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ABSTRACT
This paper presents Capriccio, a scalable thread package
for use with high-concurrency servers. While recent work
has advocated event-based systems, we believe that thread-
based systems can provide a simpler programming model
that achieves equivalent or superior performance.

By implementing Capriccio as a user-level thread package,
we have decoupled the thread package implementation from
the underlying operating system. As a result, we can take
advantage of cooperative threading, new asynchronous I/O
mechanisms, and compiler support. Using this approach,
we are able to provide three key features: (1) scalability
to 100,000 threads, (2) efficient stack management, and (3)
resource-aware scheduling.

We introduce linked stack management, which minimizes
the amount of wasted stack space by providing safe, small,
and non-contiguous stacks that can grow or shrink at run
time. A compiler analysis makes our stack implementation
efficient and sound. We also present resource-aware schedul-
ing, which allows thread scheduling and admission control to
adapt to the system’s current resource usage. This technique
uses a blocking graph that is automatically derived from the
application to describe the flow of control between blocking
points in a cooperative thread package. We have applied our
techniques to the Apache 2.0.44 web server, demonstrating
that we can achieve high performance and scalability despite
using a simple threaded programming model.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—threads

General Terms
Algorithms, Design, Performance
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1. INTRODUCTION
Today’s Internet services have ever-increasing scalability

demands. Modern servers must be capable of handling
tens or hundreds of thousands of simultaneous connections
without significant performance degradation. Current com-
modity hardware is capable of meeting these demands, but
software has lagged behind. In particular, there is a pressing
need for a programming model that allows programmers to
design efficient and robust servers with ease.

Thread packages provide a natural abstraction for high-
concurrency programming, but in recent years, they have
been supplanted by event-based systems such as SEDA [41].
These event-based systems handle requests using a pipeline
of stages. Each request is represented by an event, and each
stage is implemented as an event handler. These systems al-
low precise control over batch processing, state management,
and admission control; in addition, they provide benefits
such as atomicity within each event handler.

Unfortunately, event-based programming has a number of
drawbacks when compared to threaded programming [39].
Event systems hide the control flow through an application,
making it difficult to understand cause and effect relation-
ships when examining source code and when debugging. For
instance, many event systems invoke a method in another
module by sending a “call” event and then waiting for a
“return” event in response. In order to understand the
application, the programmer must mentally match these
call/return pairs, even when they are in different parts of
the code. Furthermore, creating these call/return pairs often
requires the programmer to manually save and restore live
state. This process, referred to as “stack ripping” [1], is
a major burden for programmers who wish to use event
systems.

In this paper, we advocate a different solution: instead
of switching to an event-based model to achieve high con-
currency, we should fix the thread-based model. We believe
that a modern thread package will be able to provide the
same benefits as an event system while also offering a better
programming model for Internet services. Specifically, our
goals for our revised thread package are:

• Support for existing thread APIs.

• Scalability to hundreds of thousands of threads.

• Flexibility to address application-specific needs.

In meeting these goals, we have made it possible for pro-
grammers to write high-performance Internet servers using
the intuitive one-thread-per-connection programming style.



Indeed, our thread package can improve performance of
existing threaded applications with little to no modification
of the application itself.

1.1 Thread Design Principles
In the process of “fixing” threads for use in server applica-

tions, we found that a user-level approach is essential. While
user-level threads and kernel threads are both useful, they
solve fundamentally different problems. Kernel threads are
primarily useful for enabling true concurrency via multiple
devices, disk requests, or CPUs. User-level threads are really
logical threads that should provide a clean programming
model with useful invariants and semantics.

To date, we do not strongly advocate any particular se-
mantics for threads; rather, we argue that any clean se-
mantics for threads requires decoupling the threads of the
programming model (logical threads) from those of the un-
derlying kernel. Decoupling the programming model from
the kernel is important for two reasons. First, there is sub-
stantial variation in interfaces and semantics among mod-
ern kernels, despite the existence of the POSIX standard.
Second, kernel threads and asynchronous I/O interfaces are
areas of active research [22, 23]. The range of semantics
and the rate of evolution both require decoupling: logical
threads can hide both OS variation and kernel evolution.

In our case, this decoupling has provided a number of ad-
vantages. We have been able to integrate compiler support
into our thread package, and we have taken advantage of sev-
eral new kernel features. Thus, we have been able to increase
performance, improve scalability, and address application-
specific needs, all without changing application code.

1.2 Capriccio
This paper discusses our new thread package, Capriccio.

This thread package achieves our goals with the help of three
key features:

First, we improved the scalability of basic thread opera-
tions. We accomplished this task by using user-level threads
with cooperative scheduling, by taking advantage of a new
asynchronous I/O interface, and by engineering our runtime
system so that all thread operations are O(1).

Second, we introduced linked stacks, a mechanism for
dynamic stack growth that solves the problem of stack allo-
cation for large numbers of threads. Traditional thread sys-
tems preallocate large chunks of memory for each thread’s
stack, which severely limits scalability. Capriccio uses a
combination of compile-time analysis and run-time checks
to limit the amount of wasted stack space in an efficient and
application-specific manner.

Finally, we designed a resource-aware scheduler, which
extracts information about the flow of control within a pro-
gram in order to make scheduling decisions based on pre-
dicted resource usage. This scheduling technique takes ad-
vantage of compiler support and cooperative threading to
address application-specific needs without requiring the pro-
grammer to modify the original program.

The remainder of this paper discusses each of these three
features in detail. Then, we present an overall experimental
evaluation of our thread package. Finally, we discuss fu-
ture directions for user-level thread packages with integrated
compiler support.

2. THREAD DESIGN AND SCALABILITY
Capriccio is a fast, user-level thread package that supports

the POSIX API for thread management and synchroniza-
tion. In this section, we discuss the overall design of our
thread package, and we demonstrate that it satisfies our
scalability goals.

2.1 User-Level Threads
One of the first issues we explored when designing Capric-

cio was whether to employ user-level threads or kernel threads.
User-level threads have some important advantages for both
performance and flexibility. Unfortunately, they also com-
plicate preemption and can interact badly with the kernel
scheduler. Ultimately, we decided that the advantages of
user-level threads are significant enough to warrant the ad-
ditional engineering required to circumvent their drawbacks.

2.1.1 Flexibility
User-level threads provide a tremendous amount of flexi-

bility for system designers by creating a level of indirection
between applications and the kernel. This abstraction helps
to decouple the two, and it allows faster innovation on both
sides. For example, Capriccio is capable of taking advantage
of the new asynchronous I/O mechanisms the development-
series Linux kernel, which allows us to provide performance
improvements without changing application code.

The use of user-level threads also increases the flexibility
of the thread scheduler. Kernel-level thread scheduling must
be general enough to provide a reasonable level of quality
for all applications. Thus, kernel threads cannot tailor the
scheduling algorithm to fit a specific application. Fortu-
nately, user-level threads do not suffer from this limitation.
Instead, the user-level thread scheduler can be built along
with the application.

User-level threads are extremely lightweight, which allows
programmers to use a tremendous number of threads with-
out worrying about threading overhead. The benchmarks
in Section 2.3 show that Capriccio can scale to 100, 000
threads; thus, Capriccio makes it possible to write highly
concurrent applications (which are often written with messy,
event-driven code) in a simple threaded style.

2.1.2 Performance
User-level threads can greatly reduce the overhead of thread

synchronization. In the simplest case of cooperative schedul-
ing on a single CPU, synchronization is nearly free, since
neither user threads nor the thread scheduler can be inter-
rupted while in a critical section.1 In the future, we believe
that flexible user-level scheduling and compile-time analysis
will allow us to offer similar advantages on a multi-CPU
machine.

Even in the case of preemptive threading, user-level threads
offer an advantage in that they do not require kernel cross-
ings for mutex acquisition or release. By comparison, kernel-
level mutual exclusion requires a kernel crossing for every
synchronization operation. While this situation can be im-
proved for uncontended locks,2 highly contended mutexes
still require kernel crossings.

1Poorly designed signal handling code can reintroduce these
problems, but this problem can easily be avoided.
2The futexes in recent Linux kernels allow operations on
uncontended mutexes to occur entirely in user space.



Finally, memory management is more efficient with user-
level threads. Kernel threads require data structures that
eat up valuable kernel address space, decreasing the space
available for I/O buffers, file descriptors, and other resources.

2.1.3 Disadvantages
User-level threading is not without its drawbacks, how-

ever. In order to retain control of the processor when a user-
level thread executes a blocking I/O call, a user-level thread-
ing package overrides these blocking calls and replaces them
internally with non-blocking equivalents. The semantics
of these non-blocking I/O mechanisms generally require an
increased number of kernel crossings when compared to the
blocking equivalents. For example, the most efficient non-
blocking network I/O primitive in Linux (epoll) involves
first polling sockets for I/O readiness and then performing
the actual I/O call. These second I/O calls are identical
to those performed in the blocking case; the poll calls are
additional overhead. Non-blocking disk I/O mechanisms are
often similar in that they employ separate system calls to
submit requests and retrieve responses.3

In addition, user-level thread packages must introduce a
wrapper layer that translates blocking I/O mechanisms to
non-blocking I/O ones, and this layer is another source of
overhead. At best, this layer can be a very thin shim, which
simply adds a few extra function calls. However, for quick
operations such as in-cache reads that are easily satisfied by
the kernel, this overhead can become important.

Finally, user-level threading can make it more difficult
to take advantage of multiple processors. The performance
advantage of lightweight synchronization is diminished when
multiple processors are allowed, since synchronization is no
longer “for free”. Additionally, as discussed by Anderson
et al. in their work on scheduler activations, purely user-
level synchronization mechanisms are ineffective in the face
of true concurrency and may lead to starvation [2].

Ultimately, we believe the benefits of user-level threading
far outweigh these disadvantages. As the benchmarks in
Section 2.3 show, the additional overhead incurred does
not seem to be a problem in practice. In addition, we are
working on ways to overcome the difficulties with multiple
processors; we will discuss this issue further in Section 7.

2.2 Implementation
We have implemented Capriccio as a user-level threading

library for Linux. Capriccio implements the POSIX thread-
ing API, which allows it to run most applications without
modification.

Context Switches. Capriccio is built on top of Edgar
Toernig’s coroutine library [35]. This library provides ex-
tremely fast context switches for the common case in which
threads voluntarily yield, either explicitly or through making
a blocking I/O call. We are currently designing signal-

3Although there are non-blocking I/O mechanisms (such as
POSIX AIO’s lio listio() and Linux’s new io submit())
that allow the submission of multiple I/O requests with a
single system call, there are other issues that make this
feature difficult to use. For example, implementations
of POSIX AIO often suffer from performance problems.
Additionally, use of batching creates a trade-off between
system call overhead and I/O latency, which is difficult to
manage.

based code that allows for preemption of long-running user
threads, but Capriccio does not provide this feature yet.

I/O. Capriccio intercepts blocking I/O calls at the library
level by overriding the system call stub functions in GNU
libc. This approach works flawlessly for statically linked
applications and for dynamically linked applications that
use GNU libc versions 2.2 and earlier. However, GNU libc
version 2.3 bypasses the system call stubs for many of its
internal routines (such as printf), which causes problems
for dynamically linked applications. We are working to allow
Capriccio to function as a libc add-on in order to provide
better integration with the latest versions of GNU libc.

Internally, Capriccio uses the latest Linux asynchronous
I/O mechanisms—epoll for pollable file descriptors (e.g.,
sockets, pipes, and fifos) and Linux AIO for disk. If these
mechanisms are not available, Capriccio falls back on the
standard Unix poll() call for pollable descriptors and a
pool of kernel threads for disk I/O. Users can select among
the available I/O mechanisms by setting appropriate envi-
ronment variables prior to starting their application.

Scheduling. Capriccio’s main scheduling loop looks very
much like an event-driven application, alternately running
application threads and checking for new I/O completions.
Note, though, that the scheduler hides this event-driven
behavior from the programmer, who still uses the standard
thread-based abstraction. Capriccio has a modular schedul-
ing mechanism that allows the user to easily select between
different schedulers at run time. This approach has also
made it simple for us to develop several different schedulers,
including a novel scheduler based on thread resource utiliza-
tion. We discuss this feature in detail in Section 4.

Synchronization. Capriccio takes advantage of cooper-
ative scheduling to improve synchronization. At present,
Capriccio supports cooperative threading on single-CPU ma-
chines, in which case inter-thread synchronization primitives
require only simple checks of a boolean locked/unlocked flag.
For cases in which multiple kernel threads are involved,
Capriccio employs either spin locks or optimistic concur-
rency control primitives, depending on which mechanism
best fits the situation.

Efficiency. In developing Capriccio, we have taken great
care to choose efficient algorithms and data structures. Con-
sequently, all but one of Capriccio’s thread management
functions has a bounded worst-case running time, indepen-
dent of the number of threads. The sole exception is the
sleep queue, which currently uses a naive linked list imple-
mentation. While the literature contains a number of good
algorithms for efficient sleep queues, our current implemen-
tation has not caused problems yet, so we have focused our
development efforts on other aspects of the system.

2.3 Threading Microbenchmarks
We ran a number of microbenchmarks to validate Capric-

cio’s design and implementation. Our test platform was an
SMP with two 2.4 GHz Xeon processors, 1 GB of memory,
two 10K RPM SCSI Ultra II hard drives, and 3 Gigabit
Ethernet interfaces. The operating system was Linux 2.5.70,
which includes support for epoll, asynchronous disk I/O,
and lightweight system calls (vsyscall). We ran our bench-
marks on three thread packages: Capriccio, LinuxThreads
(the standard Linux kernel thread package), and NPTL
version 0.53 (the new Native POSIX Threads for Linux



Capriccio Capriccio notrace LinuxThreads NPTL
Thread creation 21.5 21.5 37.9 17.7

Thread context switch 0.56 0.24 0.71 0.65
Uncontended mutex lock 0.04 0.04 0.14 0.15

Table 1: Latencies (in µs) of thread primitives for different thread packages.

package). We built all applications with gcc 3.3 and linked
against GNU libc 2.3. We recompiled LinuxThreads to
use the new lightweight system call feature of latest Linux
kernels to ensure a fair comparison with NPTL, which uses
this feature.

2.4 Thread Primitives
Table 1 compares average times of several thread prim-

itives for Capriccio, LinuxThreads, and NPTL. In the test
labeled Capriccio notrace, we disabled statistics collection
and dynamic stack backtracing (used for the scheduler dis-
cussed in Section 4) to show their impact on performance.
Thread creation time is dominated by stack allocation time
and is quite expensive for all four thread packages. Thread
context switches, however, are significantly faster in Capric-
cio, even with the stack tracing and statistics collection
overhead. We believe that reduced kernel crossings and our
simpler scheduling policy both contributed to this result.
Synchronization primitives are also much faster in Capriccio
(by a factor of 4 for uncontended mutex locking) because no
kernel crossings are involved.

2.5 Thread Scalability
To measure the overall efficiency and scalability of schedul-

ing and synchronization in different thread packages, we ran
a simple producer-consumer microbenchmark on the three
packages. Producers put empty messages into a shared
buffer, and consumers “process” each message by looping for
a random amount of time. Synchronization is implemented
using condition variables and mutexes. Equal numbers of
producers and consumers are created for each test. Each
test is run for 10 seconds and repeated 5 times. Average
throughput and standard deviations are shown in Figure 1.
Capriccio outperforms NPTL and LinuxThreads in terms of
both raw performance and scalability. Throughput of Lin-
uxThreads begins to degrade quickly after only 20 threads
are created, and NPTL’s throughput degrades after 100.
NPTL shows unstable behavior with more than 64 threads,
which persists across two NPTL versions (0.53 and 0.56) and
several 2.5 series kernels we tested. Capriccio scales to 32K
producers and consumers (64K threads total). We attribute
the drop of throughput between 100 threads and 1000 to
increased cache footprint.

2.6 I/O Performance
Figure 2 shows the network performance of Capriccio and

other thread packages under load. In this test, we measured
the throughput of concurrently passing a number of tokens
(12 bytes each) among a fixed number of pipes. The number
of concurrent tokens is one quarter of the number of pipes
if there are less than 128 pipes; otherwise, there are exactly
128 tokens. The benchmark thus simulates the effect of slow
client links—that is, a large number of mostly-idle pipes.
This scenario is typical for Internet servers, and traditional
threading systems often perform poorly in such tests. Two
functionally equivalent benchmark programs are used to

obtain the results: a threaded version is used for Capriccio,
LinuxThreads, and NPTL, and a non-blocking I/O version
is used for poll and epoll. Five million tokens are passed
for each test and each test is run five times.

The figure shows that Capriccio scales smoothly to 64K
threads and incurs less than 10% overhead when compared
to epoll with more than 256 pipes. To our knowledge, epoll
is the best non-blocking I/O mechanism available on Linux;
hence, its performance should reflect that of the best event-
based servers, which all rely on such a mechanism. Capriccio
performs consistently better than Poll, LinuxThreads, and
NPTL with more than 256 threads and is more than twice
as fast as both LinuxThreads and NPTL when more than
1000 threads are created.

However, when concurrency is low (< 100 pipes), Capric-
cio is slower than its competitors because it issues more
system calls. In particular, it calls epoll wait() to obtain
file descriptor readiness events to wake up threads block-
ing for I/O. It performs these calls periodically, transfer-
ring as many events as possible on each call. However,
when concurrency is low, the number of runnable threads
occasionally reaches zero, forcing Capriccio to issue more
epoll wait() calls. In the worst case, Capriccio is 37%
slower than NPTL when there are only 2 concurrent tokens
(and 8 threads). Fortunately, this overhead is amortized
quickly when concurrency increases; more scalable schedul-
ing allows Capriccio to outperform LinuxThreads and NPTL
at high concurrency.

Since Capriccio uses asynchronous I/O primitives, Capric-
cio can benefit from the kernel’s disk head scheduling algo-
rithm just as much as kernel threads can. Figure 3 shows
a microbenchmark in which a number of threads perform
random 4 KB reads from a 1 GB file. The test program
bypasses the kernel buffer cache by using O DIRECT when
opening the file. Each test is run for 10 seconds and averages
of 5 runs are shown. Throughput of all three thread libraries
increases steadily with the concurrency level until it levels
off when concurrency reaches about 100. In contrast, uti-
lization of the kernel’s head scheduling algorithm in event-
based systems that use blocking disk I/O (e.g., SEDA) is
limited by the number of kernel threads used, which is
often made deliberately small to reduce kernel scheduling
overhead. Even worse, other process-based applications that
use non-blocking I/O (either poll(), select(), /dev/poll,
or epoll) cannot benefit from the kernel’s head scheduling
at all if they do not explicitly use asynchronous I/O. Un-
fortunately, most programs do not use asynchronous I/O
because it significantly increases programming complexity
and compromises portability.

Figure 4 shows disk I/O performance of the three thread
libraries when using the OS buffer cache. In this test, we
measure the throughput achieved when 200 threads read
continuously 4K blocks from the file system with a specified
buffer cache miss rate. The cache miss rate is fixed by
reading an appropriate portion of data from a small file
opened normally (hence all cache hits) and by reading the
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Figure 4: Disk I/O performance with buffer cache.

remaining data from a file opened with O DIRECT. For a
higher miss rate, the test is disk-bound; thus, Capriccio’s
performance is identical to that of NPTL and LinuxThreads.
However, when the miss rate is very low, the program is
CPU-bound, so throughput is limited by per-transfer over-
head. Here, Capriccio’s maximum throughput is about 50%
of NPTL’s, which means Capriccio’s overhead is twice that
of NPTL. The source of this overhead is the asynchronous
I/O interface (Linux AIO) used by Capriccio, which incurs
the same amount of overhead for cache-hitting operations
and for ones that reach the disk: for each I/O request,
a completion event needs to be constructed, queued, and
delivered to user-level through a separate system call. How-
ever, this shortcoming is relatively easy to fix: by returning
the result immediately for requests that do not need to wait,
we can eliminate most (if not all) of this overhead. We leave
this modification as future work. Finally, LinuxThreads’
performance degrades significantly at a very low miss rate.
We believe this degradation is a result of a bug either in the
kernel or in the library, since the processor is mostly idle
during the test.

3. LINKED STACK MANAGEMENT
Thread packages usually attempt to provide the program-

mer with the abstraction of an unbounded call stack for each
thread. In reality, the stack size is bounded, but the bounds
are chosen conservatively so that there is plenty of space
for normal program execution. For example, LinuxThreads
allocates two megabytes per stack by default; with such a
conservative allocation scheme, we consume 1 GB of virtual
memory for stack space with just 500 threads. Fortunately,
most threads consume only a few kilobytes of stack space
at any given time, although they might go through stages
when they use considerably more. This observation suggests
that we can significantly reduce the size of virtual memory
dedicated to stacks if we adopt a dynamic stack allocation
policy wherein stack space is allocated to threads on demand
in relatively small increments and is deallocated when the
thread requires less stack space. In the rest of this section,
we discuss a compiler feature that allows us to provide such
a mechanism while preserving the programming abstraction
of unbounded stacks.



Figure 5: An example of a call graph annotated
with stack frame sizes. The edges marked with Ci

(i=0, . . . , 3) are the checkpoints.

3.1 Compiler Analysis and Linked Stacks
Our approach uses a compiler analysis to limit the amount

of stack space that must be preallocated. We
perform a whole-program analysis based on a
weighted call graph.4 Each function in the program is repre-
sented by a node in this call graph, weighted by the maxi-
mum amount of stack space that a single stack frame for that
function will consume. An edge between node A and node
B indicates that function A calls function B directly. Thus,
paths between nodes in this graph correspond to sequences
of stack frames that may appear on the stack at run time.
The length of a path is the sum of the weights of all nodes
in this path; that is, it is the total size of the corresponding
sequence of stack frames. An example of such a graph is
shown in Figure 5.

Using this call graph, we wish to place a reasonable bound
on the amount of stack space that will be consumed by each
thread. If there are no recursive functions in our program,
there will be no cycles in the call graph, and thus we can
easily bound the maximum stack size for the program at
compile time by finding the longest path starting from each
thread’s entry point. However, most real-world programs
make use of recursion, which means that we cannot compute
a bound on the stack size at compile time. And even in
the absence of recursion, the static computation of stack
size might be too conservative. For example, consider the
call graph in Figure 5. Ignoring the cycle in the graph,
the maximum stack size is 2.3 KB on the path Main–A–B.
However, the path Main–C–D has a smaller stack size of only
0.9 KB. If the first path is only used during initialization and
the second path is used through the program’s execution,
then allocating 2.3 KB to each thread would be wasteful.
For these reasons, it is important to be able to grow and
shrink the stack size on demand.

In order to implement dynamically-sized stacks, our call
graph analysis identifies call sites at which we must insert
checkpoints. A checkpoint is a small piece of code that
determines whether there is enough stack space left to reach
the next checkpoint without causing stack overflow. If not
enough space remains, a new stack chunk is allocated, and
the stack pointer is adjusted to point to this new chunk.
When the function call returns, the stack chunk is unlinked
and returned to a free list.

This scheme results in non-contiguous stacks, but because
the stack chunks are switched right before the actual argu-
ments for a function call are pushed, the code for the callee

4We use the CIL toolkit [26] for this purpose, which allows
efficient whole-program analysis of real-world applications
like the Apache web server.

need not be changed. And because the caller’s frame pointer
is stored on the callee’s stack frame, debuggers can follow
the backtrace of a program.5 The code for a checkpoint
is written in C, with a small amount of inline assembly for
reading and setting of the stack pointer; this code is inserted
using a source-to-source transformation of the program prior
to compilation. Mutual exclusion for accessing the free stack
chunk list is ensured by our cooperative threading approach.

3.2 Placing Checkpoints
During our program analysis, we must determine where to

place checkpoints. A simple solution is to insert checkpoints
at every call site; however, this approach is prohibitively
expensive. A less restrictive approach is to ensure that at
each checkpoint, we have a bound on the stack space that
may be consumed before we reach the next checkpoint (or
a leaf in the call graph).

To satisfy this requirement, we must ensure that there is
at least one checkpoint in every cycle within the call graph
(recall that the edges in the call graph correspond to call
sites). To find the appropriate points to insert checkpoints,
we perform a depth-first search on the call graph, which
identifies back edges—that is, edges that connect a node to
one of its ancestors in the call graph [25]. All cycles in the
graph must contain a back edge, so we add checkpoints at all
call sites identified as back edges in order to ensure that any
path from a function to a checkpoint has bounded length. In
Figure 5, the checkpoint C0 allocates the first stack chunk,
and the checkpoint C1 is inserted on the back edge E–C.

Even after we break all cycles, the bounds on stack size
may be too large. Thus, we add additional checkpoints to
the graph to ensure that all paths between checkpoints are
within a desired bound, which is given as a compile-time
parameter. To insert these new checkpoints, we process
the call graph once more, this time determining the longest
path from each node to the next checkpoint or leaf. When
performing this analysis, we consider a restricted call graph
that does not contain any back edges, since these edges
already have checkpoints. This restricted graph has no
cycles, so we can process the nodes bottom-up; thus, when
processing node n, we will have already determined the
longest path for each of n’s successors. So, for each successor
s of node n, we take the longest path for s and add n.
If this new path’s length exceeds the specified path limit
parameter, we add a checkpoint to the edge between n
and s, which effectively reduces the longest path of s to
zero. The result of this algorithm is a set of edges where
checkpoints should be added along with reasonable bounds
on the maximum path length from each node. For the
example in Figure 5, with a limit of 1 KB, this algorithm
places the additional checkpoints C2 and C3. Without the
checkpoint C2, the stack frames of Main and A would use
more than 1 KB.

Figure 6 shows four instances in the lifetime of the thread
whose call graph is shown in Figure 5. In Figure 6(a), the
function B is executing, with three stack chunks allocated
at checkpoints C0, C2, and C3. Notice that 0.5 KB is wasted
in the first stack chunk, and 0.2 KB is wasted in the second

5This scheme does not work when the omit-frame-pointer
is enabled in gcc. It is possible to support this optimization
by using more expensive checkpoint operations such as
copying the arguments from the caller’s frame to the callee’s
frame.



Figure 6: Examples of dynamic allocation and deallocation of stack chunks.

chunk. In Figure 6(b), function A has called D, and only two
stack chunks were necessary. Finally, in Figure 6(d) we see
an instance with recursion. A new stack chunk is allocated
when E calls C (at checkpoint C1). However, the second
time around, the code at checkpoint C1 decides that there
is enough space remaining in the current stack chunk to
reach either a leaf function (D) or the next checkpoint (C1).

3.3 Dealing with Special Cases
Function pointers present an additional challenge to our

algorithm, because we do not know at compile time ex-
actly which function may be called through a given function
pointer. To improve the results of our analysis, though,
we want to determine as precisely as possible the set of
functions that might be called at a function pointer call
site. Currently, we categorize function pointers by number
and type of arguments, but in the future, we plan to use a
more sophisticated pointer analysis.

Calls to external functions also cause problems, since it is
more difficult to bound the stack space used by precompiled
libraries. We provide two solutions to this problem. First,
we allow the programmer to annotate external library func-
tions with trusted stack bounds. Alternatively, we allow
larger stack chunks to be linked for external functions; as
long as threads don’t block frequently within these func-
tions, we can reuse a small number of large stack chunks
throughout the application. For the C standard library,
we use annotations to deal with functions that block or
functions that are frequently called; these annotations were
derived by analyzing library code.

3.4 Tuning the Algorithm
Our algorithm causes stack space to be wasted in two

places. First, some stack space is wasted when a new stack
chunk is linked; we call this space internal wasted space.
Second, stack space at the bottom of the current chunk is
considered unused; this space is called external wasted space.
In Figure 6, internal wasted space is shown in light gray,
whereas external wasted space is shown in dark gray.

The user is allowed to tune two parameters that adjust
the trade-offs in terms of wasted space and execution speed.
First, the user can adjust MaxPath, which specifies the
maximum desired path length in the algorithm we have just
described. This parameter affects the trade-off between ex-
ecution time and internal wasted space; larger path lengths

require fewer checkpoints but more stack linking. Second,
the user can adjust MinChunk, the minimum stack chunk
size. This parameter affects the trade-off between stack link-
ing and external wasted space; larger chunks result in more
external wasted space but less frequent stack linking, which
in turn results in less internal wasted space and a smaller
execution time overhead. Overall, these parameters provide
a useful mechanism allowing the user (or the compiler) to
optimize memory usage.

3.5 Memory Benefits
Our linked stack technique has a number of advantages

in terms of memory performance. In general, these benefits
are achieved by divorcing thread implementation from kernel
mechanisms, thus improving our ability to tune individual
application memory usage. Compiler techniques make this
application-specific tuning practical.

First, our technique makes preallocation of large stacks
unnecessary, which in turn reduces virtual memory pres-
sure when running large numbers of threads. Our analysis
achieves this goal without the use of guard pages, which
would contribute unnecessary kernel crossings and virtual
memory waste.

Second, using linked stacks can improve paging behavior
significantly. Linked stack chunks are reused in LIFO order,
which allows stack chunks to be shared between threads,
reducing the size of the application’s working set. Also, we
can allocate stack chunks that are smaller than a single page,
thus reducing the overall amount of memory waste.

To demonstrate the benefit of our approach with respect
to paging, we created a microbenchmark in which each thread
repeatedly calls a function bigstack(), which touches all
pages of a 1 MB buffer on the stack. Threads yield between
calls to bigstack(). Our compiler analysis inserts a check-
point at these calls, and the checkpoint causes a large stack
chunk to be linked only for the duration of the call. Since
bigstack() does not yield, all threads share a single 1 MB
stack chunk; without our stack analysis, we would have to
give each thread its own individual 1 MB stack.

We ran this microbenchmark with 800 threads, each of
which calls bigstack() 10 times. We recorded execution
time for five runs of the test and averaged the results. When
each thread has its own individual stack, the benchmark
takes 3.33 seconds, 1.07 seconds of which are at user level.
When using our stack analysis, the benchmark takes 1.04
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Figure 7: Number of Apache 2.0.44 call sites instru-
mented as a function of the MaxPath parameter.

seconds, with 1.00 seconds at user level. All standard devia-
tions were within 0.02 seconds. The fact that total exeuction
time decreases by a factor of three while user-level execution
time remains roughly the same suggests that sharing a single
stack via our linked stack mechanism drastically reduces the
cost of paging. When running this test with 1,000 threads,
the version without our stack analysis starts thrashing; with
the stack analysis, though, the running time scales linearly
up to 100,000 threads.

3.6 Case Study: Apache 2.0.44
We applied this analysis to the Apache 2.0.44 web server.

We set the MaxPath parameter to 2 KB; this choice was
made by examining the number of call sites instrumented
for various parameter values. The results, shown in Fig-
ure 7, indicate that 2 KB or 4 KB is a reasonable choice,
since larger parameter values make little difference in the
overall amount of instrumentation. We set the MinChunk
parameter to 4 KB based on profiling information. By
adding profiling counters to checkpoints, we determined that
increasing the chunk size to 4 KB reduced the number of
stack links and unlinks significantly, but further increases
yielded no additional benefit. We expect that this tuning
methodology can be automated as long as the programmer
supplies a reasonable profiling workload.

Using these parameters, we studied the behavior of Apache
during execution of a workload consisting of static web pages
based on the SPECweb99 benchmark suite. We used the
threaded client program from the SEDA work [41] with
1000 simulated clients, a 10ms request delay, and a total
file workload of 32 MB. The server ran 200 threads, using
standard Unix poll() for network I/O and blocking for
disk I/O. The total virtual memory footprint for Apache
was approximately 22 MB, with a resident set size of ap-
proximately 10 MB. During this test, most functions could
be executed entirely within the initial 4 KB chunk; when
necessary, though, threads linked a 16 KB chunk in order
to call a function that has an 8 KB buffer on its stack.
Over five runs of this benchmark, the maximum number of
16 KB chunks needed at any given time had a mean of 66
(standard deviation 4.4). Thus, we required just under 8

MB of stack space overall: 800 KB for the initial stacks,
1 MB for larger chunks, and 6 MB for three 2 MB chunks
used to run external functions. However, we believe that
additional 16 KB chunks will be needed when using high-
performance I/O mechanisms; we are still in the process
of studying the impact of these features on stack usage.
And while using an average of 66 16 KB buffers rather
than one for each of the 200 threads is clearly a win, the
addition of internal and external wasted space makes it
difficult to directly compare our stack utilization with that of
unmodified Apache. Nevertheless, this example shows that
we are capable of running unmodified applications with a
small amount of stack space without fear of stack overflow.
Indeed, it is important to note that we provide safety in
addition to efficiency; even though the unmodified version
of Apache could run this workload with a single, contiguous
20 KB stack, this setting may not be safe for other workloads
or for different configurations of Apache.

We observed the program’s behavior at each call site crossed
during the execution of this benchmark. The results were ex-
tremely consistent across five repetitions of the benchmark;
thus, the numbers below represent the entire range of results
over all five repetitions. At 0.1% of call sites, checkpoints
caused a new stack chunk to be linked, at a cost of 27
instructions. At 0.4–0.5% of call sites, a large stack chunk
was linked unconditionally in order to handle an external
function, costing 20 instructions. At 10% of call sites, a
checkpoint determined that a new chunk was not required,
which cost 6 instructions. The remaining 89% of call sites
were unaffected. Assuming all instructions are roughly equal
in cost, the result is a 71–73% slowdown when considering
function calls alone. Since call instructions make up only
5% of the program’s instructions, the overall slowdown is
approximately 3% to 4%.

4. RESOURCE-AWARE SCHEDULING
One of the advantages claimed for event systems is that

their scheduling can easily adapt to the application’s needs.
Event-based applications are broken into distinct event han-
dlers, and computation for a particular task proceeds as
that task is passed from handler to handler. This architec-
ture provides two pieces of information that are useful for
scheduling. First, the current handler for a task provides in-
formation about the task’s location in the processing chain.
This information can be used to give priority to tasks that
are closer to completion, hence reducing load on the system.
Second, the lengths of the handlers’ task queues can be used
to determine which stages are bottlenecks and can indicate
when the server is overloaded.

Capriccio provides similar application-specific scheduling
for thread-based applications. Since Capriccio uses a coop-
erative threading model, we can view an application as a se-
quence of stages, where the stages are separated by blocking
points. In this sense, Capriccio’s scheduler is quite similar to
an event-based system’s scheduler. Our methods are more
powerful, however, in that they deduce the stages automat-
ically and have direct knowledge of the resources used by
each stage, thus enabling finer-grained dynamic scheduling
decisions. In particular, we use this automated scheduling
to provide admission control and to improve response time.

Our approach allows Capriccio to provide sophisticated,
application-specific scheduling without requiring the pro-
grammer to use complex or brittle tuning APIs. Thus, we
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was generated from a run of Knot, our test web
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can improve performance and scalability without compro-
mising the simplicity of the threaded programming model.

4.1 Blocking Graph
The key abstraction we use for scheduling is the blocking

graph, which contains information about the places in the
program where threads block. Each node is a location in the
program that blocked, and an edge exists between two nodes
if they were consecutive blocking points. The “location”
in the program is not merely the value of the program
counter, but rather the call chain that was used to reach
the blocking point. This path-based approach allows us to
differentiate blocking points in a more useful way than the
program counter alone would allow, since otherwise there
tend to be very few such points (e.g., the read and write

system calls). Figure 8 shows the blocking graph for Knot,
a simple thread-based web server. Each thread walks this
graph independently, and every blocked thread is located at
one of these nodes.

Capriccio generates this graph at run time by observ-
ing the transitions between blocking points. The key idea
behind this approach is that Capriccio can learn the be-
havior of the application dynamically and then use that
information to improve scheduling and admission control.
This technique works in part because we are targeting long-
running programs such as Internet servers, so it is acceptable
to spend time learning in order to make improved decisions
later on.

To make use of this graph when scheduling threads, we
must annotate the edges and nodes with information about
thread behavior. The first annotation we introduce is the
average running time for each edge. When a thread blocks,
we know which edge was just traversed, since we know the
previous node. We measure the time it took to traverse the
edge using the cycle counter, and we update an exponen-
tially weighted average for that edge.

We keep a similar weighted average for each node, which
we update every time a thread traverses one of its outgoing
edges. Each node’s average is essentially a weighted average
of the edge values, since the number of updates is propor-
tional to the number of times each outgoing edge is taken.
The node value thus tells us how long the next edge will
take on average.

Finally, we annotate the changes in resource usage. Cur-
rently, we define resources as memory, stack space, and
sockets, and we track them individually. As with CPU
time, there are weighted averages for both edges and nodes.
Given that a blocked thread is located at a particular node,
these annotations allow us to estimate whether running this
thread will increase or decrease the thread’s usage of each re-
source. This estimate is the basis for resource-aware schedul-
ing: once we know that a resource is scarce, we promote

nodes (and thus threads) that release that resource and
demote nodes that acquire that resource.

4.2 Resource-Aware Scheduling
Most existing event systems prioritize event handlers stat-

ically. SEDA uses information such as event handler queue
lengths to dynamically tune the system. Capriccio goes
one step further by introducing the notion of resource-aware
scheduling. In this section, we show how to use the blocking
graph to perform resource-aware scheduling that is both
transparent and application-specific.

Our strategy for resource-aware scheduling has three parts:

1. Keep track of resource utilization levels and decide
dynamically if each resource is at its limit.

2. Annotate each node with the resources used on its
outgoing edges so we can predict the impact on each
resource should we schedule threads from that node.

3. Dynamically prioritize nodes (and thus threads) for
scheduling based on information from the first two
parts.

For each resource, we increase utilization until it reaches
maximum capacity (so long as we don’t overload another
resource), and then we throttle back by scheduling nodes
that release that resource. When resource usage is low,
we want to preferentially schedule nodes that consume that
resource, under the assumption that doing so will increase
throughput. More importantly, when a resource is over-
booked, we preferentially schedule nodes that release the
resource to avoid thrashing.

This combination, when used with some hysteresis, tends
to keep the system at full throttle without the risk of thrash-
ing. Additionally, resource-aware scheduling provides a nat-
ural, workload-sensitive form of admission control, since
tasks near completion tend to release resources, whereas
new tasks allocate them. This strategy is completely adap-
tive, in that the scheduler responds to changes resource
consumption due to both the type of work being done and
offered load. The speed of adaptation is controlled by the
parameters of the exponentially weighted averages in our
blocking graph annotations.

Our implementation of resource-aware scheduling is quite
straightforward. We maintain separate run queues for each
node in the blocking graph. We periodically determine the
relative priorities of each node based on our prediction of
their subsequent resource needs and the overall resource
utilization of the system. Once the priorities are known, we
select nodes by stride scheduling, and then we select threads
within nodes by dequeuing from the nodes’ run queues. Both
of these operations are O(1).

A key underlying assumption of our resource-aware sched-
uler is that resource usage is likely to be similar for many
tasks at a blocking point. Fortunately, this assumption
seems to hold in practice. With Apache, for example, there
is almost no variation in resource utilization along the edges
of the blocking graph.

4.2.1 Resources
The resources we currently track are CPU, memory, and

file descriptors. We track memory usage by providing our
own version of the malloc() family. We detect the resource
limit for memory by watching page fault activity.



For file descriptors, we track the open() and close() calls.
This technique allows us to detect an increase in open file
descriptors, which we view as a resource. Currently, we
set the resource limit by estimating the number of open
connections at which response time jumps up.

We can also track virtual memory usage and number of
threads, but we do not do so at present. VM is tracked the
same way as physical memory, but the limit is reached when
we reach some absolute threshold for total VM allocated
(e.g., 90% of the full address space).

4.2.2 Pitfalls
We encountered some interesting pitfalls when implement-

ing Capriccio’s resource-aware scheduler. First, determining
the maximum capacity of a particular resource can be tricky.
The utilization level at which thrashing occurs often depends
on the workload. For example, the disk subsystem can
sustain far more requests per second if the requests are
sequential instead of random. Additionally, resources can
interact, as when the VM system trades spare disk band-
width to free physical memory. The most effective solution
we have found is to watch for early signs of thrashing (such
as high page fault rates) and to use these signs to indicate
maximum capacity.

Unfortunately, thrashing is not always an easy thing to
detect, since it is characterized by a decrease in productive
work and an increase in system overhead. While we can
measure overhead, productivity is inherently an application-
specific notion. At present, we attempt to guess at through-
put, using measures like the number of threads created and
destroyed and the number of files opened and closed. Al-
though this approach seems sufficient for applications such
as Apache, more complicated applications might benefit from
a threading API that allows them to explicitly inform the
runtime system about their current productivity.

Application-specific resources also present some challenges.
For example, application-level memory management hides
resource allocation and deallocation from the runtime sys-
tem. Additionally, applications may define other logical re-
sources such as locks. Once again, providing an API through
which the application can inform the runtime system about
its logical resources may be a reasonable solution. For simple
cases like memory allocators, it may also be possible to
achieve this goal with the help of the compiler.

4.3 Yield Profiling
One problem that arises with cooperative scheduling is

that threads may not yield the processor, which can lead to
unfairness or even starvation. These problems are mitigated
to some extent by the fact that all of the threads are part
of the same application and are therefore mutually trusting.
Nonetheless, failure to yield is still a performance problem
that matters.

Because we annotate the graph dynamically with the run-
ning time for each edge, it is trivial to find those edges that
failed to yield: their running times are typically orders of
magnitude larger than the average edge. Our implemen-
tation allows the system operator to see the full blocking
graph including edge time frequencies and resources used,
by sending a USR2 signal to the running server process.

This tool is very valuable when porting legacy applications
to Capriccio. For example, in porting Apache, we found
many places that did not yield sufficiently often. This result

is not surprising, since Apache expects to run with preemp-
tive threads. For example, it turns out that the close() call,
which closes a socket, can sometimes take 5ms even though
the documentation insists that it returns immediately when
nonblocking I/O is selected. To fix this problem, we insert
additional yields in our system call library, before and after
the actual call to close(). While this solution does not
fix the problem in general, it does allow us to break the
long edge into smaller pieces. A better solution (which we
have not yet implemented) is to use multiple kernel threads
for running user-level threads. This approach would allow
the use of multiple processors, and it would hide latencies
from occasional uncontrollable blocking operations such as
close() calls or page fault handling.

5. EVALUATION
The microbenchmarks presented in Section 2.3 show that

Capriccio has good I/O performance and excellent scala-
bility. In this section, we evaluate Capriccio’s performance
more generally under a realistic web server workload. Real-
world web workloads involve large numbers of potentially
slow clients, which provide good tests of both Capriccio’s
scalability and scheduling. We discuss the overhead of Capric-
cio’s resource-aware scheduler in this context, and then we
discuss how this scheduler can achieve automatic admission
control.

5.1 Web Server Performance
The server machine for our web benchmarks is a 4x500

MHz Pentium server with 2GB memory and a Intel e1000
Gigabit Ethernet card. The operating system is stock
Linux 2.4.20. Unfortunately, we found that the development-
series Linux kernel used in the microbenchmarks discussed
earlier became unstable when placed under heavy load. Hence,
this experiment does not take advantage of epoll or Linux
AIO. Similarly, we were not able to compare Capriccio against
NPTL for this workload. We leave these additional experi-
ments for future work.

We generated client load with up to 16 similarly config-
ured machines across a Gigabit switched network. Both
Capriccio and Haboob perform non-blocking network I/O
with the standard UNIX poll() system call and use a thread
pool for disk I/O. Apache 2.0.44 (configured to use POSIX
threads) uses a combination of spin-polling on individual file
descriptors and standard blocking I/O calls.

The workload for this test consisted of requests for 3.2
GB of static file data with various file sizes. The request
frequencies for each size and for each file were designed to
match those of the SPECweb99 benchmark. The clients
for this test repeatedly connect to the server and issue a
series of five requests, separated by 20ms pauses. For each
client load level we ran the test for 4 minutes and based our
measurements on the middle two minutes.

We used the client program from the SEDA work [41]
because this program was simpler to set up on our client
machines and because it allowed us to disable the dynamic
content tests, thus preventing external CGI programs from
competing with the web server for resources.

We limited the cache sizes of Haboob and Knot to 200
MB in order to force a good deal of disk activity. We
used a minimal configuration for Apache, disabling all dy-
namic modules and access permission checking. Hence, it
performed essentially the same tasks as Haboob and Knot.
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Figure 9: Web server bandwidth versus the number
of simultaneous clients.

The performance results, shown in Figure 9 were quite
encouraging. Apache’s performance improved nearly 15%
when run under Capriccio. Additionally, Knot’s perfor-
mance matched that of the event-based Haboob web server.
While we do not have specific data on the variance of these
results, it was quite small for load levels. There was more
variation with more than 1024 clients, but the general trends
were repeatable between runs.

Particularly remarkable is Knot’s simplicity. Knot con-
sists of 1290 lines of C code, written in a straightforward
threaded style. Knot was very easy to write (it took one
of us 3 days to create), and it is easy to understand. We
consider this experience to be strong evidence for the sim-
plicity of the threaded approach to writing highly concurrent
applications.

5.2 Blocking Graph Statistics
Maintaining information about the resources used at each

blocking point requires both determining where the program
is when it blocks and performing some amount of computa-
tion to save and aggregate resource utilization figures.

Table 2 quantifies this overhead for Apache and Knot, for
the workload described above. The top two lines show the
average number of application cycles that each application
spent going from one blocking point to the next. The bottom
two lines show the number of cycles that Capriccio spends
internally in order to maintain information used by the
resource-aware scheduler. All cycle counts are the average
number of cycles per blocking-graph edge during normal
processing (i.e., under load and after the memory cache and
branch predictors have warmed up).

It is important to note that these cycle counts include only
the time spent in the application itself. Kernel time spent on
I/O processing is not included. Since Internet applications
are I/O intensive, much of their work actually takes place in
the kernel. Hence, the performance impact of this overhead
is lower than Table 2 would suggest.

The overhead of gathering and maintaining statistics is
relatively small—less than 2% for edges in Apache. More-
over, these statistics tend to remain fairly steady in the

Item Cycles Enabled
Apps Apache 32697 n/a

Knot 6868 n/a
System stack trace 2447 Always for dynamic BG

edge statistics 673 During sampling periods

Table 2: Average per-edge cycle counts for
applications on Capriccio.

workloads we have tested, so they can be sampled relatively
infrequently. We have found a sampling ratio of 1/20 to be
quite sufficient to maintain an accurate view of the system.
This reduces the aggregate overhead to a mere 0.1%.

The overhead from stack traces is significantly higher,
amounting to roughly 8% of the execution time for Apache
and 36% for Knot. Additionally, since stack traces are
essential for determining the location in the program, they
must always be enabled.

The overhead from stack tracing illustrates how compiler
integration could help to improve Capriccio’s performance.
The overhead to maintain location information in a stati-
cally generated blocking graph is essentially zero. Another
more dynamic technique would be to maintain a global
variable that holds a fingerprint of the current stack. This
fingerprint can be updated at each function call by XOR’ing
a unique function ID at each function’s entry and exit point;
these extra instructions can easily be inserted by the com-
piler. This fingerprint is not as accurate as a true stack
trace, but it should be accurate enough to generate the same
blocking graph that we currently use.

5.3 Resource-Aware Admission Control
To test our resource-aware admission control algorithms,

we created a simple consumer-producer application. Pro-
ducer threads loop, adding memory to a global pool and
randomly touching pages to force them to stay in memory
(or to cause VM faults for pages that have been swapped
out). Consumer threads loop, removing memory from the
global pool and freeing it.

This benchmark tests a number of system resources. First,
if the producers allocate memory too quickly, the program
may run out of virtual address space. Additionally, if page
touching proceeds too quickly, the machine will thrash as the
virtual memory system sends pages to and from disk. The
goal, then, is to maximize the task throughput (measured
by number of producer loops per second) while also making
the best use of both memory and disk resources.

At run time, the test application is parameterized by
the number of consumers and producers. Running under
LinuxThreads, if there are more producers than consumers
(and often when there are fewer) the system quickly starts
to thrash. Under Capriccio, however, the resource-aware
scheduler quickly detects the overload conditions and lim-
its the number of producer threads from running. Thus,
applications can reach a steady state near the knee of the
performance curve.

6. RELATED WORK
Programming Models for High Concurrency

There has been a long-standing debate in the research
community about the best programming model for high-
concurrency; this debate has often focused on threads and
events in particular. Ousterhout [28] enumerated a number



of potential advantages for events. Similarly, recent work
on scalable servers advocates the use of events. Examples
include Internet servers such as Flash [29] and Harvest [10]
and server infrastructures like SEDA [41] and Ninja [38].

In the tradition of the duality argument developed by
Lauer and Needham [21], we have previously argued that
any apparent advantages of events are simply artifacts of
poor thread implementations [39]. Hence, we believe past
arguments in favor of events are better viewed as argu-
ments for application-specific optimization and the need
for efficient thread runtimes. Both of these arguments are
major motivations for Capriccio. Moreover, the blocking
graph used by Capriccio’s scheduler was directly inspired
by SEDA’s stages and explicit queues.

In previous work [39], we also presented a number of
reasons that threads should be preferred over events for
highly concurrent programming. This paper provides addi-
tional evidence for that claim by demonstrating Capriccio’s
performance, scalability, and ability to perform application-
specific optimization.

Adya et al. [1] pointed out that the debate between event-
driven and threaded programming can actually be split into
two debates: one between preemptive and cooperative task
management, and one between automatic and manual stack
management. They coin the term “stack ripping” to de-
scribe the process of manually saving and restoring live state
across blocking points, and they identify this process as
the primary drawback to manual stack management. The
authors also point out the advantages of the cooperative
threading approach.

Many authors have attempted to improve threading per-
formance by transforming threaded code to event based
code. For example, Adya et al. [1] automate the process
of “stack-ripping” in event-driven systems, allowing code
to be written in a more thread-like style. In some sense,
though, all thread packages perform this same translation at
run time, by mapping blocking operations into non-blocking
state machines underneath. Ultimately, we believe there is
no advantage to a static transformation from threaded code
to event-driven code, because a well-tuned thread runtime
can perform just as well as an event-based one. Our perfor-
mance tests with Capriccio corroborate this claim.

User-Level Threads
There have been many user-level thread packages, but

they differ from Capriccio in their goals and techniques. To
the best of our knowledge, Capriccio is unique in its use
of the blocking graph to provide resource-aware scheduling
and in its use of compile-time analysis to effect application-
specific optimizations. Additionally, we are not aware of
any language-independent threading library that uses linked
stack frames, though we discuss some language-dependent
ones below.

Filaments [31] and NT’s Fibers are two high-performance
user-level thread packages. Both use cooperative schedul-
ing, but they are not targeted at large numbers of block-
ing threads. Minimal Context-Switching Threads [19] is a
high-performance thread package specialized for web caches
that includes fast disk libraries and memory management.
The performance optimizations employed by these packages
would be useful for Capriccio as well; these are complemen-
tary to our work.

The State Threads package [37] is a lightweight coopera-
tive threading system that shares Capriccio’s goal of simpli-

fying the programming model for network servers. Unlike
Capriccio, the State Threads library does not provide a
POSIX threading interface, so applications must be rewrit-
ten to use it. Additionally, State Threads use either select
or poll instead of the more scalable Linux epoll, and they
use blocking disk I/O. These factors limit the scalability
of State Threads for network-intensive workloads, and they
restrict its concurrency for disk-intensive workloads. There
are patches available to allow Apache to use State
Threads [36], resulting in a performance increase. These
patches include a number of other improvements to Apache,
however, so it is impossible to tell how much of the im-
provement came from State Threads. Unfortunately, these
patches are no longer maintained and do not compile cleanly,
so we were unable to run direct comparisons against
Capriccio.

Scheduler activations [2] solve the problem of blocking I/O
and unexpected blocking/preemption of user-level threads
by adding kernel support for notifying the user-level sched-
uler of these events. This approach ensures clean integration
of the thread library and the operating system; however,
the large amount of kernel changes involved seem to have
precluded wide adoption. Another potential problem with
this approach is that there will be one scheduler activation
for each outstanding I/O operation, which can number in
the tens of thousands for Internet servers. This result is
contrary to the original goal of reducing the number of
kernel threads needed. This problem apparently stems from
the fact that scheduler activations are developed primarily
for high performance computing environments, where disk
and fast network I/O are dominant. Nevertheless, scheduler
activations can be a viable approach to dealing with page
faults and preemptions in Capriccio. Employing scheduler
activations would also allow the user-level scheduler to in-
fluence the kernel’s decision about which kernel thread to
preempt. This scheme can be used to solve difficult problems
like priority inversion and the convoy phenomenon [6].

Support for user-level preemption and M:N threading (i.e.,
running M user-level threads on top of N kernel threads) is
tricky. Techniques such as optimistic concurrency control
and Cilk’s work-stealing [7] can be used effectively to man-
age thread and scheduler data structures. Cordina presents
a nice description of these and other techniques in the con-
text of Linux [12]. We expect to employ many of these tech-
niques in Capriccio when we add support for M:N threading.

Kernel Threads
The NPTL project for Linux has made great strides to-

ward improving the efficiency of Linux kernel threads. These
advances include a number of kernel-level improvements such
as better data structures, lower memory overhead, and the
use of O(1) thread management operations. NPTL is quite
new and is still under active development. Hence, we expect
that some of the performance degradation we found with
higher numbers of threads may be resolved as the developers
find bugs and create faster algorithms.

Application-Specific Optimization
Performance optimization through application-specific con-

trol of system resources is an important theme in OS re-
search. Mach [24] allowed applications to specify their own
VM paging scheme, which improved performance for ap-
plications that knew about their upcoming memory needs
and disk access patterns. UNET [40] did similar things



for network I/O, improving flexibility and reducing over-
head without compromising safety. The SPIN operating
system [5] and the VINO operating system [32] provide user
customization by allowing application code to be moved into
the kernel. The Exokernel [15] took the opposite approach
and moved most of the OS to user level. All of these systems
allow application-specific optimization of nearly all aspects
of the system.

These techniques require programmers to tailor their ap-
plication to manage resources for itself; this type of tuning
is often difficult and brittle. Additionally, they tie programs
to nonstandard APIs, reducing their portability. Capriccio
takes a new approach to application-specific optimization
by enabling automatic compiler-directed and feedback-based
tuning of the thread package. We believe that this approach
will make these techniques more practical and will allow a
wider range of applications to benefit from them.

Asynchronous I/O
A number of authors propose improved kernel interfaces

that could have an important impact on user-level threading.
Asynchronous I/O primitives such as Linux’s epoll [23],
disk AIO [20] and FreeBSD’s kqueue interface [22] are cen-
tral to creating a scalable user-level thread package. Capric-
cio takes advantage of these interfaces and would benefit
from improvements such as reducing the number of kernel
crossings.

Stack Management
There are a number of related approaches to the problem

of preallocating large stacks. Some functional languages,
such as Standard ML of New Jersey [3], do not use a call
stack at all; rather, they allocate all activation records on
the heap. This approach is reasonable in the context of
a language that uses a garbage collector and that supports
higher-order functions and first-class continuations [4]. How-
ever, these features are not provided by the C programming
language, which means that many of the arguments in favor
of heap-allocated activation records do not apply in our case.
Furthermore, we do not wish to incur the overhead associ-
ated with adding a garbage collector to our system; previous
work has shown that Java’s general-purpose garbage collec-
tor is inappropriate for high-performance systems [33].

A number of other systems have used lists of small stack
chunks in place of contiguous stacks. Bobrow and Wegbreit
describe a technique that uses a single stack for multiple en-
vironments, effectively dividing the stack into substacks [8];
however, they do not analyze the program to attempt to
reduce the amount of run-time checks required. Olden,
which is a language and runtime system for parallelizing
programs, used a simplified version of Bobrow and Weg-
breit’s technique called “spaghetti stacks” [9]. In this tech-
nique, activation records for different threads are interleaved
on a single stack; however, dead activation records in the
middle of the stack cannot be reclaimed if live activation
records still exist further down the stack, which can allow
the amount of wasted stack space to grow without bound.
More recently, the Lazy Threads project introduced stack-
lets, which are linked stack chunks for use in compiling
parallel languages [18]. This mechanism provides run-time
stack overflow checks, and it uses a compiler analysis to
eliminate checks when stack usage can be bounded; however,
this analysis that does not handle recursion as Capriccio
does, and it does not provide tuning parameters. Cheng and

Blelloch also used fixed-size stacklets to provide bounds on
processing time in a parallel, real-time garbage collector [11].

Draves et al. [14] show how to reduce stack waste for
kernel threads by using continuations. In this case, they
have eliminated stacks entirely by allowing kernel threads
to package their state in a continuation. In some sense,
this approach is similar to the event-driven model, where
programmers use “stack ripping” [1] to package live state
before unwinding the stack. In the Internet servers we are
considering, though, this approach is impractical, because
the relatively large amount of state that must be saved and
restored makes this process tedious and error-prone.

Resource-Aware Scheduling
Others have previously suggested techniques that are simi-

lar to our resource-aware scheduler. Douceur and Bolosky [13]
describe a system that monitors the progress of running
applications (as indicated by the application through a spe-
cial API) and suspends low-priority processes when it de-
tects thrashing. Their technique is deliberately unaware of
specific resources and hence cannot be used with as much
selectivity as ours.

Fowler et al. [16] propose a technique that is closer to ours,
in that they directly examine low-level statistics provided
by the operating system or through hardware performance
counters. They show how this approach can be used at
the application level to achieve adaptive admission control,
and they suggest that the kernel scheduler might use this
information as well. Their technique views applications as
monolithic, however, so it is unclear how the kernel scheduler
could do anything other than suspend resource intensive pro-
cesses, as in [13]. Our blocking graph provides the additional
information we believe the scheduler needs in order to make
truly intelligent decisions about resources.

7. FUTURE WORK
We are in the process of extending Capriccio to work with

multi-CPU machines. The fundamental challenge provided
by multiple CPUs is that we can no longer rely on the coop-
erative threading model to provide atomicity. However, we
believe that information produced by the compiler can assist
the scheduler in making decisions that guarantee atomicity
of certain blocks of code at the application level.

There are a number of aspects of Capriccio’s implementa-
tion we would like to explore. We believe we could dramati-
cally reduce kernel crossings under heavy network load with
a batching interface for asynchronous network I/O. We also
expect there are many ways to improve our resource-aware
scheduler, such as tracking the variance in the resource usage
of blocking graph nodes and improving our detection of
thrashing.

There are several ways in which our stack analysis can
be improved. As mentioned earlier, we use a conservative
approximation of the call graph in the presence of function
pointers or other language features that require indirect
calls (e.g., higher-order functions, virtual method dispatch,
and exceptions). Improvements to this approximation could
substantially improve our results. In particular, we plan
to adapt the dataflow analysis of CCured [27] in order to
disambiguate many of the function pointer call sites. When
compiling other languages, we could start with similarly
conservative call graphs and then employ existing control
flow analyses (e.g., the 0CFA analyses [34] for functional



and object-oriented languages languages, or virtual function
resolution analyses [30] for object-oriented languages).

In addition, we plan to produce profiling tools that can
assist the programmer and the compiler in tuning Capric-
cio’s stack parameters to the application’s needs. In partic-
ular, we can record information about internal and external
wasted space, and we can gather statistics about which
function calls cause new stack chunks to be linked. By
observing this information for a range of parameter values,
we can automate parameter tuning. We can also suggest
potential optimizations to the programmer by indicating
which functions are most often responsible for increasing
stack size and stack waste.

In general, we believe that compiler technology will play
an important role in the evolution of the techniques de-
scribed in this paper. For example, we are in the process
of devising a compiler analysis that is capable of generating
a blocking graph at compile time; these results will improve
the efficiency of the runtime system (since no backtraces are
required to generate the graph), and they will allow us to
get atomicity for free by guaranteeing statically that certain
critical sections do not contain blocking points. In addition,
we plan to investigate strategies for inserting blocking points
into the code at compile time in order to enforce fairness.

Compile-time analysis can also reduce the occurrence of
bugs by warning the programmer about data races. Al-
though static detection of race conditions is challenging,
there has been recent progress due to compiler improvements
and tractable whole-program analyses. In nesC [17], a lan-
guage for networked sensors, there is support for atomic sec-
tions, and the compiler understands the concurrency model.
It uses a mixture of I/O completions and run-to-completion
threads, and the compiler uses a variation of a call graph
that is similar to our blocking graph. The compiler ensures
that atomic sections reside within one edge on that graph;
in particular, calls within an atomic section cannot yield
or block (even indirectly). This kind of support would be
extremely powerful for authoring servers. Finally, we expect
that atomic sections will also enable better scheduling and
even deadlock detection.

8. CONCLUSIONS
The Capriccio thread package provides empirical evidence

that fixing thread packages is a viable solution to the prob-
lem of building scalable, high-concurrency Internet servers.
Our experience with writing such programs suggests that the
threaded programming model is a more useful abstraction
than the event-based model for writing, maintaining, and
debugging these servers. By decoupling the thread imple-
mentation from the operating system itself, we can take
advantage of new I/O mechanisms and compiler support.
As a result, we can use techniques such as linked stacks
and resource-aware scheduling, which allow us to achieve
significant scalability and performance improvements when
compared to existing thread-based or event-based systems.

As this technology matures, we expect even more of these
techniques to be integrated with compiler technology. By
writing programs in threaded style, programmers provide
the compiler with more information about the high-level
structure of the tasks that the server must perform. Using
this information, we hope the compiler can expose even
more opportunities for both static and dynamic performance
tuning.
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