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Abstract

Since web workloads are known to vary dynamically with time, in this paper, we argue that dynamic resource
allocation techniques are necessary to provide guarantees to web applications running on shared data centers. To
address this issue, we use a system architecture that combines online measurements with prediction and resource al-
location techniques. To perform resource allocation, we model a server resource that services multiple applications
as a generalized processor sharing (GPS) server. We use a time-domain description of the server to model transient
system states and use a constrained non-linear optimization technique to dynamically allocate the server resources.
The parameters of this model are continuously updated using an online monitoring and prediction framework. Our
prediction technique is based on an autoregressive stochastic process model. The main goal of our techniques is to
react to changing workloads by dynamically varying the resource shares of applications. In addition, these tech-
niques can also handle nonlinearity in system behavior unlike some prior techniques. We evaluate our techniques
using simulations with synthetic as well as real-world web workloads. Our results show that these techniques can
judiciously allocate system resources, especially under transient overload conditions.

1 Introduction

1.1 Motivation

The growing popularity of the World Wide Web has led to the advent of Internet data centers that host third-party web

applications and services. A typical web application consists of a front-end web server that services HTTP requests,

a Java application server that contains the application logic, and a backend database server. In many cases, such

applications are housed on managed data centers where the application owner pays for (rents) server resources, and in

return, the application is provided guarantees on resource availability and performance. To provide such guarantees,

the data center—typically a cluster of servers—must provision sufficient resources to meet application needs. Such

provisioning can be based either on a dedicated or a shared model. In the dedicated model, some number of cluster

nodes are dedicated to each application and the provisioning technique must determine how many nodes to allocate to

the application. In the shared model, which we consider in this paper, an application can share node resources with

other applications and the provisioning technique needs to determine how to partition resources on each node among

competing applications.
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Since node resources are shared, providing guarantees to applications in the shared data center model is more com-

plex. Typically such guarantees are provided by reserving a certain fraction of node resources (CPU, network, disk)

for each application. The fraction of the resources allocated to each application depends on the expected workload

and the QoS requirements of the application. The workload of web applications is known to vary dynamically over

multiple time scales [13] and it is challenging to estimate such workloads a priori (since the workload can be in-

fluenced by unanticipated external events—such as a breaking news story—that can cause a surge in the number of

requests accessing a web site). Consequently, static allocation of resources to applications is problematic—while over-

provisioning resources based on worst case workload estimates can result in potential underutilization of resources,

under-provisioning resources can result in violation of guarantees. An alternate approach is to allocate resources to ap-

plications dynamically based on the variations in their workloads. In this approach, each application is given a certain

minimum share based on coarse-grain estimates of its resource needs; the remaining server capacity is dynamically

shared among various applications based on their instantaneous needs. To illustrate, consider two applications that

share a server and are allocated 30% of the server resources each; the remaining 40% is then dynamically shared at

run-time so as to meet the guarantees provided to each application. Such dynamic resource sharing can yield potential

multiplexing gains, while allowing the system to react to unanticipated increases in application load and thereby meet

QoS guarantees. Dynamic resource allocation techniques that can handle changing application workloads in shared

data centers is the focus of this paper.

1.2 Research Contributions

In this paper, we present techniques for dynamic resource allocation in shared web servers. We model various server

resources using generalized processor sharing (GPS) [26] and assume that each application is allocated a certain

fraction of a resource. Using a combination of online measurement, prediction and adaptation, our techniques can

dynamically determine the resource share of each application based on (i) its QoS (response time) needs and (ii) the

observed workload.

We make three specific contributions in this paper. First we use a time-domain description to model a server

resource that supports multiple class-specific queues; each queue represents the workload from an application and is

serviced using GPS. Such an abstract GPS-based model is applicable to many server resources—both hardware and

software—such as the network interface, the CPU, the disk and socket accept queues. Using this model, we define a

non-linear optimization problem that is solved dynamically to determine the resource share of each application based

on its workload and QoS requirements. An important feature of our optimization-based approach is that it can handle

non-linearity in the system behavior.

Determining resource shares of applications using such an online approach is crucially dependent on an accurate

estimation of the workload. A second contribution of our work is a prediction algorithm that estimates the workload
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parameters using online measurements, and uses these parameters to predict the expected load in the near future to

enable better resource allocation.

Third, we evaluate the effectiveness of our online prediction and allocation techniques using simulations. We use

both synthetic workloads and real-world web traces for our evaluation and show that our techniques adapt to changing

workloads fairly effectively, especially under transient overload conditions.

The rest of the paper is structured as follows. We formulate the problem of dynamic resource allocation in shared

web servers in Section 2. In Section 3, we present a time-domain description of a resource model, and describe our

online prediction and optimization-based techniques for dynamic resource allocation. Results from our experimental

evaluation are presented in Section 4. We discuss related work in Section 5 and present our conclusions and future

work in Section 6.

2 Problem Formulation and System Model

In this section, we first present an abstract GPS-based model for a server resource and then formulate the problem of

dynamic resource allocation in such a GPS-based system.

2.1 Resource Model

We model a server resource using a system of n queues, where each queue corresponds to a particular application (or

a class of applications) running on the server. Requests within each queue are assumed to be served in FIFO order

and the resource capacity C is shared among the queues using GPS. To do so, each queue is assigned a weight and

is allocated a resource share in proportion to its weight. Specifically, a queue with a weight wi is allocated a share

φi = wi
∑

j wj
(i.e., allocated (φi · C) units of the resource capacity when all queues are backlogged). Several practical

instantiations of GPS exist—such as weighted fair queuing (WFQ) [14], self-clocked fair queuing [16], and start-time

fair queuing [17]—and any such scheduling algorithm suffices for our purpose. We note that these GPS schedulers

are work-conserving—in the event a queue does not utilize its allocated share, the unused capacity is allocated fairly

among backlogged queues. Our abstract model is applicable to many hardware and software resources found on a

server; hardware resources include the network interface bandwidth, the CPU and in some cases, the disk bandwidth,

while software resource include socket accept queues in a web server servicing multiple virtual domains [22, 27].

2.2 Problem Definition

Consider a shared server that runs multiple third-party applications. Each such application is assumed to specify a

desired quality of service; the QoS requirements are specified in terms of a target response time. The goal of the
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system is to ensure that the mean response time seen by application requests (or some percentile of the response time)

is no greater than the desired target response.

In general, each incoming request is serviced by multiple hardware and software resources on the server, such as

the CPU, NIC, disk, etc. We assume that the specified target response time is split up into multiple resource-specific

response times, one for each such resource. Thus, if each request spends no more than the allocated target on each

resource, then the overall target response time for the server will be met.1

Since each resource is assumed to be scheduled using GPS, the target response time of each application can be met

by allocating a certain share to each application. The resource share of an application will depend not only on the spe-

cific response time but also the load in each application. Since the workload seen by an application varies dynamically,

so will its resource share. In particular, we assume that each application is allocated a certain minimum share φmin
i of

the resource capacity; the remaining capacity 1−
∑

j φmin
j is dynamically allocated to various applications depending

on their current workloads (such that their target response time will be met). Formally, if di denotes the target response

time of application i and T̄i is its observed mean response time, then the application should be allocated a share φi,

φi ≥ φmin
i , such that T̄i ≤ di.

Since each resource has a finite capacity and the application workload can exceed capacity during periods of heavy

loads, the above goal can not always be met (especially during transient overloads). Consequently, we redefine our

system goal to account for overloads as follows. We use the notion of utility to represent the satisfaction of an

application based on its current allocation. An application remains satisfied so long as its allocation φi yields a mean

response time T̄i no greater than the target di (i.e., T̄i ≤ di). The discontent of an application grows as its response

time deviates from the target di. This discontent can be captured in many different ways. In the simplest case, we can

use a piecewise linear function to represent discontent:

Di(T̄i) =

{

0 if T̄i ≤ di

(T̄i − di) if T̄i > di
(1)

In this scenario, the discontent grows linearly when the observed response time deviates from (and exceeds) the

specified target di. The overall system goal then is to assign a share φi to each application, φi ≥ φmin
i , such that the

total system-wide discontent is minimized. That is, the quantity

D =
n

∑

i=1

Di

is minimized.

We use this problem definition to derive our dynamic resource allocation mechanism, which is described next.
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Figure 1: Dynamic Resource Allocation

3 Dynamic Resource Allocation

To perform dynamic resource allocation based on the above formulation, each GPS-scheduled resource on the shared

server will need to employ three components: (i) a monitoring module that measures the workload and the performance

metric of each application (such as the request arrival rate, the average response time T̄i, etc.), (ii) a prediction module

that uses the measurements from the monitoring module to estimate the future workload, and (iii) an allocation module

that uses these workload estimates to determine resource shares such that overall system-wide discontent is minimized.

Figure 1 depicts these three components.

In what follows, we first present an overview of the monitoring module that is responsible for performing online

measurements. We follow this with a time-domain description of the resource model, and formulation of a non-linear

optimization problem to perform resource allocation using this model. Finally, we present the prediction techniques

used to dynamically estimate the parameters for this model.

3.1 Online Monitoring and Measurement

The online monitoring module is responsible for measuring various system and application metrics. These metrics

are used to estimate the system model parameters and workload characteristics. These measurements are based on the

following time intervals (see Figure 2):

• Measurement interval (I): I is the interval over which various parameters of interest are sampled. For instance,

the monitoring module tracks the number of request arrivals (ni) in each interval I and records this value.
1The problem of how to split the specified server response time into resource-specific response times is beyond the scope of this paper. In

this paper, we assume that such resource-specific target response times are given to us.

5



I

 H W

time
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The choice of a particular measurement interval depends on the desired responsiveness from the system. If the

system needs to react to workload changes on a fine time-scale, then a small value of I (e.g., I = 1 second)

should be chosen. On the other hand, if the system needs to adapt to long term variations in the workload over

time scales of hours or days, then a coarse-grain measurement interval of minutes or tens of minutes may be

chosen.

• History (H): The history represents a sequence of recorded values for each parameter of interest. Our moni-

toring module maintains a finite history consisting of the most recent H values for each such parameter; these

measurements form the basis for predicting the future values of these parameters.

• Adaptation Window (W): The adaptation window is the time interval between two successive invocations of the

adaptation algorithm. Thus the past measurements are used to predict the workload for the next W time units,

and the system adapts over this time interval.

As we would see in the next section, our time-domain queuing model description considers a time period equal

to the adaptation window to estimate the average response time T̄i of an application, and this model is updated

every W time units.

3.2 Allocating Resource Shares to Applications

The allocation module is invoked periodically (every adaptation window) to dynamically partition the resource ca-

pacity among the various applications running on the shared server. We first present a time-domain description of a

resource queuing model. This model is used to determine the resource requirements of an application based on its

expected workload and response time goal.

3.2.1 Time-domain Queuing Model Description

As described above, the adaptation algorithm is invoked every W time units. Let q0
i denote the queue length at the

beginning of an adaptation window. Let λ̂i denote the estimated request arrival rate and µ̂i denote the estimated

service rate in the next adaptation window (i.e., over the next W time units). We would show later how these values
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are estimated. Then, assuming the values of λ̂i and µ̂i are constant, the length of the queue at any instant t within the

next adaptation window is given by

qi(t) =
[

q0
i +

(

λ̂i − µ̂i

)

· t
]+

, (2)

Intuitively, the amount of work queued up at instant t is the sum of the initial queue length and the amount of work

arriving in this interval minus the amount of work serviced in this duration. Since the queue length is non-negative,

we denote it by x+, which is an abbreviation for max(x, 0).

Since the resource is modeled as a GPS server, the service rate of an application is effectively (φi · C), where φi

is the resource share of the application and C is the resource capacity, and this rate is continuously available to a

backlogged application in any GPS system. Hence, the request service rate is

µ̂i =
φi · C

ŝi

, (3)

where ŝi is the estimated mean service demand per request (such as number of bytes per packet, or CPU cycles per

CPU request, etc.).

Note that, due to the work conserving nature of GPS, if some applications do not utilize their allocated shares,

then the utilized capacity is fairly redistributed to backlogged applications. Consequently, the queue length computed

in Equation 2 assumes a worst-case scenario where all applications are backlogged and each application receives no

more than its allocated share (the queue would be smaller if the application received additional unutilized share from

other applications).

Given Equation 2, the average queue length over the adaptation window is given by:

q̄i =
1

W

∫ W

0

qi(t)dt (4)

Depending on the particular values of q0
i , the arrival rate λ̂i and the service rate µ̂i, the queue may become empty

one or more times during an adaptation window. To include only the non-empty periods of the queue when computing

q̄i, we consider the following scenarios, based on the assumption of constant µ̂i and λ̂i:

1. Queue growth: If µ̂i < λ̂i, then the application queue will grow during the adaptation window and the queue

will remain non-empty throughout the adaptation window.

2. Queue depletion: If µ̂i > λ̂i, then the queue starts depleting during the adaptation window. The instant t0 at

which the queue becomes empty is given by

t0 =
q0
i

µ̂i − λ̂i

If t0 < W , then the queue becomes empty within the adaptation window, otherwise the queue continues to

deplete but remains non-empty throughout the window (and is projected to become empty in a subsequent

window).
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3. Constant queue length: If µ̂i = λ̂i, then the queue length remains fixed (= q0
i ) throughout the adaptation

window. Hence, the non-empty queue period is either 0 or W depending on the value of q0
i .

Let us denote the duration within the adaptation window for which the queue is non-empty by Wi (Wi equals either

W or t0 depending on the various scenarios). Then, Equation 4 can be rewritten as

q̄i =
1

W

∫ Wi

0

qi(t)dt (5)

=

(

Wi

W

) [

q0
i +

Wi

2

(

λ̂i − µ̂i

)

]

(6)

Having determined the average queue length over the next adaptation interval, we derive the average response time

T̄i over the same interval. Here, we are interested in the average response time in the near future. Other metrics such

as a long term average response time could also be considered. T̄i is estimated as the sum of the mean queuing delay

and the request service time over the next adaptation interval. We use Little’s law to derive the queuing delay from the

mean queue length.2 Thus,

T̄i =
(q̄i + 1)

µ̂i

(7)

Substituting Equation 3 in this expression, we get

T̄i =

(

ŝi

φi · C

)

· (q̄i + 1), (8)

where q̄i is as given by equation 6. The values of q0
i , µ̂i, λ̂i and ŝi are obtained using measurement and prediction

techniques discussed in the next section.

This time-domain model description has the following salient features:

• The parameters of the model depend on its current workload characteristics (λ̂i, ŝi) and the current system state

(q0
i ). Consequently, this model is applicable in an online setting for reacting to sudden (or gradual) changes in

the workload on time-scales of tens of seconds or minutes.

• As shown in Equation 8, the model assumes a non-linear relationship between the response time T̄i and the

resource share φi. This assumption is more general than linear system assumption made in some scenarios.

We use this model description in dynamic resource allocation as described next.
2Note that the application of Little’s Law in this scenario is an approximation, that is more accurate when the size of the adaptation window

is large compared to the average request service time.
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3.2.2 Optimization-based Resource Allocation

As explained earlier, the share allocated to an application depends on its specified target response time and the esti-

mated workload. We now present an online optimization-based approach to determine resource shares dynamically.

As described in section 2, the allocation module needs to determine the resource share φi for each application such

that the total discontent D =
∑n

i=1
Di is minimized. This problem translates to the following constrained optimization

problem:

minimize{φi}

n
∑

i=1

Di(T̄i)

subject to the constraints

n
∑

i=1

φi ≤ 1

and

φmin
i ≤ φi ≤ 1.

where Di is a function that represents the discontent of a class based on its current response time T̄i. The two

constraints specify that (i) the total allocation across all applications should not exceed the resource capacity, and (ii)

the share of each application can be no smaller than its minimum allocation φmin
i and no greater than the resource

capacity.

In general, the nature of the discontent function Di has an impact on the allocations φi for each application. As

shown in Equation 1, a simple discontent function is one where the discontent grows linearly as the response time

T̄i deviates from (and exceeds) the target di. Such a Di, shown in Figure 3, however, is non-differentiable. To

make our constrained optimization problem mathematically tractable, we approximate this piece-wise linear Di by a

continuously differentiable function:

Di(T̄i) =
1

2
[(T̄i − di) +

√

(T̄i − di)2 + k],

where k > 0 is a constant. Essentially, the above function is a hyperbola with the two piece-wise linear portions as

its asymptotes and the constant k governs how closely this hyperbola approximates the piece-wise linear function.

Figure 3 depicts the nature of the above function.

We note that the optimization is with respect to the resource shares {φi}, while the discontent function is represented

in terms of the response times {T̄i}. We use the relation between T̄i and φi from Equation 8 to obtain the discontent

function in terms of the resource shares {φi}.
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The resulting optimization problem can be solved using the Lagrange multiplier method [9]. In this technique,

the constrained optimization problem is transformed into an unconstrained optimization problem where the original

discontent function is replaced by the objective function:

L({φi}, β) = D − β · (
n

∑

i=1

φi − 1). (9)

The objective function L is then minimized subject to the bound constraints on φi. Here β is called the Lagrange

multiplier and it denotes the shadow price for the resource. Intuitively, each application is charged a price of β per unit

resource it uses. Thus, each application attempts to minimize the price it pays for its resource share, while maximizing

the utility it derives from that share. This leads to the minimization of the original discontent function subject to the

satisfaction of the resource constraint.

Minimization of the objective function L in the Lagrange multiplier method leads to solving the following system

of algebraic equations.

∂Di

∂φi

= β, ∀i = 1, . . . , n (10)

and

∂L

∂β
= 0 (11)

Equation 10 determines the optimal solution, as it corresponds to the equilibrium point where all applications have

the same value of diminishing returns (or β). Equation 11 satisfies the resource constraint.

The solution to this system of equations, derived either using analytical or numerical methods, yields the shares

φi that should be allocated to each application to minimize the system-wide discontent. We use a numerical method
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for solving these equations to account for the non-differentiable factor present in the time-domain queuing model

(Equation 2).

Having described the monitoring and allocation modules, we now describe the prediction module that uses the

measured system metrics to estimate the workload parameters that are used by the optimization-based allocation

technique.

3.3 Workload Prediction Techniques

The online optimization-based allocation technique described in the previous section is crucially dependent on an

accurate estimation of the workload likely to appear in each application class. In this section, we present techniques

that use past observations to estimate the future workload for an application.

The workload seen by an application can be characterized by two complementary distributions: the request arrival

process and the service demand distribution. Together these distributions enable us to capture the workload intensity

and its variability. Our technique measures the various parameters governing these distributions over a certain time

period and uses these measurements to predict the workload for the next adaptation window.

3.3.1 Estimating the Arrival Rate

The request arrival process corresponds to the workload intensity for an application. The crucial parameter of interest

that characterizes the arrival process is the request arrival rate λi. An accurate estimate of λi allows the allocation

module to estimate the average queue length for the next adaptation window.

To do so, the monitoring module measures the number of request arrivals ai in each measurement interval I . The

sequence of these values {am
i } represents a stochastic process Ai. Since this stochastic process can be non-stationary,

instead of trying to compute the rate for the process as a whole, our prediction module attempts to predict the number

of arrivals n̂i for the next adaptation window. The arrival rate for the window, λ̂i is then approximated as
(

n̂i

W

)

where

W is the window length. We represent Ai at any time by the sequence {a1
i , . . . , aN

i } of values from the history H .

To predict n̂i, we model the process as an AR(1) process [7] (autoregressive of order 1). This is a simple linear

regression model in which a sample value is predicted based on the previous sample value 3.

Using the AR(1) model, a sample value of Ai is estimated as

âj+1

i = āi + Ri(1) · (a
j
i − āi) + ej

i ,

3Even though an AR(1) model may not represent Ai accurately, the primary reason for choosing an AR(1) model over more sophisticated
models, such as AR(n) models (n > 1), ARMA or ARIMA models, is the ease of parameter estimation. Also, we are interested in online
estimation, while determination of an appropriate model would require offline post-processing of data or a computationally expensive analysis.
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where, Ri and āi are the autocorrelation and mean of {am
i } respectively, and ej

i is a white noise component. We

assume ej
i to be 0, and aj

i to be estimated values âj
i for j ≥ N + 1. The autocorrelation Ri is defined as

Ri(l) =
E[(aj

i − āi) · (a
j+l
i − āi)]

σ2
ai

, 0 ≤ l ≤ N − 1, (12)

where, σai
is the standard deviation of Ai and l is the lag between sample values for which the autocorrelation is

computed.

Thus, if the adaptation window size is M intervals (i.e., M = W/I), then, we first compute âN+1
i , . . . , âN+M

i

using the AR(1) model, where, âj
i denotes estimated value of ai for interval j. Then, the estimated number of arrivals

in the adaptation window, n̂i, is given by

n̂i =
N+M
∑

j=N+1

âj
i .

and

λ̂i =
n̂i

W

3.3.2 Estimating the Service Demand
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Figure 4: Autocorrelation of the average service demand time series for a real workload

The service demand of each incoming request represents the load imposed by that request on the resource. Two

applications with similar arrival rates but different service demands (e.g., different packet sizes, different per-request

CPU demand, etc.) will need to be allocated different resource shares.

To estimate the service demand for an application, the prediction module computes the probability distribution of

the per-request service demands. This distribution is represented by a histogram of the per-request service demands

over some history. Upon the completion of each request, this histogram is updated with the service demand of that

request. The distribution is used to determine the expected request service demand ŝi for requests in the next adaptation
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window. ŝi could be computed as the mean, the median, or a percentile of the distribution obtained from the histogram.

For our experiments, we use the mean of the distribution to represent the service demand of application requests.

Note that, unlike the arrival rate, we do not use a regression model for estimating the service demand ŝi. This is

because, using service demand values from the recent past does not seem to be indicative of the demands of future

requests. To verify this observation, we used the request trace of a real web server (the details of which are given in

the next section), and measured the average service demand over fixed-size measurement intervals. We treated the

time series of these values as a stochastic process. As shown in figure 4, the autocorrelation values for this process

are nearly 0 at all lags, which implies that the process is statistically independent. This means that knowledge of the

recent past does not help in estimating future service demands. Hence, it is sufficient to estimate the service demands

using a static distribution rather than using an autoregressive stochastic process. We can then use the mean or a high

percentile value of the static distribution as our estimate.

3.3.3 Measuring the Queue Length

A final parameter required by the allocation model is the queue length of each application at the beginning of each

adaptation window. Since we are only interested in the instantaneous queue length q0
i and not mean values, measuring

this parameter is trivial—the monitoring module simply records the number of outstanding requests in each application

queue at the beginning of each adaptation period W .

4 Experimental Evaluation

We demonstrate the efficacy of our prediction and allocation techniques using a simulation study. In what follows, we

first present our simulation setup and then our experimental results.

4.1 Simulation Setup and Workload Characteristics

Our simulator models a server resource with multiple application specific queues; the experiments reported in this

paper specifically model the network interface on a shared server. We assume that requests in various queues are

scheduled using weighted fair queuing—a practical instantiation of GPS. Our simulator is based on the NetSim li-

brary [19] and DASSF simulation package [20]; together these components support network elements such as queues,

traffic sources, etc., and provide us the necessary abstractions for implementing our simulator. The adaptation and the

prediction algorithms were implemented using Matlab [25] (which provides various statistical routines and numer-

ical non-linear optimization algorithms); the Matlab code is invoked directly from the simulator for prediction and

adaptation.
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We use two types of workload in our study—synthetic and trace-driven. Our synthetic workloads use Poisson

request arrivals and assume deterministic request sizes. Our trace workload is based on the World Cup Soccer ’98

server logs [4]—a publicly available web server trace. We use a portion of the trace that is 22 hours long and contains

a total of 680,645 requests at a mean request arrival rate of 8.6 requests/sec, and a mean request size of 8.83 KB. We

use this trace workload to evaluate the efficacy of our prediction and allocation techniques; this workload was also

used to determine the correlation between service demands of requests in Section 3.3.2 (Figure 4).

Next, we evaluate our prediction techniques and then study our dynamic resource allocation technique.

4.2 Prediction Accuracy
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Figure 5: Prediction error comparison

Our first experiment examines the effectiveness of the prediction algorithm for predicting the arrival rate of requests.

As described in section 3.3.1, we use an AR(1) model to predict the number of arrivals for the next adaptation window.

We compare this technique to two other prediction mechanisms: (i) prediction using the mean rate over the history

and (ii) prediction using the most recent value of arrival rate. We used the three predictors to estimate the request

arrival rate for the World Cup Soccer trace using measurement intervals of I = 1, 5, 10 and 20 minutes.

To quantify the prediction accuracy, we use the normalized root mean square error (NRMS) between the predicted

and actual trace values as the metric, which is defined as:

NRMS =
RMS(n̂j)

σnj

,

where, RMS is the root mean square error of the predicted values {n̂j} and σnj
is the standard deviation of the trace

values {nj} respectively. This metric indicates how much worse the prediction is compared to the variation in the

trace itself. An NRMS value < 1 would indicate that the prediction is better than picking a value randomly from the

distribution of trace values.
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Figures 5(a) and (b) show these errors for the three predictors for measurement intervals of 1 and 5 minutes respec-

tively, with varying history sizes. As can be seen from the figures, the AR(1) technique has the smallest prediction

error. Predicting using the mean arrival rate yields increasing errors with increasing history sizes (since a larger history

results in the use of outdated values for prediction). Prediction using the most recent arrival rate yields the same error

irrespective of the history size, because it only considers one observation for each estimate. Its error is nevertheless

higher than the AR(1) technique (since it does not take into account the long term trend of the arrival process).

Figure 6 depicts the actual arrival rate for the World Cup Soccer workload and the predicted arrival rate using the

AR(1) model. As can be seen from the figure, there is a good match between the two values, thereby demonstrating

the effectiveness of our prediction technique.

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

N
um

 o
f R

eq
ue

st
 A

rr
iv

al
s

Time (min)

Actual
Prediction

Figure 6: Actual and Predicted arrival rates

4.3 Dynamic Resource Allocation

In this section, we evaluate our dynamic resource allocation technique. We conduct two experiments, one with a

synthetic web workload and the other with the trace workload and examine the effectiveness of dynamic resource

allocation. For purposes of comparison, we repeat each experiment assuming static resource allocation and compare

the behavior of the two systems.

4.3.1 Synthetic Web Workload

To demonstrate the behavior of our system, we considered two web applications that share a server. The benefits of

dynamic resource allocation accrue when the workload temporarily exceeds the allocation of an application (resulting

in a transient overload). In such a scenario, the dynamic resource allocation technique is able to allocate unused

capacity to the overloaded application, and thereby meet its QoS requirements. To demonstrate this property, we

conducted a controlled experiment using synthetic web workloads. The workload for each application was generated

using Poisson arrivals. The mean request rate for the two applications were set to 100 requests/s and 200 requests/s.
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Figure 7: Comparison of static and dynamic resource allocations for a synthetic web workload.
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Figure 8: The nature of the workload and the resulting allocations

Between time t=100 and 110 sec, we introduced a transient overload for the first application as shown in Figure 7(a).

The two applications were initially allocated resources in the proportion 1:2, which corresponds to the average request

rates of the two applications. φmin was set to 20% of the capacity for both applications and the target delays were set

to 2 and 10s, respectively. Figure 7(b) depicts the total discontent of the two applications in the presence of dynamic

and static resource allocations. As can be seen from the figure, the dynamic resource allocation technique provides

better utility to the two applications when compared to static resource allocation and also recovers faster from the

transient overload.

4.3.2 Trace-driven Web Workloads

Our second experiment considered two web applications. In this case, we use the World Cup trace to generate request

arrivals for the first web application; the request size was deterministic (our next experiment examines the impact

of heavy-tailed request sizes that are characteristic of this trace). The second application represents a background

load for the experiment; its workload was generated using Poisson arrivals and deterministic request sizes. For this
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Figure 9: Comparison of static and dynamic resource allocations for a trace web workload.
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experiment, φmin was chosen to be 30% for both applications and the initial allocations are set to 30% and 70% for

the two applications (the allocations remain fixed for the static case and tend to vary for the dynamic case).

Figure 8(a) shows the workload arrival rate (as a percentage of the resource service rate) for the two applications,

and also the total load on the system. As can be seen from the figure, there are brief periods of overload in the system.

Figure 8(b) plots the resource share allocated to the two applications by our allocation technique, while Figures 9(a)

and (b) show the system discontent values for the dynamic and the static resource allocation scenarios. As can be

seen from the figures, transient overloads result in temporary deviations from the desired response times in both cases.

However, the dynamic resource allocation technique yields a smaller system-wide discontent, indicating that it is able

to use the system capacity more judiciously among the two applications.

To validate the accuracy of the queuing model used in our allocation algorithm, we compare the system discontent

values measured by the simulation to those computed by the model. We conduct the comparison using two different

sets of workload parameters as the model inputs: (i) the actual parameters as measured by the monitoring component,

and (ii) the predicted parameters as estimated by the prediction algorithm. The first comparison measures the accuracy

of the model with complete knowledge of the actual workload in the system, while the second comparison determines

the model performance when coupled with the prediction algorithm. Figures 10 (a) and (b) show the results of these

comparisons over a portion of the trace, where the resource was overloaded. As can be seen from the figures, there is

a close match between the simulation and the model results in both cases. This demonstrates the fact that the queuing

model’s estimation is accurate to a large extent using both actual as well as predicted parameters.

Since the above experiment was performed using deterministic request sizes, we repeated the experiment using the

actual request sizes from the trace workload (thus, both request arrivals and request service demands were generated

using the trace). Note that the request sizes are heavy-tailed, as is common for such workloads. Figure 11 depicts

the resulting workload for the two applications and Figure 11(b) plots the resulting resource share allocations for the

applications. Figures 12(a) and (b) plot the system-wide discontent for the dynamic and static resource allocation

techniques. Similar to the previous experiment, we find that dynamic resource allocation yields lower discontent

values than static allocations.

Together these experiments demonstrate the effectiveness of our prediction and dynamic resource allocation tech-

niques in meeting the QoS requirements of application in the presence of varying workloads.

5 Related Work

Several research efforts have focused on the design of adaptive systems that can react to workload changes in the

context of storage systems [3, 23], general operating systems [29], network services [8], web servers [6, 10, 12, 18,

22, 27] and Internet data centers [2, 28]. In this paper, we focused on an abstract model of a server resource with
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Figure 11: The workload and the resulting allocations in the presence of varying arrival rates and varying request
sizes.
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multiple class-specific queues and presented techniques for dynamic resource allocation; our model and allocation

techniques are applicable to many scenarios where the underlying system or resource can be abstracted using GPS.

Recently, adaptive techniques for web servers based on a control theoretic approach have been proposed [1, 22, 24,

30]. Most of these techniques (with the exception of [24]) use a pre-identified system model. In contrast, our technique

focuses on online workload characterization and prediction. Further, these techniques use a linear relationship between

the QoS parameter (like target delay) and the control parameter (such as resource share) that does not change with

time. This is in contrast to our technique that employs a non-linear model derived using the queuing dynamics of the

system, and further, we update the system parameters with changing workload.

Other approaches for resource sharing in web servers [10] and e-business environments [21] use a queuing model

with non-linear optimization. The primary difference between these approaches and our work is that they use steady-

state queue behavior to drive the optimization, whereas we use transient queue dynamics to control the resource shares

of applications. Thus, our goal is to devise a system that can react to transient changes in workload, while the queuing

theoretic approach attempts to schedule requests based on the steady-state workload.

Techniques for dynamic resource allocation have been proposed in [5, 11]. Our work differs from these techniques

in some significant ways. First of all, we define an explicit model to derive the relation between the QoS metric

and resource requirements, while a linear relation has been assumed in these approaches. The approach in [5] uses a

modified scheduling scheme to achieve dynamic resource allocation, while our scheme achieves the same goal with

existing schedulers using high-level parameterization. The approach described in [11] uses an economic model similar

to ours, but we use well-defined utility functions to drive a non-linear optimization.

Two recent efforts have focused on workload-driven allocation in dedicated data centers [15, 28]. In these efforts,

each application is assumed to run on some number of dedicated servers and the goal is to dynamically allocate and

deallocate (entire) servers to applications to handle workload fluctuations. These efforts focus on issues such as how

many servers to allocate to an application, how to migrate applications and data, etc., and thus are orthogonal to our

present work on shared data centers.

6 Conclusions

In this paper, we argued that dynamic resource allocation techniques are necessary in the presence of dynamically

varying workloads to provide guarantees to web applications running on shared data centers. To address this issue, we

used a system architecture that combines online measurements with prediction and resource allocation techniques. To

perform resource allocation, we modeled a server resource that services multiple applications as a generalized proces-

sor sharing (GPS) server. We used a time-domain description of the server to model transient system states and used

a constrained non-linear optimization technique to dynamically allocate the server resources. The parameters of this
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model were continuously updated using an online monitoring and prediction framework. Our prediction technique

was based on an autoregressive stochastic process model. We showed that our techniques could react to changing

workloads by dynamically varying the resource shares of applications. In addition, we showed that these techniques

could also handle nonlinearity in system behavior unlike some prior techniques. We evaluated our techniques us-

ing simulations with synthetic as well as real-world web workloads. Our results showed that these techniques can

judiciously allocate system resources, especially under transient overload conditions.

As part of future work, we plan to investigate the utility of these techniques for systems employing other types of

schedulers (e.g., non-GPS schedulers such as reservation-based). We also intend to implement these techniques in a

real system to investigate their performance with real applications. We would also like to explore other optimization

techniques using different utility functions and QoS goals. We also plan to investigate more sophisticated prediction

algorithms using time series analysis methods.
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