
Zeus Technology

Zeus House

Cowley Road

Cambridge

England

CB4 0ZT

Phone: +44 1223 525000

Fax: +44 1223 525100

Email: info@zeus.com

Web: http://www.zeus.com/

 Date: 05 March 2002

 Author: Julian Midgley

 Version: 1.0

Zeus Technology

Benchmarking Web Servers on

Linux

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 2 of 19

Table of contents
Table of contents ... 2

1 Overview.. 3

1.1 Executive summary... 3

1.2 Copyright notice ... 3

2 Principles of HTTP benchmarking ... 4

2.1 A typical benchmarking installation ... 4

3 Likely bottlenecks.. 6

3.1 Network... 6

3.2 Client machines .. 6

4 Factors to measure when benchmarking a web server.. 7

5 Conducting a benchmark .. 8

5.1 Simple static benchmarking using httperf .. 8

5.2 Static benchmarking with apachebench ... 9

5.3 Automating static benchmarking with autobench .. 10

5.3.1 Obtaining autobench ... 10

5.3.2 Procedure for benchmarking with autobench .. 10

5.4 Benchmarking using replayed sessions .. 12

6 Performance tuning ... 14

6.1 General tuning tips.. 14

6.2 Tuning file descriptor limits on Linux ... 15

6.2.1 Increasing the file descriptor limit ... 15

7 Useful benchmarking tools.. 17

8 References and resources ... 18

9 Contact Information... 19

9.1 Office Contact Details .. 19

9.2 Zeus products and services .. 19

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 3 of 19

1 Overview

1.1 Executive summary
This document discusses how to go about benchmarking web servers running

on Linux. It seeks to identify some of the common pitfalls that can lead to

erroneous results, and provides advice on tuning web server systems for

optimum performance.

1.2 Copyright notice
This white paper is based on ‘The Linux HTTP Benchmarking HOWTO’,

copyright of Julian T. J. Midgley. All other material is copyright of Zeus

Technology Ltd.

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 4 of 19

2 Principles of HTTP benchmarking
In benchmarking a web server, the aim is typically to determine the number

of requests per second the server is able to sustain, whilst satisfying certain

constraints. Typical constraints include:

• the requirement that a client should have to wait no longer than 'n'

seconds for a response. ('n' is typically low, around 5-8 seconds);

• no valid request should receive an error message as a response;

• the requests should be selected at random from a large document root, to

ensure that the web server's caching mechanism is fully exercised.

In order to conduct web server benchmarking, a system with at least the

following components is required:

• a server running the web server software under test;

• clients running load generating software in sufficient number so as to

avoid their saturation;

• a network connecting the clients to the server which is free of other traffic,

which will not be saturated by the planned tests.

Under no circumstances should one attempt to benchmark a server by

running the load generating software on the server itself. The web server and

benchmark software will compete for CPU, and any results obtained will be

extremely inaccurate.

2.1 A typical benchmarking installation

Figure 1 - A typical benchmarking network

Figure 1 illustrates a typical network layout for web server benchmarking. A

number of clients are connected via a switch to the server under test. The

server in this example has two network cards, to increase the bandwidth

available to it, and decrease the likelihood of the network becoming the

bottleneck during the tests. In practice, the actual bandwidth to the server

that will be required will be a function of the server hardware, and the type of

tests being performed. It is possible to saturate a server from a single client

without saturating the network when dynamic content generators are being

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 5 of 19

tested or when requesting large numbers of very small files, but a web server

serving large static files may be able to supply data at several hundred Mbps.

The network in use is private, and no machines other than those required for

the tests are connected to it, in order to eliminate the effects of externally-

generated network traffic spikes on the tests.

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 6 of 19

3 Likely bottlenecks
In order for the benchmark results to be useful, it is critical that the server

under test is the only bottleneck in the system. It is all too easy to allow the

network or the client machines to become the bottleneck, giving entirely

inaccurate results. Preventing this can be difficult, and usually requires

significant expenditure on hardware. For example, conducting an accurate

SPECweb99 test against a modest 750 MHz Pentium III server will require

more than 100 Mbps of bandwidth to the server (i.e. several network cards)

and at least four client machines.

3.1 Network
When testing even the most modest of servers, at least 100 Mbps will be

required between the clients and server. A 400 MHz Celeron is easily able to

saturate a 10 Mbps network when serving static content, and will saturate a

100 Mbps network when serving large files. For SPECweb99 benchmarking,

several network cards or gigabit ethernet to the server will be required.

When conducting the tests, monitor network I/O1 to see if it comes close to

the network limits; tools such as httperf report this for you. (Remember that

on an Ethernet network, maximum throughput in practice is typically no more

than 80-90% of the rated maximum (i.e. a 100Mbps network will typically

support a maximum throughput of no more than 90Mbps).)

3.2 Client machines
It is critical that the client machines themselves should not become the

bottleneck. The likelihood of this occurring varies with the benchmarking

software in use. To eliminate this as a possibility, several clients are used. To

determine whether or not the clients are the bottleneck, run the same

benchmark twice with different numbers of clients (such that the requested

load on the server is the same in each case). If the results differ, then the test

was client-bottlenecked, and the number of clients should be increased. Never

use system load or percentage CPU usage on the clients to determine whether

or not they are bottlenecked; several benchmarking tools (such as httperf)

report 100% CPU usage even when they have spare capacity2.

1 This could be done, for instance, by using netstat –s or possibly ifconfig depending on the brand of UNIX

you are using.
2 httperf executes in a tight loop wherever possible to avoid being affected by operating system scheduling

characteristics.

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 7 of 19

4 Factors to measure when benchmarking a
web server
A number of different quantities can be measured when examining a web

server's performance. This section provides a brief description of each.

• Requests per second

The number of requests per second that the web server is able to sustain.

Useful as a raw measure of performance. Remember that in measuring

this, one can choose either to send a large number of requests down a

single connection (using HTTP/1.1 persistent connections) or initiate a new

connection for each request. Real world servers typically see between 5

and 20 requests per connection, so if you are using persistent connections,

it is sensible to limit the number of requests sent down each connection to

around this value.

• Simultaneous connections

The number of simultaneous connections the web server can handle

without errors is an important metric. Some real world servers have to

deal with tens of thousands of simultaneous connections.

• Data throughput

The number of bytes transferred per unit time. Usually useful only in

conjunction with other metrics (it's easy to achieve high throughput

figures when transferring a single large file – less easy to do so when

trying to transfer numerous small files down a large number of concurrent

connections).

• The number of conforming connections

This metric is used in the SPECweb99 benchmark. The benchmark

measures the number of simultaneous connections that the server can

support; in order for a connection to be considered 'conformant' it must

sustain a throughput of 320,000 bits per second.

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 8 of 19

5 Conducting a benchmark
This section explains how to conduct a variety of benchmarks against a

server.

5.1 Simple static benchmarking using httperf
In a simple static benchmark, the client or clients make a large number of

requests for the same file from the server, and the achieved throughput

(typically the number of requests per second served) is measured.

This gives some measurement of the server's raw performance, but is very

different from real world conditions; since only a single file is requested, the

web server's caching algorithm isn't exercised at all.

The following command can be used to set up a static benchmark using

'httperf':

httperf --server testhost.mydomain.com --uri /index.html \
 --num-conn 5000 --num-call 10 --rate 200 --timeout 5

This command instructs httperf to benchmark the URL

http://testhost.mydomain.com/index.html. The option --num-conn 5000

instructs httperf to attempt 5000 connections, --num-call 10 causes it to

issues 10 requests per connection, and --rate 200 specifies that httperf

should attempt to create 200 new connections every second (combined with -

-num-call 10, this results in a demanded request rate of 2000 requests per

second). --timeout 5 sets a five second timeout; any requests that aren't

answered within this time will be reported as errors.

The results of such a test, run from a single client machine, are given below:

Maximum connect burst length: 1

Total: connections 4986 requests 39620 replies 39620 test-duration 29.294 s

Connection rate: 170.2 conn/s (5.9 ms/conn, <=1022 concurrent connections)

Connection time [ms]: min 922.1 avg 4346.7 max 8045.6 median 4414.5 stddev 1618.6

Connection time [ms]: connect 643.6

Connection length [replies/conn]: 10.000

Request rate: 1352.5 req/s (0.7 ms/req)

Request size [B]: 58.0

Reply rate [replies/s]: min 1195.0 avg 1344.7 max 1393.1 stddev 84.1 (5 samples)

Reply time [ms]: response 370.3 transfer 0.0

Reply size [B]: header 167.0 content 2048.0 footer 0.0 (total 2215.0)

Reply status: 1xx=0 2xx=39620 3xx=0 4xx=0 5xx=0

CPU time [s]: user 1.35 system 27.95 (user 4.6% system 95.4% total 100.0%)

Net I/O: 3002.2 KB/s (24.6*10^6 bps)

Errors: total 1038 client-timo 1024 socket-timo 0 connrefused 0 connreset 0

Errors: fd-unavail 14 addrunavail 0 ftab-full 0 other 0

The first thing to notice is that the request rate (1352.5 requests/sec) is less

than the requested request rate (2000 requests/sec). There are two possible

explanations for this - one is that the server is saturated, and is unable to

sustain 2000 requests/sec; the other possibility is that the client is saturated.

It is possible to distinguish between these possibilities by running the test a

second time, this time using two client machines, with --rate set to 100 on

each of them, and summing the results obtained. If the combined request rate

is around 2000, then the client was saturated in the first test - if it's closer to

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 9 of 19

1300, then the server was saturated. (In the latter case, one should conduct

at least one further test to confirm that the clients can happily sustain at least

1000 requests per second.)

In any event, for the server tested in the example above, it was in fact the

server which was saturated. So we can deduce that the server under test is

unable to sustain 2000 requests per second for a file of 2048 bytes. This is

useful information, but it would be more useful to know at what number of

requests per second the server became saturated, so that we know its limits.

This is not always obvious. When the server is overloaded, queuing effects

come into play, causing performance to drop off sharply. To establish the

point at which the server becomes saturated, we would need to iteratively

zero in on the limit.

It's usual, therefore, to conduct a number of tests, increasing the demanded

number of requests per second each time, and recording the number of

replies per second actually received. A graph of the results clearly defines the

web server's behaviour, and similar graphs for different web servers may be

used to compare performance.

The error information returned by httperf should always be examined. In this

case we see that there were 1038 errors, with 1024 of these being client

timeouts (caused by responses that took longer than five seconds to be

returned to httperf). In addition, there were 14 'fd-unavail' errors; these are

caused by httperf trying to open a new file descriptor, and receiving an error

because the per process limit on the number of open files had been exceeded.

Notice that the reported number of concurrent connections is close to 1024,

which is the default open files limit per process on Linux; httperf use a file

descriptor for each connection it has open concurrently. Refer to the section

on Performance Tuning below for information on how to increase the file

descriptor limits on Linux.

It is also a good idea to keep an eye on the network I/O statistics; you should

watch these to ensure that the network itself isn't saturated. The 'Net I/O' line

above shows a throughput of 24.6 Mbps, which is well within bounds for the

100 Mbps network the test was run on. If this were to get close to 80-90

Mbps, it would be sensible to increase the bandwidth between the client and

server (by installing more network cards, or moving to gigabit Ethernet).

5.2 Static benchmarking with apachebench
Apachebench is a simple benchmarking utility, which allows the number of

requests and the number of simultaneous connections to be varied. It is

useful for performing quick tests of a server, but the statistics it generates are

not as reliable as those produced by httperf. Apachebench tends to generate

requests in bursts rather than smoothly over time, often triggering

hysteresis3.

The following is an example of a typical use of apachebench:

ab -n 1000 -c 200 http://www.test.com/foo/bar.html

The flags have the following meanings:

• -n Specifies the number of requests to make

3 The lagging of an effect behind its cause, as when the change in magnetism of a body lags behind changes in

the magnetic field.

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 10 of 19

• -c Specifies the number of concurrent connections to open

The following is an example of apachebench output:

This is ApacheBench, Version 1.3c <Revision: 1.41 > apache-1.3

Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/

Copyright (c) 1998-1999 The Apache Group, http://www.apache.org/

Server Software: Zeus/3.4

Server Hostname: test.xenoclast.org

Server Port: 80

Document Path: /

Document Length: 2049 bytes

Concurrency Level: 200

Time taken for tests: 24.537 seconds

Complete requests: 1000

Failed requests: 0

Total transferred: 2189000 bytes

HTML transferred: 2049000 bytes

Requests per second: 40.75

Transfer rate: 89.21 kb/s received

Connection Times (ms)

 min avg max

Connect: 0 28 201

Processing: 237 3997 9634

Total: 237 4025 9835

5.3 Automating static benchmarking with autobench
Autobench is an Open Source Perl script designed to assist in the automation

of benchmarking with httperf. It runs httperf a number of times against the

target server, increasing the requested request rate each time, and produces

output in the form of a CSV or TSV file which can be imported directly into a

spreadsheet for further analysis or graphing.

Autobench also enables the easy comparison of two different web servers - it

can test two servers and amalgamate the results in the same table, enabling

comparative graphs to be drawn quickly and easily.

5.3.1 Obtaining autobench
Autobench can be obtained from http://www.xenoclast.org/autobench/.

Download the autobench tarball to your client machine, untar it, and run

make; make install to install the autobench script.

5.3.2 Procedure for benchmarking with autobench

First, you should establish the range over which you wish to conduct the tests,

and verify that neither the client machine nor the network become bottlenecks

at the upper limit of this range.

Decide what values of --num-call and --time-out you are going to use during

the tests. --num-call specifies the number of requests that will be sent down

an individual connection - in practice this should be similar to the number of

elements a browser might request from a typical HTML page – somewhere

between 5 and 20 on average. --time-out should probably be somewhere

between 5 and 10 seconds - research has indicated that most people will give

up on a site if it takes more than 8 seconds to download a page.

Now estimate the highest number of requests per second that your test server

or servers can sustain. Depending on the hardware and the web server

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 11 of 19

software you are using, this will probably be between 500 and 2000 requests

per second. The number of requests per second demanded by httperf is the

product of --num-call and --rate, so choose the value of --rate that will

generate the number of requests per second you are after.

For example, if you were to assume that the web server would be saturated

by 1500 requests per second, and you were sending 10 requests down each

connection, then you would set --rate to 150. Now conduct an httperf test

of the server using these values:

httperf --server testhost --uri/test/file.html --num-call 10 \
 --num-conn 5000 --timeout 5 --rate 150

Record the number of requests per second that the server achieves, and

confirm that this is less than the demanded number of requests per second (if

not, then the server isn't yet saturated, and you should increase the rate

accordingly).

Check that your network isn't saturated by looking at the Net I/O that httperf

reports.

Finally, check that the client machine isn't the bottleneck. The easiest way to

do this is to run the same test from two client machines simultaneously with

each requesting half the rate of the previous test. Sum the results, and check

that they correspond to those you obtained the first time; if they are

significantly better, then it is likely that the client machine was saturated

during the first test.

Once you have established an upper limit for the tests, and have confirmed

that neither the client machine or network become bottlenecked at this value,

you are ready to run autobench to benchmark your server.

The first time you run autobench it will create a configuration file,

autobench.conf, in your home directory. You should edit this file to set the

values for --num_call, --timeout and the hostname and URI of your server.

You can then run autobench, using a command similar to:

autobench --single_host --file bench_results.tsv --low_rate 40 \
 --high_rate 200 --rate_step 20 [--quiet]

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 12 of 19

Figure 2 - Example graph drawn from autobench output

The optional --quiet option will prevent autobench from displaying the

httperf output after each test. --low_rate and --high_rate set the lower and

upper rate bounds for the test, and --rate_step sets the amount to increase

the rate by on each iteration.

The autobench output can then be read into a spreadsheet or graphing

package for graphing. A example graph drawn from autobench output is

shown in figure 2.

5.4 Benchmarking using replayed sessions
Tools such as httperf also allow more sophisticated testing to be conducted

using a series of requests for different pages, designed to simulate a real

user's progress through a site. This type of testing is useful for estimating the

actual performance that a web server will achieve in practice, and is

particularly useful for testing dynamically generated sites where a significant

proportion of the requests will be for pages generated through database

access.

The principle is straightforward - a file is created containing the sequence of

requests to be performed (often with specified delays (simulating read time)

between individual requests). It is possible to generate such a file

automatically from web logs.

This file is then passed to the benchmarking program, and the tester is able to

specify how many concurrent sessions should be attempted. The results

presented depend on the benchmarking software in use - httperf returns data

similar to that obtained from benchmarking a single URL, with the addition of

some session specific information.

An example of the httperf command to generate such a benchmark follows:

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 13 of 19

httperf --server www.test.com --wsesslog 1000,2,session.log \
 --max-piped-calls 5 --rate 20

The file session.log contains the list of URLs - see below for a discussion of its

contents. The first two arguments to the --wsesslog option specify the total

number of sessions to attempt, and the second is the default delay (in

seconds) between each request in a session (if none is specified in

session.log itself).

--max-piped-calls specifies the maximum number of requests which will be

sent down an individual TCP connection (using HTTP 1.1 persistent

connections), and --rate is the rate at which new sessions will be created (in

sessions per second).

The man page for httperf specifies the format of the session.log file in detail;

a brief overview is given here. Each non-blank line in the file is the relative

path (URI) to be requested from the server; optionally, it may also specify the

HTTP method to be used, and a delay (httperf will wait this long before

requesting the next URL from the server). If a line begins with whitespace

then it will be requested as part of a burst of requests sent out immediately

after the last request for a line which did not begin with whitespace. A blank

line separates one session from the next, and lines beginning with '#' are

comments.

An example will make things clearer (the example below has been taken from

the httperf man page):

session 1 definition (this is a comment)
/foo.html think=2.0
 /pict1.gif
 /pict2.gif
/foo2.html method=POST contents='Post data'
 /pict3.gif
 /pict4.gif

session 2 definition
/foo3.html method=POST contents="Multiline\ndata"
/foo4.html method=HEAD

The above file specifies two sessions. The first session begins with a request

for foo.html, immediately followed by requests for /pict1.gif and /pict2.gif

(in a burst - presumably these are images forming part of the same page);

httperf will then wait for the 'think time' of 2 seconds, before issuing a POST

request for foo2.html, followed immediately by its associated images. The

second session then begins, and comprises a POST request and a HEAD

request separated by the default think time (the second argument to the

--wsesslog option).

The program sesslog supplied in the autobench package can be used to

generate session log files for use with httperf from an NCSA Common Log

Format, or Combined Log Format log file. See the sesslog man page for more

details.

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 14 of 19

6 Performance tuning

6.1 General tuning tips
The essentials of tuning Apache for optimum performance are discussed in

depth at http://httpd.apache.org/docs/misc/perf-tuning.html. Some of the

advice given here is definitely Apache-specific, but parts (or at least the

principles behind them) are more generally applicable.

Some simple rules follow:

• Only enable those modules you absolutely require. Each additional module

implies additional processing overhead, even though you may not be

making active use of the module on your site.

• Where possible, use static content instead of dynamic content. If you are

generating weather reports that are updated once an hour, then it is

better to write a program that generates a static file once an hour than to

have users run a CGI to generate the report on the fly.

• When choosing an API for your dynamic applications, choose the fastest

and most appropriate one available. CGI may be easy to program for, but

it forks a process for each request - usually an expensive and unnecessary

procedure. FastCGI is a better alternative, as is Apache's mod_perl - both

provide persistency and can increase performance significantly. With Zeus

Web Server, in-process ISAPI provides tight integration with the server

and is therefore extremely efficient and high performance (even when run

out-of-process), though can be more difficult to write for. More

information on the APIs supported by Zeus Web Server and examples of

their use can be found at http://support.zeus.com/doc/api/.

• If your server performance is a critical issue for you (or you just want to

get the maximum number of bangs for your bucks), then choose a high

performance web server instead of Apache. Apache's process model does

not stand up to increased load; it uses an individual process for each

connection, leading to massive context switching when you have a large

number of simultaneous connections. Furthermore, Apache is limited to

256 simultaneous connections unless recompiled with a different value for

MaxClients4. Single process per CPU servers such as Zeus and Boa are

significantly faster; Zeus has held the SPECweb96 and 99 records for the

majority of the last five years5. Furthermore, recent studies6 have shown

that Apache 2, whether using the same process model as Apache 1, or

using the new multithreaded architecture, offers little performance

advantage when scaled to large numbers of simultaneous connections.

For enterprise web sites, therefore, or those looking to service high

numbers of concurrent clients, Zeus Web Server remains the highest

performance web server available.

4 Arguably this limit was imposed for a reason, so increasing the value is likely not to yield the benefits of

linear scalability that web servers based on a single-process model can achieve.
5 http://www.spec.org/osg/web99/results/web99.html
6 Please refer to the ‘Comparing High Performance Web Servers’ which can be found at

http://support.zeus.com/doc/tech/zws_comparison.pdf

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 15 of 19

6.2 Tuning file descriptor limits on Linux
Linux limits the number of file descriptors that any one process may open7;

the default limits are 1024 per process. These limits can prevent optimum

performance of both benchmarking clients (such as httperf and Apachebench)

and of the web servers themselves (Apache is not affected, since it uses a

process per connection, but single process web servers such as Zeus use a file

descriptor per connection, and so can easily fall foul of the default limit).

The open file limit is one of the limits that can be tuned with the ulimit

command. The command ulimit -aS displays the current limit, and ulimit -aH

displays the hard limit. The hard limit can be lowered below and raised above

the limit displayed by the superuser, but not beyond the limit imposed by the

kernel (which cannot be increased without tuning kernel parameters in /proc).

The following is an example of the output of ulimit -aH. You can see that the

current shell (and its children) is restricted to 1024 open file descriptors.

core file size (blocks) unlimited
data seg size (kbytes) unlimited
file size (blocks) unlimited
max locked memory (kbytes) unlimited
max memory size (kbytes) unlimited
open files 1024
pipe size (512 bytes) 8
stack size (kbytes) unlimited
cpu time (seconds) unlimited
max user processes 4094
virtual memory (kbytes) unlimited

6.2.1 Increasing the file descriptor limit

The file descriptor limit can be increased using the following procedure:

1. Edit /etc/security/limits.conf and add the lines:

* soft nofile 1024
* hard nofile 65535

2. Edit /etc/pam.d/login, adding the line:

session required /lib/security/pam_limits.so

3. The system file descriptor limit is set in /proc/sys/fs/file-max. The

following command will increase the limit to 65535:

echo 65535 > /proc/sys/fs/file-max

4. You should then be able to increase the file descriptor limits using:

ulimit -n unlimited

The above command will set the limits to the hard limit specified in

/etc/security/limits.conf.

Note that you may need to log out and back in again before the changes take

effect.

7 As do other operating systems. Refer to the ‘Running SPECweb99 with Zeus’ white paper available at

http://support.zeus.com/doc/tech/SPECweb99.pdf

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 16 of 19

For further information on increasing the system file descriptor limit for non-

Linux versions of UNIX, please refer to our FAQ entry on increasing this limit:

http://support.zeus.com/faq/zws/v4/entries/filedescriptors_shortage.html.

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 17 of 19

7 Useful benchmarking tools
The following are some of the commonly used benchmarking tools:

• httperf

A useful tool, capable of doing everything from simple requests for a single

file to simulating client sessions. Available from:

http://www.hpl.hp.com/personal/David_Mosberger/httperf.html

• Apachebench

A simple benchmarking tool, distributed with the Apache Web Server. The

source is in the file src/support/ab.c in the Apache source tree.

• Autobench

A Perl script for automating a series of httperf tests against the same

server (or a pair of servers). It parses the output of httperf, and

summarises the results of the tests in a CSV or TSV file that can be

imported directly into a spreadsheet for further analysis/graphing.

Available from: http://www.xenoclast.org/autobench/

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 18 of 19

8 References and resources
1. ‘The Linux HTTP Benchmarking HOWTO’, Julian Midgley's original paper on

Linux Benchmarking: http://www.xenoclast.org/doc/benchmark/

2. ‘httperf - A Tool for Measuring Web Server Performance’, David

Mosberger's paper on httperf:

http://www.hpl.hp.com/personal/David_Mosberger/httperf/

3. The SPECweb99 benchmark: http://www.spec.org/osg/web99/

4. ‘Running SPECweb99 with Zeus’, a white paper describing the SPECweb99

benchmark and how to optimise Zeus Web Server to perform well in the

tests: http://support.zeus.com/doc/tech/SPECweb99.pdf

5. ‘Comparing High Performance Web Servers’, a study by Zeus Technology

in to the relative performances of high performance web servers such as

Zeus Web Server, Apache 2.0, Tux and Chromium X15:

http://support.zeus.com/doc/tech/zws_comparison.pdf

6. ‘Web Server Performance and Scalability’, a white paper from Zeus

Technology, useful in particular for its discussion of Class-Based Queuing,

a method of benchmarking real-world conditions, such as simulating

multiple, simultaneous, slow modem connections using the ratelimit tool:

http://support.zeus.com/doc/tech/perf.pdf

7. ‘Improving Web Server Performance with Zeus Load Balancer’, a study by

Zeus in to how the performance of a cluster of Apache web servers are

susceptible to overload due to slow modem connections, and how a load

balancing solution can improve response times and overall performance:

http://support.zeus.com/doc/tech/lbperf.pdf

8. Apache Performance Notes: http://httpd.apache.org/docs/misc/perf-

tuning.html

9. Linux Performance Tuning website: http://linuxperf.nl.linux.org/

Benchmarking Web Servers on Linux v1.0 05 March 2002

Copyright © 2002 Zeus Technology/Julian T.J. Midgley Page 19 of 19

9 Contact Information

9.1 Office Contact Details
Zeus Technology Ltd.

Zeus House

Cowley Road

Cambridge

CB4 0ZT

UK

Tel.: +44 (0)1223 525000

Fax: +44 (0)1223 525100

9.2 Zeus products and services
For more information about our products, please visit:

 http://www.zeus.com/products/

To find out more about our consultancy, technical support and training

services, please visit:

 http://www.zeus.com/services/

