheme was used that ensures that a separate
ATM VCI is assigned for traffic terminating or origi-
nating at each socket. The resulting implementation of
NI-LRP is fully functional.

4.2 Experimental Results

All experiments were performed on a private ATM net-
work between the SPARCstations. The machines were
running in multiuser mode, but were not shared by other
users.

The first experiment is a simple test to measure UDP
latency and throughput, and TCP throughput. Its purpose
is to demonstrate that the LRP architecture is competi-
tive with traditional network subsystem implementations
in term of these basic performance criteria. Moreover,
we include the results for an unmodified SunOS kernel
with the Fore ATM device driver for comparison. La-
tency was measured by ping-ponging a 1-byte message
between two workstations 10,000 times, measuring the
elapsed time and dividing to obtain round-trip latency.
UDP throughput was measured using a simple sliding-
window protocol (UDP checksumming was disabled.)
TCP throughputwas measured by transferring 24 Mbytes
of data, with the socket send and receive buffers set to 32
KByte. Table 1 shows the results.

The numbers clearly demonstrate that LRP’s basic per-
formance is comparable with the unmodified BSD sys-
tem from which it was derived. That is, LRP’s improved
overload behavior does not come at the cost of low-load
performance. Furthermore, both BSD and LRP with our
device driver perform significantly better than SunOS
with the Fore ATM driver in terms of latency and UDP
bandwidth. This is due to performance problems with
the Fore driver, as discussed in detail in [1].

SunOS exhibits a performance anomaly that causes
its base round-trip latency—as measured on otherwise
idle machines—to drop by almost 300 � secs, when a
compute-bound background process is running on both
the client and the server machine. We have observed this
effect in many different tests with SunOS 4.1.3 U1 on
the SPARCstation 20. The results appear to be con-
sistent with our theory that the cost of dispatching a
hardware/software interrupt and/or the receiver process
in SunOS depends on whether the machine is executing
the idle loop or a user process at the time a message ar-
rives from the network. Without access to source code,
we were unable to pinpoint the source of this anomaly.

Since our modified systems (4.4BSD, NI-LRP, SOFT-
LRP) are all based on SunOS, they were equally affected
by this anomaly. Apart from affecting the base round-trip
latency, the anomaly can perturb the results of tests with

varying rates and concurrency of network traffic, since
these factors influence the likelihood that an incoming
packet interrupts a user process. To eliminate this vari-
able, some of the experiments described below were run
with low-priority, compute-bound processes running in
the background, to ensure that incoming packets never
interrupt the idle loop.

The next experiment was designed to test the behavior
of the LRP architecture under overload. In this test, a
client process sends short (14 byte) UDP packets to a
server process on another machine at a fixed rate. The
server process receives the packets and discards them
immediately. Figure 3 plots the rate at which packets
are received and consumed by the server process as a
function of the rate at which the client transmits packets.

With the conventional 4.4 BSD networksubsystem, the
throughput increases with the offered load up to a max-
imum of 7400 pkts/sec. As the offered load increases
further, the throughput of the system decreases, until
the system approaches livelock at approximately 20,000
pkts/sec. With NI-LRP, on the other hand, throughput
increases up to the maximum of 11,000 pkts/sec and re-
mains at that rate as the offered load increases further.
This confirms the effectiveness of NI-LRP’s load shed-
ding in the network interface, before any host resources
have been invested in handling excess traffic. Instrumen-
tation shows that the slight drop in NI-LRP’s delivery rate
beyond 19,000 pkts/sec is actually due to a reduction in
the delivery rate of our ATM network, most likely caused
by congestion-related phenomena in either the switch or
the network interfaces.

SOFT-LRP refers to the case where demultiplexing
is performed in the host’s interrupt handler (soft de-
mux). The throughput peaks at 9760 pkts/sec, but di-
minishes slightly with increasing rate due to the over-
head of demultiplexing packets in the host’s interrupt
handler. This confirms that, while NI-LRP eliminates
the possibility of livelock, SOFT-LRP merely postpones
its arrival. However, on our experimental ATM network
hardware/software platform, we have been unable to gen-
erate high enough packet rates to cause livelock in the
SOFT-LRP kernel, even when using an in-kernel packet
source on the sender.

For comparison, we have also measured the over-
load behavior of a kernel with early demultiplexing only
(Early-Demux). The system performs demultiplexing in
the interrupt handler (as in SOFT-LRP), drops packets
whose destination socket’s receiver queue is full, and
otherwise schedules a software interrupt to process the
packet. Due to the early demultiplexing, UDP’s PCB
lookup was bypassed, as in the LRP kernels. The sys-
tem displays improved stability under overload compared
with BSD, a result of early packet discard. The rate of de-
cline under overload is comparable to that of SOFT-LRP,

System round-trip latency UDP throughput TCP throughput
(� secs) (Mbps) (Mbps)

SunOS, Fore driver 1006 64 63
4.4 BSD 855 82 69
LRP (NI Demux) 840 92 67
LRP (Soft Demux) 864 86 66

Table 1: Throughput and Latency

�

�������

�������

�������

�������

�	�������

�	�������

�
������ ��������� ��
������ ���������

����������������������������! �"#"#���%$��������&(')"#*+��,.-/,���$�0

132 �4�����5�������'6"#*+��,.-/,��	$�0

73869;:<��= > >>>>>>>>
>

>
>

>

>

?#1A@<B 9;:<��= C

C

C C
C C

C C
C C C C

C C C

�ED �GF ? � H

H
H
H

H

H H
H H

H H
H

H

H
H

H H H

IJ/����K�9�����LGM+N O

O

O

O O O O
O

O O O O O O O

Figure 3: Throughput versus offered load

which is consistent with their use of the same demul-
tiplexing mechanism. However, the throughput of the
Early-Demux kernel is only between 40–65% of SOFT-
LRP’s throughput across the overload region.

Both variants of LRP display significantly better
throughput than both the conventional 4.4 BSD system,
and the Early-Demux kernel. The maximal delivered rate
of NI-LRP is 51% and that of SOFT-LRP is 32% higher
than BSD’s maximal rate (11163 vs. 9760 vs. 7380
pkts/sec). Note that the throughput with SOFT-LRP at
the maximal offered rate is within12% of BSD’s maximal
throughput.

In order to understand the reasons for LRP’s through-
put gains, we instrumented the kernels to capture addi-
tional information. It was determined that the Maximum
Loss Free Receive Rate (MLFRR) of SOFT-LRP ex-
ceeded that of 4.4BSD by 44% (9210 vs. 6380 pkts/sec).
4.4BSD and LRP drop packets at the socket queue or NI
channel queue, respectively, at offered rates beyond their
MLFRR. 4.4BSD additionally starts to drop packets at
the IP queue at offered rates in excess of 15,000 pkts/sec.
No packets were dropped due to lack of mbufs.

Obviously, early packet discard does not play a role

in any performance differences at the MLFRR. With the
exception of demultiplexing code (early demux in LRP
versus PCB lookup in BSD) and differences in the device
driver code, all four kernels execute the same 4.4BSD
networking code. Moreover, the device driver and de-
multiplexing code used in Early-Demux and SOFT-LRP
are identical, eliminating these factors as potential con-
tributors to LRP’s throughput gains. This suggests that
the performance gains in LRP must be due in large part
to factors such as reduced context switching, software
interrupt dispatch, and improved memory access locality.

Our next experiment measures the latency that a client
experiences when contacting a server process on a ma-
chine with high network load. The client, running on ma-
chine A, ping-pongs a short UDP message with a server
process (ping-pong server) running on machine B. At the
same time, machine C transmits UDP packets at a fixed
rate to a separate server process (blast server) on machine
B, which discards the packets upon arrival. Figure 4 plots
the round-trip latency experienced by the client as a func-
tion of the rate at which packets are transmitted from ma-
chine C to the blast server (background load). To avoid
the abovementioned performance anomaly in SunOS, the

����

�������

��
����

�������

��
����

� ������� ������� ������� ������� ��������� ��������� �4������� ��������� ���������

� ��M#&E��9 ������" : �����& $.K5')L �%$.����,���$.��& �+, 0

F �$�* � ����M#&E� B � �� $A��/����'6"#*+��, -�,���$40

� D �GF ? � >

> > >

> >
> > > >

>
>

>

?#1A@<B 9�: ��= C

C C
C C C C C C C C

7 869�: ��= H

H H H H
H H H H H

Figure 4: Latency with concurrent load

machines involved in the ping-pong exchange were each
running a low-priority (nice +20) background process
executing an infinite loop.

In all three systems, the measured latency varies with
the background traffic rate. This variation is caused by the
arrival of background traffic packets during the software
processing of a ping-pong packet on the receiver. Arrivals
of background traffic delay the processing of the request
and/or the transmission of the response message, thus
causing an increase in the round-trip delay. The mag-
nitude of this delay is determined by two factors: The
rate of arrivals, and the length of the interruptions caused
by each arrival. This length of interruptions consists of
the fixed interrupt processing time (hardware interrupt in
LRP, hardware plus software interrupt in BSD), plus the
optional time for scheduling of the blast server, and de-
livery of the message. This last component only occurs
when the blast server’s priority exceeds that of the ping-
pong server, i.e., it is a function of SunOS’s scheduling
policy.

Instrumentation and modeling confirmed that the two
main factors shaping the graphs are (1) the length of
the fixed interrupt processing and (2) the scheduling-
dependent overhead of delivering messages to the blast
receiver. The fixed interrupt overhead causes a non-linear
increase in the latency as the background traffic rises. Due
to the large overhead (hardware plus software interrupt,
including protocol processing, approximately 60 � secs),
the effect is most pronounced in 4.4BSD. SOFT-LRP’s
reduced interrupt overhead (hardware interrupt, includ-
ing demux, approx. 25 � secs), results in only a gradual
increase. With NI-LRP (hardware interrupt with minimal

processing), this effect is barely noticeable.

The second factor leads to an additional increase in
latency at background traffic rates up to 7000 pkts/sec.
The UNIX scheduler assigns priorities based on a pro-
cess’s recent CPU usage. As a result, it tends to favor
a process that had been waiting for the arrival of a net-
work packet, over the process that was interrupted by the
packet’s arrival. At low rates, the blast receiver is always
blocked when a blast packet arrives. If the arrival in-
terrupts the ping-pong server, the scheduler will almost
always give the CPU to the blast receiver, causing a sub-
stantial delay of the ping-pong message. At rates around
6000 pkts/sec, the blast receiver is nearing saturation,
thus turning compute-bound. As a result, its priority de-
creases, and the scheduler now preferentially returns the
CPU to the interrupted ping-pong server immediately,
eliminating this effect at high rates.

The additional delay caused by context switches to the
blast server is much stronger in BSD as in the two LRP
systems (1020 vs. 750 � secs peak). This is a caused by
the mis-accounting of network processing in BSD. In that
system, protocol processing of blast messages that arrive
during the processing of a ping-pong message is charged
to the ping-pong server process. This depletes the prior-
ity of the ping-pong server, and increases the likelihood
that the scheduler decides to assign the CPU to the blast
server upon arrival of a message. Note that in a system
that supports fixed-priority scheduling (e.g., Solaris), the
influence of scheduling could be eliminated by assign-
ing the ping-pong server statically highest priority. The
result is nevertheless interesting in that it displays the ef-
fect of CPU mis-accounting on latency in a system with

RPC System Worker elapsed Server
time (secs) (RPCs/sec)

Fast 4.4BSD 49.7 3120
SO-LRP 38.7 3133
NI-LRP 34.6 3410

Medium 4.4BSD 47.1 2712
SO-LRP 37.9 2759
NI-LRP 34.1 2783

Slow 4.4BSD 43.9 2045
SO-LRP 38.5 2134
NI-LRP 35.7 2208

Table 2: Synthetic RPC Server Workload

a dynamic scheduling policy.
With BSD, packet dropping at the IP queue makes

latency measurements impossible at rates beyond 15,000
pkts/sec. In the LRP systems, no dropped latency packets
were observed, which is due to LRP’s traffic separation.

Our next experiment attempts to more closely model a
mix of workloads typical for network servers. Three pro-
cesses run on a server machine. The first server process,
called the worker, performs a memory-bound computa-
tion in response to an RPC call from a client. This compu-
tation requires approximately 11.5 seconds of CPU time
and has a memory working set that covers a significant
fraction (35%) of the second level cache. The remaining
two server processes perform short computations in re-
sponse to RPC requests. A client on the other machine
sends an RPC request to the worker process. While the
worker RPC is outstanding, the client sends RPC requests
to the remaining server processes in such a way that (1)
each server has a number of outstanding RPC requests
at all times, and (2) the requests are distributed near uni-
formly in time. (1) ensures that the RPC server processes
never block on receiving from the network10. The pur-
pose of (2) is to make sure there is no correlation between
the scheduling of the server processes, and the times at
which requests are issued by the client. Note that in this
test, the clients generate requests at the maximal through-
put rate of the server. That is, the server is not operating
under conditions of overload. The RPC facility we used
is based on UDP datagrams.

Table 2 shows the results of this test. The total elapsed
time for completion of the RPC to the worker process
is shown in the third column. The rightmost column
shows the rate at which the servers process RPCs, con-
currently with each other and the worker process. “Fast”,
“Medium” and “Slow” correspond to tests with differ-
ent amounts of per-request computations performed in

10This is to ensure that the UNIX scheduler does not consider these
server processes I/O-bound, which would tend to give them higher
scheduling priority.

the two RPC server processes. In each of the tests, the
server’s throughput (considering rate of RPCs completed
and worker completion time) is lowest with BSD, higher
with SOFT-LRP (SO-LRP), and highest with NI-LRP. In
the “Medium” case, where the RPC rates are within 3%
for each of the systems, the worker completion time with
SOFT-LRP is 20% lower, and with NI-LRP 28% lower
than with BSD. In the “Fast” case, NI-LRP achieves an
almost 10% higher RPC rate and a 30% lower worker
completion time than BSD. This confirms that LRP-based
servers have increased throughput under high load. Note
that packet discard is not a factor in this test, since the
system is not operating under overload. Therefore, re-
duced context switching and improved locality must be
responsible for the higher throughput with LRP.

Furthermore, the LRP systems maintain a fair alloca-
tion of CPU resources under high load. With SOFT-LRP
and NI-LRP, the worker process’s CPU share (CPU time
/ elapsed completion time) ranges from 29% to 33%,
which is very close to the ideal 1 � 3 of the available CPU,
compared to 23%–26% with BSD. This demonstrates the
effect of mis-accounting in BSD, which tends to favor
processes that perform intensive network communica-
tion over those that do not. Observe that this effect is
distinct from, and independent of, the UNIX scheduler’s
tendency to favor I/O-bound processes.

Finally, we conducted a set of experiments with a real
server application. We configured a machine running a
SOFT-LRP kernel as a WWW server, using the NCSA
httpd server software, revision 1.5.1. A set of informal
experiments show that the server is dramatically more
stable than a BSD based server under overload. To test
this, Mosaic clients were contacting the server, while a
test program running on a third machine was sending
packets to a separate port on the server machine at a
high rate (10,000 packets/sec). An HTTP server based
on 4.4 BSD freezes completely under these conditions,
i.e., it no longer responds to any HTTP requests, and the
server console appears dead. With LRP and soft demux,
the server responds to HTTP requests and the console is
responsive, although some increase in response time is
noticeable.

The results of a quantitative experiment are shown in
Figure 5. In this test, eight HTTP clients on a single
machine continually request HTTP transfers from the
server. The requested document is approximately 1300
bytes long. The eight clients saturate the HTTP server.
A second client machine sends fake TCP connection es-
tablishment requests (SYN packets) to a dummy server
running on the server machine that also runs the HTTP
server. No connections are ever established as a result
of these requests; TCP on the server side discards most
of them once the dummy server’s listen backlog is ex-
ceeded. To avoid known performance problems with

�
���
���
���
���
�����
�����
���+�
�����
�����

�
������ �	������� �	
������ ���������

� B B = ��� /& ,��)����,�" ����,���$.��&E�

?�� 7 "E�$�*���� � ����G'6"#*+��,.-/,��	$�0

� D �GF ? � >
> > > > >
> >
> >
>

>

> >
> > > > >

?#1A@<B 9�: ��= CC C C C C C
C

C
C C

C C C

Figure 5: HTTP Server Throughput

BSD’s PCB lookup function in HTTP servers [16], the
TCP TIME WAIT period was set to 500ms, instead of the
default 30 seconds. The test were run for long periods
of time to ensure steady-state behavior. Furthermore, the
LRP system performed a redundant PCB lookup to elim-
inate any bias due to the greater efficiency of the early
demultiplexing in LRP. Note that the results of this test
were not affected by the TCP bug described in RFC 1948.

The graphs show the number of HTTP transfers com-
pleted by all clients, as a function of the rate of SYN pack-
ets to the dummy server, for 4.4 BSD and SOFT-LRP. The
throughput of the 4.4 BSD-based HTTP server sharply
drops as the rate of background requests increases, en-
tering livelock at close to 10,000 SYN pkts/sec. The
reason is that BSD’s processing of SYN packets in soft-
ware interrupt context starves the httpd server processes
for CPU resources. Additionally, at rates above 6400
SYN pkts/sec, packets are dropped at BSD’s shared IP
queue. This leads to the loss of both TCP connection
requests from real HTTP client and traffic on established
TCP connections. Lost TCP connection requests cause
TCP on the client side to back off exponentially. Lost
traffic on established connections cause TCP to close its
congestion window. However, the dominant factor in
BSD’s throughput decline appears to be the starvation of
server processes.

With LRP, the throughput decreases relatively slowly.
At a rate of 20,000 background requests per second, the
LRP server still operates at almost 50% of its maximal
throughput11. With LRP, traffic on each established TCP

11Note that a (slow) T1 link is capable of carrying almost 5000 SYN
packets per second. With the emerging faster network links, routers, and

connection, HTTP connection requests, and dummy re-
quests are all demultiplexed onto separate NI channels
and do not interfere. As a result, traffic to the dummy
server does not cause the loss of HTTP traffic at all. Fur-
thermore, most dummy SYN packets are discarded early
at the NI channel queue. The predominant cause of the
decline in the SOFT-LRP based server’s throughput is the
overhead of software demultiplexing.

It should be noted that, independent of the use of LRP,
an Internet server must limit the number of active con-
nections to maintain stability. A related issue is how well
LRP works with a large number of established connec-
tions, as has been observed on busy Internet servers [15].
SOFT-LRP uses one extra mbuf compared to 4.4BSD for
each established TCP connection, so SOFT-LRP should
scale well to large numbers of active connections. NI-
LRP, on the other hand, dedicates resources on the net-
work interface for each endpoint and is not likely to scale
to thousands of allocated NI channels. However, most
of the established connections on a busy web server are
in the TIME WAIT state. This can be exploited by deal-
locating an NI channel as soon as the associated TCP
connection enters the TIME WAIT state. Any subse-
quently arriving packets on this connection are queued at
a special NI channel which is checked by TCP’s slow-
timo code. Since such traffic is rare, this does not affect
NI-LRP’s behavior in the normal case.

a sufficiently large user community, a server could easily be subjected
to such rates.

5 Related Work

Experiences with DEC’s 1994 California Election HTTP
server reveal many of the problems of a conventional net-
work subsystem architecture when used as a busy HTTP
server [15]. Mogul [16] suggests that novel OS support
may be required to satisfy the needs of busy servers.

Mogul and Ramakrishnan [17] devise and evaluate a
set of techniques for improving the overload behavior
of an interrupt-driven network architecture. These tech-
niques avoid receiver livelock by temporarily disabling
hardware interrupts and using polling under conditions
of overload. Disabling interrupts limits the interrupt rate
and causes early packet discard by the network interface.
Polling is used to ensure progress by fairly allocating
resources among receive and transmit processing, and
multiple interfaces.

The overload stability of their system appears to be
comparable to that of NI-LRP, and it has an advan-
tage over SOFT-LRP in that it eliminates—rather than
postpones—livelock. On the other hand, their system
does not achieve traffic separation, and therefore drops
packets irrespective of their destination during periods
of overload. Their system does not attempt to charge
resources spent in network processing to the receiving
application, and it does not attempt to reduce context
switching by processing packets lazily. A direct quanti-
tative comparison between LRP and their system is dif-
ficult, because of differing hardware/software environ-
ments and benchmarks.

Many researchers have noted the importance of early
demultiplexing to high-performance networking. De-
multiplexing immediately at the network interface point
is necessary for maintaining network quality of service
(QoS) [22], it enables user-level implementations of net-
work subsystems [2, 7, 11, 21, 23], it facilitates copy-
avoidance by allowing smart placement of data in main
memory [1, 2, 5, 6], and it allows proper resource ac-
counting in the network subsystem [14, 19]. This paper
argues that early demultiplexing also facilitates fairness
and stability of network subsystems under conditions of
overload. LRP uses early demultiplexing as a key com-
ponent of its architecture.

Packet filters [12, 18, 25] are mechanisms that imple-
ment early demultiplexing without sacrificing layering
and modularity in the network subsystem. In the most
recent incarnations of packet filters, dynamic code gen-
eration is used to eliminate the overhead of the earlier
interpreted versions [8].

Architecturally, the design of LRP is related to user-
level network subsystems. Unlike LRP, the main goal
of these prior works is to achieve low communication la-
tency and high bandwidth by removing protection bound-
aries from the critical send/receive path, and/or by en-

abling application-specific customization of protocol ser-
vices. To the best of our knowledge, the behavior of
user-level network subsystems under overload has not
been studied.

U-Net [1] and Application Device Channels (ADC)
[4, 5] share with NI-LRP the approach of using the
network interface to demultiplex incoming packets and
placing them on queues associated with communication
endpoints. With U-Net and ADCs, the endpoint queues
are mapped into the address space of application pro-
cesses. More conventional user-level networkingsubsys-
tems [7, 11, 23] share with SOFT-LRP the early demulti-
plexing of incoming packets by the OS kernel (software).
Demultiplexed packets are then handed to the appropri-
ate application process using an upcall. In all user-level
network subsystems, protocol processing is performed
by user-level threads. Therefore, network processing re-
sources are charged to the application process and sched-
uled at application priority.

Based on the combination of early demultiplexing and
protocol processing by user-level threads, user-level net-
work subsystems can be in principle expected to display
improved overload stability. Since user-level threads are
normally prioritized to compete with other user and ker-
nel threads, protocol processing cannot starve other ap-
plications as in BSD. A user-level network subsystem’s
resilience to livelock depends then on the overhead of
packet demultiplexing on the host. When demultiplexing
and packet discard are performed by the NI as in [1, 5],
the system should be free of livelock. When these tasks
are performed by the OS kernel as in [7, 11, 23], the rate
at which the system experiences livelock depends on the
overhead of packet demultiplexing (as in SOFT-LRP).
Since the systems described in the literature use inter-
preted packet filters for demultiplexing, the overhead is
likely to be high, and livelock protection poor. User-
level network subsystems share with LRP the improved
fairness in allocating CPU resources, because protocol
processing occurs in the context of the receiver process.

User-level network subsystems allow applications to
use application-specific protocols on top of the raw net-
work interface. The performance (i.e., latency, through-
put) of such protocols under overload depends strongly
on their implementation’s processing model. LRP’s tech-
nique of delaying packet processing until the application
requests the associated data can be applied to such proto-
cols. The following discussion is restricted to user-level
implementations of TCP/IP.

The user-level implementations of TCP/IP described
in the literature share with the original BSD architecture
the eager processing model. That is, a dedicated user
thread (which plays the role of the BSD software inter-
rupt) is scheduled as soon as a packet arrives, regardless
of whether or not the application is waiting for the packet.

As in BSD, this eager processing can lead to additional
context switching, when compared to LRP.

The single shared IP queue in BSD is replaced with a
per-application IP queue that is shared only among mul-
tiple sockets in a single application. As a result, the
system ensures traffic separation among traffic destined
for different applications, but not necessarily among traf-
fic destined for different sockets within a single appli-
cation. Depending on the thread scheduling policy and
the relative priority of the dedicated protocol processing
thread(s) and application thread(s), it is possible that in-
coming traffic can cause an application process to enter a
livelock state, where the network library thread consumes
all CPU resources allocated to the application, with no
CPU time left for the application threads. Traffic sepa-
ration and livelock protection within an application pro-
cess are important, for instance, in single-process HTTP
servers.

Finally, UNIX based user-level TCP/IP implementa-
tions revert to conventional network processing under cer-
tain conditions (e.g., whenever a socket is shared among
multiple processes.) In this case, the system’s overload
behavior is similar to than that of a standard BSD system.

In summary, we expect that user-level network
implementations—while designed with different goals in
mind—share some but not all of LRP’s benefits with re-
spect to overload. This paper identifies and evaluates
techniques for stability, fairness, and performance under
overload, independent of the placement of the network
subsystem (application process, network server, or ker-
nel). We fully expect that LRP’s design principles can be
applied to improve the overload behavior of kernelized,
server-based, and user-level implementations of network
subsystems.

Livelock and other negative effects of BSD’s interrupt-
driven network processing model can be viewed as an
instance of a priority inversion problem. The real-time
OS community has developed techniques for avoiding
priority inversion in communication systems in order to
provide quality of service guarantees for real-time data
streams [9, 10]. RT-Mach’s network subsystem [10],
which is based on the Mach user-level network imple-
mentation [11], performs early demultiplexing, and then
hands incoming packets for processing to a real-time
thread with a priority and resource reservation appropri-
ate for the packet’s stream. Like LRP, the system employs
early demultiplexing, schedules protocol processing at a
priority appropriate to the data’s receiver, and charges re-
sources to the receiver. Unlike LRP, it does not attempt to
delay protocol processing until the data is requested by the
application. Moreover, the overhead of the Mach packet
filter is likely to make RT-Mach vulnerable to overload.
We fully expect that LRP, when combined with real-time
thread scheduling, is applicable to real-time networking,

without requiring user-level protocols.

6 Conclusion

This paper introduces a novel network subsystem archi-
tecture suitable for network server systems. Performance
evaluations indicate that under conditions of high load,
the architecture offers increased throughput, stable over-
load behavior, and reduced interference among traffic
destined for separate communication endpoints.

More specifically, LRP’s lazy, delayed processing of
received network packets reduces context switching and
can result in increased server throughputunder high load.
LRP’s combination of early packet demultiplexing, early
packet discard, and the processing of incoming network
packets at the receiver’s priority provide improved traffic
separation and stability under overload.

A public release of our SunOS-based prototype is
planned for the Fall of 1996. The source code, along
with additional technical information can be found at
“http://www.cs.rice.edu/CS/Systems/LRP/”.

Acknowledgments

We are indebted to our OSDI shepherd Jeff Mogul and the
anonymous reviewers, whose comments have helped to
improve this paper. Also, thanks to Thorsten von Eicken
and the U-Net group at Cornell for making the U-Net NI
firmware available to us.

References

[1] A. Bas, V. Buch, W. Vogels, and T. von Eicken.
U-Net: A user-level network interface for paral-
lel and distributed computing. In Proceedings of
the Fifteenth ACM Symposium on Operating Sys-
tem Principles, pages 40–53, 1995.

[2] G. Buzzard, D. Jacobson, S. Marovich, and
J. Wilkes. Hamlyn: A high-performance network
interface with sender-based memory management.
In Proceedings of the Hot Interconnects III Sympo-
sium, Palo Alto, CA, Aug. 1995.

[3] R. P. Draves, B. N. Bershad, R. F. Rashid, and R. W.
Dean. Using continuations to implement thread
management and communication in operating sys-
tems. In Proceedings of 13th ACM Symposium on
Operating Systems Principles, pages 122–36. Asso-
ciation for Computing Machinery SIGOPS, October
1991.

[4] P. Druschel. Operating systems support for high-
speed networking. Technical Report TR 94-24, De-
partment of Computer Science, University of Ari-
zona, Oct. 1994.

[5] P. Druschel, B. S. Davie, and L. L. Peterson. Ex-
periences with a high-speed network adaptor: A
software perspective. In Proceedings of the SIG-
COMM ’94 Conference, pages 2–13, London, UK,
Aug. 1994.

[6] P. Druschel and L. L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In Pro-
ceedings of the Fourteenth ACM Symposium on
Operating System Principles, pages 189–202, Dec.
1993.

[7] A. Edwards, G. Watson, J. Lumley, D. Banks,
C. Calamvokis, and C. Dalton. User-space pro-
tocols deliver high performance to applications on
a low-cost gb/s LAN. In Proceedings of the SIG-
COMM ’94 Conference, pages 14–23, London, UK,
Aug. 1994.

[8] D. Engler and M. F. Kaashoek. DPF: Fast, flexible
message demultiplexing using dynamic code gen-
eration. In Proceedings of the SIGCOMM ’96 Con-
ference, pages 53–59, Palo Alto, CA, Aug. 1996.

[9] K. Jeffay. On Latency Management in Time-Shared
Operating Systems. In Proceedings of the 11th
IEEE Workshop on Real-Time Operating Systems
and Software, pages 86–90, Seattle, WA, May 1994.

[10] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar.
Predictable communication protocol processing in
real-time Mach. In the proceedings of IEEE Real-
time Technology and Applications Symposium, June
1996.

[11] C. Maeda and B. N. Bershad. Protocol service
decomposition for high-performance networking.
In Proceedings of the Fourteenth ACM Symposium
on Operating Systems Principles, pages 244–255,
1993.

[12] S. McCanne and V. Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In
Proceedings of the USENIX ’93 Winter Conference,
pages 259–269, Jan. 1993.

[13] M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of the
4.4BSD Operating System. Addison-Wesley Pub-
lishing Company, 1996.

[14] J. C. Mogul. Personal communication, Nov. 1992.

[15] J. C. Mogul. Network behavior of a busy web server
and its clients. Technical Report WRL 95/5, DEC
Western Research Laboratory, Palo Alto, CA, 1995.

[16] J. C. Mogul. Operating system support for busy in-
ternet servers. In Proceedings of the Fifth Workshop
on Hot Topics in Operating Systems (HotOS-V), Or-
cas Island, WA, May 1995.

[17] J. C. Mogul and K. K. Ramakrishnan. Eliminat-
ing receive livelock in an interrupt-driven kernel.
In Proc. of the 1996 Usenix Technical Conference,
pages 99–111, 1996.

[18] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The
packet filter: An efficient mechanism for user-level
network code. In Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles, pages
39–51, Nov. 1987.

[19] A. B. Montz et al. Scout: A communications-
oriented operating system. Technical Report TR
94-20, Department of Computer Science, Univer-
sity of Arizona, June 1994.

[20] K. K. Ramakrishnan. Scheduling issues for inter-
facing to high speed networks. In Proc. Globe-
com’92 IEEE Global Telecommunications Confer-
ence, pages 622–626, Orlando, FL, Dec. 1992.

[21] J. M. Smith and C. B. S. Traw. Giving applications
access to Gb/s networking. IEEE Network, 7(4):44–
52, July 1993.

[22] D. L. Tennenhouse. Layered multiplexing consid-
ered harmful. In H. Rudin and R. Williamson,
editors, Protocols for High-Speed Networks, pages
143–148, Amsterdam, 1989. North-Holland.

[23] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska.
Implementing network protocols at user level. In
Proceedings of the SIGCOMM ’93 Symposium,
pages 64–73, Sept. 1993.

[24] G. Wright and W. Stevens. TCP/IP Illustrated Vol-
ume 2. Addison-Wesley, Reading, MA, 1995.

[25] M. Yuhara, B. N. Bershad, C. Maeda, and J. E.
Moss. Efficient packet demultiplexing for multi-
ple endpoints and large messages. In Winter 1994
Usenix Conference, pages 153–165, Jan. 1994.

