
C Server Pages:
An Architecture for Dynamic Web Content Generation

John Millaway
Dept. of Computer and Information Sciences

Temple University
1805 N. Broad St.

Philadelphia, PA 19122

millaway@acm.org

Phillip Conrad
Dept. of Computer and Information Sciences

Temple University
1805 N. Broad St.

Philadelphia, PA 19122

conrad@acm.org

ABSTRACT
This paper introduces C Server Pages (CSP), a highly efficient ar-
chitecture for the creation and implementation of dynamic web
pages. The CSP scripting language allows dynamic web contents to
be expressed using a combination of C code and HTML. A novel
feature of CSP is that the C portions of the CSP source file are
compiled into dynamic load libraries that become part of the run-
ning web server, thus avoiding both the overhead of interpreted lan-
guages such as Perl, Java and PHP, as well as the need to create a
separate process. We present an overview of the architecture and
implementation, and provide results of performance benchmarks
showing that CSP outperforms similar mainstream technologies,
including PHP, modperl, and FastCGI.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Distributed systems—World Wide Web; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Client/Server;
D.2.8 [Software Engineering]: Metrics—performance measures

General Terms
Design, Experimentation, Measurement, Performance, Languages

Keywords
CSP, C, scripting languages, web-based applications, performance,
scalability, dynamic content, World Wide Web, C, CSP

1. INTRODUCTION
Many web applications require server-side generation ofdynamic

content, where the HTML presented to the user is the result of
a computation that takes place on the server in direct response to
the user request, as opposed to coming from a static disk file [13].
The Common Gateway Interface (CGI) was the first such technol-
ogy [1]. Many others followed including JavaServer Pages (JSP) [2]
(an extension of the Java Servlet concept), PHP Hypertext Proces-
sor (PHP)[6]1, mod perl [5] and FastCGI [4, 15].

However, the currently available technologies have some draw-
backs. The fork/exec model used in CGI scripts, for example, in-

1PHP is a recursive acronym standing for “PHP Hypertext Proces-
sor”.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

curs heavyweight process creation overhead. Approaches that in-
volve simple template substitution by the web server itself based on
so called server-side includes (SSIs) are lightweight, but not very
powerful. Application servers such as ColdFusion [3] introduce a
heavyweight run time layer. Interpreted languages such as Java,
PHP, and Perl are typically slower than compiled languages such
as C. New languages specifically designed for the generation of
server side content present an additional learning curve for already
overburdened developers [8].

This paper introduces an alternative architecture called C Server
Pages (CSP), based on combining languages familiar to many de-
velopers: HTML, and C. CSP pages consist of HTML combined
with segments of C code to generate dynamic content. The web
server invokes a compiler to convert the page into executable code
in the form of a library that is loaded into a running web server
and invoked when needed. CSP examines modifications times and
status codes to minimize the number of compilations performed.

The CSP architecture offers several advantages. The first ad-
vantage is speed. CSP avoids both the overhead of creating a new
process (fork/exec) to satisfy each request, as well as the overheads
of interpreted languages such as Java, PHP, and Perl. The second
advantage is expressive power; the full range of C features is avail-
able, as well as the full complement of system libraries that are
available to C programmers. The third advantage is familiarity;
CSP is based on HTML and C, technologies that are widely known;
CSP adds only a handful of new tags for embedding the C code in
the HTML. Therefore, the learning curve is reduced as compared
to systems that require the programmer to learn a custom language.

This paper is organized as follows. Section 2 describes problems
with existing web technologies. Section 3 describes the architec-
ture of CSP. Section 4 describes related work. Section 5 presents
results of benchmarks of CSP as compared with other technologies
for dynamic web content. Finally, Section 6 provides a summary
of our main results and suggestions for future work.

2. PROBLEMS WITH EXISTING
TECHNOLOGIES

Early systems for dynamic generation of web content were built
primarily with the Common Gateway Interface (CGI). The CGI
is based on the fork/exec model in which the server must fork
a child process for each request. Spawning a new process is a
heavyweight operation in terms of response time and system re-
sources. As a result, the fork/exec approach does not scale well. It
has been shown that in-process or threaded servers respond signif-
icantly better than forked servers. [16, p. 728ff] Furthermore, with
the fork/exec model, each new process is short-lived, and must ac-

Figure 1: Fork/Exec Model for CGI

quire resources such as connections to a database upon each in-
vocation, instead of caching those resources and sharing them be-
tween different request handlers. FastCGI addresses the overhead
of process creation by maintaining a pool of CGI processes, and
dispatching work to these processes via IPC, however this IPC it-
self is another source of overhead.

Many of the most popular and successful competing technolo-
gies (JSP, PHP, ASP, modperl, ColdFusion) are based on avirtual
machinemodel. We include the persistent ”interpreted” language,
mod perl, in this model because its runtime interpreter caches first-
time compilation results, very similar to a bytecode compiler target-
ing a virtual machine. In the virtual machine model, a request han-
dler is compiled to bytecode, not to a native executable image. This
bytecode is processed at runtime by a virtual machine. The byte-
code processing is a runtime performance penalty that CSP aims to
avoid.

Access to system libraries is often not straightforward in ex-
isting systems for dynamic content. Such libraries may be pro-
vided through complex bindings (for example, the Java Native In-
terface (JNI)), that introduce additional hurdles for developers. In
the worst case, a library may need to be rewritten in the given lan-
guage (if this is even feasible). In the case of PHP or ASP, the user
is required to learn a rapidly changing and/or proprietary scripting
language and run-time environment.

3. ARCHITECTURE OF CSP

3.1 CSP Syntax
The generation of the C source from the CSP source is a kind of

inversion process, in the sense that the HTML source becomes em-
bedded in the C source, instead of the other way around. Consider,
for example, the CSP code shown in Figure 2, and a portion of the
resulting C code shown in Figure 3. As can be seen, the segments
of regular HTML code in the CSP source file are transformed into
calls to ap_rputs() , a routine that performs ansprintf()
like operation into the output stream for the HTTP response, while
the C code, set off by the tags<% %>, is placed directly into the
output file unmodified. The entire result becomes a single function
call in the generated C code.

CSP provides six tags, as shown in Table 1. The first three in-
sert C code into the output file. The<% %>tag inserts code di-
rectly at the point where the tag appears. The tag<%* %>relo-
cates the enclosed code to a position outside the generated func-
tion call; this would be used, for example, for declarations such as
#include <somePackage.h> . The tag<%! %> is similar,
but inserts a variable declaration at the top of the generated func-
tion.

<% %> C code block
<%* %> global declarations
<%! %> local declarations
<%=fmt, [args] %> sprintf() to HTTP output stream
<%-- --%> CSP comment
<%@dir [attrs] %> CSP directive

Table 1: CSP Tags

<%@ page contentType= value
httpHeader= value
CC=value
CPPFLAGS=value
CFLAGS=value
LDFLAGS=value
LIBS= value

%>
<%@ include uri="uri" (static | dynamic) %>

Table 2: CSP Directives

The <%=fmt, [args] %>tag is used for output. Thefmt and
optional list of arguments are transformed into arguments to the
equivalent of aprintf() call that writes into the HTTP response
stream. The<%-- --%> tag is used to mark comments at the level
of CSP; it can be used to comment out sections of CSP code that
span both C blocks and HTML blocks.

Finally, the<%@ %>tag is used for CSP directives. Two direc-
tives are defined, as shown in Table 2. Thepage directive provides
two capabilities. First, it permits values to be directly output into
theContent-type header or any other HTTP response header.
Second, it allows control over various aspects of the C compila-
tion. Theinclude directive provides two ways for CSP files to
refer to other CSP files. The static include provides a simple text
insertion. The dynamic include is executed at runtime as a function
call to a separate CSP shared object, compiled from the referenced
URI. The effect of that function call is to insert text into the HTTP
response stream at the position where the dynamicinclude di-
rective appears in the source.

3.2 Request Cycle
Figure 4 shows the request cycle for CSP. The cycle starts with an

incoming HTTP/1.1 and ends with the delivery either the requested
resource or an appropriate error message. It is a “cycle” only in
the logical sense that the request-response sequence repeats indef-
initely. However, it is not a cycle in the true sense because, after
one round of successful request-response operations, the CSP sys-
tem does not return to the same state in which had been when it re-
ceived the initial request. This state change in the request-response
cycle is crucial to the mechanism by which CSP is able outperform
existing technologies.

The request-response cycle can be logically divided into four
distinct phases. The first phase,URI Mapping, determines what
resource is being requested. The second phase iscompilation in
which the CSP source document is compiled to a native library.
This is followed by thelink/load phase to link and load the newly
compiled executable into the running server. Lastly, in theexecute
phase, the library routine is invoked, producing either the requested
resource, or an error. The compilation and link/load phases are acti-
vated only when the CSP source document has been modified more
recently than the most recent compile, and link/load; otherwise they
are skipped.

<html>
<head>
<title>CSP</title>
</head>
<body>
<h1>Sum of the Integers</h1>
<p> The sum of the integers from
1 to 10 is:
<%! int i,sum; %>
<%

sum = 0;
for (i=1; i<=10; i++)

sum += i;
%>
 <%%d=sum %> </p>
<p>Thank you for your attention.</p>
</body>
</html>

Figure 2: Example CSP filesum.csp

int i,sum;
ap_rputs("<html>\n"

"<head>\n"
"<title>CSP</title>\n"
"</head>\n"
"<body>\n"
"<h1>Sum of the Integers</h1>\n"
"<p> The sum of the integers from\n"
"1 to 10 is:\n\n"
,r);

sum = 0;
for (i=1; i<=10; i++)

sum += i;

ap_rputs("\n",r);
ap_rprintf(r,"%d",sum);
ap_rputs(" </p>\n"

"<p>Thank you for your attention.</p>\n"
"</body>\n</html>\n"
,r);

Figure 3: C code produced from sum.csp

Figure 4: CSP Request Cycle

Each of these phases is described in more detail below.

3.2.1 URI Mapping
Incoming HTTP/1.1 requests refer to a particular resource, iden-

tified by a Universal Resource Identifier (URI) [7]. URIs that are
sent in HTTP requests frequently refer to HTML source files on the
web server, however, this need not be the case; in theory, a relative
URI is abstract and does not necessarily specify an actual or physi-
cal resource, such as a file. Therefore, the purpose of the first phase
in the CSP system is to identify the actual resource or service that
is being requested, given an URI.

CSP maps a URI to both a CSP source file, and a resulting shared
object containing an executable C function that, when invoked by
the server, will produce the output needed. The CSP-enabled web
server caches the results of compiling the CSP source, to avoid re-
compilation. Thus immediately following the URI mapping phase
the CSP server must determine whether or not a compilation needs
to take place to produce or update that shared object.

The following pseudocode outlines the decision as to whether
a compile needs to take place for a given request. Assuming that
x.csp is the name of the CSP file named by the URI, andx.csp.so
is the name that would be given to the resulting shared object file.

if ((x.csp.so exists) and
(lastModification(x.csp.so) >

lastModification(x.csp)))
return (noRecompileNeeded)

else
return (recompileNeeded)

3.2.2 Compilation
Since the CSP language is a mixture of HTML and standard C,

it requires a two-stage compilation process. The first stage invokes
the CSP compiler, to convert CSP source into C. The second stage
invokes the C compiler to produce an executable shared object (dy-
namic load library) in the format required by the server platform.

One detail here concerns what happens if the compilation fails;
i. e., if there is a syntax error in either the CSP directives or the
actual C code embedded in the CSP file. In this case, a stand-in
shared object is produced that outputs an error message. Depending
on whether the system is a development system or a production
system, this error message might consist of either the actual error
messages output by the compilation phase, or a message for the end
user to contact technical support. (In the latter case, the compilation
messages could be sent to a log file.) The important part is that a
shared object file is produced with a modification time later than the
source file; this suspends any further compilation of the offending
CSP source file until it is modified by a programmer.

The second compilation stage is responsible for producing a dy-
namic link library, also known as a shared object, from the gener-
ated C code. For this, CSP is able to use any C compiler and linker
combination that is capable of producing shared objects. In the cur-
rent implementation, CSP delegates the creation of shared objects
to the platform’s GNU compiler suite, which produces ELF images
(the Executable and Linking Format introduced in System V and
widely implemented on various versions of Unix, including Linux.)

3.2.3 Link/Load Phase
The link/load phase is fairly trivial from an implementation stand-

point, but we suggest from a conceptual standpoint, is one of the
most interesting aspect of CSP.

The implementation is just two function calls: a call to the sys-
tem functiondlopen() to load the shared object produced by the

compilation phase, and a call to thedlsym() function which re-
turns a function pointer that can be directly called in the execution
phase. The function pointer returned bydlsym() is placed into a
hash table with the URI as the key.

Conceptually, this phase allows the runtime modification of a
running web server. The resulting web server is able to directly
provide new services without invoking any other process, subsys-
tem, or virtual machine. The execution of the new capabilities takes
place “as if” these capabilities had been a part of the original server
source code, and compiled into the server from the beginning.

3.2.4 Execution Phase
During the execution phase, CSP must lookup retrieve the func-

tion pointer from a hash table, using the URI as the key, then invoke
the function.

One detail here concerns what happens if the execution of the C
code in the source file results in an exception (such as division by
zero, segmentation violation, etc.) To handle this case, before in-
voking the function, the CSP enabled server defines signal handlers
for each of the exception conditions that may occur. These signal
handlers perform a long jump out of the offending code.

In spite of these precautions, it is still possible that the user gen-
erated code might cause an exception that cannot be handled. In the
current Apache-based implementation, the Apache parent process
manages several children, which handle the actual requests. A user-
defined CSP routine will never be invoked by the parent; only by
one of the children. The Apache parent process monitors the status
of its children, and starts a new child process to replace any that die.
If the rate of child death increases beyond a certain threshold, the
parent can enable logging to determine whether a particular CSP
module is the cause; if so, the parent can log this event, replace the
shared object for that routine with a stub shared object that prints
an error message such as “function temporarily disabled”.

3.3 Security
The addition of CSP to a web server does not, per se, make it

more vulnerable to external threats; of course, since the page author
has the ability to program arbitrary C code, the code that is inserted
could expose the server to new threats. One of the disadvantages
of running code directly, rather than on a virtual machine or as a
separate process, is that the code shares the same address space, and
to a large extent, the same fate. This is however, not significantly
different from the security and system integrity challenges facing
the developers of any large C based application. The trade-off for
additional power and speed is that the programmer must be quite
careful, and stringent code reviews should be made of any CSP
pages placed on a production server.

4. RELATED WORK
A detailed performance comparison of several technologies for

dynamic web content is given by Gousios and Spinellis [9], which
categorizes the available technologies by approach. Four main ap-
proaches are identified: CGI, Servlets, Templating, and Extension
APIs. The CGI approach is identified as having poor scalability
due to process-creation overhead, as lacking support for session-
tracking in its design, and as suffering from the mesh of presenta-
tion logic and program logic. The Servlet approach is identified as
extending the functionality of the containing application server, as
having built-in support for session-tracking, and as having a dis-
tinct application server container, separate from the web server.
FastCGI is similar to the Servlet approach in terms of the persis-
tence of processes, and but different than the Servlet approach in
the lack of a shared object space. The term “templating” is used

to refer to several approaches that embed a scripting language or
data representation language in HTML. Gousios and Spinellis cite
code-maintenance issues as an impetus for the development of tem-
plating systems, and agree that templating systems are acceptable
solutions for the development of content-based web sites and for
web-publishing. Extension APIs are published C language inter-
faces to some exposed functionality of the web server. In this sense,
one can write modules to extend the web server at compile-time.
They cite the Apache module API as an example of an Extension
API, and cite a well known problem with Apache’s model: run-
time persistence is not preserved across child processes in Apache’s
pre-forked server approach. They conclude that PHP does not scale
well, and that FastCGI significantly outperforms the other approaches.

Iyengar et al. [10] shows that web server performance notice-
ably degrades as the proportion of dynamic pages to static pages
is increased. The authors arrive at a similar conclusion as Gousios
and Spinellis in [9], that is, because dynamic pages are costly as
compared to static pages, it is crucial to optimize the processing
of dynamic pages. Runtime models, such as Extension APIs or
FastCGI, which improve the performance during requests for dy-
namic pages, should be chosen to replace traditional CGI models.
Iyengar et al. [11] further defends the need for high-performance
approaches to serving dynamic content and shows that a runtime
process-caching approach yields the highest performance.

Kuhlins and Korthaus [12] defend servlets as a completely re-
worked solution to the undesirables of CGI. In particular, the au-
thors cite security issues with CGIs that make CGIs impractical
for use by Internet service providers. Servlets, they propose, pro-
vide a language-unified, elegant solution to certain problems, and if
properly configured, outperform CGI. Kuhlins and Korthaus men-
tion FastCGI but provide no performance comparison with servlets.
They also mention briefly that the execution of a request handler in
a Servlet environment is merely a method call, as compared to a
process invocation in a CGI environment —but they do not expand
upon this crucial point that is at the heart of CSP.

5. PERFORMANCE EVALUATION

5.1 Experimental Design
To evaluate the performance of CSP against competing technolo-

gies, we performed experiments to determine the maximum rate at
which an Apache server (version 1.3.27) could satisfy requests us-
ing each of the following technologies:

• PHP 4.2.3

• mod perl 1.0

• CGI

• FastCGI 2.2.2

• CSP 0.9

For each of the technologies under test, we created a script or
module that would generate the same minimal HTML document
(a title, one line of text, and the appropriate HTML markup). By
using a minimal document, we focus this benchmark on the over-
head of invoking each of the technologies, rather than on content
generation. As a reference point, we also placed a copy of this doc-
ument on the server and ran the same experiment to measure the
performance of simple retrieval of static HTML.

We created a separate build of the Apache server for each of these
technologies (except static HTML and CGI, for which we used

the same build.) Although it is common to build a single server
with support for multiple technologies, we chose this separation
to eliminate the possibility of unpredictable interactions between
technologies.

Our benchmark consists of a single server and multiple clients.
By saturating the server with requests from the clients, we obtained
the maximum number of responses per second sustainable by the
server for each of the above technologies. Only one of the Apache
builds was active for any given run.

The five Apache builds were tuned according to the recommen-
dations of the Apache authors, and each technology was tuned ac-
cording to the documentation provided. Specifically, we disabled
the following Apache options: moddir, symlink checking, host-
name lookups , AllowOverride , and ExtendedStatus. FastCGI
was run with theFastCGIServer directive which causes the
server to preallocate the CGI process pool; we configured FastCGI
with 10 initial processes. We created a modperl handler from the
mod perl script in order to eliminate some processing overhead in
the modperl internals. For PHP, we used the recommended default
configuration. For the CGI benchmark, we chose to use a compiled
C program rather than a Perl or CGI.pm based script, to provide the
fastest possible time for CGI.

We used the ’httperf’ tool as the load generator on the clients [14].
Httperf is designed specifically to measure web server performance,
and is capable of generating repeated HTTP/1.1 pipelined requests.
For each experiment, we ran httperf onk simultaneous clients with
k = 1 . . . 5. Each of thek clients made 1000 connections, with
100 pipelined HTTP/1.1 requests per connection. The key metric
for the experiment is the maximum sustainable requests-per-second
possible with each technology on the given server configuration.

The experiments were carried out using the emulab system pro-
vided by the University of Utah [17]. The client and server ma-
chines were all taken from a pool of 850Mhz Pentium IIIs, 512MB
PC133 ECC SDRAM, Intel EtherExpress Pro 10/100Mbps Ether-
net cards, and 40GB IBM 60GXP 7200RPM ATA/100 IDE hard
drives. The emulab system was used to configure a VLAN consist-
ing of the client and server machines. Throughout the duration of
the experiment, there were no other users on these machines; they
were devoted exclusively to the benchmark, and a separate test net-
work was used to be sure that there was no interference from other
traffic.

To ensure that the bottleneck was in the server processing rather
than in the network, we examined the sizes of request and response
packets. We noted that while the size of the generated HTML (i.e.,
the HTTP Content-length) was exactly the same for each technol-
ogy, there were variations in the size of the HTTP request and re-
sponse headers. This resulted in a 7% difference between the small-
est and largest request messages, and a 17% difference between the
smallest and largest response messages. However this relatively
minor variation does not explain the large differences that were ob-
served in performance among the technologies. We concluded that
the network was not a bottleneck, because the bandwidth available
on the VLAN exceeded the data rate necessary to support the fastest
observed server response rate performance.

Inspection of both the Apache logs and the output from httperf
verified that all requests were satisfied with a “200 OK” response.

5.2 Results
Figures 5 shows the average response rate of the server (in re-

sponses per second) for each technology. Thex-axis is the number
of clients, while they-axis shows the response rate observed. Each
data point shows the average server response rate (in responses per
second) over the time required for each client to receive responses

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

A
vg

 S
er

ve
r

R
es

po
ns

es
 P

er
 S

ec
on

d

Number of Clients

Avg. Server Response Rate

csp
static

mod_perl-handler
fcgi
php

cgi-c

Figure 5: Benchmark Results

to 100,000 requests.
We conclude from the results that the load placed on the server

by two or more clients was sufficient to reach the maximum sus-
tainable server response rate. For all technologies except CSP and
static html, a single client was able to sufficiently load the server.
This is reasonable, given that the server and the client machines
were of identical power, and that the client (httperf) has relatively
little processing to do for each request. For CSP and static html,
we can see that the results vary little from two to five clients.

CSP is the best performing technology, performing an order of
magnitude better than CGI, and around three times faster than PHP,
mod perl and FastCGI. We suggest that the difference between FastCGI
and CSP can be accounted for by the need to perform interprocess
communication and a context switch between the web server and
the FastCGI server process. PHP and modperl run in the same
process as the server, as does CSP. The performance advantage of
CSP over PHP and modperl is likely due to the speed of compiled
C code vs. invocation of a bytecode interpreter.

Interestingly, CSP outperforms even static HTML, despite the
fact that CSP is designed for dynamic content. This is due to the
fact that CSP compiles the contents of a static page into the web
server, so there is no actual transfer of data from disk before send-
ing the response; the server need only do astat() to check the
modification time. When using CSP to serve static HTML, CSP
effectively becomes a memory cache for the HTML. There is a
drawback to using CSP to serve static content: there is currently
no mechanism implemented in CSP to flush this cache if memory
becomes scarce (for example, if a large number of CSP modules
are loaded.) Solutions to this problem are discussed in Section 6.2.

6. CONCLUSION

6.1 Summary
CSP provides a solution for the generation of dynamic content

that can significantly outperform existing approaches. CSP is based
on adding a very small number of tags and directives to HTML
and C, languages that are familiar to many developers. CSP also
presents a new architecture for the generation of dynamic content,
namely, a technique for directly extending the capabilities of a run-
ning server process with native compiled code.

6.2 Future Work
We plan to carry out additional performance evaluations of CSP

in which the content is generated from a database, and in which
CSP performs significant data manipulation on each request. We
also hope to include JSP servlets in future benchmarks.

Planned enhancements to CSP include:

• support for C++

• the ability to store large chunks of static content on disk,
rather than as string constants in the generated C code.

• support for periodic release of infrequently accessed shared
objects via use of thedlclose() function.

7. ACKNOWLEDGMENTS
The authors are grateful to Jay Lepreau and the support staff of

Netbed (formerly known as emulab), the Utah Network Emulation
Testbed (which is primarily supported by NSF grant ANI-00-82493
and Cisco Systems) for making their facilities available for our ex-
periments. We are also grateful to Andreas Jungmaier of the Uni-
versity of Essen for helpful comments.

8. REFERENCES
[1] Cgi.pm - a perl5 cgi library.

http://stein.cshl.org/WWW/software/CGI/.
[2] Javaserver pages technology.

http://java.sun.com/products/jsp/.
[3] Macromedia home page. http://www.macromedia.com.
[4] FastGGI home page. http://www.fastcgi.com.
[5] mod perl. http://perl.apache.org/.
[6] Php hypertext processor home page. http://www.php.net.
[7] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform

resource identifiers (uri): Generic syntax. Technical report,
IETF Request For Comments, August 1998.

[8] Claus Brabrand, Anders Mller, and Michael I. Schwartzbach.
The<bigwig> project.ACM Transactions on Internet
Technology (TOIT), 2(2), May 2002.

[9] George Gousios and Diomidis Spinellis. A comparison of
portable dynamic web content technologies for the apache
web server. InProceedings of the 3rd International System
Administration and Networking Conference SANE 2002,
pages 103–119, Maastricht, The Netherlands, May 2002.

[10] A. Iyengar, E. MacNair, and T. Nguyen. An analysis of web
server performance. InGLOBECOM ’97, 1997.

[11] Arun Iyengar, Ed MacNair, and Thao Nguyen. Web server
performance under heavy loads. Technical Report RC
20976(92922), IBM Research Report, September 1997.

[12] Stefan Kuhlins and Axel Korthaus. Java Servlets versus CGI
– implications for remote data analysis. In Reinhold Decker
and Wolfgang Gaul, editors,Classification and Information
Processing at the Turn of the Millennium, Proceedings of the
23rd Annual Conference of the Gesellschaft für
Klassifikation e.V., Studies in Classification, Data Analysis,
and Knowledge Organization, pages 841–847.
Springer-Verlag, March 1999.

[13] Mike Morrison, Joline Morrison, and Anthony Keys.
Integrating web sites and databases.Communications of the
ACM, 45(9), September 2001.

[14] David Mosberger and Tai Jin. httperf: A tool for measuring
web server performance. InFirst Workshop on Internet
Server Performance, pages 59—67. ACM, June 1998.

[15] Peter Simons and Ralph Babel. FastCGI: The forgotten
treasure. InApacheCon2001, Santa Clara, CA, April 2001.

[16] W. Richard Stevens.Unix Network Programming, volume 1.
Prentice-Hall, second edition, 1998.

[17] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad Mac Newbold, Mike Hibler, Chad Barb,
and Abhijeet Joglekar. An integrated experimental
environment for distributed systems and networks. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (to appear), December 2002.

